

[i]

EVASION AND DETECTION OF METAMORPHIC
VIRUSES

Rana Yashveer

Department of Computer Science and Engineering,

National Institute of Technology Rourkela,

Rourkela – 769008, Orissa, India.

[ii]

EVASION AND DETECTION OF METAMORPHIC
VIRUSES

Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Rana Yashveer
(Roll: 108CS050)

Under the guidance of

Prof. S.K. Jena

NIT Rourkela

Department of Computer Science and Engineering,

National Institute of Technology, Rourkela
Rourkela- 769008, Orissa, India.

[iii]

Department of Computer Science and Engineering

National Institute of Technology Rourkela
Rourkela-769 008, Orissa, India.

CERTIFICATE

This is to certify that the work in the thesis entitled Evasion and Detection of

Metamorphic Viruses submitted by Rana Yashveer(Roll No. 108CS050) in fulfillment of

the requirements for the award of Bachelor of Technology Degree in Computer Science and

Engineering at NIT Rourkela is an authentic work carried out by them under my

supervision and guidance. Neither this thesis nor any part of it has been submitted for any

degree or academic award elsewhere.

Date: 14-05-2012

Place: Rourkela

S. K. Jena

Professor

Department of Computer Science and Engineering

National Institute of Technology Rourkela

[iv]

Acknowledgment

I express my sincere gratitude to Prof. S. K. Jena for his motivation during the course of the

project which served as a spur to keep the work on schedule. I also convey my heart-felt sincerity

to Prof. S.Panigrahi for his constant support and timely suggestions, without which this project

could not have seen the light of the day. I convey my regards to all the other faculty members of

Department of Computer Science and Engineering, NIT Rourkela for their valuable guidance

and advices at appropriate times. Finally, I would like to thank my friends for their help and

assistance all through this project.

Rana Yashveer

[v]

Table of Contents

Chapter 1 Introduction ... 1

Chapter 2. Related Work .. 3

Chapter 3. Evolution of Virus – The Stages ... 4

3.1 Stealth viruses ... 5

3.2 Encrypted and Polymorphic viruses ... 5

3.3 Metamorphic Viruses .. 7

3.1.1 Anatomy of a Metamorphic Virus... 8

Chapter 4. Virus Detection Strategies .. 10

4.1 Signature Based Detection ... 10

4.2 Heuristic Analysis ... 11

4.3 Code Emulation ... 12

Chapter 5. Code Obfuscation Techniques.. 14

5.1 Code Morphing Techniques ... 14

5.1.1 Dead Code Insertion ... 14

5.1.2 Register Exchange (Register Renaming) ... 15

5.1.3 Equivalent Code Substitution.. 16

5.1.4 Transposition.. 17

5.1.5 Subroutine Permutation .. 17

5.1.6 Instruction Reordering via Jump Statements ... 18

5.1.7 Subroutine Inlining and Outlining ... 19

5.2 Anti-Heuristic Techniques ... 20

5.2.1 Call by API Hashing ... 20

5.2.2 Delay Routine Insertion .. 21

5.2.3 Obfuscating suspicious elements .. 22

Chapter 6. Project Implementation .. 23

6.1 Creation of Base Virus .. 23

6.2 Applying Metamorphic Engine .. 24

6.2.1 Engine Algorithm ... 24

6.3 Applying Anti-Heuristic Techniques.. 25

Chapter 7. Results ... 28

[vi]

7.1 Base Virus ... 28

7.2 Base Virus with API Name Hashing ... 29

7.3 Virus with Metamorphic Code Obfuscations .. 29

7.4 Metamorphic Virus with Delay Routines .. 30

7.5 End Virus with Encrypted String Constants .. 31

Chapter 8. Conclusion... 34

References ... 35

Appendix A: Equivalent instruction substitution [2] ... 37

Appendix B: Dead code instructions [2] ... 40

[vii]

List of Figures

FIGURE 1 MODULES OF A COMPUTER VIRUS ..5

FIGURE 2 POLYMORPHIC VIRUS PE LAYOUT ...6

FIGURE 3 GENERATIONS OF A METAMORPHIC VIRUS ..8

FIGURE 4 STONED VIRUS SHOWING THE SEARCH PATTERN ... 11

FIGURE 5 METAMORPHIC VIRUSES AND CODE OBFUSCATION TECHNIQUES.................................... 14

FIGURE 6 DEAD CODE INSERTION IN EVOL VIRUS ... 15

FIGURE 7 TWO DIFFERENT GENERATIONS OF REGSWAP ... 16

FIGURE 8 INSTRUCTION SUBSTITUTION IN METAPHOR VIRUS .. 16

FIGURE 9 SUBROUTINE PERMUTATION .. 18

FIGURE 10 CODE REORDERING THROUGH JUMP STATEMENTS ... 19

FIGURE 11 SUBROUTINE INLINING .. 19

FIGURE 12 SUBROUTINE OUTLINING ... 20

FIGURE 13 IMPORTED API FUNCTIONS IN IPMSG.EXE ... 21

FIGURE 14 NGVCK USER INTERFACE .. 24

FIGURE 15 : PROCESS FLOW DIAGRAM ... 26

FIGURE 16 SCAN RESULTS FOR BASE VIRUS ... 28

FIGURE 17 SCAN RESULTS FOR BASE VIRUS WITH API NAME HASHING 29

FIGURE 18 SCAN RESULTS FOR VIRUS WITH METAMORPHISM ... 30

FIGURE 19 SCAN RESULTS FOR METAMORPHIC VIRUS WITH DELAY ROUTINES 31

FIGURE 20 SCAN RESULTS FOR END VIRUS ... 32

FIGURE 21 DETECTION RATE OF DIFFERENT VIRUS SAMPLES .. 33

FIGURE 22 FEATURE COMPARISON OF ANTI-VIRUS ENGINES .. 33

[viii]

List of Tables

TABLE 1 OVERVIEW OF DETECTION METHODS ..13

TABLE 2 SUMMARY OF TOOLS USED ...27

TABLE 3 EQUIVALENT INSTRUCTION SUBSTITUTIONS ...39

TABLE 4 DEAD CODE INSTRUCTIONS ..41

[ix]

Abstract

Metamorphic viruses mutate their own code to produce viral copies which are syntactically

different from their parents, but functionally equivalent. The viral copies thus produced, may

have different signatures, rendering signature-based virus scanners unreliable. New age anti-

virus products employ a combination of signature scanning and heuristic techniques to defeat

such viruses.

In this project, a metamorphic engine, which uses code obfuscation techniques, is implemented

to bypass commercial scanners. A set of anti-heuristic strategies are used to evade code

emulation and heuristic detection. Using a combination of the above techniques, the detection

rate of a well known sample virus is reduced significantly. Finally, a brief comparative study of

major commercial anti-virus software is performed with respect to their detection capability.

[1]

Chapter 1 Introduction

In today’s age, where a majority of the transactions involving sensitive information

access happen on computers and over the internet, it is absolutely imperative to treat information

security as a concern of paramount importance. Computer viruses and other malware have

existed from the very early days of the personal computer and continue to pose a threat to home

and enterprise users alike. As anti-virus technologies evolved to combat these viruses, the virus

writers too changed their tactics and mode of operation to create more complex and harder to

detect viruses and the game of cat and mouse continued.

In general, a virus performs activities without permission of users. Certain viruses can

perform damaging activities on a host machine, such as hard disk data corruption or crashing the

computer. Other viruses are harmless and might, as an instance, print annoying messages on the

screen. In any case, viruses are undesirable for users, regardless of their nature [4]. Modern

viruses also take advantage of the always-connected Internet to spread on a global level.

Therefore, early detection of viruses is necessary to minimize damage.

There are many antivirus defense mechanisms available today, but chief among these is signature

detection, which involves looking for a fingerprint-like sequence of bits (extracted from a known

sample of the virus) in the suspect file [9]. Metamorphic viruses are quite potent against this

technique since they can use a variety of code morphing techniques to change the structure of the

viral code without altering its function.

A heuristic anti-virus program examines a target program (executable file, boot record, or

possibly document file with a macro) and analyzes its program code to determine if the code

[2]

appears virus-like. Since this technique does not depend on virus signatures it can detect new and

unknown viruses that have not yet been analyzed by antivirus researchers. Modern age anti-virus

products incorporate a combination of all these techniques to defeat virus writers.

This project constituted the implementation of a metamorphic engine, employing various code

obfuscation techniques, and using this engine on a well known virus sample to bypass basic

detection mechanisms. Also, a set of anti-heuristic strategies were included to negate heuristic

detection via code emulation. Based on the above results, the reliability and effectiveness of

modern day commercial anti-virus programs were briefly discussed.

[3]

Chapter 2. Related Work

Obfuscation is a common term referring to any method that capable of transforming the

original program code into an unreadable or misleading version with the intention of concealing

the true purpose of code from interpretation by a human being, or any detection program. Wong

W. [9] analyzed several metamorphic virus generator kits by defining a similarity index and

using it to precisely quantify the degree of metamorphism produced by each generator. He then

presented a detector based on the principle of statistical hidden Markov models. U.Mishra [15]

presented a brief introduction to various scanning methods employed today, their strengths and

their corresponding limitations, suggesting modifications and improvements that could be made

on existing detection techniques. Babak R., Maslim M. and Suhaimi I. [14] also surveyed the

most common scanning and detection methods used in modern day anti-virus software, drawing

a feature comparison and suggesting modifications. Our research comprises of analyzing the

robustness of a handful of anti-virus engines against the ubiquitous code obfuscation techniques

by using a well known virus as a sample.

[4]

Chapter 3. Evolution of Virus – The Stages

.A computer virus is a program designed or sequence of instructions written to infect and

potentially damage files on a target system. The term "virus" is also commonly, but erroneously,

used to refer to other types of malware, that do not have a reproductive ability. For replication

and spreading, viruses need to have authorization to read/write to memory. Hence, a lot of

viruses attach themselves to legitimate executable files. When such infected programs are run,

the attached piece of virus code also gets executed, thereby damaging the system [6]. Modern

viruses utilize the Internet to spread on a wider domain.

The virus evolution phenomenon is believed to have started with an academic project

done by Fred Cohen (1983), following which Len Andleman coined the term “virus” [1]. Cohen,

widely considered as the “Father of computer viruses”, proved that it was impossible to detect all

variations of a virus program. The Creeper Virus written by Bob Thomas in 1971, was the first

successful virus, capable propogation through ARPANET [13].

Generally a computer virus consists of the following modules:

 infect() defines the mechanism of virus replication

 trigger() is a conditional test that decides whether to execute the payload or not.

 payload() defines actual damage causing instructions existing in the virus.

[5]

Figure 1 Modules of a computer virus [1]

3.1 Stealth viruses

Virus writers have been crafting techniques to avoid detection from the frontier days of

computer viruses. One of the first elementary techniques was restore the last modified date of an

infected file to make it appear untouched. The detectors responded by maintaining cyclic

redundancy check (CRC) logs on files that would indicate any sort of code modification or

infection. Others, such as ‘Brain’, tried to hide in memory and maintained different copies of

infected files, occupying system functions for reading disk sectors and redirecting anti-virus

programs to the unaffected copies to bypass malicious flagging.

3.2 Encrypted and Polymorphic viruses

The next stage in virus evolution produced viruses which used encryption as a technique

to obfuscate their presence. One of the earliest examples of a virus using encryption as an anti-

detection technique was Cascade, a DOS virus. Encrypted viruses typically carry along a

decryption engine and thus they have to maintain a small portion of the virus body unencrypted.

[6]

Antivirus programs started to identify such viruses by looking for the signature bits in this

unencrypted portion. [6]

Oligomorphic viruses took the stage, where the viruses employed multiple decryption

algorithms (carry multiple decryption engines and pick randomly) making pattern based

detection virtually impossible.

Subsequently, polymorphic viruses entered the scene, which were encrypted viruses with

the ability to mutate their decryption engines in each generation. These operate with the

assistance of an encryption engine which changes with each virus replication; this keeps the

encrypted virus functional, while still hiding the polymorphic virus from the computer it infects.

Polymorphic viruses can generate many unique decryptors and can use many other encryption

methods for encryption. This feature helps bypass common signature detection techniques.[9]

Figure 2 Polymorphic Virus PE Layout

[7]

Polymorphic viruses required modifications in anti-virus technology and the problem

gave birth to static emulation. In this method, the virus decryption process is executed in a

controlled environment to capture the location of the decrypted virus. Here, detector can scan for

a signature string in the decrypted virus and use that to detect further infections of the same

virus.

3.3 Metamorphic Viruses

Metamorphic viruses modify their code to produce an equivalent one during propagation.

They are a step ahead than polymorphic viruses, since the latter keeps the virus body constant in

each generation. Such viruses attempt to avoid creating alarm through static analysis by

implementing code obfuscation techniques. Techniques like are swapping of interchangeable

instructions, inserting junk instructions and introducing conditional/unconditional jumps to

produce the child virus. The child virus possesses the same functionality but a different pattern

signature. In this method, the signature of a virus is broken by changing the order of instructions

without altering the control flow. Metamorphic code can also mean that a virus is capable of

infecting executables from several operating systems (Windows or GNU/Linux) or even multiple

computer architectures. A sophisticated virus type will generate code based on the host’s

operating system by translating the existing instructions to the corresponding machine code.

[8]

Figure 3 Generations of a metamorphic virus [6]

3.1.1 Anatomy of a Metamorphic Virus

A metamorphic virus has the metamorphic engine embedded within itself. Zperm was

found to carry along its own metamorphic engine, known as the Real Permuting Engine

(RPME)[3]. During infection, a metamorphic virus creates several morphed copies of itself using

this embedded engine. A typical metamorphic engine is expected to contain [11]:

1. Internal disassembler

2. Opcode shrinker

3. Opcode expander

4. Opcode swapper

5. Relocator/recalculator

6. Garbager and Cleaner

[9]

Internal disassembler disassembles the binary / executable code, per instruction. Opcode shrinker

optimizes the program instructions. Opcode shrinker replaces two or more instructions with a set

of equivalent instructions. Opcode expander performs the reverse operation of opcode shrinker.

It replaces one instruction with several instructions.

Opcode swapper changes the order of the instructions. Generally it swaps two unrelated

instructions. Relocator relocates relative references like jump and call. Garbager inserts do-

nothing instructions. Cleaner undoes Garbager, i.e. it removes do-nothing instructions inserted

by Garbager.

Characteristics of an effective metamorphic engine are [11]:

1. A metamorphic engine should be familiar with any opcode of an assembly language. An

engine should know all of the opcodes of the targeted system architecture.

2. Opcode shrinker and swapper should be able to process more than one instruction

concurrently.

3. Garbager is used in moderate amount.

4. Garbage should not affect actual instructions.

5. Opcode swapper should analyze each instruction, swapping unrelated instructions and

should not affect the execution of next instruction.

The metamorphic engine used in the project is implemented as an tool separate from the seed

virus. This tool reads in an assembly program generated by virus toolkits or disassembled virus

executable and performs the metamorphosis.

[10]

Chapter 4. Virus Detection Strategies

This section provides an overview of all major detection methods employed by modern

day antivirus software. The objective of using different methods is to detect viruses with a high

degree of accuracy, produce very few false positives, and accomplish the detection process in a

reasonable amount of time.

4.1 Signature Based Detection

The most popular technique in anti-virus scanners today is pattern matching. It is not as

effective as some other techniques but it is the fastest. This technique involves extraction of a

unique sequence of bits from a known virus and using this sample as a fingerprint to

subsequently match against while scanning for the existence of the virus. Statistical techniques

are also used to extract these patterns. [6]

This method of detection is fast and fairly accurate since the chances of false alarms are very low

in this system. The main drawback of the system is the heavy dependence on an updated

database of all the signature files of malware. The accuracy is totally determined by the signature

database of the system. Signature based detection systems fail to detect a new virus since the

database do not contain any information about the new virus. Figure 4.1 shows an illustration of

a search pattern for the ‘Stoned’ boot sector virus. Here, the sequence of bits selected was chosen

by observing a unique behavioral peculiarity of the virus (it read the boot sector of the diskette

four times, resetting the disk between each try).

[11]

Figure 4 Stoned virus showing the search pattern 0400 B801 020E 07BB 0002 33C9 8BD1 419C
[6]

4.2 Heuristic Analysis

Heuristic analysis is suitable for detecting unknown or ‘disguised’ viruses. Heuristic

analysis may be static or dynamic. The first heuristic engines were introduced to detect DOS

viruses in 1989. Static heuristics analyze the file format and the code structure to look for

suspicious characteristics of a virus body, while dynamic heuristics utilize code emulators

designed to detect viral code. Heuristic analysis is done in two stages [5] – Data Gathering in

which the data is collected using many heuristics and Analysis in which the techniques like data

mining, expert systems or neural networks can be for virus sample analysis They do this by

employing either weight-based systems and/or rule-based systems.

Depending on the environment and the technological level, the following components can be

found within heuristic engines [5]:

 Variable/memory emulator

 Parser

 Flow analyzer

 Analyzer

[12]

 Disassembler/emulator

 Weight-based system and/or Rule based system.

The following are some of the suspicious characteristics defined as rules for heuristic engines,

indicating a possible 32-bit PE (Portable Executable) virus [6]

• Code execution starts in the last section

• Incorrect virtual size in PE header

• Unnecessary ‘Gaps’ between sections

• Suspicious altered code section name

• Suspicious API imports from Kernel32.dll, (importing by ordinal instead of importing by

name)

One shortcoming of heuristic analysis is that it can create many false positives. Even though

chances of false alarm are relatively higher, it is has a better chance of detecting new viruses.

The critical issue is that raising a false alarm is not as potential harmful as tagging a new virus

positive. However, such systems can be trained gradually by intruders to consider abnormal

behavior as routine. Thus, system might fail to detect the abnormal activity in such cases

4.3 Code Emulation

Code emulation is a detection technique in which a virus is executed in a simulated

environment without actually impacting the original host machine. A virtual machine is

implemented to simulate the CPU and memory management systems to mimic the code

execution. This is a dynamic analysis method as the code of the virus is run in real time to

observe its behavior. A good dynamic code emulator comprises of five functionalities [1], which

are CPU emulation, Memory emulation, Operating System and Hardware emulation, Emulation

controller and Analyzer. It is imperative to define memory access functions to fetch 8-bit, 16-bit,

[13]

and 32-bit data (and so on). Further, the functionality of the operating system should be emulated

to create a virtualized system that will support system APIs, file and memory management. This

technique is highly potent against polymorphic encrypted viruses, since the decryption routine

can be emulated to locate the unencrypted plaintext code on which pattern matching can be

performed. Table 4.1 gives an overview of the various detection techniques.

Detection Technique Strength Weakness

Signature based Fast, efficient, accurate New malware

Heuristic Analysis New malware
Implementation cost,

False positives

Emulation Based Encrypted viruses Costly to implement

Table 1 Overview of Detection Methods

[14]

Chapter 5. Code Obfuscation Techniques

5.1 Code Morphing Techniques

Metamorphic engines use various code morphing techniques to generate morphed copies

of the original program. Generally, the morphed code is more difficult to read and understand

than the original, due to a higher complexity of instructions used. Code morphing can be used to

generate a large number of distinct copies of a parent file. This section describes some morphing

techniques that are applied to assembly code. Code morphing techniques for assembly programs

can apply to the control flow, code, or data (Borello and Me, 2008). Control flow obfuscation

involves instruction reordering, typically through insertion of jumps, or calls. Figure 5.1 provides

an overview of some well-known metamorphic viruses and their code obfuscation techniques.

Figure 5 Metamorphic viruses and code obfuscation techniques

5.1.1 Dead Code Insertion

Inserting dead code or do-nothing instruction does not affect the code execution. Dead

code can be a single instruction or an instruction block. Inserting dead code changes the

appearance of a program by altering its binary pattern. Adding different block sizes of dead code

[15]

on each generation creates different looking programs with the same functionality. However,

such insertions cause swelling of the size of the original program. Hence, dead codes should not

be used excessively. The Evol virus implemented dead code insertion by adding a block of dead

code between core instructions as shown.

Figure 6 Dead Code Insertion in Evol Virus [16]

5.1.2 Register Exchange (Register Renaming)

Register renaming substitutes register operands of an instruction without changing the

instruction itself. The instructions remain constant across all morphed copies. Since only the

operands change, it alters the binary signature. RegSwap was one of the earliest metamorphic

viruses to employ register usage exchange. The underlying principle is to try change the

operational code pattern and bypass the signature detection Figure 5.3 shows two pieces of code

from two different copies of RegSwap.

[16]

Figure 7 Two different generations of RegSwap [6]

5.1.3 Equivalent Code Substitution

Equivalent code substitution is the replacement of an instruction with an equivalent

instruction or a similar block of instructions. In assembly language, generally a single task can be

achieved in different ways. This method is highly successful in defeating signature detection

systems because it totally detects the viruses based on the opcode pattern. The obfuscation

introduced through this method, though effective is not permanent. These obfuscations are

removed if the executable is made to go through a cycle of assembly/disassembly processes. The

W32/MetaPhor virus is one of the metamorphic virus generators that includes the instruction

substitution technique.

Figure 8 Instruction Substitution in MetaPhor Virus [7]

[17]

5.1.4 Transposition

Transposition or instruction permutation changes the instruction execution order in a

program. This can be done only if no relation exists among instructions. Consider two

instructions Instruction-1 (OP1 R1, R2) and Instruction-2 (OP2 R3, R4). These two instructions

can be transposed if following conditions are met:

1. R1 ≠ R3

2. R1 ≠R4

3. R2 ≠R3

However, this technique should be used very carefully since it results in program corruption.

5.1.5 Subroutine Permutation

This is a basic obfuscation technique in which the subroutines of a program are

reordered. A program with n different subroutines can generate (n-1)! different subroutine

permutations. Subroutine permutation does not affect the functionality of a program nor the

program execution flow as the order of subroutine is not important for its execution.

[18]

Figure 9 Subroutine Permutation

5.1.6 Instruction Reordering via Jump Statements

Code reordering inserts conditional or unconditional branching instruction after every

single instruction or a block of instructions. These blocks defined by the branching instructions

are permuted and shuffled to change the control flow. The modified code is termed as Spaghetti

Code. The conditional branching instruction is generally preceded by a test instruction to force

the execution of the branching instruction. However, this technique can be rendered useless by

Control Flow Graph (CFG) Analysis, if the jump test instructions are not shrewdly implemented.

[19]

Figure 10 Code Reordering through Jump Statements [6]

5.1.7 Subroutine Inlining and Outlining

Subroutine inlining is a technique in which a call to a specific subroutine is replaced with

its actual code, as illustrated in Figure 5.7. This technique does not alter the program size and

may lead to faster program execution as the call stack procedures are avoided

Figure 11 Subroutine Inlining

Subroutine outlining is the inverse of code inlining – it converts a block of code into a subroutine

and replaces the code block with a call to the subroutine. Figure 5.8 gives an example of code

outlining. This technique may slow down the program execution, if used excessively.

[20]

Figure 12 Subroutine Outlining

Out of the above listed, three techniques, namely Dead Code Insertion, Instruction Substitution

and Transposition were implemented in our metamorphic engine.

5.2 Anti-Heuristic Techniques

Anti-heuristic techniques are efforts by virus writers to avoid their code being detected as

a possible new virus by heuristic detection. Most of these techniques are developed by carefully

studying the logistics of heuristic analysis and appending modifications to bypass those rules.

5.2.1 Call by API Hashing

A simple call to win32 API functions causes the imported function to be listed in the

Import Table of the executable and the PE Export Table of the loaded modules. Figure 5.9 shows

the PE Import table of a well known messaging application IP Messenger.

[21]

Figure 13 Imported API Functions in ipmsg.exe

It is possible to obfuscate such calls to API functions by hashing API names. A typical algorithm

is to add each ASCII character of an API function name to a 32-bit value, performing a bitwise

rotation right 13 places for each character. This produces a hash with no collisions in any major

system DLLs, making it an easy and safe method of obfuscation. CRC32 hashes are generally

used for this purpose. For example, the hash value of string ‘URLDownloadToFileA’ [10] can be

used as input parameter to a subroutine which retrieves the address of the function from the

loaded Dynamic Link Library (DLL) files

call URLDownloadToFileA push 702F1A36h ; hash value

 call Get_API ; procedure to retrieve API

5.2.2 Delay Routine Insertion

The idea is that these heuristic scanners only emulate the first set of instructions and then

stop to speed up scanning, since spending significant time on a single file is not feasible to their

application. This property can be exploited by introducing endless loops or loops with very large

counter variables. A classic form is shown below:

[22]

mov cx, 0FFFFh ; Counter variable

loop_head:

jmp short over_it

mov ax, 4C00h

int 21h .

over_it:

loop loop_head

It can also be achieved by calling the Win32 Sleep API function and setting the sleep parameter

to an order of 10 seconds. The success of this technique depends on the configuration of the

Anti-virus engine and the speed of the processor on which emulation is carried out.

5.2.3 Obfuscating suspicious elements

The Next Generation Virus Creation Kit (NGVCK) virus used plain strings to store the

extension of executable files to infect. Heuristic analysis involves searching for such suspicious

elements and raising the alarm if it is encountered. A solution to avoid setting the heuristic flags

is to store encrypted form of such string elements, to be retrieved later by a decryption routine.

 XOR 77h
Filemask db ‘*.Exe’, 0 filemask db 5Dh, 59h, 32h, 0Fh, 12h, 0

[23]

Chapter 6. Project Implementation

6.1 Creation of Base Virus

1. The base virus, which was given as the input to the code obfuscation engine, was created

using a virus construction kit, NGVCK (Next Generation Virus Creation Kit), obtained

from VX Heavens website [12].

2. The virus constructor had specific instructions and options to create a seed virus. Seed

viruses were created following the instructions given by the virus construction kits. The

following features were included in the test sample

 Upward directory traversal for file infection

 Max file infection count = 20

 API Search Type – CRC32 Hashing

 Entry Point Obscurity (EPO) disabled

3. Resultant output assembly file was then compiled using TASM 5.0 using options

suggested by the program file.

4. The compiled virus executable was uploaded to Jotti’s malware scanner website [8] and

scanned across multiple antivirus engines updated with the latest virus signature database.

[24]

Figure 14 NGVCK User Interface

6.2 Applying Metamorphic Engine

A metamorphic engine was implemented to introduce code obfuscations in the original

virus. Each of the obfuscation technique was designed as a separate module, and had own

process to decide when and how to apply the techniques. The engine was implemented using

Java SE, organized into separate class files for each of the instructions supported for obfuscation.

6.2.1 Engine Algorithm

The metamorphic engine follows a general algorithm to generate metamorphic copies of

the base virus file. The high level metamorphic algorithm is summarized as below:

[25]

1. Determine the start of code section.

For every instruction matching supported instruction list

2. RAND_NUM_SUB = random number from 0 to 2

3. If RAND_NUM_SUB <= 1 then select the instruction for Substitution // substitution is done

for about 2 in 3 instructions.

4. Substitution:

a. RAND_JUNK_EQUI = random number from 0 to 2.

b. If (RAND_JUNK_EQUI < 2) //equivalent code substitution is done 66%

i. Perform equivalent code substitution

c. Else

i. Perform junk code insertion

//randomly select among Single NOP instruction insertion

//jump NOP, and Evol transformations.

5. Repeat steps 2 to 4 till end of the file.

6. Perform transpose on the generated morphed code.

The assembly source file of the seed virus created earlier was given as input to the metamorphic

engine. The engine, using multi threading, was configured to create 10 metamorphic copies of

the source program.

6.3 Applying Anti-Heuristic Techniques

The anti-heuristic techniques, discussed earlier, were applied on the resultant metamorphic

virus copies. Delay routines were inserted randomly at different locations of the ‘.code’ section.

[26]

NGVCK stored the file extension wildcard as a plain string ‘*.Exe’, which was encrypted by

XOR-ing the ASCII value of each character with the 8-bit value 77h, and storing the resultant 8-

bit value. This string was retrieved as and when required, by writing a simple decryption routine

that involved XOR-ing the encrypted byte value with the same key (77h). The basic decryption

routine algorithm was as follows:

1. Save all register values (pushad instruction)

2. Load the offset (from the .data section) of required string in the register

3. Execute the instruction

 [Reg] = [Reg] XOR 77h

4. Increment register to move to next byte

5. Repeat Steps 3 and 4 till null character is reached

6. Restore all register values (popad instruction)

At the end of each step, the resultant virus was compiled (using Borland’s Turbo Assembler

TASM) and the PE file was uploaded to Jotti’s malware scanner [8] for detection purposes.

 Figure 15 : Process Flow Diagram

Create seed virus program
from toolkit

Apply metamorphic engine
to input program

Apply anti-heuristic
techniques

Compile resultant and
upload resultant virus to

online multi-engine scanner

[27]

A brief summary of the tools utilized during the process are given in Table 6.1

Experiment Platform OS
Windows XP SP3

VMWare Workstation 7.0

Meta Engine Programming Language Java 2 SE

Assembler Borland Turbo Assembler 5.0(TASM)

PE Analyzer Safer Networking File Analyzer 2.0.5

Virus Generator

Next Generation Virus Creation Kit

(NGVCK)

Virus Scanners
Multi Engine AV Scanner

(Jotti’s Malware Scan)

Table 2 Summary of Tools Used

[28]

Chapter 7. Results

Jotti’s Online Scanner was used to obtain detection results simultaneously from 20 different

popular Antivirus engines. The scan gave details regarding the malware type and fingerprint, if

detected as malicious. The resultant executables from each stage of the process were uploaded

and the results were evaluated.

7.1 Base Virus

The original virus created from a toolkit was, expectedly, detected by a number of antivirus

engines, flagging it as a ‘Generic Win32.FileInfector’.

Detections – 7/20 (35%)

Figure 16 Scan Results for Base Virus

[29]

7.2 Base Virus with API Name Hashing

The ‘CRC32’ option was used for the searching of API Names in the seed virus using the toolkit.

The F-PROT antivirus, earlier detecting as ‘W32/Parasitic-Fileinfector-based!Maximus’, now

showed the file as clean.

Detections – 6/20 (30%)

Figure 17 Scan Results for Base Virus with API Name Hashing

7.3 Virus with Metamorphic Code Obfuscations

The base virus, with integrated call to API functions via name hashing, was given as input to the

metamorphic engine to generate highly obfuscated copy of the virus, which was then compiled to

a portable executable (PE) and scanned. VBA32, BitDefender, F-Secure and G-DATA dropped

the malicious flagging of the virus.

Detections - 3/20 (15%)

[30]

Figure 18 Scan Results for Virus with Metamorphism

7.4 Metamorphic Virus with Delay Routines

Introduction of delay routines and call to Sleep API function caused F-PROT to declare the virus

as clean, indicating a small time-out configuration of its emulation. The heuristic analysis of

Avira AntiVir and ESET NOD32 showed resilience against all code obfuscations

Detections – 2/20 (10%)

[31]

Figure 19 Scan Results for Metamorphic Virus with Delay Routines

7.5 End Virus with Encrypted String Constants

Final virus was obtained by encrypting string constants which could raise suspicious flags on

heuristic analysis. Avira heuristic engine alert depended on the presence of ‘*.Exe’ string

constant in the NGVCK virus, which was flagged clean when the string was stored as its CRC32

hash. Only NOD32 antivirus detected it as ‘unknown NewHeur_PE’, proving its robustness for

detection of new malware.

Detections – 1/20 (5%)

[32]

Figure 20 Scan Results for End Virus

The detection rates for various samples of the virus can be compared from the following bar

graph

7/20
6/20

3/20
2/20

1/20

0.00%

10.00%

20.00%

30.00%

40.00%

A B C D E

Percentage Detection

 A – Base Virus
 B – Base Virus with API Hashing
 C – API Hashing + Metamorphism
 D – Metamorphism + Delay Routine
 E – Final Virus with Encrypted String Constants

[33]

Figure 21 Detection rate of different virus samples

The scans obtained above can be gathered to draw a comparative analysis between the major

anti-virus products available in the market today. The performance evaluation is done on the

basis of parameters such as the strength of signature detection algorithms, immunity against anti-

heuristic techniques like API name hashing and delaying and robustness of code emulation

process. The remaining antivirus engines are similar in behavior of that of AVG and hence not

mentioned explicitly.

Figure 22 Feature comparison of Anti-virus engines

[34]

Chapter 8. Conclusion

A metamorphic virus, consisting of an engine employing code obfuscation techniques, is

able to bypass weak signature based detection systems. However, most of the rated anti-virus

engines today employ a mixture of both signature based and heuristic detection. Heuristic

analysis and code emulation techniques were shown to be inefficient by simple modifications at

right locations. Only two of the twenty AV engines tested proved to be reliable. Thus, the

detection of NGVCK virus was brought down from 7/20 to a 1/20 ratio, highlighting the inability

of modern day antivirus software to prevent malicious activity on systems, if carefully crafted.

[35]

References

[1] Aycock J., “Computer Viruses and Malware”, Springer Publications 2006.

[2] Desai P., “Towards an Undetectable Computer Virus”, Master’s thesis, San Jose State University,

2008

[3] Szor, P., “Advanced code evolution techniques and computer virus generation toolkits”,

March 2005, http://www.informit.com/articles/article.aspx?p=366890

[4] Lin, D., Stamp, M., “Hunting for undetectable metamorphic viruses”, Journal in Computer

Virology Vol. 7, No. 3 (2011), pp.201-214.

[5] Schmall, M., “Heuristic Techniques in AV Solutions: An Overview”, February 2002

[6] Szor, P., “The Art of Computer Virus Defense and Research,” Symantec Press 2005.

[7] Borello, J. and Me, L. (2008) ‘Code obfuscation techniques for metamorphic viruses’,

Journal in Computer Virology, Vol. 4, No. 3, pp.211–220.

[8] Jotti’s Malware Scan, http://virusscan.jotti.org/en

[9] Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Comput. Virol. 2(3), 211–229

(2006)

[10] Suenaga M., “A Museum of API Obfuscation on Win32”, Symantec Security Response,

November 2009

[11]“Benny/29A",Theme:metamorphism,

http://www.vx.netlux.org/lib/static/vdat/epmetam2.htm,

[12] VX Heavens, http://vx.netlux.org/,

[13] http://en.wikipedia.org/wiki/Computer_virus

[36]

[14] Masrom M., Rad B., Ibrahim S., “Evolution of Computer Virus Concealment and Anti-

Virus Techniques: A Short Survey”, International Journal of Computer Science Issues, Vol. 8,

Issue 1, January 2011

[15] Mishra U., Methods of virus detection and their limitations, http://trizite.com

[37]

Appendix A: Equivalent instruction substitution [2]

Notations:

R – Register (eax, ax, ah, al)

RR – Random register

mem, [mem] – Memory address ([esi])

imm – Immediate value (12h)

op1 – To-operand with length more than 1 including R and mem

op2 – From-operand with length more than 1 including R, mem, and imm

loc – any location or label

[38]

[39]

Table 3 Equivalent Instruction Substitutions

[40]

Appendix B: Dead code instructions [2]

Transfer Dead Code

1. mov R, R

2. push R followed by pop R

Arithmetic Dead Code

1. add R, 0

2. sub R, 0

3. adc bx, 0

4. sbb bx, 0

5. inc R followed by dec R

Logical Dead Code

1. shl R, 0

2. shr R, 0

3. and R, 1

4. test R, 1

5. or R ,0

6. xor R, 0

Floating Point Dead Code

1. fadd st2, st0

2. fmul st2, st0

3. fld st2

4. fsub st2, st0

5. fdiv st2, st0

[41]

6. fst st3

Miscellaneous Dead Code

1. nop

2. neg R, not R, dec R

Table 4 Dead Code Instructions [2]

