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ABSTRACT 

 

 

Fluid catalytic cracking unit (FCCU) is known as the heart of the modern refinery process. 

An FCC gives a product specific process eliminating undesired products to a larger extent. 

While it is mostly used to increase the production of gasoline, it also has the ability to give 

different products like propylene and butylene under different conditions.  Crude oil contains 

hundreds of hydrocarbons from light gases to molecules boiling above 343 °C, most of the 

molecules being in the higher end. About 30 % of the feed to the distillation column cannot 

be separated into usable fractions in the market. FCC uses this as its feed, the atmospheric gas 

oil and vacuum gas oil. An FCC is used to produce low molecular weight compounds like 

gasoline from heavier molecules by the process of catalytic cracking. In this project, a basic 

refinery process was designed and the atmospheric gas oil from the distillation column was 

used as feed in the FCC unit.The plant data was referred from the plant data collected by 

Theologous et al. in which few changes were made in order to achieve proper simulation. A 

variation of certain parameters was also carried out to give a view of the effect of these 

parameters on the production of Naphtha, coke and the total conversion in the FCC unit. Two 

different catalysts were also used and product yield was noted. The effect of dual riser with 

respect to one riser was also carried under a specific range. 

. 
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1. INTRODUCTION 
A refinery industry consists of various units like atmospheric distillation column, 

vacuum distillation column, Hydrotreater, Meroxtreater, fluidized catalytic cracking (FCC) 

unit etc. Among these, the FCC is one of the main units of the industry giving several 

advantages over conventional cracking units by decreasing the temperature needed for 

cracking the molecules of higher boiling point into molecules of lower boiling 

point.According to studies in United States fluidized catalytic cracking process (FCC) 

provides about 35 to 45% of the blending stocks in refinery of gasoline [1, 7].In conventional 

processing of the petroleum, cracking was achieved by thermal cracking process, which has 

now been replaced by fluidized catalytic process because of its high efficiency and 

selectivityi.e. gasoline can now be produced with higher octane rating and more liquid 

products instead  of gaseous ones. The light gases produced in the process contain more 

olefin hydrocarbons than those by the thermal cracking process [2, 7]. It is widely used to 

convert the high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude 

oils to more valuable gasoline, olefinic gases, and other products [7]. 

As of 2006, FCC units were in operation at 400 petroleum refineries worldwide and 

about one-third of the crude oil refined in those refineries is processed in an FCC to produce 

high-octane gasoline and fuel oils[4]. During 2007, the FCC units in the United States 

processed a total of 5,300,000 barrels (834,300,000 liters) per day of feedstock[5]and FCC 

units worldwide processed about twice that amount. 

The catalytic cracking process can be classified into two major units the moving bed 

reactor and the fluidized cracking reactor of which the fluidized bed cracker reactor has taken 

over the majority of the production scale now days. The details of FCC units will be 

discussed later on.  

Fluidized catalytic cracking unit is the primary and the most important conversion 

unit in the refinery process. Crude oil as obtained from the ground is processed through 

several separation process like atmospheric distillation column, vacuum distillation column 

and finally oils of different boiling point ranges are obtained like gasoline (naphtha’s), diesel 

oil, LPG etc. including heavy oil (atmospheric gas oil or vacuum gas oil) are produced which 

has a boiling point 343°Cto 565°C. These heavy oils are cracked in the FCC reactr to form 

economically valuable petroleum products like gasoline, Liquefied Petroleum Gas and lighter 

http://en.wikipedia.org/wiki/Olefin
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olefins. The FCC unit is much preferred than the conventional thermal cracking process 

because it produces petroleum products of higher octane value and has a higher efficiency. 

The cracking reaction in the catalytic reactor produces coke (carbon), which remains 

on the surface of the catalyst which decreases the efficiency of the catalyst and its activity 

decreases. To maintain the activity of the catalyst it is necessary to burn off the deposited 

carbon on the catalyst. This was done on a regenerator and the active catalyst is further fed 

back to the reactor. As known, the cracking reaction is endothermic so the energy required 

for the process comes from the regenerator where catalyst is burned off in presence of air 

which is an exothermic reaction. Some units like FCC are designed to use the supply of heat 

from the regenerator for the cracking purpose. These are known as “heatbalance “units[3].
 

Due to the high release of energy in the regenerator during the burring of coke deposit 

on the catalyst particles, over-heating can occur. Regulation of the temperature is carried out 

by maintaining a fixed CO2/CO ratio at the exit or the temperature of the regenerator can be 

fixed according to the supply of oxygen. 

The FCC process employs a catalyst in the form of very fine particles (size of the 

catalyst is about 70micrometers (microns)), which behave as a fluid when aerated with vapor 

at high velocity.Hence, the catalyst here acts as an agent for both the mass transfer operations 

and the heat transfer operations. Catalyst moves from regenerator to riser and reactor to 

regenerator as fresh or spent catalyst and provide heat to the reactor. Usually, two types of 

FCC units are used on industrial scales which are side by side-type and stacked-type reactor. 

In side-by-side reactor which will be used in this project for simulation purposes,the reactor 

and regenerator isa separated vessel placed side by side. In case of stacked type reactor rector 

and regenerator are mounted together, the later mounted above the former.  

About 95 % of the cracking takes place in the riser while the remaining takes place in 

the reactor. This is because cracking reactions occur at a very high rate which causes 

maximum reaction to take place in the riser itself. The temperature in the riser also plays a 

role in this.  
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Figure 1: Schematic of the Fluid Catalytic Cracking Unit [10] 
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2. LITERATURE REVIEW 
Most fluid catalytic cracking units are operated to maximize conversion to gasoline 

and LPG [15]. This is usually the case during peak gasoline demand season.  Maximum 

conversion percentage that can be achieved is usually limited by both unit design constraints 

(i.e. riser height, temperature, etc.) and the processing objectives. Here, the unit operator has 

many operating and catalyst composition variables to select o achieve maximum conversion. 

The product yield can be represented both by weight percentage and volume 

percentage. In the current project, only weight percentage is noted down as coke formation is 

calculated only in terms of weight percentage.  

In the discussion given below Naphtha Yield, Coke Yield and total conversion is 

considered and noted. 

Conversion =100 – (LCO + Bottoms); Where LCO = Light Cycle Oil 

A low conversion rate for maximum production of light cycle oil is typically 40 to60%, while 

a high conversion operation for maximum gasoline production is 70 to85% [15]. But this is 

dependent on the different factors like character of feedstock. Given below are some of the 

conditions used in typical FCC Units and the product yields obtained. 

Table 1: Fluid Catalytic Cracking Unit Conditions [7] 

Parameter Value 

Catalyst to Oil Ratio (wt.) 5 - 16 

Reactor Temperature 

°F 

°C 

 

885 – 950 

475 – 510 

Regenerator Temperature 

°F 

°C 

 

1200 – 1500 

650 – 815 

Reactor Pressure (psig) 8 – 30 

Regenerator Pressure (psig) 15 – 30 

 

2.1. Prominent Components in a Typical Refinery 

2.1.1. Crude distillation unit (CDU): 

This unit enables the separation of crude into various marketable fractions. It consists 

of the main atmospheric distillation column, side strippers, reboiler, and condenser as 

the main process. Usually, five products are generated from the CDU namely gas + 

naphtha, kerosene, light gas oil, heavy gas oil and atmospheric residue [11]. The 

products naphtha (major feedstock for high octane gasoline) and kerosene has the 

highest value in the market. Kerosene is widely used to power jet engines of aircrafts 

and some rocket engines along with being used as a cooking and lighting fuel.  
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2.1.2. Vacuum distillation unit: 

The atmospheric residue when processed at lower pressures does not allow 

decomposition of the atmospheric residue and therefore yields LVGO, HVGO and 

vacuum residue [11]. These products are then subjected to cracking to give lighter 

products.  

 

2.1.3. Separators: 

These units are used to separate the gas fractions from the stream and require stage 

wise separation of the gas fraction.   

 

2.1.4. Blending pools: 

All refineries need to meet tight product specifications in the form of ASTM 

temperatures, viscosities, octane numbers, flash point and pour point [11]. To achieve 

the desired specification of these parameters, blending is carried out. 

 

2.1.5. Fluidized Catalytic Cracking Unit: 

The FCC unit can be divided into few major units which are given below: 

a) Preheat system 

The feed to the FCC reactor, mostly atmospheric gas oil and vacuum gas oil, are to be 

preheated before entering into the reactor. This is done by the feed preheat system which 

heats both the fresh and recycled feed. Pre-heating is done through several heat exchangers 

and the temperature maintained is about 500-700 °F (270 - 375 °C) 

b) Reactor 

Until about 1965, units were designed with a dense phase fluidized bed in the reactor 

vessel. The units were modeled and also operated so that all the reaction occurs in the reactor 

section. Now it has been developed that majority of the reaction occurs in the riser as the 

catalyst activity and temperature were at their highest there. No significant attempts were 

made for controlling the riser operation. But after the usage of the reactive zeolite catalyst the 

amount of cracking occurring in the riser has been enhanced. Now the reactor is used for the 

separation purpose of both the catalyst and outlet products. Reaction in the riser is optimized 

by increasing the regenerated catalyst velocity to a desired value in the riser reactor and 

injecting the feed into the riser through spray nozzles. 
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The fresh feed and the recycled streams are preheated by heat exchangers or a furnace 

and then enter to the riser where they were mixed with the hot regenerated catalyst. The heat 

from the catalyst vaporizes the feed and required temperature for the reactor has been 

attained. The mixture of catalyst and hydrocarbon vapor travels up the riser into the separator. 

The cracking reaction starts when the feed is in contact with the hot catalyst in the riser and 

continues until oil vapors are separated from the catalyst in the reactor separator. The 

hydrocarbons are then sent to the fractionator for the separation of liquid and the gaseous 

products. In the reactor the catalyst to oil ratio has to be maintained properly because it 

changes the selectivity of the product .the catalyst sensible heat is not only used for the 

cracking reaction but also for the vaporization of the feed. The ideal riser diameter would be 

about 2 meters and length is about 30 to 35 meters. During simulation the effect of the riser is 

presumed as plug flow reactor where there is minimal back mixing, but practically there is 

both downward and upward slip due to drag force of vapor[6, 8]. 

c) Regenerator  

The catalyst flow to the reactor is maintained through the catalyst standpipe. 

Regenerator maintains the activity of the catalyst by burning the coke deposits on the 

catalyst. The heat released here is supplied to the riser-reactor section.  The coke deposition 

on the surface of the catalyst is dependent on the feed stock quality. This caused physical 

catalyst poisoning which is manageable by burning the coke off from the surface of the 

catalyst thus reactivating its active sites. Air is blown through the regenerator through a 

distributor plate and a fluidized state of the bed is maintained. This causes the coke to burn 

off as a mixture of carbon-monoxide and carbon-dioxide. Heat is produced due to the 

combustion of the coke which is utilized in the catalytic cracking reactions taking place in the 

riser.  

The flue gas from the regenerator is passed through several stages of cyclone 

separators which segregate the solid catalyst particles from the gaseous stream. Hence most 

of the catalyst is recovered. Heat is carried to the riser-reactor by the catalyst as sensible heat. 

The regenerator is designed and modeled for burning the coke into carbon monoxide or 

carbon dioxide. Before conversion of carbon to carbon monoxide was done as half of the air 

supply required for the process so that the capital cost will be minimum but now a days air is 

supplied in such scale that carbon is converted into carbon dioxide .in this case the capital 

cost will be higher but the regenerated catalyst will have a minimum coke content on it. This 

gives a more efficient and selective catalyst in the riser. 
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d) Catalyst System 

Catalyst particles lower than 20 microns escape during the burning process as air is 

supplied with a high velocity.  The catalyst escaping from the regenerator was stopped and 

controlled by electrostatic precipitator. It screens the escaping catalyst and sends it back tothe 

regenerator. The same way, catalyst particles also escape from the reactor. These particles are 

collected at the bottom of the fractionating tower as slurry oil. 

e) Flue gas system 

It is the heat recovery system of the FCC unit. Flue gas is mainly obtained from the 

regenerator due to the burning of coke from the catalyst. The flue gases like carbon monoxide 

are burned off in a carbon monoxide furnace (waste heat boiler) to carbon dioxide and the 

available energy is recovered. The hot gases can be used to generate steam or to power 

expansion turbines to compress the regeneration air and generate power.The flue gas is 

finally processed through an electrostatic precipitator (ESP) to remove residual particulate 

matter to comply with any applicable environmental regulations regarding particulate 

emissions. The ESP removes particulates in the size range of 2 to 20 microns from the flue 

gas [12]. 

 

The components used in the simulation are separator, heater, crude distillation column, 

Fluidized catalytic cracker unit (detailed process description is given in the introduction). 

2.2. Pseudo-components 
Crude oil constitutes hundreds of molecules of varying molecular weight and 

properties along with it. In order to evaluate the mass balance from volume balance, average 

°API is to be estimated which is usually done from the °API curve and TBP curve. This 

information can then be used to calculate the mass flow rate from the volume flow rate and 

vice versa. 

 

The pseudo component theory is needed to aid the refinery since a process cannot 

consider all 50-100 components. In order to average properties of the oil and to reduce the 

number of components and variables to manageable numbers, pseudo-components are used. 

This is done by characterizing the crude oil into components whose average properties can be 

represented by the TBP, °API and sulfur content of the streams. In order to estimate the 

average °API and sulfur content of a crude/product stream, it is essential tocharacterize the 

TBP curve of the crude/product using the concept of pseudo-components [11]. A 
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pseudo‐component is defined as a component that can represent the average mid volume 

boiling point and its average properties such as °API and percentage sulphur content. The aim 

of the creation of pseudo-components is to model the substance as accurately as possible.   

 

A pseudo-component is so created that within a given range of volume percentage in 

the TBP, the pseudo-component covers equal areas under and above the curve as given in 

Figure2. If a straight line is cut exactly in the mid-point, the area for the volume cuts above 

and below the curve are same. Using this concept, crude oil is usually represented by 20-30 

pseudo-components as the whole curve being represented by straight lines although this 

makes the process and calculation tedious. Corresponding to the pseudo-component, the 

temperature to represent a section of the crude volume on the TBP is termed as mid boiling 

point (MBP) and the volume as mid volume (MV) [11]. Each pseudo-component has cut 

points, a temperature range for the pseudo-components.  

 

Figure 2: Boiling Temperature vs. Liq. Vol. % for pseudo components 

(Graph from simulation) 

 
 

2.3. Catalysts 

Commercial catalysts can be divided into three classes [7]:  

1) Acid-treated natural aluminosilicates, 

2) Amorphous synthetic silica-alumina combinations, 

3) Crystalline  synthetic silica-alumina catalysts called zeolites or molecular sieves  
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Table 2: Comparison of Amorphous and Zeolite catalysts [7] 

Component Amorphous Zeolite 

Coke, wt. % 4 4 

Conversion, vol. % 55 65 

C5 + gasoline, vol. % 38 51 

C3 – Gas, wt. % 7 6 

C4, vol. % 17 16 

There are several advantages of zeolite catalysts over natural and synthetic amorphous 

catalysts, like: 

- Zeolite catalyst have higher activity, which means it requires lesser residence time 

and has resulted in most cracking units being adopted to riser cracking operations 

[7]. 

- It also gives a higher gasoline yield at a given total conversion’ 

 

Catalysts are required to have certain properties in order to withstand the process in 

the FCC.  They should be stable to impact, loading, thermal shocks and attrition during the 

process. Attrition mainly occurs in the regenerator since a fluidized bed state is 

maintained..Modern FCC catalysts are fine powders with a bulk density of 0.8 t 0.96 g/cc and 

having a particle size distribution ranging from 10 to 150 μm and an average particle size of 

60 to 100 μm [13, 14].For the selectivity of the product zeolite is the essential part which 

ranges about 10 to 25 % of the catalyst and the remainder is the amorphous past. But 

amorphous catalysts have cheaper than zeolite catalyst and have better attrition resistance. A 

proper blend of both these gives the best catalyst as it has the cost of the cheaper amorphous 

catalyst along with the higher activity and selectivity of amorphous catalysts. 

 

Nickel, iron, vanadium,copper and other metal contaminants,in the FCC feedstocks in 

the ppm range, have detrimental effects on the activity of the catalysts and its performance. 

Nickel and vanadium are particularly poisonous for the catalysts. 

 

The coke yieldand other catalytic activity depend on the acidic strength of the zeolite. 

Higher acidic strength infers an increase in coke yield while at the same time it also infers a 

higher hydrogen transfer reaction. 
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3. DESCRIPTION OF THE SIMULATION 

3.1. PROBLEM DESCRIPTION 

The effects of various operating and design conditions were to be tested and its effects on 

naphtha yield, coke yield and total conversion were to be noted.  

Conditions for the given problem are given below. Preheat crudeis passed through a 

separator into a vapour and liquid. The flash evaporator flashes the liquid crude oil into a 

vapour + liquid mixture of about 50%. Both the components passed through mixer and then 

to the fractionating column. Atmospheric gas oil goes to the FCC Unit for cracking. Further 

description is given below. 

3.2. ASPEN HYSYSSIMULATION 
The FCC unit works through various cracking reaction in parallel in the riser reactor section 

of this unit. Different types of FCCreactors are available in ASPEN HYSYS such as: 

1. One riser 

2. Two riser 

3. Risers with mid-point injection 

4. One stage regenerator 

5. Two stage regenerator(flue gas in series) 

6. Two stage regenerator(separate flue gas) 

In order to operate theFCC unit the feed input to the unit is required which is why 

entire process of distillation was done. Various components were used to perform the 

process. 

3.3. SIMULATION 
The main purpose of the project includes the effect of variation of process conditions 

on the production of naphtha yield in the FCC. For the present study, a refinery process was 

simulated in order to assist in the simulation. The data was referred from the plant data 

collected by Theologous et al. in which few changes were made in order to achieve proper 

simulation. The details are discussed below: 

3.3.1. Process Flow Diagram 

 

To represent the refinery process + FCC unit in Aspen HYSYS, the first step is to 

make a process flow diagram (PFD). In Simulation Basic Manager, a fluid package was 
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selected along with the components which are to be in the input stream. In the process, Peng-

Robinson was selected as the fluid package as it is able to handle hypothetical components 

(pseudo-components).  

 

The non-oil components used for the process were H20, C3, i-C4, n-C4, i-C5 and n-

C5. The pseudo-components were created by supplying the data to define the assay. The fluid 

package contains 44 components (NC: 44): 6 pure components (H2O plus five Light Ends 

components) and 38 petroleum hypocomponents). In order to go to the PFD screen of the 

process the option “Enter to simulation Environment” was clicked on. An object palette 

appeared at right hand side of the screen displaying various operations and units. 

The PFD of the process is given below: 

 

Where, 

PreFlash is a separator. 

Furnace is a heater. 

Mixer is a mixer. 

Atmos Tower is a distillation column operated at 1 atm. 

Reactor Section is the FCC Unit in which AGO (Atmospheric Gas Oil) is used as the feed. 
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Figure 3: PFD of the simulation carried out in ASPEN HYSYS 
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3.3.2. The Process 

A Crude Oil enters the PreFlash unit, a separator used to split the feed stream into its 

liquid and vapour phases at 450 F and 75 psia having a molecular weight of 300 and °API of 

48.75. The crude stream separates into the PreFlashVap and PreFlashLiq consisting of purely 

vapour and liquid respectively. The PreFlashLiq enters the crude furnace flashing part of the 

liquid to vapour which comes out as stream, HotCrude having a temperature of 650 F. The 

PreFlashVap and HotCrude streams are then inlet into the Mixer resulting into the formation 

of the TowerFeed. The Atmos Tower is a column having Side Stripper systems to draw out 

Kerosene, Diesel and Atmospheric Gas Oil.  Naphtha is drawn from the condenser and 

Residue from the reboiler. The Atmospheric Gas Oil (AGO) is then used as the feed to the 

Reactor Section, the FCC unit. The FCC Unit was configured to have one or two risers with 

the geometry as per the plant data collected by Theologus and Markatos. It was assumed that 

no heat loss occurs in the FCC unit. Catalyst was decided upon and operating conditions were 

set.  

 

Results were noted for the variation of Naphtha Yield, Coke (wt. %) and Total conversion 

with change in the following operating conditions: 

i) C/O ratio 

ii) Feed Temperature 

iii) Feed Flow Rate 

iv) Reactor Pressure 

v) Riser Height 

vi) Flow Rate on one-riser and dual-riser 

 

Total conversion is attributed to the conversion of the feedstock to the FCC into H2S, Fuel 

Gas, Propane, Propylene, n-Butane, i-Butane, Naphtha, Butenes and Coke while the 

conversion of feedstock to Light Cycle Oil and Bottoms is not considered in the calculation 

of total conversion. 
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3.3.3. The components or the blocks or the equipments 

Description of various components used in the PFD and the conditions at which they are 

operated are described here: 

 

a) Separator (PreFlash) 

No heat loss was assumed for the separator of volume 70.63 ft
3
. Preheat Crude entered at 450 

F and 75 psia with a 100,000 barrels/day flow rate containing mostly liquid. It had a 

molecular weight of 300 and API Gravity of 48.75. The Preheat Crude was separated into 

PreFlashLiq (450 F, 75 psia) and PreFlashVap (450 F, 75 psia). 

 

b) Heater (Furnace) 

No heat loss was assumed for the Heater. PreFlashLiq entered the furnace at 450 F and 75 

psia. Its main purpose was to partially vaporize the feed and increase its temperature to the 

feed conditions needed for the distillation column. The outlet stream Hotcrude had conditions 

650 F, 65 psia. 

c) Mixer (Mixer) 

The main purpose of the Mixer was to mix two streams, HotCrude (650 F, 65 psia) and 

PreFlashVap (450 F, 75 psia) to give on stream, TowerFeed (641.5 F, 65 psia) which is the 

feed stock to the distillation column.  

d) Distillation Column (Atmos Tower) 

The feed to the column enters at 641.5 F, 65 psia. The column separates the feed into six 

fractions namely: Off Gas, Naphtha, Kerosene, Diesel, Atmospheric Gas Oil and Residue. 

The main column consists of 29 trays having 3 side strippers, each having 3 stages (total of 

40 stages including reboiler and condenser) 

 

e) Fluidized Catalytic Cracking Unit (Reactor Section)  

The Atmospheric Gas Oil was taken as the feed for this Unit. Initial conditions are given in 

the appendix attached. Results are shown in the Results and Discussion section. 

 

For the simulation of the FCC unit a simulated feedstock was used in order to get the 

composition of the AGO feed for the FCC unit. For the feedstock for the FCCU, Crude 

Petroleum, data was obtained from ASPEN HYSYS. The feed of molecular weight 300 and 

API Gravity 48.75 was used at a temperature of 450 °F and pressure of 75 psia.  
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Given below are the properties used for the crude petroleum feedstock: 

 

Table 3: Crude Petroleum Simulation Feedstock Properties 

Preheat Crude (Feedstock) 

Temperature [°F] 450 

Pressure [psia] 75 

Liquid Volume Flow 

[barrels/day] 
100000 

 

Table 4: Bulk Crude Properties 

Bulk Crude Properties 

MW 300.00 

API Gravity 48.75 

 

Table 5: Light Ends Liquid Volume Percent of Crude Petroleum Feedstock 

Light Ends Liquid Volume Percent 

i-Butane 0.19 

n-Butane 0.11 

i-Pentane 0.37 

n-Pentane 0.46 

 

Table 6: API Gravity Assay of Crude Petroleum Feedstock 

API Gravity Assay 

LiqVol% Distilled API Gravity 

13.0 63.28 

33.0 54.86 

57.0 45.91 

74.0 38.21 

91.0 26.01 

 

 

Table 7: Viscosity Assay of Crude Petroleum Feedstock 

Viscosity Assay 

Liquid Volume 

Percent 

Distilled 

Viscosity (cP) 

100°F 

Viscosity (cP) 

210°F 

10.0 0.20 0.10 

30.0 0.75 0.30 

50.0 4.20 0.80 

70.0 39.00 7.50 

90.0 600.00 122.30 
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Table 8: TBP Distillation Assay of Crude Petroleum Feedstock 

TBP Distillation Assay 

Liquid Volume 

Percent 

Distilled 

Temperature (°F) 
Molecular 

Weight 

0.0 80.0 68.0 

10.0 255.0 119.0 

20.0 349.0 150.0 

30.0 430.0 182.0 

40.0 527.0 225.0 

50.0 635.0 
282.0 

 

60.0 751.0 350.0 

70.0 915.0 456.0 

80.0 1095.0 585.0 

90.0 1277.0 713.0 

98.0 1410.0 838.0 

 

The feed was simulated through the process explained above and the product properties for 

the Atmospheric Distillation Tower were obtained. The Distillation Tower had six outlets out 

of which the top gaseous product stream had no mass flow. Hence only properties for the five 

outlet streams which consisted of Naphtha, Kerosene, Diesel, Atmospheric Gas Oil (AGO) 

and Residue were obtained. The AGO  stream was then used in a 1-riser FCC unit to obtain 

the Naphtha Weight percentage and total conversion by varying different parameters such as 

reactor temperature and mass flow rate. The conditions under which the FCC unit was 

operated are given in Appendix 1. 

 

Table9: Atmospheric Distillation Tower Product Properties 

Atmospheric Distillation Tower Product Properties 

Product 

Name 

Liquid 

Volume 

Flow 

[barrels/day] 

Molecular 

Weight 

Mass 

Density 

[API] 

Temperature 

[°F] 

Pressure 

[psia] 

Naphtha 20000 138.4 86.12 163.9 19.7 

Kerosene 13000 210.1 118.8 449.2 29.84 

Diesel 16998 289.1 109.6 478.4 30.99 

AGO 5017 390.1 114.6 567.2 31.7 

Residue 41322 614.6 83.21 657.1 32.7 
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4. RESULTS AND DISCUSSION: 
 

       On simulation of the FCC unit under the above stated condition and use of A/F 3 

catalyst, the following outputs have been obtained giving data on the yield in terms of weight 

%.  Conditionswere taken as below referring to Theologous et al.: 

Height: 147.6ft (45m) 

Diameter: 2.461 ft. (0.75m) 

Flow rate: 50000 barrels/day(331.2 m
3
/hr) 

Riser Outlet Temperature: 950 °F (510 °C) 

Feed Temperature:562.7°F (294.9 °C) 

Reactor plenum Temperature:948.6°F (509.2 °C) 

Catalyst used in the process: A/F - 3 

Table 10: Outlet Composition Results from FCC simulation 

COMPONENTS PERCENTAGE (wt. %) 

H2S 1.7134 

FUEL GAS 3.4223 

PROPANE 8.5411 

PROPYLENE 10.6199 

N-BUTANE 2.1003 

I-BUTANE 6.8083 

BUTENES 11.2032 

NAPHTHA 33.2936 

LCO 9.4852 

BOTTOMS 7.02 

COKE YIELD 5.7927 

TOTAL 100 

CONVERSION 83.4948 

 

 

 

4.1. Effects of C/O Ratio 

The naphtha yield increases with increasing Catalyst to Oil ratio at lower C/O ratio.However, 

the rate of increase in the naphtha yield decreases at higher values of C/O ratio. This can be 

attributed to the fact that at substantially high catalyst concentration cracking of components 

in the naphtha range (known as secondary cracking reactions) increases. This causes a 

decrease in the naphtha yield at higher C/O ratio. On the other hand, the increasing C/O ratio 

leads to increase in catalyst in the unit, hence increase in rate of both primary and secondary 

cracking. This is clearly shown by the increasing conversion in Figure 6. As the amount of 

catalyst in the riser increase, so does the surface area for the deposition of coke. Hence the 

increase in coke yield as the C/O ratio increases. 
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Figure 4: Effect C/O Ratio on Naphtha Yield 

 
 

Figure 5: Effect C/O Ratio on Conversion 
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Figure 6: Effect C/O Ratio on Coke Yield 

 
 

 

4.2. Effect of Feed Temperature 
 

To study the variation of Naphtha yield, coke yield and total conversion a temperature 

difference of 20 ⁰C was used.As the feed temperature increases, the difference in temperature 

between the feed and the riser decreases. This causes lesser quantity of catalyst to flow 

through the standpipe and into the riser hence a low C/O ratio.  

 

Table 11: Variation of naphtha & coke yield, total conversion with feed temperature 

FEED 

TEMPERATURE 

(⁰C) 

NAPHTHA 

(wt. %) 

TOTAL 

CONVERSION 

(wt. %) 

COKE YIELD 

(wt. %) 

200 46.1734 68.8834 5.9633 

240 45.1407 67.5331 5.5385 

280 43.4680 64.5317 5.0685 

320 41.4875 63.0871 4.8232 

360 39.1612 58.1258 4.0465 
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4.3. Effect ofFlowrate 
 

It can be observed in the figure given below, that as the flow rate of the feed to the 

riser increases, the naphtha yield increases to a certain point. Increasing the flow rate further 

decreases the Naphtha yield. This can be explained on the basis of riser residence time. As 

the flow rate is increased, the time spent by the feed in the riser decreases. This causes lesser 

amount of cracking to occur. But if the flow rate is decreased, the residence time increases 

and increased cracking takes place. If the flow rate is low enough is may cause secondary 

reactions to occur. This cause a decrease in the Naphtha yield as the compounds in this range 

is further cracked.The total conversion decreases with increase of the flow rate since the riser 

residence time decreases which cause lesser cracking. 

 

Figure 7: Effect of Feed Flow Rate on Naphtha Yield 
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Figure 8: Effect of Feed Flow Rate on Conversion 

 
  

4.4.  Effect of Reactor Pressure 

The change in naphtha yield with respect to reactor pressure is almost consistent with 

the riser-reactor temperature. A change in reactor first increases the Naphtha Yield and from 

40psia and reaches a maximum at about 58psia. The Yield then decreases on further 

increasing the reactor pressure. This change is although insignificant. 

 

Figure 9: Effect of reactor pressure on Naphtha yield 
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4.5. Effect ofFlowrate on Reactors 

Figure 10: Effect Feed Flow rate on of naphtha yield of One riser and Dual Riser 

 

 

 In a dual riser reactor, the feed is divided into two streams, one for each riser. 

Compared to a one-riser FCC unit, the residence time of a dual riser is more for the same 

flow rate. To increase the residence time, either the flow rate can be decreased or the height 

of the riser can be increased. Later an analysis is done on the height increase required to 

match the Naphtha yield of the dual riser. As shown in Figure 11, between 50000 and 80000 

as flow rate increases the yield decreases in both types of FCC units. As the flow rate is 

increase the residence time decreases causing a fall in the Naphtha yield. At the same flow 

rate, the dual riser shows higher yield than the one-riser reactor since the stream is divided 

here, causing an increase in the riser residence time.  
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4.6.      ComparisonbetweenOne-Riserand Dual Riser 
Simulation was done using conquest 95 catalyst in 2 types of riser reactor i.e. one riser 

reactor and dual riser reactor at process condition as followsreferring to Theologous et al. [9]. 

Height: 147.6ft (45m) 

Diameter: 2.461 ft.(0.75m) 

Flow rate: 50000 barrels/day(331.2 m
3
/hr) 

Riser Outlet Temperature: 950 °F (510 °C) 

Feed Temperature:562.7°F (294.9 °C) 

Reactor plenum Temperature:948.6°F (509.2 °C) 

Catalyst used in the process: Conquest95 

 

Table 12:Comparison of simulation data between one riser and two risers at given conditions. 

Component One riser (wt. %) Dual riser (wt. %) 

H2S 1.2146 0.4153 

FUEL GAS 2.4330 2.2907 

PROPANE 1.2834 1.0077 

PROPYLENE 3.0338 4.0296 

N-BUTANE 1.3154 0.9602 

I-BUTANE 2.2570 1.9621 

BUTENES 4.2738 5.7550 

NAPHTHA 42.7707 43.8870 

LCO 16.9496 16.2800 

BOTTOMS 19.5818 18.3753 

COKE YIELD 4.8871 5.0372 

TOTAL 100 100 

CONVERSION 63.4686 65.3447 

   

As observed in Table 12,the gasoline yield is more in case of dual riser reactor 

(43.8870% as compared to 42.7707% in one riser). The overall conversion and coke yield is 

also more in the dual reactor. 

 

Table 13: Simulation data of one riser reactor using A/F-3 Catalyst 

COMPONENTS PERCENTAGE (%) 
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H2S 1.7134 

FUEL GAS 3.4223 

PROPANE 8.5411 

PROPYLENE 10.6199 

N-BUTANE 2.1003 

I-BUTANE 6.8083 

BUTENES 11.2032 

NAPHTHA 33.2936 

LCO 9.4852 

BOTTOMS 7.02 

COKE YIELD 5.7927 

TOTAL 100 

CONVERSION 83.4948 

 

 Table 12, gives the product yield of the FCC unit using Conquest 95 catalyst while 

Table 13 gives the product yield of the FCC unit using A/F-3 catalyst at same operating 

conditions. The detailed composition of the catalysts is shown in the appendix. A/F-3 has a 

zeolite concentration of 26.69% and Conquest 95 has zeolite concentration of 24.38%. About 

20% to 25% zeolite conc. is good for gasoline yield. More than that results in over-cracking 

of the feed resulting in more light olefins which is in the case of A/F3 catalyst (ex. Propylene 

conc. 10.6199 % in case of AF3).  

The coke yield and olefin yield is higher for A/F3. Sois the total conversion. For Conquest 95 

catalyst, Naphtha production is higherin using Conquest 95(42.7707% as compared to 

33.2936 % in A/F-3 case). The production of i-butane increases the octane rating of the fuel 

which is higher in A/F-3. This reveals the applicability of both catalysts: one can be used 

tomaximize the product yield and other is to develop the oil quality. 
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4.7.  Effect of Riser Height 
Figure 11: Effect of riser height on naphtha yield 

 

The above figure shows that as the height increases, the Naphtha yield increases between 

35m and 55m. Referring to Table 11, the dual riser gives a Naphtha yield of 43.8870, while 

the one-riser give a yield of 42.7707 for same operating conditions. The variation of Naphtha 

yield with height shows that an increase in height of the riser shows an increase in the 

Naphtha yield of the process. The curve arcs downwards, showing a decrease in the slope of 

the curve as the riser height increases. 

If the one-riser is to have the same Naphtha yield as that of the dual riser (42.7707 for one-

riser as compared to 43.8870 for a dual riser), the increase in height needed would of about 

10m. This increase would give the same yield as the dual riser as the residence time would 

increase. 
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5. CONCLUSION 
 

Simulation of the FCC unit was done and the results of the output were obtained.Naphtha 

yield was been obtained (33.2936) for conditions specified above. Operating parameters: C/O 

Ratio, Feed flow rate, Feed temperature and reactor pressure were varied and their effect on 

the Naphtha yield, coke yield and total conversion for a one-riser FCC unit was studied.The 

graphs peaked at a certain point and then decreased due to explanations given before. 

 

Two catalysts were used in the process and their effects were studied. It was also shown that 

in order to achieve the same yield for a one-riser FCC as compared to that of a dual riser 

FCC, an increase in height of the riser is needed. 
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7. APPENDIX 
a) Conditions for One Riser FCC Unit 
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b) Conditions for Dual Riser FCC Unit 
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c) A/F-3 catalyst composition used in FCC: 

 

 

 

 

 

 

 

 

 

FCC Catalyst Name A/F-3 

   

2M1Butene 1.058146 

Description Akzo A/F-3 

   

C2Pentene 0.938267 

Created Oct-20 2003  17:24 17:24:55 T2Pentene 0.957186 

Modified Oct-20 2003  17:24 17:24:55 Cyclopentene 1.046789 

Manufacturer Akzo 

   

Isoprene 0.958755 

Kinetic Coke 1.045989 

   

Benzene 1.5625 

Feed Coke 1.166873 

   

Metals H2 1.563636 

Stripping Eff. 0.999811 

   

Heat Of Rxn. 0 

Metals Coke 1.057143 

   

Bot. Cracking -0.03785 

Methane 1.307692 

   

Fresh MAT 76.05 

Ethylene 1.489796 

   

HT Deact. 1.006145 

Ethane 1.121951 

   

Met. Deact. 0.611945 

Propylene 1.351955 

   

LN RON 2.412 

Propane 1.517483 

   

LN MON 1.194 

IC4 1.27598 

   

LN Nap. -0.34 

Total C4= 1.318519 

   

LN Olefins 7.28 

N Butane 1.051095 

   

LN Aromatics 1.155 

IC5 1.235693 

   

LCO SPGR -0.00837 

Total C5= 1.38799 

   

CSO SPGR -0.0091 

NC5 1.017909 

   

SOx 1.037847 

IC4= 1.189059 

   

HN RON 2.377714 

1Butene 0.943844 

   

HN MON 1.211143 

C2Butene 0.947135 

   

HN Nap. -0.895 

Butadiene 1.398742 

   

HN Olefins 1.337143 

Cyclopentane 0.793549 

   

HN Aromatics 7.283571 

3M1Butene 1.052484 

   

LN SPGR 0.005483 

1Pentene 0.92546 

   

HN SPGR 0.007414 
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A/F-3 catalyst: 

 

 

 

 

 

Spare 50 0 

ZSA M2/GM 166.8 

MSA M2/GM 174.8 

Zeolite(Wt%) 26.694407 

Alumina(Wt%) 37.2 

ZRE(Wt%) 0.037461 

Sodium(ppm) 1600 

Nickel(ppm) 0 

Vanadium(ppm) 0 

Copper(ppm) 0 

Iron(ppm) 2400 

ZSM5 LN RON 0 

ZSM5 LN MON 0 

ZSM5 HN RON 0 

ZSM5 HN MON 0 

Price 0 

Spare 66 0 

Spare 67 0 

Spare 68 0 

Spare 69 0 

Spare 70 0 
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d) Conquest 95 catalyst composition used in FCC 

 

 

FCC Catalyst Name Conquest 95 

    
Description Akzo Conquest 95 

    
Created Oct-20 2003  17:40 17:40:42 2M1Butene 1 

Modified Oct-20 2003  17:40 17:40:42 C2Pentene 1 

Manufacturer Akzo 

   

T2Pentene 1 

Kinetic Coke 1 

   

Cyclopentene 1 

Feed Coke 1 

   

Isoprene 1 

Stripping Eff. 1 

   

Benzene 1 

Metals Coke 1 

   

Metals H2 1 

Methane 1 

   

Heat Of Rxn. 0 

Ethylene 1 

   

Bot. Cracking 0 

Ethane 1 

   

Fresh MAT 80.8 

Propylene 1 

   

HT Deact. 0.5 

Propane 1 

   

Met. Deact. 0.5 

IC4 1 

   

LN RON 0 

Total C4= 1 

   

LN MON 0 

N Butane 1 

   

LN Nap. 0 

IC5 1 

   

LN Olefins 0 

Total C5= 1 

   

LN Aromatics 0 

NC5 1 

   

LCO SPGR 0 

IC4= 1 

   

CSO SPGR 0 

1Butene 1 

   

SOx 1 

C2Butene 1 

   

HN RON 0 

Butadiene 1 

   

HN MON 0 

Cyclopentane 1 

   

HN Nap. 0 

3M1Butene 1 

   

HN Olefins 0 

1Pentene 1 

   

HN Aromatics 0 

 

 



47 
 

Conquest95 catalyst used in FCC 

 

 

LN SPGR 0 

HN SPGR 0 

Spare 50 0 

ZSA M2/GM 141.7 

MSA M2/GM 183.3 

Zeolite(Wt%) 24.38689 

Alumina(Wt%) 39.69 

ZRE(Wt%) 12.01465 

Sodium(ppm) 2100 

Nickel(ppm) 0 

Vanadium(ppm) 0 

Copper(ppm) 0 

Iron(ppm) 2500 

ZSM5 LN RON 0 

ZSM5 LN MON 0 

ZSM5 HN RON 0 

ZSM5 HN MON 0 

Price 0 

Spare 66 0 

Spare 67 0 

Spare 68 0 

Spare 69 0 

Spare 70 0 

 

 


