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ABSTRACT 

 

Mullite-zirconia systems have encouraged developing a refractory composite with thermo-

mechanical properties, which can be widely used in glass and steel industries. Numerous 

methods have been employed and researches have been carried out in developing such a 

composite whose properties can be enhanced with the effect of additives. 

In this project work, Strontium oxide has been used an additive and also the alumina content has 

been varied to study the densification behavior of the zirconia-mullite system.  2, 4, and 6% SrO 

were added to the stoichiometric and non-stoichiometric batches (with deficient and excess 

alumina). Then the samples were fired at 1500-1600 
o
C and various characterizations were 

conducted. The bulk density, dimensional density, apparen porosity, and volume shrinkage tests 

were performed to interpret the nature of the composite with addition of SrO. Also X-ray 

diffraction analysis was carried out to determine the phases and analyze the phase compositions 

in various samples.    
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1. INTRODUCTION 
 

Extensively composites have been used to enhance the design properties as well as the behavior 

of materials. Thus they have enormous industrial and technological applications.  Considering 

Zirconia-mullite composites based ceramics, they have been mostly consumed by glass and steel 

and glass industries. In the glass industries, where high chemical and corrosion stabilities are 

essential zirconia-mullite has been found to meet up the requirement. Also in steel industries, 

they find their use in slide gate valves which are the integral part of the continuous casting 

processes for steel and also for nozzles and stoppers of transfer and holding ladles, where the 

combined effect of thermal shock and erosion would lead to the rapid failure of other materials. 

 

1.1 Mullite (3Al2O3.2SiO2) : 

Mullite is an alumino-silicate widely used in traditional refractory applications and one of the 

most studied crystalline phases in Al2O3.SiO2 system. It has been found at the contact of 

superheated magma intrusions with Al2O3-rich sediments, as on the Island of Mull 

(Scotland), where the name mullite comes from. Due to its high temperature but low pressure 

formation conditions, mullite occurs very rarely in nature. Still it is one of the most widely 

encountered and important compounds found in many industrial ceramic products. It has 

captured a lot of attention in the field of refractories because of its high melting point, 

excellent high temperature strength along with creep resistance properties. The conventional 

processing of dense mullite compacts is an energy-intensive procedure which requires high 

processing temperature due to the slow diffusion kinetics of Si4
+ and Al3

+ ions, which makes 

the starting mullite powder difficult to sinter. Various researchers have worked on only lower 

the mullatization temperature as the densification has to take place by solid-state reaction at 
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high temperatures. Moreover, the presence of impurities and mineralizers in those solution-

based synthesis techniques can be a major concern related to high-temperature mechanical 

properties of mullite. So practically it is strenuous to consolidate mullite into fully dense 

single-phase bodies.  To  optimize  its  mechanical  properties,  some  investigations have  

been  attempted  using  different  processing  techniques  such  as  hot-pressing,  hot-isostatic  

pressing and  sol-gel  processing.  

 

1.2  Zirconia Ceramics: 

The properties of zirconia (ZrO2) ceramics suggest that the combination of strength, 

toughness and chemical resistance should allow application of the materials in harsh 

environments under severe loading conditions. In conjunction with the development of 

surface compressively stressed layer many novel applications in wear resistant and cutting 

devices are envisioned. It is also well known for good hardness, low coefficient of friction, 

elastic modulus, ionic conductivity, low thermal conductivity, high oxygen ion conductivity 

and high melting temperature. These properties make it attractive as an engineering material. 

1.2.1 Occurrence: 

The two main source of Zirconia are baddeleyite (impure monoclinic Zirconia) and 

Zircon, (ZrSiO4) which occurs as secondary deposits in Kerala, Florida and South Africa. 

It is frequently mixed in sand with other minerals like rutile and monazite. Baddeleyite is 

found in smaller deposits and usually contain contaminants such as silica and iron oxide. 

1.2.2 Pure zirconia polymorphs: 

• Monoclinic (m-ZrO2, 5.6 g/cm3); thermodynamically stable from room temperature to 

approximately 950°C.  
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• Tetragonal (t-ZrO2, 6.1 g/cm3); transforms from monoclinic upon heating at 

approximately 1150°C (transition start temperature) or back to monoclinic upon cooling 

at approx. 950°C (transition finish temperature) . This is a martensitic transformation 

with large hysteresis and relative volume change approx. 5 %. 

• Cubic (c-ZrO2, 6.1 g/cm3); transformation t ↔ c  occurs at approximately 2300°C 

(hysteresis maximally 30°C); c-ZrO2 melts at approx. 2700°C. 

All engineering ceramic applications of zirconia require full or partial stabilization of the 

structure. Primarily the tetragonal to monoclinic phase transformation and the associated volume 

change preclude the use of unstabilised zirconia in bulk form. So use of zirconia in a fairly 

divided dispersed form to enhance the thermal shock resistance of other ceramic materials is 

recommended. The superior of zirconia ceramics are thought to be due to microcracks generated 

in the vicinity of zirconia particles, which help to arrest any cracks propagating as a result of 

thermal stresses. The discovery and utilization of the transformation-toughening effects of 

zirconia particles in brittle matrix have resulted in improved mechanical properties of ceramics. 

Transformation toughening occurs as the result of a dilation and shear strain which occurs in 

zirconia particles during tetragonal-to-monoclinic phase transformation.  

 

1.3 Zirconia-mullite composite:  

Zirconia-mullite composite has been developed in order to achieve high thermo-mechanical 

properties where simply use of mullite ceramics was inadequate. Applications of mullite 

were limited because of its poor properties at ambient temperature. As a result, it is usually 

reinforced with particles or fibres (whiskers) of zirconia to produce composites with superior 

properties. Different  mechanisms  are  involved  in  the  toughening of  mullite composite  
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with  zirconia  additions are stress-induced  transformation,  microcracking,  crack bowing  

and  crack  deflection. Thus a refractory, although not of great strength, would have a 

superior crack stopping ability and would find applications where integrity of the structure is 

all important. Although, mullite and zirconia are the major constituents in the composite, the 

physical characteristics, microstructure and properties of the resulting ceramic may be 

different.  

 

1.4 Methods of preparation of Mullite-Zirconia composite: 

Mullite–ZrO2 composites have been prepared though multifarious routes including sintering 

of mixed mullite and ZrO2 powders, reaction sintering of mixtures of ZrO2 and mullite 

precursors, plasma spray using plasma arc of mullite-zirconia mixture, reaction sintering of 

zircon (ZrSiO4) and Al2O3, and crystallization of rapidly quenched melts in the system 

Al2O3–ZrO2–SiO2 with subsequent sintering. However, the reaction sintering method 

remained the most commonly used because of its low cost. However, it requires relatively 

high temperatures 1400–1650◦C for several hours. Particularly in refractories, mullite and 

zirconia are both phases resulting from the use of zircon in high alumina content 

compositions.  

1.4.1 Reaction sintering of alumina and Zircon sand:  

Zircon sand is used in refractories, ceramics and chemical industries. Technology is available to 

extract zirconia from this sand. Stabilized zirconia has emerged as a structural and refractories 

material. Chemically, it is ZrSiO4 with small amounts of impurities like Al2O3, TiO2 and CaO. 

Zircon sand is available in the market in two forms. 
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The zircon sand, and the zircon flour. Latter is a fine powder obtained by vibrogrinding zircon 

sand in Al2O3-1ined jet mill. Heating the zircon sand to 1700 °C dissociation occurs into zirconia 

and silica. It is represented by a reaction: 

ZrSiO4 → ZrO2 + SiO2 

On addition of alumina, the liberated SiO2 reacts with Al2O3 to form mullite (3A12O3.2SiO2), 

releasing ZrO2. Zircon (ZrSiO4) with alumina acts as a bonding phase and its thermal 

decomposition adds zirconia and silica by reaction sintering of zircon and alumina in the 

temperature range 1400-1600°C. The reaction is represented as: 

2ZrSiO4 + 3A12O3 → 3A12O3.2SiO2 + 2ZrO2 

Thus, the mullite-zirconia composites can be developed. A literature shows various properties of 

a reaction sintered zirconia mullite composite, which has been shown in the table 1. 

Properties value 

Green density (g/cc) 2.6 

Fired density (g/cc) 3.7 

Apparent porosity (%) <0.5 

Water absorption (%) <0.5 

Eo experimental (GPa) 189 

Eo calculated (GPa) 219 

Table 1. Various physical properties of zirconia-mullite composite prepared from reaction 

sintering route 

A typical zirconia-mullite composite consists of 42 - 55% Al2O3, 16 – 20% SiO2, and 25-36% 

ZrO2 (+HfO2). Major mineral phases are mullite and zirconia. 
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1.4.2 Stabilization of zirconia: 

As we know tetragonal to monoclinic transformation is critical in zirconia. So it is highly 

essential to stabilize the zirconia may be fully or partially. But obtaining fully stabilized zirconia 

has not been proved economical. Its structure is a cubic solid solution which doesn’t form any 

liquid phase till 2710°C. So the high temperature requirement for FSZ has restricted its 

application. Thus we need to work upon partially stabilized zirconia. A smaller addition of 

stabilizers like CaO, MgO, Y2O3, CeO2, and TiO2 into zirconia will bring its structure into a 

tetragonal phase at a temperature higher than 1100 °C, and a mixture of cubic phase and 

monoclinic or tetragonal phase at a lower temperature.  

In this project work Strontium oxide has been selected as a stabilizing agent. Also there is an 

attempt to observe the changes in the properties varying the strontium percentage as well as 

stoichiometry of the composite (related to alumina percentage). 
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2. LITERATURE REVIEW 

Hamidouche, N. et al. (J. Am. Ceram. Soc. (1996) page.441-445) have shown that the addition 

zirconia to mullite system improves its mechanical properties such as fracture toughness at high 

temperatures. The mechanical properties of mullite-zirconia composite have been determined 

from room temperature up to 1400 °C. It has been observed that the thermo-mechanical behavior 

is sensitive to the phase transformation of zirconia. 

Rendtorff et al. (Ceramics International 34(2008)2017-2024) have prepared the composite 

using two different processing routes such as reaction sintering (RS) of alumina and zircon and direct 

sintering of mullite - zirconia grains. The two processing routes conducted to similar phase 

composition but differences in microstructure were analyzed. These differences include shape 

and size of intergranular zirconia, t-ZrO2 content, and the mullite crystal morphology. The best 

performance of the reaction sintered composite has been explained by these factors. Also the 

thermal shock resistance test showed improved results when zircon was used as bonding phase. 

Bodhak et al. (J. Am. Ceram. Soc., 94 [1] 32–41 (2011) prepared zirconia-mullite composite 

via microwave heating and explained some typical behavior of the same at high temperatures.  

They explained the pinning effect of ZrO2, which controlled the mullite grain growth and 

enhanced the microstructural homogenization, and better packing of mullite grains of the 

mullite–zirconia composites. It is believed that the good microwave energy absorbance ability of 

ZrO2 particles leads to volumetric heating and helps in rapid neck growth between mullite 

particles by enhancing grain boundary and bulk diffusion kinetics. So, they explained that this 
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improvement in sintering kinetics results in significant enhancement of mechanical strength with 

a minimal increase in density for 10% zirconia reinforced mullite composite at 1500° C. 

Castro (Ceramics International 35 (2009) 921–924) has developed zirconia-mullite 

composites from aluminium dross and zircon. A detailed microstructural study of the same was 

performed by XRD, SEM and EDS analysis. With increase in temperature and time porosity 

coalescence and rearrangement of zirconia particles in the mullite matrix was observed. Samples 

sintered at 1500 oC for 6 h showed a continuous mullite matrix with dispersed zirconia particles. 

At the same time residual alumina and zircon indicated incomplete reaction. 

Rendtorff et al. (Ceramics International 35 (2009) 779–786) studied the properties and 

thermal shock resistance of mullite-zirconia-zircon composites. The composites studied were 

sintered at 1600°C. On cooling the monoclinic phase transformation took place in those grains 

having a size higher than the critical one, as was seen by XRD. During the TS test, when thermal 

cycles of ∆T = 1000 and 1200°C were applied, the monoclinic to tetragonal phase transition 

occurred during quenching. For ∆T = 1200 °C, the transformation was completed, while it 

partially proceed for ∆T = 1000 °C and no phase transition occurred for lower ∆T. The flexural 

strength showed a gradual increase with the amount of zircon in the original composition, which 

was found to be little lower than original mullite composition. The difference was explained by 

the concept of residual porosity and the formation of microcracks due zirconia transformation 

during cooling 

2.1 Role of magnesia additives: 

Haldar (Ceramics International 29 (2003) 573–581) has presented a detailed study on the 

addition of 4-8% MgO on zirconia-mullite composite. The bulk density of the samples was 
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found to decrease with increase in temperature with varying amounts of magnesia. He says with 

higher percentage of magnesia mullite formation is enhanced and there is a transient liquid phase 

formation. This large volume of liquid phase has helped in particle rearrangement and effecting 

packing leading to high shrinkage or density. The relative tetragonal zirconia percentage was 

found to maximum with 6% MgO content. Also the fracture toughness of the sintered samples 

was higher than the pure mullite. A decreasing trend of modulus of elasticity was noticed with 

increasing sintering temperature (1500-1600 °C). 

2.2 Role of MgO and Cr2O3 additive: 

Maitra et al. (Ceramics International 28 (2002) 819–826) has argued that MgO, as a stabilizer 

of zirconia caused precipitation of tetragonal zirconia from ZrO2–MgO solid solution, and also 

some periclase, which probably promoted the formation of mullite providing nucleation sites in 

the microstructure. The combined effect of the additives affected the sintering process that is 

evidenced from the enhanced volume shrinkage. Composites with MgO and Cr2O3 showed a 

progressive increase in specific gravity value with the increase in the sintering temperature.  

Though Cr2O3 can form Cr-substituted expanded mullite lattice, its role on the formation of the 

crystalline phases further from the amorphous phases is limited. So the significant change in 

specific gravity was not observed only with Cr2O3 addition. The presence of magnesia based 

phases hinders the grain boundary movement at high temperature which probably resulted in 

better interlocking of Cr+3 containing expanded mullite crystals and reinforcement of mullite 

matrix by zirconia grains. Flexural strength and fracture toughnes were found to be increased for 

MgO and MgO- Cr2O3 addtives. But in case of MgO addition the result of flexural strength was 

more prominent due to low glassy phase formation and the fracture toughness was also 
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comparatively higher e due to a larger amount of transformable t-ZrO2 and by a micro-crack 

nucleation at transformed m-ZrO2 particles. 

2.3 Role of titania addition: 

Ebadzadeh et al. (Ceramics International 28 (2002) 447–450) worked upon the Mullite–

Zirconia composite materials, prepared by reaction sintering of a-alumina and aluminium nitrate 

as alumina sources, and zircon powder. Then an effect of TiO2 addition was studied. Results 

showed the enhanced reaction between alumina and zirconia as well as the improved dissociation 

of zircon with formation of zirconia and mullite upon introduction of titania. Addition of 3.5 

weight% of titania was found responsible for the sharp change of t-ZrO2 concentration at low 

sintering temperature (1400 °C). It was noticed that the concentration of t-ZrO2 decreases with 

temperature. It was concluded that the addition of titania leads to change of reaction sintering, 

densification and microstructure which can alternatively affect the formation temperature and the 

retention of t-ZrO2 phase in the composite. 

2.4 Role of yittria addition: 

Das et al. (Journal of the European Ceramic Society 18 (1998) 1771-1777) prepared mullite-

zirconia composites containing 0-7 mol% yittria by the reaction sintering process from Indian 

coastal zircon flour and calcined alumina. Addition of yittria ensured a dense composite material 

at comparatively low sintering temperature. At 1600 °C, the presence of higher amount of yittria 

led to agglomeration of zirconia particles resulting in a heterogeneous microstructure. Though 

the composite containing 7% yittria was witnessed to possess highest percentage of t- ZrO2 it 

was associated with low density with porous structure. It was explained that the increment of 

mullite in the composite is responsible for the down fall of density. The addition of yittria 
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reduced the martensitic transformation temperature (Ms). Also it facilitated the forward reaction 

by forming solid solution with zirconia and mullite. Addition of titania is more effective because 

it does not form any detrimental low melting phase. The thermal expansion co-efficient was 

found minimum for the highest amount of yittria added composite. Withal the thermo-

mechanical properties were improved. 

2.5 Role of disprosia addition: 

Das et al. (Journal of the European Ceramic Society 20 (2000) 153-157) has studied the 

mechanical properties of effect of zirconia-mullite composite with 0-4.5 mol% dysprosium 

oxide, which was prepared from reaction sintering of Indian zircon flour and calcined alumina. 

Significant densification was achieved after addition of dysprosia. The thermal expansion co-

efficient were found to be reduced in presence of additive. It was observed that dysprosia formed 

solid solution with mullite. It was assumed that the dysprosium ion occupied the AlO6 octahedral 

chains by replacing the Al3+ ion. Lattice spacing was increased due to this replacement which 

causes low thermal expansion co-efficient. It was envisaged that the dysprosia helps in 

densification by liquid phase formation as well as by stabilization in tetragonal zirconia state. 

The martensitic transformation temperature reduction was observed to a lower extent because the 

maximum disprosia is utilized in the formation of glassy phase. The presence of dysprosia 

increased the room temperature flexural strength, hardness and fracture toughness. The sample 

with 2.5 mol% dysprosia showed the best mechanical property.  

2.6 Role of lanthanum oxide addition: 

Sarkar and othes (Central Glass and Ceramic Research Institute, Kolkata, India) studied the 

effect of lanthanum oxide on reaction sintering of zirconia-mullite composites. The densification 
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study showed addition of of La2O3 strongly decreases apparent porosityand total porosity, but 

increases closed porosity. Again densification increases the presence of additive but the extent of 

increase decreases with >6 mol% addition. HMOR tests showed high strength for 3% La2O3. 

However further addition decreased the property because of greater degree of liquid formation at 

high concentration of lanthanum oxide. It is evident that the higher amount of lanthanum oxide 

helps in better retention of the tetragonal phase. 

2.7 Role of SrO additive: 

Kmlko lu (Journal of the European Ceramic Society 14 (1994) 45-51) observed the effect of 

SrO additive on the densification and mechanical properties of the composite. He reported the 

enhanced densification with 1.25mol% SrO addition. The additive free samples were observed to 

have an increment of 6% in the density with increase in the dwell time(1-4h) at temperature 1500 

°C, where as the 1.25% SrO added samples were found with 14% enhanced  density with 1 hour 

soaking time at 1500 °C. The study related to the mechanical properties showed maximum 

strength and toughness values for 0.50 wt % SrO addition. It was explained that the reason SrO 

was not effective at smaller contents might be due to the titanium oxide impurity of the zircon 

raw material that reacted with strontium oxide prior to silica at the initial stage of sintering. 

Probably SrTiO3 exerted a poisoning effect at the grain boundaries, causing a decrease in the 

fracture strength. After all the TiO2 was used up, the remaining SrO became effective in 

improving the mechanical strength. With larger amounts of SrO, SrTiO3 could be swept to the 

surface by the glass phase.  The removal of glass phase from the grain boundaries increased the 

bending strength and fracture toughness values considerably. 
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3. EXPERIMENTAL PROCEDURE 

3.1 WORK PLAN: 

• Study of the effect of SrO additive as well as Al2O3 percentage in the zircon flour in the 

zirconia-mullite composite. 

• Addition of 2%, 4% and 6 % of SrO to the stoichiometric and non-stoichiometric (excess 

alumina and deficient alumina) batches. 

• Sintering of the prepared pellets at varying temperatures such as 1500°C, 1550°C, and 

1600°C. 

• Densification study of the prepared pellets such as bulk density, apparent porosity, 

volume shrinkage, phase analysis using X-ray diffraction study 

 

3.2 RAW MATERIALS: 

In this project work zircon flour (Indian Rare Earth Limited, Chatrapur) and calcined alumina 

were taken as raw materials and as a source of SrO, SrCO3 was taken. The raw materials were 

characterized for the detection of oxides and impurity contents using chemical analysis, specific 

surface area using the BET technique (nitrogen gas at liquid-nitrogen temperature) and phase 

study was performed by X-ray diffraction analysis.   

 

3.3 BATCH CALCULATION: 

Batches with stoichiometric and non-stoichiometric amount of zirconia, alumina has to be 

prepared. So, one batch for stoichiometric composition and two other batches for non-

stoichiometric composition (one with deficient alumina, another with excessive alumina) are 
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required. Now to each mother batches varying amount of strontium oxide has to be added. The 

strontium variation has been chosen to be 2%, 4%, 6% by weight of the total batch. As there are 

again three sintering temperatures (1500°, 1550°, 1600°C), so total number of variation of 

composition is 36 (3×4×3). For each composition preparation of three pellets has been planned. 

 

For the complete mullatization and zirconia dissociation from the reaction sintering of zircon and 

alumina the reaction is shown below. 

2ZrSiO4 + 3A12O3 → 3A12O3.2SiO2 + 2ZrO2 

The table 2 shows the chemical analysis of zircon flour. From there the required amount of 

zircon and alumina can be calculated. 

Chemical properties Weight in 100 g 

ZrO2 (+HfO2) 64.45 

SiO2 34.35 

Fe2O3 0.16 

TiO2 0.44 

Al2O3 0.63 

Table 2. The chemical analysis of zircon fines showing various oxides. 

 

For mullite formation:  

ü SiO2 requires 3 Al2O3. That means, 120.172 g of SiO2 requires 305.892 g of alumina. 

ü 100g Zircon flour has 34.35 g silica and 0.63g alumina. 

ü  So 34.35g silica requires 87.436g alumina. 

ü The extra requirement of alumina is (87.436-0.63) = 86.806 g  
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ü Stoichimetric batch contains 86.806g alumina if there is 100 g of zircon flour. 

ü Similarly deficient alumina batch must contain 76.806 (10g deficient) alumina 

ü  Excessive alumina batch should contain 96.806 g alumina. 

To prepare mother batches of total 120 g each the required zirconia and alumina weights are 

shown below in table 3. 

Type of mother batch Wt of Zircon flour (g) Wt of alumina (g) 

Stochiometric batch (O) 64.24 55.76 

Non stoichiometric batch (A-) 67.87 52.13 

Non stoichiometric batch (A+) 60.97 59.03 

Table 3. The varying weight of zircon and alumina in the mother batches O, A- and A+ 

Now for 2, 4, and 6 wt% of SrO addition require amount of SrCO3 has been calculated and 

shown in table 4. 

Type of batch Wt of mother batch(g) Wt of SrCO3 (g) 

Pure batch 30 - 

2 wt% addition of SrO 30 0.855 

4 wt% addition of SrO 30 1.71 

6 wt% addition of SrO 30 2.564 

Table 4. The varying weight of SrCO3 in 30 g of the mother batch with 0, 2, 4, and 6 wt% of SrO 

addition 

For the identification of the samples naming the samples is very important. So the samples have 

been named according to the mother batches and percentage of SrO addition in them. The sample 

nomenclature has been given in the table 5. 
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Mother batch SrO added batch Temperature (°C)  

O (stoichiometric) O (0 % addition)  

O2S (2% addition) 

O4S (4% addition) 

O6S (6% addition) 
 

1500 

1550 

1600 

A- (deficient alumina) A- (0 % addition) 

A-2S (2 % addition) 

A-4S (4 % addition) 

A-6S (6 % addition) 
 

1500 

1550 

1600 

A+ ( excess alumina) A+ (0 % addition) 

A+2S (2 % addition) 

  A+4S (4 % addition) 

A+6S (6 % addition) 
 

1500 

1550 

1600 

Table 5. Nomenclature of samples prepared 

 

3.4 PELLET PREPARTION: 

The weighed batches were attrition-milled in a pot mill with alumina grinding media in an iso-

propyl alcohol medium for 20 minutes. Milled wet batches were then dried at 100°-120°C for 24 

h. The pellets were then pressed each of around 0.85g with an addition of 5 wt% of PVA (4 % 

polyvinyl alcohol solution-binder). The pressure applied was 1.5 ton in a CARVER PRESS and 

the dwell time was set to be 30 sec. Now with proper care the green pellets were kept for drying 

for 24 h at around 100-120 °C. 
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3.5 FIRING OF SAMPLES: 

Firings of the pellets were done at the required temperatures 1500°, 1550°, and 1600°C in a 

furnace. Here program was set for 1 h soaking time at 650°C for binder removal and then 3 h 

soaking time at the specified sintering temperature. After taking out the samples from the furnace 

carefully, they were named and kept separately to differentiate. 

 

3.6 CHARACTERIZATION: 

3.6.1 Bulk Density: 

A useful property for refractories is bulk density, which defines the material present in a given 

volume.  

The bulk densities of the sintered pellets were determined by Archimedes principle using the 

mass in air and the mass when immersed in water. For Dry Weight the sample is weighed in air. 

Then the sample is kept in a beaker filled with water and vacuumed for about 1 hour so that all 

the pores present in it are filled with distilled water and when no more air bubbles evolve the 

vacuum pump is turned off. Then measurements for suspended weight is done using apparatus in 

which pellet is suspended in water. After taking suspended weight, soaked weight is taken by 

wiping off the excess water present on its surface using a wet cloth. Once the dry weight, soaked 

weight and suspended weight were measured, bulk density and apparent porosity were calculated 

by the formulas:  

B.D. = Weight in air / (soaked weight – suspended weight) x Liquid density 

 

Dimensional density calculation: 

Density of each pellet formed was measured using the formula:  D = M/V  
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Where, D= density, M= mass 

���������������� � �����	 (Volume) 

The diameter (d) and height/thickness (h) were calculated using digital VERNIER CALLIPER 

and mass (M) was measured by weighing machine. 

 

3.6.2 Apparent Porosity: 

The apparent porosity is a measure of the volume of the volume of the open pores into which a 

liquid can penetrate, as a percentage of the total volume. This is an important property in cases 

where the refractory is in contact with molten charge and slag. A low apparent porosity is 

desirable since it would prevent easy penetration. A large number of small pores have an 

important influence on the refractory behavior. However, a measure of the true porosity, which 

also takes into account the volume of closed pores, gives a reasonable idea of the texture of the 

material as well as sintering characteristics. In fact, porosity, bulk density and apparent solid 

density have been termed as “Vital Statistics” of refractory shapes.  

It measured from the soaked weight, suspended weight determined as explained earlier. It can be 

expressed as: 

A.P. (%) = [(Soaked weight – Weight in air) / (soaked weight – suspended weight)]×100 

 

3.6.3 Volume shrinkage: 

It measured by calculating the difference between the green body volume and volume after firing 

of the pellets. The diameter and thickness of the pellets were measured by a Vernier caliper. 

� � �����	 (Volume) 

Shrinkage (%) = [(Vbefore firing –Vafter firing)/Vbefore firing] ×100 
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3.6.4 X-ray diffraction: 

It is a versatile, non-destructive technique that reveals detailed information about the chemical 

composition and crystallographic structure of natural and manufactured materials. XRD is a 

powerful tool used to detect the presence of phases in the material.The main principle behind 

XRD is Bragg’s law which states 

nλ = 2dsinθ 

where, d = spacing between diffracting planes, 

θ = incident angle, 

n = any integer 

λ = wavelength of the beam 

As study of the various phases and their analysis is the main objective of this project work XRD 

analysis was performed. This was done by Philips’ X-ray diffractometer with Nickel filtered Cu 

Kα radiation (1.5406Aº). The diffraction was done at angle 15°-60º with scanning speed 2º/min. 

Then from the XRD plot various peaks corresponding to the various phases were analyzed and 

also the composition of important phases like mullite, tetragonal zirconia, monoclinic zirconia 

etc was studied.  
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4. RESULTS AND DISCUSSION
 
4.1 Raw material Characterization:

Zircon: The chemical analysis of zircon flour has already been shown in table 2. The particle 

size was analyzed from the sieve testing met

was measured by tap density calculation method and the value has been found to be 1.84 g/cc.

The XRD plot of the zircon powder has been shown in figure 1. 

Fig. 1 XRD plot of raw unfired zircon sample

 

 

Mullite system: Effect of SrO addition with alumina content variation

RESULTS AND DISCUSSION

4.1 Raw material Characterization: 

The chemical analysis of zircon flour has already been shown in table 2. The particle 

size was analyzed from the sieve testing method to be 96% finer than 45 µm. loose

was measured by tap density calculation method and the value has been found to be 1.84 g/cc.

The XRD plot of the zircon powder has been shown in figure 1.  

XRD plot of raw unfired zircon sample 
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RESULTS AND DISCUSSION 

The chemical analysis of zircon flour has already been shown in table 2. The particle 

loose bulk density 

was measured by tap density calculation method and the value has been found to be 1.84 g/cc. 

 



Study of Zirconia-Mullite system: Effect of SrO addition with alumina content variation 
 

Pa
ge

21
 

Alumina: The chemical analysis of reactive alumina (CL 370) is shown in table 6. 

 

Oxides Weight percentage 

Al2O3 99.7 

Na2O 0.10 

CaO 0.02 

SiO2 0.03 

MgO 0.01 

Fe2O3 0.02 

Table 6. The chemical analysis of reactive alumina and the weight % of various oxides 

 

The physical property experiments upon reactive alumina sample revealed the BET surface area 

to be 3.0 m2/g. D50 Cilas was found to be 2.6 µm. Figure 2 shows the fineness chart of the 

alumina sample. 

 

Fig.2 fineness of alumina sample  
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4.2 Bulk density:  

The measured bulk density of pellets has been shown in table 7, 8, and 9. The bulk densities of 

the samples were found to be ~3.19 g/cc for the stoichiometric batch, increasing to around 3.65 

g/cc for 6% SrO addition. Similarly for A- batch the density has increased from around 3.1 g/cc 

to 3.6 g/cc. In case of A+ batch the density value has increased from 3.2 g/cc to 3.57 g/cc. It was 

observed that for O and A- batch 4 % SrO addition has maximum density value. But in case of 

A- batch maximum density has been achieved by 6% SrO added batch. But the difference is not 

much significant. 

 

Name of sample (1500°C) Bulk density 
(g/cc) 

dimensional density 
(g/cc) 

Apparent porosity 
(%) 

O 3.19 3.06 21.7 

O2S 3.42 3.22 4.75 

O4S 3.57 3.44 1.98 

O6S 3.65 3.55 1.88 

A- 3.19 2.96 23.04 

A-2S 3.45 3.28 4.61 

A-4S 3.43 3.39 2.49 

A-6S 3.57 3.51 3.12 

A+ 3.25 3.06 21.23 

A+2S 3.37 3.27 7.49 

A+4S 3.59 3.43 3.15 

A+6S 3.57 3.54 3.14 

Table 7. Bulk density, dimensional density and apparent porosity of samples fired at 1500°C 
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Name of sample (1550°C) Bulk density 
(g/cc) 

Dimensional 
density 
(g/cc) 

Apparent porosity 
(%) 

O 3.18 3.10 20 

O2S 3.49 3.38 0.94 

O4S 3.63 3.56 1.91 

O6S 3.52 3.45 2.45 

A- 3.22 3.19 19.86 

A-2S 3.37 3.33 2.68 

A-4S 3.49 3.36 3.28 

A-6S 3.51 3.57 3.83 

A+ 3.07 3.02 22.6 

A+2S 3.32 3.26 5.04 

A+4S 3.55 3.27 3.94 

A+6S 3.55 3.53 3.32 

Table 8. Bulk density, dimensional density and apparent porosity of samples fired at 1550°C 

From the table 7-9, it can be written off that bulk and dimensional densities that almost 

comparable.  Also the bulk density values with SrO variation has been well presented through 

the figures 3-5.  

Name of sample (1600°C) Bulk density 
(g/cc) 

Dimensional density 
(g/cc) 

Apparent porosity 
(%) 

O 3.1 3.08 23.58 

O2S 3.43 3.39 2.74 

O4S 3.67 3.44 2.74 

O6S 3.51 3.50 2.51 

A- 3.06 3.16 23.43 

A-2S 3.33 3.33 5.57 

A-4S 3.55 3.42 3.94 

A-6S 3.63 3.54 2.5 

A+ 3.18 3.05 18.47 

A+2S 3.37 3.25 7.42 

A+4S 3.57 3.43 3.96 

A+6S 3.54 3.53 2.99 

Table 9. Bulk density, dimensional density and apparent porosity of samples fired at 1600°C 
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Fig. 4 Bulk density of (non-stoichiometric) A- batch with varying SrO percentage 
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Fig. 3 Bulk density of (stoichiometric) O batch with varying SrO percentage 
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Fig. 5 Bulk density of (non-stoichiometric) A+ batch with varying SrO percentage 

It is clear from the figures that with addition of SrO helps in densification of the composite, 

which is definitely beneficial for the zirconia-mullite composite. Now the bulk density vs SrO % 

additions figures support this theory. 

 

4.3 Apparent porosity: 

The apparent porosity values have been noted down in table- 7, 8, and 9. Also they have been 

expressed graphically in figure 6, 7, and 8. As we have already seen that the density increases 

with increase in SrO content. It is also evident that apparent porosity decreases to a greater 

extent. The porosity measurements have revealed that the values for mother batches (O, A-, A+) 

is around 20-22%, which decreases to around 2.5-3.0%.  

0 2 4 6

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

3.55

3.60

B
ul
k 
D
en
si
ty
 (
%
)

Sr % addition

 1500oC
 1550oC
 1600oC

SrO (%) addition  

A+ batch 



Study of Zirconia-Mullite system: Effect of SrO addition with alumina content variation 
 

Pa
ge

26
 

 

Fig. 6 Apparent porosity of (stoichiometric) O batch with varying SrO percentage 

 

Fig. 7 Apparent porosity of (non-stoichiometric) A- batch with varying SrO percentage 
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Fig. 8 Apparent porosity of (non-stoichiometric) A+ batch with varying SrO percentage 

 

 

4.4 volume shrinkage: 

The volume shrinkages of samples have been sighted in table 10. Also the graphical 

representation of the same has been shown in figures 9,10. 
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Name of 
sample  

Shrinkage at 1500°C  
(%) 

Shrinkage at 1550°C  
(%) 

Shrinkage at 1600°C 
(%) 

O 15.20 15.8 14.34 

O2S 19.14 22.47 21.78 

O4S 25.29 22.90 24.34 

O6S 27.04 24.68 24.82 

A- 16.33 17.13 13.8 

A-2S 19.67 21.36 23.95 

A-4S 22.06 22.59 23.64 

A-6S 25.28 26.67 26.68 

A+ 12.96 13.48 13.93 

A+2S 28.89 21.82 18.98 

A+4S 25.07 22.54 25.72 

A+6S 28.57 29.39 26.35 

Table 10. Volume shrinkage values of various batches with temperature of sintering variation 

 

Supporting the density appraisal and apparent porosity decrement the volume shrinkage of 

samples has again displayed the beneficial effect of SrO addition. 



Study of Zirconia-Mullite system: Effect of SrO addition with alumina content variation 
 

Pa
ge

29
 

 

Fig. 9 Shrinkage of O batch at various temperatures with SrO (%) variation 

 

Fig. 10 Shrinkage of A- batch at various temperatures with SrO (%) variation 
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Fig. 11 Shrinkage of A+ batch at various temperatures with SrO (%) variation 

 

Fig. 12 shrinkage vs temperatures graphs for O batch 
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Fig. 13 shrinkage vs temperatures graphs for A- batch 

 

Fig. 14 shrinkage vs temperatures graphs for A+ batch 
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4.5 X-ray diffraction: 

XRD analysis of the samples revealed the presence of various major phases such as: zirconia (monoclinic 

and tetragonal), mullite, corundum, and zircon.  
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Fig. 15 XRD pattern of stoichiometric batch(O,O4S, and O6S) fired at 1500°C 

 

 

 

m= monoclinic zirconia  

t= tetragonal zirconia  

*= mullite  

#= corrundum  

z= zircon 
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Fig. 16 XRD pattern of stoichiometric batch(O,O4S, and O6S) fired at 1550°C 

 

m= monoclinic zirconia  

t= tetragonal zirconia  

*= mullite  

#= corrundum  

z= zircon 

q= quartz  
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Fig. 17 XRD pattern of stoichiometric batch (O, O2S, O4S, and O6S) fired at 1600°C 

 

 

 

 

 

 

m= monoclinic zirconia  

t= tetragonal zirconia  

*= mullite  

#= corrundum  

z= zircon 

q= quartz  
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Sample t-ZrO2 at 1500°C (%) t-ZrO2 at 1550°C (%) t-ZrO2 at 1600°C (%) 

O 17 19 20 

O4S 36 31 31 

O6S 28 16 22 

Table11. Retention of tetragonal zirconia percentage in the O batches (O, O4S, and O6S) 
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Fig.18 Tetragonal zirconia percentage retention versus SrO percentage in O batch 

 

From the table 11 and fig. 18 it is clear that for the 4% SrO added stoichiometric batch shows higher 

tetragonal zirconia percentage retention within the total zirconia content. This way O4S batch may be 

useful in terms of mechanical properties because of the transformation toughening of the tetragonal 

zirconia. 
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Fig. 19 XRD pattern of non-stoichiometric batch (A-, A-2S, A-4S, and A-6S) fired at 1600°C 
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q= quartz  
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               Fig. 20. XRD pattern of non-stoichiometric batch (A+, A+2S, A+4S, and A+6S) fired at 1600°C 
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*= mullite  

#= corrundum  
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PHASE ANALYSIS: 

Table 12 shows the phase composition of various batches fired at 1600°C.  

Table12. Various phase compositions of batches fired at 1600°C 

From the phase analysis as shown in Table 12 percentages of various mineral phases can be interpreted. It 

seems the volume % of mullite is decreasing with increase in SrO content. Withal the improvement of 

corundum and zirconia percentage it can be said that somehow SrO is hindering the reaction sintering of 

zirconia-mullite system. The reaction of zirconia alumina being a reversible process SrO at high 

temperature promotes the backward reaction by releasing zirconia and alumina from the system. The 

reason for high density, low porosity and shrinkage can be explained through the fact that, 

strontium oxide generally reacts with the impurities and the residual silica to form glassy phase. 

This accounts for the lowering of desnsities. 

Sample m-ZrO2(%) t-ZrO2(%) Mullite(%) Corundum(%) Zircon (%) others 

A+ 35 4 53 5 3 - 

A+2S 27 1 50 19 3 - 

A+4S 21 2 34 41 2 - 

A+6S 15 1 22 60 2 - 

A- 22 4 47 14 3 10 

A-2S 14 6 38 28 1 13 

A-4S 16 1 35 32 2 14 

A-6S 25 1 24 48 2 - 

O 19 5 29 35 5 6 

O2S 22 1 57 21 - - 

O4S 13 6 47 23 8 3 

O6S 7 2 30 41 20 - 
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5. CONCLUSION 

 
1. Addition of SrO helps in densification of zirconia-mullite system. 

2. Maximum density achieved was around 3.65 g/cc with additive and without additive it was 

around 3.1 g/cc for O batch. Similarly the density values varied between 3.06-3.63 g/cc for 

alumina deficient (A-) batch. Upper limit of alumina excess batch (A+) density was 3.57g/cc 

and the lower limit was 3.07g/cc.  

3. Density values increase with increase in SrO percentage from 0-6% for all the batches 

4. Apparent porosity reduces to a greater extent with the additive effect of SrO. 

5. Without additive, porosities for O,A-, and A+ batches were maximum 23.58% , 23.43% , 

22.6% respectively and with additive it lowered to around 1.88%, 2.5% and 2.99%. 

6. Supporting the density appraisal and apparent porosity decrement the volume shrinkages of 

samples have again displayed the beneficial effect of SrO addition. 

7. Shrinkage for O batch (without additive) was around 15.20%, which increased to 27.04% 

with additives. Considering the non-stoichiometric batches, shrinkage value for A- batch 

raised from 13.8% to 23.64% and for A+ batch the addition of SrO upgraded the shrinkage 

from12.96% to 28.57%. 

8. From XRD analysis major phases found were monoclinic zirconia, tetragonal zirconia, 

zircon, mullite, corrondum and traces of other phases like quartz. 
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9. It was observed that tetragonal zirconia retention was relatively higher in stoichiometric 

batch with 4% SrO addition compared to other percentage addition of the same (O) batch. 

10. Irrespective of slight variation of t-zirconia in total zirconia amount, the overall t-zirconia 

percentage retained was very low to call for the strengthening of the composite. 

11. The phase composition analysis proclaimed that the percentage of mullite is subsequently 

decreasing with addition of SrO, where as corrundum and zircon phases were upgarded. 

12. It means the addition of SrO impeded the formation of Zirconia-mullite composite. 

13. Study of effect of SrO additive has affirmed the inhibitory effect of the same for the 

formation of Zirconia-mullite composite. 
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