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ABSTRACT 

 

. 

Noise is an undesired, but unavoidable phenomenon.  We cannot stop its generation at the source 

level, but control it at the listener level up to some extent either by passive or active method. In 

our work we are only concerned about the active method. In this paper we have proposed several 

types of adaptive algorithms for updating the weights of the digital filter, which acts as the 

controller. First we have proposed Filtered-X LMS algorithm which is very simple to implement 

and easy to understand. Then some amount of nonlinearity is introduced in the primary path and 

the performance is seen to be degraded. So this problem is sorted out by assuming a nonlinear 

controller using nonlinear algorithms like Volterra series method, Back propagation method for 

multi-layer perceptron, FLANN filter. After studying these algorithms we introduce a completely 

different type of algorithm known as evolutionary computing methods, which is based on the 

population based searching techniques. In this field we have studied 3 algorithms. i.e. Genetic 

Algorithm, Particle Swarm Optimization, Differential Evolution. A brief comparison is made 

between them and also the performance is studied in presence of nonlinearity. 
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1.1 Background of noise 

Sound is the sensation produced at our ear due to small pressure fluctuation in the 

surrounding medium. Due to the pressure fluctuation, a vibration is induced in the ear drums 

which produce sensation. Due to the fluctuation, a sound field is created in the atmosphere. 

This is also termed as acoustic field and the pressure as acoustic pressure. Noise can be 

basically defined as unwanted sound. It is a very subjective term; what is music to our ears 

might be noise to some other person. 

 Like all physical quantities, sound can also be measured. It is often quantified by the 

pressure of the acoustic field because it is very simple to measure and it is a scalar quantity. 

The standard unit for its measurement is Pascal, abbreviated as Pa. In a qualitative way, 

sound pressure fluctuations are very small and human ears are very sensitive to detect it. In 

fact our ear is incredibly sensitive to relative changes in the fluctuations. For an example, a 

change of pressure from 0.0005 Pa to 0.0007 Pa will be as noticeable as a change from 5 Pa 

to 7 Pa. Due to the range and sensitivity of human ear; we quantify the pressure fluctuations 

by another unit known as decibel (dB), where a reference amplitude of pressure fluctuation 

(pref) is needed to define this new unit. Here the pref is 20 microPascals, which is the threshold 

of hearing. 

Lp = 10 log10(p
2
/p

2
ref) = 20 log10 (p) – 20 log10 (pref)     (dB) 

     Lp = 20 log10 (p) + 94     (dB) 

Now we are able to quantify sound in an absolute manner and the value beyond which the 

sound starts to cause pain and irritation in ear, that sound is called noise and it is highly 

undesired. From survey, it is studied that sound pressure level from 60-80 dB are included as 
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noise; from 80-100 dB sound is called high noise and beyond that value it becomes painful 

for human ear. 

1.2 Sound waves 

A vibrating source always makes its surrounding vibrate and the process continues. In our 

context the same thing happens, where the surrounding is the air and due to compression and 

rarefaction of the air molecules an acoustic field is created in the atmosphere, which causes 

pressure fluctuation and it is sensed by our ear. 

 From this point, we will use the term noise instead of sound as we are interested in 

only the noise and its cancellation. The propagation of noise from its source to our ear takes 

place through the atmosphere and thus the properties of atmosphere control the residual 

noise, which we hear. Noise is the unwanted sound, which we want to reduce at the level of 

listener. So our basic aim is to minimize the residual noise at our ear and this can be done in 

two ways as stated above. One is to modify our characteristics of the environment in such a 

way that the effect of noise seems to be nullified. It is known as the passive noise control 

method. But there are some constraints, where we are not allowed to manipulate our 

surroundings. In that case the manipulation part is done in electronic domain; an 

electronically generated anti-noise, which has equal magnitude and opposite phase as the 

noise is introduced into the acoustic domain and the noise field is controlled. This is called 

the active method. Both of the methods are discussed below in great details. 

1.3 Passive noise control 

Modification of the environment where noise propagates is the basic idea of passive noise 

control method. It is a traditional method, where we aim to reduce the effect of noise by 

changing the path of energy flow away from humans. This can be accomplished by a 

numerous ways. One of the methods is to use some materials, which absorb the sound form 
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of energy and convert it into heat. Another method is to reduce the volume velocity by 

attenuating vibration. Some other techniques are to isolate our place of interest by a wall or 

barrier. But in this way we isolate ourselves from noise, but we have exposed the whole 

world to a large amount of noise and it is highly undesired. So research works have been 

done for more than 70 years on the active control of noise as described below. 

1.4 Active Noise Control 

In this method an electronically synthesized anti-noise, which is equal in magnitude and 

opposite in phase with noise, is superimposed with it so that destructive interference takes 

place and the original sound field is exactly cancelled. This is the basic idea of active noise 

control method. Here we do not modify the environment, rather our work is confined to 

electronic domain only and this is the main area of interest of our research work. 

 

Fig. 1.1 Destructive interference of noise and anti-noise 
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2.1 Physical Mechanisms 

In this chapter we will discuss about the active noise control system in a more detail. The 

cancelling signal is called the anti-noise, which has equal magnitude and opposite phase with 

the noise. This is generated electronically and introduced into the acoustic domain so that 

there is a destructive interference between noise and anti-noise and we get a silent zone. In 

this method the noise level may be reduced at our desired locations, but according to law of 

conservation of energy at some other places the noise level is increased considerably. This is 

known as “Local cancellation”. For example if we have designed an active headset, then near 

our ear the sound field is cancelled actively, but at other locations the sound level is high.  

 Except cancellation there are also some mechanisms by which noise can be controlled 

actively. Due to introduction of anti-noise sources the acoustic radiation impedance of the 

undesired noise source is changed. The noise field may be absorbed or reflected by the anti-

noise sources in some other methods. 

2.2 Structures of ANC system 

An Active Noise Control (ANC) system basically consists of four components. 

 Reference microphone: - It is a transducer whose job is to convert an acoustic signal 

to its equivalent electronic form. It samples the noise signal at each instant and the 

sampled signal is forwarded to the controller. 

 Controller: - This is heart of the ANC system that actually synthesizes the anti-noise. 

 Loudspeaker: - Electronically generated anti-noise must be converted to its 

equivalent acoustic form for noise cancellation. 

 Error microphone: - the residual noise field is sensed by this and feedback to the 

controller for its improved performance. 
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Fig. 2.1 Feedforward active noise control system 

 Ideally the ANC systems are suited for cancellation of noise below the range of 500 

Hz. For higher range of frequency the performance degrades for active method, because of 

more complex vibration and radiated sound field. Also high sampling rate is required for 

higher frequency noise. So for noise control we implement active control for low frequencies 

noise and passive method for high frequencies. From this point onwards our discussion will 

be focused on the controller only as it is the one which actually generates the anti-noise. 

2.3 The electronic controller 

The electronic controller is nothing but a digital filter, which takes the noise sampled by the 

reference microphone and filters it to generate the anti-noise. Noise signal from its source 

propagates through the acoustic path, also known as the primary path. The job of the 

controller is to optimize its weights according to transfer function of the primary path so that 

anti-noise thus synthesized is equal in magnitude and opposite in phase as the noise. 

 In our research works, we have taken an FIR adaptive filter as our controller. From 

basics of signal processing we know that Finite Impulse response (FIR) is one where the 

output is a function of the present as well as some past values of the input only. For 

simplicity we have taken an FIR filter. The term “adaptive” signifies that the filter weights 
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are not fixed, rather they are adjustable. Here in our particular problem of noise cancellation 

we do not know the primary path transfer function and hence we are unable to synthesize our 

anti-noise directly. So we chose an adaptive filter as controller; randomly initialize the weight 

values and then update its weights according to an optimization algorithm. 

2.4 Digital Filters 

Our controller is nothing but an adaptive FIR filter. For simplicity we have assumed our 

controller to be FIR and adaptive filter is used to adjust its weights according to any variation 

in external environment. Suitable optimization algorithms are implemented for weight 

adaptation for efficient noise cancellation. 

 A digital FIR filter is a combination of delay blocks, multiplication blocks and a 

summer. The output of the filter is a linear combination of input signal sampled at that instant 

as well as some past values also. So we can model it by taking the input and passing it 

through a number of delay blocks, which are also called the taps. Then these are multiplied 

by respective coefficients also known as weights. Then output is obtained by simply adding 

all the weighted input signals. The complete architecture of an FIR filter is given below. 

 In the diagram below the weight coefficients are constant, but in an adaptive filter the 

values are updated using suitable algorithm to get an optimum value of weight vectors. Now 

having studied the structures of the controller filter our objective is to find an adaptive 

algorithm that will update the filter weights. 

 In our work we have proposed different algorithms for noise cancellation. Broadly 

those can be categorized into two types. The first type of algorithm tries to minimize the 

mean of the square of the error. The second one is the stochastic algorithm, which is based on 

the population based searching technique or the evolutionary computing method.  
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Fig. 2.2 FIR filter architecture 

 

 Some nonlinear algorithms have also been proposed for better performance of the 

controller in presence of nonlinearity in the primary acoustic path. All the algorithms, their 

performance and implementation complexity are compared in the subsequent chapters. 
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3.1 Adaptive control 

The working of adaptive algorithm is completed in two steps. The first step is the filtering 

step where the output is obtained in a usual manner by filtering the input. In the second step, 

also called the weight adaptation step the filter output is compared to the desired output and 

the error signal thus obtained is fedback to the controller to update the weights. 

 

                                                                                                                      d(n) 

             x(n)                                                            y(n)  

              -        e(n) 

 

 

Fig. 3.1 Working principle of adaptive algorithm 

3.2 The LMS algorithm: - 

From basics of signal processing we know that the wiener filter is an optimum filter that 

minimizes the mean square error of our model if the autocorrelation properties of the 

reference signal and the cross correlation between the reference and desired signal is being 

given. For this a huge amount of computation is needed as a large amount of information 

about past values of the signal is required. To avoid this complexity another approach is to 

make the system adaptive. Instead of using the past values of the signal for estimation of 

correlation functions, instantaneous data are used sequentially so that the algorithm gradually 

proceed in a direction of minimum mean square error. After some sampling instants our 

Controller 
 

Adaptive algorithm 
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algorithm will converge to its optimal solution and this time period is defined as the 

convergence time. For an efficient algorithm the convergence time should be very small. 

3.3 Steepest Descent algorithm 

For all algorithms to work there is a cost function which is to be optimized. Here in our 

problem the cost function is the mean of the square of the error. This algorithm suggests that 

if a filter coefficient is adjusted by a small amount which is proportional to the negative of 

the gradient of the cost function with respect to the filter coefficient, then it approaches 

towards its global solution. Simultaneous adjustment of all the filter coefficients can be 

represented in vector form. The governing equation is written below 

w (new)  = w (old)  -   
  

  
 (old) 

where   is the convergence factor or the step size 

 J is the cost function, which is defined as the mean of the square of the error 

J = E [ e
2
 (n) ] 

where the residual error is given by  

e(n) = d(n) – y(n) = d(n) – x
T
(n) w 

  

  
 = 2 E[ x(n) x

T
(n) w – x(n)d(n) ] 

  

  
 = - 2E[ x(n)e(n) ] 

The expectation value of the product of the error signal with the reference signal vector is 

computed by time averaging a large segment of data, which increases the computational 
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complexity of the system. So the expectation value is simply approximated by the 

instantaneous value and the resulting algorithm is known as the LMS algorithm. 

w(n+1) = w(n) + 2  x(n) e(n) 

 This is a very important algorithm widely used in a variety of applications. For our 

control system design we use the above equation directly or with some modifications as will 

be discussed in the following sections. 

3.4 Filtered Reference LMS algorithm 

 

In our noise cancellation problem the anti-noise introduced from the loudspeaker into the 

acoustic field cancels the noise and residual error signal is sampled by the error microphone. 

Now the small acoustic path from the loudspeaker to the error microphone, also known as the 

secondary path has some transfer function and it needs to be taken into account during 

implementation. The new error signal sampled at the error microphone is given by, 

e(n) = d(n) - w
T
 r(n) 

where r(n) is the input vector filtered by the secondary path (g). 

r(n) = x
T
(n) g(n) 

 So filtered-reference LMS or filtered-x LMS (FxLMS) algorithm requires the 

identification of the secondary acoustic path for updating its weights. In practice the filtered 

reference signal is generated by passing the reference signal by the estimated version of the 

secondary path.  

w(n+1) = w(n) + 2  r(n) e(n) 
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Fig. 3.2 Block diagram of the practical implementation of the FxLMS algorithm 

3.5 Nonlinear systems  

Till now our controller is assumed to be a linear one, because the primary path through which 

noise propagates is itself is linear. But in practical cases, the atmosphere or in technical 

language the primary path is never linear. Due to humidity or wind effect or anything the 

primary path is nonlinear. By a nonlinear system, we understand that it does not obey the 

principle of superposition. Nonlinearity can be divided into two types. A system may be 

weakly nonlinear, where the system behaves as linear upto some extent and beyond that value 

it exhibits nonlinearity. But a system is said to be a chaotic if it is highly nonlinear. So a 

proper anti-noise can be synthesized by a nonlinear controller if the primary path itself is 

nonlinear. In a much generalized sense if the output contains any higher order terms of the 

input, then that system is said to be nonlinear. Sometimes the acoustic path may exhibit 

trigonometric nonlinearity. Keeping these two types of nonlinearities in mind we propose two 

algorithms in the following sections for different situations. 
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3.6 The Volterra FxLMS algorithm 

For discrete time system the volterra series can be described as 

y(n) = h0 +   ∑               
     + ∑ ∑                         

    
 
     +… 

where the terms h1(k1) and h2(k2) are called the first and second order volterrs kernels and in 

principle the series can be extended to any order. 

 

Fig. 3.3 Block diagram of the second order VFxLMS algorithm 

  For h0 and second and higher kernels to be zero the series simply becomes the linear 

convolution. For a memoryless system for k1, k2 etc. > 0 the kernels become zero and the 

series reduces to a power series. In our work we have considered only upto second order 

kernels. In the quadratic part we have not considered the crossterms. i.e.- k1 and k2 are 

assumed to be same.  
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So our series becomes 

y(n) = h0 +   ∑             
    + h2(k)x

2
(n-k) 

where N = order of the FIR filter 

The input vector without considering the corssterms is written as  

x = [ x(n) x(n-1) x(n-2) … x(n-N+1)  x
2
(n) x

2
(n-1) x

2
(n-2) … x

2
(n-N+1 ]

T 

If we include the crossterms then our input vector will be as below 

x = [ x(n) x(n-1) x(n-2) … x(n-N+1)  

        x
2
(n) x(n)x(n-1) x(n)x(n-2) … x(n)x(n-N+1) 

         x
2
(n-1) x(n-1)x(n-2) x(n-1)x(n-3) … x(n-1)x(n-N+1)  

         …  

         x
2
(n-N+1) x(n-N+1)x(n-N) x

2
(n-N+1) ]

T 

After getting the input vector we initialize the corresponding weight vector of same size as 

that the input vector. Now the input vector is expanded nonlinearly as a Volterra series. So 

the rest thing is the weight adaptation, which can be completed by using the mathematical 

equation of FxLMS. This is called the Volterra FxLMS algorithm. 

 Introducing nonlinearity to the primary path, the performance of general FxLMS is 

compared with the proposed second order VFxLMS. 
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3.7 Trigonometric FLANN filter  

FLANN: - Functional Link Artificial Neural Network 

Neural network is a field, which is inspired by the working principle of the human brain. Our 

brain is a parallel processor which is highly nonlinear, distributed and yet very efficient in 

performance. So to model human brain we have proposed an artificial neural network, where 

the input is allowed to expand nonlinearly. Here we are only interested in trigonometric 

expansions. Here our filter includes the point-wise trigonometric expansion at the same time 

instant and also the products of samples of different time shifts (cross terms).  

 

Fig. 3.4 Block diagram of the trigonometric FLANN filter 

 The above block diagram does not include any crossterms. As we can see the input 

vector has a linear part as well as nonlinear expansions in terms of sine and cosine functions. 
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A FLANN filter using trigonometric nonlinear expansion of order ‘P’ without crossterms is 

first taken into consideration. For this we can write the input vector as below 

x = [ x(n) x(n-1) x(n-2) … x(n-N+1) 

         sin[x(n)] sin[x(n-1)] sin[x(n-2)] … sin[x(n-N+1)]  

          cos[x(n)] cos[x(n-1)] cos[x(n-2)] … cos[x(n-N+1)]  

         sin[2x(n)] sin[2x(n-1)] sin[2x(n-2)] … sin[2x(n-N+1)]  

          cos[2x(n)] cos[2x(n-1)] cos[2x(n-2)] … cos[2x(n-N+1)] 

           … 

         sin[Px(n)] sin[Px(n-1)] sin[Px(n-2)] … sin[Px(n-N+1)]  

          cos[Px(n)] cos[Px(n-1)] cos[Px(n-2)] … cos[Px(n-N+1)] ]
T 

if crossterms are taken into account, then it will be very difficult to all the terms here. For a 

simple demonstration we have assumed the order of the filter (P) to be 1. Now the input 

vector can be written as 

x = [ x(n) x(n-1) x(n-2) … x(n-N+1) 

         sin[x(n)] sin[x(n-1)] sin[x(n-2)] … sin[x(n-N+1)]  

          cos[x(n)] cos[x(n-1)] cos[x(n-2)] … cos[x(n-N+1)]  

          x(n-1)sin[x(n)] x(n-2)sin[x(n-1)] x(n-3)sin[x(n-2)] … x(n-N+1)sin[x(n-N+2)]  

          x(n-1)cos[x(n)] x(n-2) cos[x(n-1)] x(n-3)cos[x(n-2)] … x(n-N+1)cos[x(n-N+2)] 

          x(n − N + 1)sin[x(n)]  x(n − N + 1)cos[x(n)] ]
T 
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After expanding our input vector according to the above methods we randomly initialize the 

weight vector, whose size is same as the input vector. If any nonlinearity is present in the 

system, then they are exactly cancelled by the output of the nonlinearly expanded input 

vector. Then the weight vector is updated using the equation of the FxLMS algorithm.  

 A trigonometric expansion based FLANN filter is designed and under same 

conditions of primary path nonlinearity the performance of the general FxLMS and the 

proposed method of FLANN filter is compared. Again the performance comparison of a 

simple FLANN filter without using crossterms and including suitable crossterms is done. 
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Chapter 4 

 

 

 

Evolutionary computation  

 



 

21 
 

Till now all the algorithms discussed are modified form of LMS algorithm, which are based 

on steepest descent procedure. This means the weights are updated in such a way that the 

small change in weight value is directly proportional to the negative gradient of the cost 

function with respect to the weight vector. In an error surface the weight is updated in a 

direction of maximum decrement of cost function. But in this section we will introduce a 

completely different type of algorithm, which is known as evolutionary computation 

algorithm. 

 This type of algorithms is inspired by the natural process of biological evolution. It is 

natural process which is based on the principle of “survival of the fittest”. It means the fittest 

individuals only survive and appear in the next generation. Those who cannot cope up with 

the external environment do not survive; they simply die and do not appear in the next 

generation. In this way the individuals who can adapt themselves according to a variable 

environment are considered as the fittest individuals. The same analogy will be used for 

adaptive algorithms. 

 The evolutionary computation methods are also known as the population based 

searching techniques as the optimum solution of a problem is found out by a population of 

potential solutions, which follow the principle of biological evolution. As the process of 

evolution proceeds in a direction to get fittest individuals, similarly our adaptive algorithm 

will update its weights in a direction of cost function optimization. Here the objective is to 

minimize the mean square error. 

 This method is also called the stochastic algorithm, because all the steps and 

processes involved here are random and based on a probability factor as will be seen in the 

following sections. 
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4.1 Genetic algorithm  

Genetic algorithm (GA) is completely inspired by the process of natural biological evolution, 

which was first proposed by John Holland in the early seventies. First a population of weight 

vector is initialized randomly, which represent the potential solutions and then the existing 

parents in the current population are allowed to mate with each other. Then according to laws 

of natural genetics and various genetic operators like crossover and mutation new individuals 

are produced. Then both the parents as well as the children are evaluated against an unknown 

environment, i.e. - the mean square error of all the individuals in the population is calculated 

and the best individuals are selected. If the population size is assumed to be P then after 

reproduction stage the total size becomes 2P, because of additional P numbers of children. 

During evaluation and selection, the best P individuals survive in the next generation and 

others are simply discarded. This process continues and after some generations it reaches the 

global solution. All the steps of genetic algorithms are described in a sequential manner. 

4.1.1 Population Initialization: - 

First P numbers of controller weights are randomly initialized. Each individual is a weight 

vector and for GA first the weight values must be coded into a fixed length of binary strings. 

The length of the string depends on domain of parameters and the precision of computation. 

For an example if the domain of the solution is [0,1] and the precision of computation is 

taken upto four places after the decimal point, then the domain [0,1] should be divided into 

10000 equal sizes.  

8192 = 2
13

 < 10000 < 2
14

 = 16384 

For our problem the length of the string is taken 14. So during population initialization we 

take P numbers of 14 bit strings, where the bit values are randomly assigned.  



 

23 
 

The decoding of the binary string <b13 b12 … b1 b0> to corresponding real numbers is shown 

below. 

x’ = ∑    
   i 2

i 

The corresponding real number is given by, 

x = x’/ (2
14

 - 1) 

4.1.2 Evaluation  

All the individuals are nothing but the potential solutions of the weight vectors of our control 

system. In this step, all the individuals are evaluated by passing the input signal through all 

the controllers one by one and then calculating the error. From the error we get the fitness 

function according to the relation, fj = 1 / ej. The individual having highest fitness value is 

called the fittest individual and has a better probability of getting selected for next generation. 

4.1.3 Crossover  

The individuals of the existing population are now called parents, who are allowed to 

reproduce among themselves to produce children. The crossover can be of various types. It 

can be single-point, two-point, uniform crossover etc. The single-point crossover operation 

can be realized by randomly choosing two weight vectors as parents, specifying a crossover 

point randomly and then interchanging the bit values of the chromosomes beyond the 

crossover point. In two point operation the chromosome bits are interchanged between the 

two specified points. In uniform operation the points at which the two parents will 

interchange their bits will be determined randomly. In this operation the two parents will 

reproduce two children. So a population of size P will be now 2P.  
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4.1.4 Mutation  

Mutation is a very peculiar phenomenon in the evolution process, which accounts for 

variation in the process. Here the process of mutation can be realized by taking the children 

chromosomes, randomly choosing the mutation points according to the probability of 

mutation, which determines the number of chromosomes bits undergoing mutation and then 

reversing the bit values at the mutation points. In the problem of noise cancellation, this is a 

very important step, which helps the system converge to its global solution if it has struck in a 

local solution. 

4.1.5 Selection  

Now all the individuals including the parents as well as the children are evaluated and their 

fitness values are calculated. Accordingly best P individuals survive in the next generation 

and rest are discarded. This process continues until we get a global solution. 

 Though due to a large population size the controller has become very huge, its 

computational complexity has been reduced because we do not need the secondary path to be 

identified. Also the performance is comparatively good as the system always converges to its 

global solution as a large number of individuals are involved in the searching process.  
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4.2 Particle Swarm Optimization (PSO)  

It is an evolutionary computation technique, which is inspired by the social behaviour of the 

swarms. In an analytical way, we compare the swarms and their positions as our controller 

weight vectors. The potential solutions, also called as particles are randomly initialized and in 

the searching space they fly towards the global solution with a velocity which is dynamically 

adjusted according to the flying experience of their own as well as other particles in the 

space. The position and velocity of the i
th 

particle at t
th 

iteration are given by xi(t) and vi(t). 

The best previous position for i
th

 particle is recorded and its fitnees value is denoted as pbesti 

and the position as xpbesti. The index of the best pbesti is recorded and denoted as gbest 

(global best) and its location as xgbest. Now the velocity and the position of the swarms can 

be adjusted according to their personal best as well as their global best as given below. 

vi(t) = vi(t-1) + r1c1(xpbesti – xi(t)) + r2c2(xgbest – xi(t)) 

xi(t) = xi(t - 1) + vi(t) 

where   is the inertia constant 

 c1, c2 are the acceleration constants 

 r1 and r2 are random numbers generated between [0,1] 

In each time step the particles are evaluated and the corresponding error values and hence the 

fitness values are recorded. If at any time the current fitness value is greater than pbesti value 

then it gets stored in pbesti. If the personal best value is greater than the global value, then the 

gbest value is replaced by it. in this way the personal and global best values and the particle 

locations are updated. In the next iterations the velocity and the position of each particle are 

adjusted according to the above equations. 
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4.3 Differential Evolution algorithm  

Differential Evolution (DE) is an algorithm that is much similar in structure to GA. As the 

name suggests the difference vector of two random vectors in the search space are used to 

update the weight vectors for next generation. Randomly initialized population of weight 

vectors are allowed to crossover and mutation. Then the best individuals get selected for 

which we get a better fitness value. The summary of all the steps are described below. 

4.3.1 Population initialization  

In the search space, the weight vectors of dimension N are randomly initialized uniformly 

within the lower (x
l
) and upper boundary (x

u
). 

X = [ x1 , x2 , … , xP ]
T  

is called the target vector 

where xi = [ xi,1 , xi,2 , … , xi,N ]
  
is the i

th
 weight vector of order N ,where i = 0,1,…,P 

xi,j = x
l 
+ rand(0,1) (x

u
 - x

l
) 

where each coefficients of the individual vectors are initialized according to the above 

equation and the role of rand(0,1) generates random numbers within [0,1] uniformly. 

4.3.2 Mutation operation  

The concept of mutation is same as it was in GA. This operation does not allow the system to 

converge to its local minima. This process is completed by taking differential vector of 

random weight vectors for obtaining the mutant vector and hence satisfies its name. At a 

generation G for each target vector xi,G a mutant vector vi,G is calculated.  

Where vi,G = [ v1,i,G , v2,i,G , … , vN,i,G ] and it can be generated by using any one of the 

following strategies. 
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“DE/rand/1”: vi,G = xr1,G + F (xr2,G - xr3,G) 

“DE/best/1”: vi,G = xbest,G + F (xr1,G - xr2,G) 

“DE/current to best/1”: vi,G = xi,G  + F (xbest,G – xi,G) + F (xr1,G - xr2,G) 

“DE/best/2”: vi,G = xbest,G  + F (xr1,G – xr2,G) + F (xr3,G - xr4,G) 

“DE/rand/2”: vi,G = xr1,G  + F (xr2,G – xr3,G) + F (xr4,G - xr5,G) 

Where r1, r2, r3, r4, r5 are random and mutually different integers generated in the range [1, P] 

F is the mutation constant and xbest,G  is the individual vector with best fitness value in the 

generation G. 

4.3.3 Crossover operation  

After the mutation phase, crossover operation is done between the target vector (xi,G) and the 

mutant vector (vi,G) to produce a trial vector. 

ui,G = [ u1i,G , u2i,G , … , uNi,G]  is the trial vector which is obtained by the following formula. 

 uj,I,G = {
                                     

                                                                  
 

where CR is the crossover constant. jrand is random integer in the range [1,P] to ensure that 

the trial vector will be different from the target vector at least by one parameter. 

Now the upper and lower bounds of the trial vector are checked. If the vectors are out of the 

boundary values, then we randomly scale it within the boundary values.  
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4.3.4 Selection operation  

Now both the target as well as trial vectors have been generated. These are taken as the 

controllers one by one sequentially; input is applied to the system and after getting the output 

the error is calculated for all the target and trial vectors and also the fitness values. Then 

fitness of each target vector is compared to its trial vector. If the trial vector has more fitness 

value than the target vector then the trial vector is selected for the next generation. This 

process continues until a global solution is achieved. 

 The parameters F and CR control the speed of the convergence. If these are not 

chosen properly there is a chance of divergence of the algorithm. For better performance the 

DE algorithm may be modified so that the values of F and CR are not constant, rather these 

are adaptively changing from one generation to the next. 

 Implementation of DE algorithm in noise cancellation system shows better 

performance and also helps the system converge to its global solution. It also does not require 

the identification of the secondary path, which makes the system very simple.  
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Chapter 5 

 

 

 

Results and Conclusion 
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5.1 Simulation 1: Performance of FxLMS algorithm 

In this experiment, the noise signal (x (n)) is represented by random numbers generated in the 

range of [-0.5, 0.5] uniformly. The primary path is given by P (z) = z
-3

-0.3z
-4

+0.2z
-5

 and the 

secondary path by S (z) = z
-2

+0.5z
-3

. u (n) = x (n) * p (n) , where p (n) is called the primary 

path impulse response function. Now the primary noise sensed by the error microphone is 

given by, d (n) = u (n-2) + d1u
2
 (n-2) + d2u

3
 (n-1). The factors d1 and d2 are the measure of the 

strength of the primary path nonlinearity. For simulation, the model is assumed to be an FIR 

filter of 15 taps. For weight adaptation the using the FxLMS algorithm value of, the learning 

rate parameter is taken to be 0.1. Now the training period consists of 2000 samples and the 

complete procedure is repeated for 50 times. For the above experimental setup we have 

conducted 3 experiments. First the primary path is assumed to be completely linear and this is 

done by taking the values of d1 and d2 to be zero. In the second experiment the nonlinearity 

introduced in the primary path is very low. i.e. - d1 = 0.08 and d2 = 0.04. In the third 

experiment the primary path nonlinearity is very high. i.e. - d1 = 0.8 and d2 = 0.4.  

 

Fig. 5.1 Performance of FxLMS algorithm in presence of nonlinearity 

Number of iterations  

Learning  

error 

in dB 
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5.2 Simulation 2: Performance of Volterra FxLMS (VFxLMS) algorithm  

In the previous experiment, we observed that the performance of the filter using FxLMS 

algorithm is very good in the absence of primary path nonlinearity. But as the nonlinearity in 

the path increase the performance of the algorithm degrades. So the performance of the 

proposed VFxLMS algorithm is simulated in this experiment. The VFxLMS algorithm does 

not include any crossterms, which makes the implementation of the algorithm simpler. The 

same experimental setup is used here. As previously done, the nonlinearity is increased and 

the performance in terms of noise cancellation is recorded. 

 

Fig. 5.2 Performance of VFxLMS algorithm in presence of nonlinearity 

We observe that the performance of the VFxLMS also degrades in presence of nonlinearity. 

The reason of the performance degradation may be the exclusion of crossterms of the input 

signal. 
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5.3 Simulation 3: Performance of FLANN filter using trigonometric  

   nonlinear expansion 

The FLANN filter is designed by trigonometric nonlinear expansion of the input signal. We 

have taken upto 4
th

 harmonics of sine as well as cosine terms for nonlinear expansions. The 

algorithm performance is observed by increasing the primary path nonlinearity. As we go on 

increasing the nonlinearity the performance degrades, but is better than proposed FxLMS. 

 

Fig. 5.3 Performance of FLANN filter in different nonlinearities 

 In presence of low level of nonlinearities the performance of FLANN filter using 

trigonometric expansions the system performance is not disturbed. But presence of high 

nonlinearity degrades the efficiency in terms of noise cancellation. 
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5.4 Simulation 4: Performance of PSO algorithm  

In this experiment the primary path transfer function is taken to be P (z) =0.23+ .96z
-1

 + 

0.23z
-2 

and the secondary path as S (z) = 0.02 + 0.09z
-1

 +0.02z
-2

. Here the numbers of 

particles initialized is 10. The inertia constant () is taken to be 0.9. The acceleration 

constants c1 and c2 are taken to be 0.4 and 0.6 respectively. First the weight vectors are 

evaluated by taking the error. For a better result the mean error of 50 input samples are taken 

then fitness value of each weight vector is calculated and then accordingly the weights are 

updated one by one. This process is repeated for 100 times and performance of the algorithm 

is observed. The same experiment is conducted for low as well as high level of nonlinearity 

in the primary path. 

 

Fig. 5.4 Performance of PSO algorithm in presence of nonlinearity 
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5.5 Simulation 5: Performance of DE algorithm  

In this experiment the same primary path and secondary path are taken. Both the mutation 

constant (F) and the crossover ratio (CR) are taken to be 0.8. 10 numbers of weight vectors 

are randomly initialized and are evaluated according to their fitness values, which is obtained 

from the corresponding error. The error is calculated by taking the maximum of the error of 

50 input samples. The process is repeated for 15 generations. Then conducting this 

experiment for 10 times we take the mean value of the learning error curve. This complete 

procedure is done, first by considering the primary path to be linear and then adding low and 

then high level of nonlinearity. 

 

Fig. 5.5 Performance of DE algorithm in presence of nonlinearity 
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5.6 Simulation 6: Performance comparison of FxLMS, VFxLMS, FLANN  

In this experiment, the three algorithms are compared by taking different nonlinearities. The 

value of learning arte parameter is taken to be 0.01.  

 

Fig. 5.6.1 Performance of FxLMS, VFxLMS, FLANN without of nonlinearities 

 

Fig. 5.6.2 Performance of FxLMS, VFxLMS, FLANN with low level of nonlinearities 
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Fig.5.6.3 Performance of FxLMS, VFxLMS, FLANN with high level of nonlinearities 

The performance of VFxLMS using second order terms is the best in presence of 

nonlinearity. The poor performance of the proposed FLANN filter may be due to the assumed 

second and third order nonlinearity in the primary path. The trigonometric expansions in the 

FLANN filter are not able to cancel the higher order terms of nonlinearity. 
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5.7 Simulation 7: Performance comparison of PSO & DE algorithm  

After simulating and studying the behaviour of PSO and DE algorithm, we now compare 

both of them. The same constant values are used, which were in the previous experiments. 

Three simulations are being carried out. First by considering the primary path to be linear and 

then adding nonlinearity to it.  

 

Fig.5.7.1 Performance comparison of PSO & DE without primary path nonlinearity 

 

Fig.5.7.2 Performance comparison of PSO & DE with low level of primary path nonlinearity 
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Fig.5.7.3 Performance comparison of PSO & DE with high level of primary path nonlinearity 

 As we can observe the performance of DE is better than PSO in all the cases of 

nonlinearities. But during implementation DE requires target vectors, mutant vectors and the 

trial vectors, whereas in PSO it requires only calculation of position vectors and velocity 

vectors only. So in terms of computation, PSO is simpler. 

 Performances in terms of noise cancellation using different algorithms under different 

values of nonlinearities are shown in the table below. All the numerical values are presented 

in dB. 

Table 5.1 Comparison of different algorithms 

 FxLMS VFxLMS FLANN PSO DE 

Without NL 75.3782 73.3782 27.9849 36.2458 48.3729 

Low NL 34.4426 42.0346 27.2383 23.4384 41.7392 

High NL 15.1071 22.4938 17.8329 12.3874 18.2712 
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5.8 Conclusion  

From all the experiments we see that the performance of all the algorithms degrade in 

presence of nonlinearities. To compensate the nonlinearities we have to implement nonlinear 

algorithms and the noise cancellation efficiency of different algorithms are also compared. 

The VFxLMS and FLANN filter based on trigonometric expansion happen to be good filters 

those can be used in presence of primary path nonlinearities. But these above algorithms need 

online secondary path identification to get the filtered reference signal. In some cases there is 

probability of convergence of the system to a local solution. 

 To avoid the above two difficulties we propose evolutionary computing methods, 

where online secondary path identification is not required and as it is a population based 

searching technique the system always converges to its global solution. The noise 

cancellation efficiency of both PSO and DE are very good. From the two, DE shows better 

performance as well as faster convergence. In presence of low level of nonlinearities the DE 

shows very good performance in cancelling noise. So it can also be designed as a nonlinear 

controller. 
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