
Master Hand Technology For The HMI Using

Hand Gesture And Colour Detection

A thesis submitted in partial fulfilment of the
requirement for the degree of

Bachelor of technology
In

Electronics & Instrumentation Engineering

by

Alok Nanda
Roll No- 108EI005

&
Asutosh Mishra

Roll No- 108EI001

Under the guidance of

Prof U.C.Pati

Department of Electronics and communication Engineering
National Institute of Technology, Rourkela

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Master Hand Technology For The HMI Using

Hand Gesture And Colour Detection

A thesis submitted in partial fulfilment of the
requirement for the degree of

Bachelor of technology
In

Electronics & Instrumentation Engineering

by

Alok Nanda
Roll No- 108EI005

&
Asutosh Mishra

Roll No- 108EI001

Under the guidance of

Prof U.C.Pati

Department of Electronics and communication Engineering
National Institute of Technology, Rourkela

i

NATIONAL INSTITUTE OF TECHNOLOGY
ROURKELA

CERTIFICATE

This is to certify that the project report titled “Master Hand Technology for the HMI Using

Hand Gesture and Colour Detection ” submitted by Alok Nanda (Roll No: 108EI005) and

Asutosh Mishra (Roll No: 108EI001) in the partial fulfilment of the requirements for the award

of Bachelor of Technology Degree in Electronics and Instrumentation Engineering during

session 2008-2012 at National Institute of Technology, Rourkela (Deemed University) and is

an authentic work carried out by them under my supervision and guidance.

 Prof. U. C. Pati

 Department of Electronics and Communication Engg.

 Date: National Institute of Technology

 Rourkela-769008

ii

ACKNOWLEDGEMENT

We would like to take this opportunity to express our gratitude and sincere thanks to

our respected supervisor Prof. U. C. PATI for his guidance, insight, and support he has

provided throughout the course of this work. We would like to articulate our profound

gratitude and indebtedness to Prof. L. P. ROY and Prof. S. MEHER for teaching “Digital

Image Processing” in such depth and setting up a strong fundamental base in Image/Video

Processing that enabled us achieve this success. We would like to thank all faculty members

and staff of the Department of Electronics and Communication Engineering, N.I.T.

Rourkela for their extreme help throughout course.

An assemblage of this nature could never have been attempted without reference to

and inspiration from the works of others whose details are mentioned in the reference

section. We acknowledge our indebtedness to all of them.

Last but not the least our sincere thanks to all our friends, who have patiently

extended all sorts of help for accomplishing this undertaking.

Date: 9th May 2010 ALOK NANDA (108EI005)

NIT Rourkela ASUTOSH MISHRA (108EI001)

iii

ABSTRACT

Master Hand Technology uses different hand gestures and colors to give various commands

for the Human-Machine(here Computer) Interfacing. Gestures recognition deals with the

goal of interpreting human gestures via mathematical algorithm. Gestures made by users

with the help of a color band and/or body pose , in two or three dimensions , get translated

by software/image processing into predefined commands .The computer then acts according

to the command. There have been a lot work already developed in this field either by

extracting hand gesture only or extracting hand with the help of color segmentation. In this

project, both hand gesture extraction and color detection used for better, faster, robust,

accurate and real-time applications. Red, Green, Blue colors are most efficiently detected if

RGB color space used. Using HSV color space, it can be extended to any no of colors. For

hand gesture detection, the default background is captured and stored for further

processing. Comparing the new captured image with background image and doing

necessary extraction and filtering, hand portion can be extracted. Then applying different

mathematical algorithms different hand gestures detected. All this work done using MATLAB

software. By interfacing a portion of Master hand or/and color to mouse of a Computer, the

computer can be controlled same as the mouse. And then many virtual (Augmented reality)

or PC based application can be developed (e.g. Calculator, Paint). It does not matter

whether the system is within your reach or not; but a camera that is linked with the system

must have to be near-by . Showing different gestures by your Master-Hand , the computer

can be controlled remotely. If the camera can be set-up online, then the computer can be

controlled even from a very far place online.

iv

Contents
CERTIFICATE ... i

ACKNOWLEDGEMENT ... ii

ABSTRACT ... iii

1. INTRODUCTION ... 1

1.1 HUMAN COMPUTER INTERFACE SYSTEM ... 2

1.2 GESTURES ... 2

1.3 MASTER HAND TECHNOLOGY .. 3

1.4 GESTURE BASED APPLICATIONS .. 3

1.5 COLOUR SPACE ... 4

1.6 COMPONENTS ... 5

2. LITERATURE REVIEW ... 6

2.1 Important Matlab Functions Used : ... 7

3. PROCESSING AND APPLICATION DEVELOPMENT .. 18

3.1 Algorithm: (For Red Color Detection) .. 19

3.2 Mouse Interfacing : .. 21

3.4 Algorithm for Hand Extraction And Finger Count :... 22

3.5 Virtual Calculator : ... 24

3.6 PC Calculator: ... 25

3.7 PC Paint : .. 26

3.8 HCI(Human-Computer Interface) : .. 27

3.9 Remote Controlling Using Cloud : .. 28

3.10 Gesture based Hardware Interfacing Applications: ... 29

3.10.1 Hardware .. 29

3.10.2 Software .. 29

3.10.3 ATMEGA 640 Features- ... 29

3.10.4 Program- ... 30

4. CONCLUSION AND FUTURE WORK ... 37

4.1 CONCLUSION: .. 38

4.2 FUTURE WORKS: .. 38

REFERENCES ... 39

v

LIST OF FIGURES

Fig 2.1.a- Input Colored RGB Image Frame 7

Fig 2.1.b- Converted Gray Image 7

Fig 2.2.a- Color Image 8

Fig 2.2.b- Gray Image 8

Fig 2.2.c- Black-White Image 8

Fig 2.3.a- Before area opening 9

Fig 2.3.b- After area opening 9

Fig 2.4.a- Before image filling 10

Fig 2.4.b- After image filling 10

Fig 2.5.a, 2.5.b- Image perimeter example 11

Fig 3.1.a- Input Image Frame 20

Fig 3.1.b- Mirrored Image 20

Fig 3.1.c- Red portion extracted 20

Fig 3.1.d-Median filtered Image 20

Fig 3.1.e-Binary Image 20

Fig 3.1.f-Small noise/objects extracted 20

Fig 3.1.g-Final Output 20

Fig 3.2.a- Finger Count 5 23

Fig 3.2.b- Finger Count 4 23

Fig 3.2.c- Finger Count 3 24

Fig 3.2.d- Finger Count 2 24

Fig 3.3.a- Virtual Calculator 24

vi

Fig 3.3.b- Calculator design 25

Fig 3.3.c- PC Calculator 25

Fig 3.4.a- PC Paint Snapshot 26

Fig 3.4.b- Final Paint 26

Fig 3.5 HCI snapshot 27

Fig 3.6 Remote Controlling Application 28

Fig 3.7 ATmega 640 Development Board 30

Fig 3.8 Block Diagram of Window Control Hardware interfacing 36

application

1

1. INTRODUCTION

2

1.1 HUMAN COMPUTER INTERFACE SYSTEM
Computer is used by many people either at their work or home or in their spare-time.

Special input and output devices have been designed over the years with the purpose of

easing the communication gap between computers and humans. Keyboard and mouse

are frequently used for this purpose. Each new device is seen as an attempt to increase the

intelligence-level of computer and making humans able to perform more complicated

communication with the computer. This has been possible due to the result oriented efforts

made by computer professionals for creating successful human computer interfaces . As

the complexities of human needs have turned into many folds and continues to grow so,

the need for Complex programming ability and intuitiveness are critical attributes of

computer programmers to survive in a competitive environment. The computer

programmers have been immensely successful in easing the communication between

computers and human.[1] With the emergence of every new product in the market; it

attempts to ease the complexity of jobs performed. For instance, it has helped in facilitating

tele operating, robotic use, better human control over complex work systems like cars,

planes and monitoring systems. Earlier, Computer programmers were avoiding such kind of

complex programs as the focus was more on speed than other modifiable features.

However, a shift towards a user friendly environment has driven them to revisit the focus

area .The idea is to make computers understand human interactions and develop a user

friendly human computer interfaces (HCI).
[1]

 Making a computer understand speech, facial

expressions and human gestures are some steps towards it. Gestures are a type of non-

verbally exchanged information. A person can perform innumerable gestures at a time.

Since human gestures are perceived through vision, it is a subject of great interest for

computer vision researchers. The project aims to understand and utilize human hand

gestures by creating an HCI. Coding of these hand gestures into machine language requires

a complicated programming algorithm.

1.2 GESTURES
It is hard to clinch on a useful definition of gestures because of its wide variety of

applications.A statement concerning it can only specify a particular domain of gestures.Many

researchers had tried to define gestures but their actual meaning is still uncertain. Bobick

and Wilson have defined gestures as the motion of the body intended to communicate with

other agents. As per the context of the project, a gesture is defined as an expressive

movement of hand which has a particular message, that is communicated precisely between

a sender and a receiver.
 [17] [18]

 A sender and a receiver should have the same set of

information for a particular hand gesture for a successful communication. A gesture can be

categorized as dynamic and static. A dynamic gesture is intended to change over a

3

period of time whereas a static gesture is observed at the spurt of time. A waving hand

meaning goodbye is an example of dynamic gesture and a still hand sign is an example of

static gesture. All the static and dynamic gestures are interpreted over a period of time to

understand a full message.
 [26]

 This complicated process is termed as gesture recognition.

Gesture recognition deals with a process of recognition and interpretation of a stream of

continuous sequential gesture from the given set of input data.

1.3 MASTER HAND TECHNOLOGY
Master Hand Technology uses different hand gestures and colors to give various

commands for the Human-Machine(here Computer) Interfacing.Using hand to create

gestures and colour codes attached to it gives additional flexibility in usage and

applications.

1.4 GESTURE BASED APPLICATIONS
Using the hand gestures and hand movement, many applications can be developed. It

can also be interfaced with computer and can work as a mouse. Similarly a no. of mouse

interfacing applications can be developed. Many virtual applications can be developed that

creates a virtual reality. This works only when the application runs. All the computer

applications can be interfaced with hand gesture control and can be controlled directly from

hand gesture.

Mouse Interfacing : Its an example of dynamic gestures, where hand movement(essentially

finger in this case) is tracked. Mouse pointer is interfaced to this movement and mouse

clicks are initiated through static gestures.

Virtual Calculator: Virtual Calculator is like an augmented reality. It is designed in Matlab in

the same interfacing program. Depending on the position of finger- peak of Master hand,

application gives input to the calculator. It checks for 5 frames. If for 5 frames, the finger-

peak remain in a particular region or number region, then that number or symbol is given as

input.

PC Calculator: PC Calculator is the original calculator application given in windows platform

by Microsoft. In PC Calculator, finger-peak of Master hand is interfaced with mouse cursor.

If the mouse cursor remains within +-20 pixels for 5 frames, then Left Click event activated

by java Robot class and if the cursor remains within +-20 pixels for 8 frames, then Right

Click event activated by java Robot class. By this method, input is given to the calculator.

PC Paint : Above paint is done with the help of hand and without using mouse. In above

application, two color pins used (Red, Blue). Red is used for left click and cursor movement

4

and blue color is used for dragging. If the cursor remains within +-20 pixels for 5 continuous

frames, then Left click gets triggered

Tele presence : There may raise the need of manual operations in some cases

such as system failure or emergency hostile conditions or inaccessible remote areas. Often

it is impossible for human operators to be physically present near the machines.

Telepresence is that area of technical intelligence which aims to provide physical

operation support that maps the operator to carry out the necessary task.

Remote Controlling of Hardware: Using dropbox, google drive; a captured image or video

can be sent to any location. Processing the image, the given command or gesture can be

found out. Then interfacing the computer to any hardware e.g motor through Atmega or any

other medium, any hardware interfacing application can be executed.

 1.5 COLOUR SPACE
By using primary colors of pigment (cyan , magenta , yellow , and black), a wide range of

colors are created. Those colors then define a specific color space. To create a three-

dimensional representation of a color space, the amount of magenta color is assigned to X

axis, the amount of cyan to Y axis, and the amount of yellow to Z axis. This resulting 3-D

space can provide a unique position for every possible color being created by combining

those three pigments. On the contrary, this is not the only possible color space. For example,

when colors are displayed on a computer monitor, they are usually in the RGB (red, green

and blue) color space.
 [3]

 This is another way of making nearly the same colors (limited by

the reproduction medium, such as the phosphor (CRT) or filters and backlight (LCD)), and in

this case red, green and blue can be considered as the X, Y and Z axes respectively.

However, another way of making the same colors is to use their Hue , Saturation and their

brightness Value as X axis, Y axis and Z axis respectively. Such a kind of 3D space is called

the HSV color space. Many color spaces are represented as three-dimensional (X,Y,Z)

values in this manner, but some may have more, or fewer dimensions, and some, like

Pantone, cannot be represented in this way at all.
 [5]

Generic Color Models:

1. RGB uses additive color mixing, because it describes what kind of light needs to be

emitted to produce a given color. Light is added together to create form from out of

the darkness. RGB stores individual values for red, green and blue. RGBA is RGB

with an additional channel, alpha, to indicate transparency.
 [5]

http://en.wikipedia.org/wiki/Additive_color

5

2. CMYK uses subtractive color mixing used in the printing process, because it

describes what kind of inks need to be applied so the light reflected from the

substrate and through the inks produces a given color.
 [5]

3. YIQ was formerly used in NTSC (North America, Japan and elsewhere) television

broadcasts for historical reasons. This system stores a luminance value with two

chrominance values, corresponding approximately to the amounts of blue and red in

the color. It is similar to the YUV scheme used in most video capture systems and in

PAL (Australia, Europe, except France, which uses SECAM) television, except that

the YIQ color space is rotated 33° with respect to the YUV color space. The YDbDr

scheme used by SECAM television is rotated in another way.
 [5]

4. YPbPr is a scaled version of YUV. It is most commonly seen in its digital form,

YCbCr, used widely in video and image compression schemes such as MPEG and

JPEG.
 [5]

5. HSV (hue, saturation, value), also known as HSB (hue, saturation, brightness) is

often used by artists because it is often more natural to think about a color in terms of

hue and saturation than in terms of additive or subtractive color components. HSV is

a transformation of an RGB colorspace, and its components and colorimetry are

relative to the RGB colorspace from which it was derived.
 [5]

6. HSL (hue, saturation, lightness/luminance), also known as HLS or HSI (hue,

saturation, intensity) is quite similar to HSV, with "lightness" replacing "brightness".

The difference is that the brightness of a pure color is equal to the brightness of

white, while the lightness of a pure color is equal to the lightness of a medium gray.

[15]

 1.6 COMPONENTS
Camera : A portable camera interfaced to a device or an inbuilt camera in any device,

capable of sending data, is used to capture the image of a hand gesture and transmit via

networking devices , hardwired or wireless,to main control computer,where the image is

processed and necessary task is executed .

Control Computer : A computer device that will receive the data and process using

MATLAB and generate control signals to carry out necessary tasks as programmed.

http://en.wikipedia.org/wiki/CMYK
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/Inks
http://en.wikipedia.org/wiki/Substrate_(printing)
http://en.wikipedia.org/wiki/YIQ
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/YUV
http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/SECAM
http://en.wikipedia.org/wiki/YDbDr
http://en.wikipedia.org/wiki/SECAM
http://en.wikipedia.org/wiki/YPbPr
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/MPEG
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/HSV_color_space
http://en.wikipedia.org/wiki/HSL_color_space
http://en.wikipedia.org/wiki/HSV_color_space

6

2. LITERATURE

REVIEW

7

2.1 Important Matlab Functions Used :
2.1.1 rgb2gray : Convert RGB image or colormap to grayscale.

Syntax :

I = rgb2gray(RGB)

newmap = rgb2gray(map)

Description :

I = rgb2gray(RGB) converts the truecolor image RGB to the grayscale intensity image I.

rgb2gray converts RGB images to grayscale by eliminating the hue and saturation

information while retaining the luminance.newmap = rgb2gray(map) returns a grayscale

colormap equivalent to map. If the input is an RGB image, it can be of class uint8, uint16,

single, or double.
 [11]

 The output image I is of the same class as the input image. If the input

is a colormap, the input and output colormaps are both of class double.

e.g RGBImage = getsnapshot(vid);

 grayImage = rgb2gray(RGBImage);

 Fig- 2.1.a Fig- 2.1.b

2.1.2 Im2bw : Convert image to binary image, based on threshold

Syntax :

BW = im2bw(I, level)

BW = im2bw(X, map, level)

BW = im2bw(RGB, level)

Description :

BW = im2bw(I, level) converts the grayscale image I to a binary image. The output image

BW replaces all pixels in the input image with luminance greater than level with the value 1

(white) and replaces all other pixels with the value 0 (black). Specify level in the range [0,1].

8

This range is relative to the signal levels possible for the image's class. Therefore, a level

value of 0.5 is midway between black and white, regardless of class. To compute the level

argument, you can use the function graythresh. If you do not specify level, im2bw uses the

value 0.5.BW = im2bw(X, map, level) converts the indexed image X with colormap map to a

binary image.BW = im2bw(RGB, level) converts the true color image RGB to a binary

image.If the input image is not a grayscale image, im2bw converts the input image to

grayscale, and then converts this grayscale image to binary by thresholding.

bw = im2bw(grayImage,0.4);

 Fig 2.2.a Fig 2.2.b Fig 2.2.c

2.1.3 medfilt2 : 2-D median filtering

Syntax :

B = medfilt2(A, [m n])

B = medfilt2(A)

Description :

Median filtering is a nonlinear operation often used in image processing to reduce "salt and

pepper" noise. A median filter is more effective than convolution when the goal is to

simultaneously reduce noise and preserve edges.B = medfilt2(A, [m n]) performs median

filtering of the matrix A in two dimensions. Each output pixel contains the median value in the

m-by-n neighborhood around the corresponding pixel in the input image. medfilt2 pads the

image with 0s on the edges, so the median values for the points within [m n]/2 of the edges

might appear distorted.B = medfilt2(A) performs median filtering of the matrix A using the

default 3-by-3 neighborhood.
 [11]

diff_im = medfilt2(diff_im, [3 3]);

2.1.4 bwareaopen : Morphologically open binary image (remove small objects)

9

Syntax :

BW2 = bwareaopen(BW, P)

Description :

BW2 = bwareaopen(BW, P) removes from a binary image all connected components

(objects) that have fewer than P pixels, producing another binary image, BW2. The default

connectivity is 8 for two dimensions, 26 for three dimensions, and conndef(ndims(BW),

'maximal') for higher dimensions. BW can be a logical or numeric array of any dimension,

and it must be nonsparse.
 [11]

 The return value BW2 is of class logical.

diff_im = bwareaopen(diff_im,250);

 Fig 2.3.a Fig 2.3.b

All the small objects of size below 250 pixels have been eliminated.

2.1.5 imfill : Fill image regions and holes

Syntax :

BW2 = imfill(BW)

Description :

BW2 = imfill(BW) displays the binary image BW on the screen and lets you define the region

to fill by selecting points interactively by using the mouse. To use this interactive syntax, BW

must be a 2-D image. Press Backspace or Delete to remove the previously selected point. A

shift-click, right-click, or double-click selects a final point and starts the fill operation.

Pressing Return finishes the selection without adding a point. The input image can be

numeric or logical, and it must be real and non-sparse. It can have any dimension. The

output image has the same class as the input image.
 [11]

BW5 = imfill(BW4,'holes');

10

 Fig 2.4.a Fig 2.4.b

2.1.6 bwlabel : Label connected components in 2-D binary image

Syntax :

L = bwlabel(BW, n)

Description :

L = bwlabel(BW, n) returns a matrix L, of the same size as BW, containing labels for the

connected objects in BW. The variable n can have a value of either 4 or 8, where 4 specifies

4-connected objects and 8 specifies 8-connected objects. If the argument is omitted, it

defaults to 8.The elements of L are integer values greater than or equal to 0. The pixels

labeled 0 are the background.
 [11]

 The pixels labeled 1 make up one object; the pixels

labeled 2 make up a second object; and so on. BW can be logical or numeric, and it must be

real, two-dimensional, and nonsparse. L is of class double.

bw = bwlabel(diff_im, 8);

2.1.7 bwperim : Find perimeter of objects in binary image

Syntax :

BW2 = bwperim(BW1)

Description :

BW2 = bwperim(BW1) returns a binary image containing only the perimeter pixels of objects

in the input image BW1. A pixel is part of the perimeter if it is nonzero and it is connected to

at least one zero-valued pixel. The default connectivity is 4 for two dimensions, 6 for three

11

dimensions, and conndef(ndims(BW), 'minimal') for higher dimensions. BW1 must be logical

or numeric, and it must be nonsparse. BW2 is of class logical.

 Fig 2.5.a Fig 2.5.b

2.1.8 bwboundaries : Trace region boundaries in binary image

Syntax :

B = bwboundaries(BW)

Description :

B = bwboundaries(BW) traces the exterior boundaries of objects, as well as boundaries of

holes inside these objects, in the binary image BW. bwboundaries also descends into the

outermost objects (parents) and traces their children (objects completely enclosed by the

parents). BW must be a binary image where nonzero pixels belong to an object and 0 pixels

constitute the background. The following figure illustrates these components. bwboundaries

returns B, a P-by-1 cell array, where P is the number of objects and holes. Each cell in the

cell array contains a Q-by-2 matrix.
 [11]

 Each row in the matrix contains the row and column

coordinates of a boundary pixel. Q is the number of boundary pixels for the corresponding

region. BW can be logical or numeric and it must be real, two-dimensional, and nonsparse. L

and N are double. A is sparse logical.

2.1.9 regionprops : Measure properties of image regions

Syntax :

STATS = regionprops(BW, properties)

Descriptions :

12

STATS = regionprops(BW, properties) measures a set of properties for each connected

component (object) in the binary image, BW. The image BW is a logical array; it can have

any dimension.
 [11]

 STATS is a structure array with length equal to the number of objects in

BW, . The fields of the structure array denote different properties for each region, as

specified by

properties.

Shape Measurement –

Area, EulerNumber, Orientation, BoundingBox, Extent, Perimeter, Centroid, Extrema,

PixelIdxList, ConvexArea, FilledArea, PixelList, ConvexHull, FilledImage, Solidity,

ConvexImage, Image, SubarrayIdx, Eccentricity, MajorAxisLength, EquivDiameter,

MinorAxisLength

Pixel Value Measurement –

MaxIntensity, MinIntensity, WeightedCentroid, MeanIntensity, PixelValue

2.1.10 rectangle : Create 2-D rectangle object

Syntax :

rectangle

rectangle('Position',[x,y,w,h])

rectangle('Curvature',[x,y])

rectangle('PropertyName',propertyvalue,...)

h = rectangle(...)

Description :

rectangle draws a rectangle with Position [0,0,1,1] and Curvature [0,0] (i.e., no

curvature).rectangle('Position',[x,y,w,h]) draws the rectangle from the point x,y and having a

width of w and a height of h. Specify values in axes data units.Note that, to display a

rectangle in the specified proportions, you need to set the axes data aspect ratio so that one

unit is of equal length along both the x and y axes. You can do this with the command axis

equal or daspect([1,1,1]).rectangle('Curvature',[x,y]) specifies the curvature of the rectangle

sides, enabling it to vary from a rectangle to an ellipse. The horizontal curvature x is the

fraction of width of the rectangle that is curved along the top and bottom edges.
[11]

The

vertical curvature y is the fraction of the height of the rectangle that is curved along the left

and right edges.The values of x and y can range from 0 (no curvature) to 1 (maximum

curvature). A value of [0,0] creates a rectangle with square sides. A value of [1,1] creates an

13

ellipse. If you specify only one value for Curvature, then the same length (in axes data units)

is curved along both horizontal and vertical sides. The amount of curvature is determined by

the shorter dimension.
 [11]

rectangle('PropertyName',propertyvalue,...) draws the rectangle using the values for the

property name/property value pairs specified and default values for all other properties. For a

description of the properties, see Rectangle Properties.h = rectangle(...) returns the handle

of the rectangle object created.

2.1.11 serial : Create serial port object

Syntax :

obj = serial('port')

Description :

obj = serial('port') creates a serial port object associated with the serial port specified by port.

If port does not exist, or if it is in use, you will not be able to connect the serial port object to

the device.

s = serial('COM1');
Port object name will depend upon the platform that the serial port is on. instrhwinfo ('serial')

provides a list of available serial ports.

Before you can communicate with the device, it must be connected to obj with the fopen

function. A connected serial port object has a Status property value of open. An error is

returned if you attempt a read or write operation while the object is not connected to the

device. You can connect only one serial port object to a given serial port.
[11]

Specifications of a serial connection are given by:

 ByteOrder = littleEndian

 BytesAvailable = 0

 BytesAvailableFcn =

 BytesAvailableFcnCount = 48

 BytesAvailableFcnMode = terminator

 BytesToOutput = 0

 ErrorFcn =

 InputBufferSize = 512

 Name = Serial-COM1

 ObjectVisibility = on

 OutputBufferSize = 512

 OutputEmptyFcn =

14

 RecordDetail = compact

 RecordMode = overwrite

 RecordName = record.txt

 RecordStatus = off

 Status = closed

 Tag =

 Timeout = 10

 TimerFcn =

 TimerPeriod = 1

 TransferStatus = idle

 Type = serial

 UserData = []

 ValuesReceived = 0

 ValuesSent = 0

 SERIAL specific properties:

 BaudRate = 9600

 BreakInterruptFcn =

 DataBits = 8

 DataTerminalReady = on

 FlowControl = none

 Parity = none

 PinStatus = [1x1 struct]

 PinStatusFcn =

 Port = COM1

 ReadAsyncMode = continuous

 RequestToSend = on

 StopBits = 1

 Terminator = LF

2.1.12 fopen : Connect serial port object to device

Syntax :

fopen(obj)

Description :

15

fopen(obj) connects the serial port object, obj to the device. An error is returned if you

attempt to perform a read or write operation while obj is not connected to the device. You

can connect only one serial port object to a given device.

Some properties are read-only while the serial port object is open (connected), and

must be configured before using fopen. Examples include InputBufferSize and

OutputBufferSize. Refer to the property reference pages to determine which properties have

this constraint.

The values for some properties are verified only after obj is connected to the device.

If any of these properties are incorrectly configured, then an error is returned when fopen is

issued and obj is not connected to the device. Properties of this type include BaudRate, and

are associated with device settings.
 [11]

fopen(s)

open : Open file in appropriate application

Syntax :

open(name)

output = open(name)

Description :

open(name) opens the specified file or variable in the appropriate application.

output = open(name) returns an empty output ([]) for most cases. If opening a MAT-file,

output is a structure that contains the variables in the file. If opening a figure, output is a

handle to that figure. The open function opens files based on their extension. You can

extend the functionality of open by defining your own file handling function of the form

openxxx, where xxx is a file extension. For example, if you create a function openlog, the

open function calls openlog to process any files with the .log extension. The open function

returns any single output defined by your function.
 [11]

2.1.13 fprintf : Write data to text file

Syntax :

fprintf(fileID, format, A, ...)

fprintf(format, A, ...)

Description :

16

fprintf(fileID, format, A, ...) applies the format to all elements of array A and any additional

array arguments in column order, and writes the data to a text file. fprintf uses the encoding

scheme specified in the call to fopen.
 [11]

fprintf(format, A, ...) formats data and displays the results on the screen.

fprintf(s,'s')

2.1.14 fscanf : Read data from a text file

Syntax :

A = fscanf(fileID, format)

A = fscanf(fileID, format, sizeA)

Description :

A = fscanf(fileID, format) reads and converts data from a text file into array A in column

order. To convert, fscanf uses the format and the encoding scheme associated with the file.

To set the encoding scheme, use fopen. The fscanf function reapplies the format throughout

the entire file, and positions the file pointer at the end-of-file marker. If fscanf cannot match

the format to the data, it reads only the portion that matches into A and stops processing.
[11]

A = fscanf(fileID, format, sizeA) reads sizeA elements into A, and positions the file pointer

after the last element read. sizeA can be an integer, or can have the form [m,n].

out = fscanf(s);

2.1.15 wavplay : Play recorded sound on PC-based audio output device.

Syntax :

wavplay(y,Fs)

wavplay(...,'mode')

Description :

wavplay(y,Fs) plays the audio signal stored in the vector y on a PC-based audio output

device. Fs is the integer sample rate in Hz (samples per second). The default value for Fs is

11025 Hz. wavplay supports only 1- or 2-channel (mono or stereo) audio signals. To play in

stereo, y must be a two-column matrix.
[11]

17

wavplay(...,'mode') specifies how wavplay interacts with the command line, according to the

string 'mode'. The string 'mode' can be

 'async': You have immediate access to the command line as soon as the sound begins

to play on the audio output device (a nonblocking device call).

 'sync' (default value): You don't have access to the command line until the sound has

finished playing (a blocking device call).

The audio signal y can be one of four data types. The number of bits used to quantize and

play back each sample depends on the data type.

The wavplay function is for use only with 32-bit Microsoft Windows operating systems.

18

3. PROCESSING

AND

APPLICATION

DEVELOPMENT

19

3.1 Algorithm: (For Red Color Detection)

1. Initialization of capture device and capture format.

Default Adapter Settings in MATLAB is imaqhwinfo

Installed Adapters - („Coreco‟ , „Winvideo‟)

MATLAB Version - „7.10(r2010a)‟

Toolbox Name – „Image Acquisition Toolbox‟

Toolbox Version – 3.5(r2011a)

Camera and Format Initialization

Vid = videoinput(„Winvideo‟,1,YUY2 640x480)

Set(vid,‟Framepertrigger‟,inf)

Set(vid,‟Returncolourspace‟,‟rgb‟)

Framegrabinterval = 5

2. Start video capture.

3. Take an instance/frame

4. Mirror the Image

Row Values remains the same Column Values of RGB space reversed with respect

to input video As Webcam is in our opposite direction,so to synchronize with input

hand movement and for better user interface , mirror of image is used for this case.

5. Extract Red Portion.

R vaue of RGB image-grey scale image gives the red portion

Imsubstract(RGB image (R value) .greyscale image)

6. Noise reduction using Median filter.

7. Convert to binary image

8. Opening of image (to remove small objects/noises).

For this bwareaopen function is used

9. Labeling and image blob analysis

Here Boundary and centroid of the red portion is found out.

10. Display the marked red portion/ Interface to mouse

11. Check If more FrameCount.

a. If YES, go to step-3

b. If NO, Stop Video Capture and erase data.

20

Fig 3.1.a-Input Image Frame Fig 3.1.b-Mirrored Image Fig 3.1.c-Red portion extracted

Fig 3.1.d-Median filtered Image Fig 3.1.e-Binary Image Fig 3.1.f-Small noise/objects extracted

Fig 3.1.g-Final Output(detected red portion and centroid of the area shown)

21

This centroid of the detected red portion can be interfaced with mouse. If more than one

moving red objects are there, then it may create ambiguity. To eliminate this ambiguity ,

hand gesture also included in the features. Finally the mirrored image displayed for better

user interface; as the camera displays the mirror image. So mirror of mirror image is the

original image i.e in accordance with the user. Using other region properties (angle, major

axis length, minor axis length) more no of applications can be developed.

3.2 Mouse Interfacing :
MATLAB directly does not support mouse pointer control. Using Matlab only cursor can be

moved.

Set(0,‟PointerLocation‟,[X,Y])

But using only Matlab right click and left click can not be done.

For this Java is used. Java Robot class can be easily interfaced with Matlab which is used

for Left Click and Right Click operation.

java.awt.Robot

This class is used to generate native system input events for the purpose of test automation,

self-running demos and other applications where the control of mouse and keyboard is

 needed.

robot = java.awt.Robot;

robot.mouseMove(X,Y) % For mouse pointer movement

3.2.1 For Left Click-

robot.mousePress(java.awt.event.InputEvent.BUTTON1_MASK)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON1_MASK)

3.2.2 For Middle Button Click-

robot.mousePress(java.awt.event.InputEvent.BUTTON2_MASK)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON2_MASK)

3.2.3 For Right Click-

robot.mousePress(java.awt.event.InputEvent.BUTTON3_MASK)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON3_MASK)

3.3 Keyboard Interfacing:

Similarly java.awt.Robot class can also be used for keyboard interfacing.

For pressing „D‟, following commands need to be given

robot.keyPress(KeyEvent.VK_D);

22

robot.keyRelease(KeyEvent.VK_D);

For „Blankspace‟ robot.keyPress(KeyEvent.VK_SPACE);

robot.keyRelease(KeyEvent.VK_SPACE);

Any key can be entered in this way.

3.4 Algorithm for Hand Extraction And Finger Count :
Method-1: (In this method, it is needed to wear full-sleeve black shirt)

1. Initialization of capture device and capture format.

2. Start video capture.

3. Initialize Background , Mirror it and save mirrored background image

4. Take an instance/frame

5. Mirror the Image

6. Subtract the mirrored image from the saved mirrored initial background.

7. Noise reduction using Median filter.

8. Convert to binary image

9. Opening of image (to remove small objects/noises).

10. Display only the extracted Image

11. Hand Extraction by avoiding the black pixels (perform Step-6-9 again)

12. Labeling and image blob analysis using region properties.

13. Display the marked red portion/ Interface to mouse

14. Check If more FrameCount.
a. If YES, go to step-4
b. If NO, Stop Video Capture and erase data

Method-2: (No need of Black-shirt. Any color will work.)

1. Initialization of capture device and capture format.

2. Start video capture.

3. Initialize Background , Mirror it and save mirrored background image

4. Take an instance/frame

23

5. Mirror the Image

6. Subtract the mirrored image from the saved mirrored initial background.

7. Noise reduction using Median filter.

8. Convert to binary image

9. Opening of image (to remove small objects/noises).

10. Labeling and image blob analysis using region properties.

11. Using boundary properties, check change in slope of contours in anti-clockwise
direction.

12. If Slope change from negative to positive, bottom gap of finger.
If slope change from positive to negative, peak of a finger.

13. No. of peaks gives the no of fingers counted.

14. Depending on the count, a program is activated.

15. Interfacing the hand with mouse, any application can be used.

16. Check If more FrameCount.
a. If YES, go to step-4
b. If NO, Stop Video Capture and erase data

Fig 3.2a-i Fig 3.2a-ii Fig 3.2a-iii Fig3.2a-iv Fig3.2a-v Fig3.2a-vi

Fig3.2b-i Fig3.2b-iii Fig3.2b-v Fig3.2b-vi

24

Fig3.2c-i Fig3.2c-iii Fig3.2c-v Fig3.2c-vi

Fig3.2d-i Fig3.2d-iii Fig3.2d-v Fig3.2d-vi

[Fig3.2a,b,c,d- No of fingers 5,4,3,2 respectively]

[i-Input Image, ii-Background eliminated image, iii-Filtered Image, iv-Binary Image, v-

Opening Image, vi-Final Image with Finger peaks and gaps detected]

 3.5 Virtual Calculator :

:

Fig 3.3.a-Virtual Calculator

Virtual Calculator is like an augmented reality. It is designed in Matlab in the same

interfacing program. Depending on the position of finger- peak of Master hand, application

25

gives input to the calculator. It checks for 5 frames. If for 5 frames, the finger-peak remain in

a particular region or number region, then that number or symbol is given as input.

 Checking for ‘5’

if(point_y > 437 && point_y < 468)

And

if(point_x > 102 && point_x < 118)

Then check if it is in the region for

Five continuous frame

If Yes, take 5 as input and reset all Counter.

If No, continue process.

 Fig 3.3.b- Calculator design

 3.6 PC Calculator:

 Fig 3.3.c -PC Calculator

 PC Calculator is the original calculator application given in windows platform by

Microsoft. In PC Calculator, finger-peak of Master hand is interfaced with mouse cursor. Ifthe

mouse cursor remains within +-20 pixels for 5 frames, then Left Click event activated by java

Robot class and if the cursor remains within +-20 pixels for 8 frames, then Right Click event

activated by java Robot class. By this method, input is given to the calculator.

If tip of hand(tip_x,tip_y) remains within +- 20 pixels for five continuous frames, then trigger

“Left Click” by using java.awt.Robot class

26

robot = java.awt.Robot;

robot.mousePress(java.awt.event.InputEvent.BUTTON1_MASK);

pause(0.1)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON1_MASK)

3.7 PC Paint :

 Fig 3.4.a- PC Paint Snapshot Fig 3.4.b- Final Paint

 Above paint is done with the help of hand and without using mouse. In above

application, two color pins used (Red, Blue). Red is used for left click and cursor movement

and blue color is used for dragging. If the cursor remains within +-20 pixels for 5 continuous

frames, then Left click gets triggered. When the blue color code is shown, the left press is

triggered until the blue color code vanishes. When the blue color code vanishes, the left

27

button release triggerd. Hereby, it works as dragging event. Fig 3.4.b shows the final saved

paint file. Like this any PC application can be interfaced.

3.8 HCI(Human-Computer Interface) :

Fig 3.5 HCI snapshot

 In above application, Master-Hand has been interfaced with mouse cursor. It can

perform Left click, Right Click, Double Left Click with a precision of 20 pixels.

If tip of hand(tip_x,tip_y) remains within +- 20 pixels for five continuous frames, then trigger

“Left Click” by using java.awt.Robot class

robot = java.awt.Robot;

robot.mousePress(java.awt.event.InputEvent.BUTTON1_MASK);

pause(0.1)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON1_MASK);

If tip of hand(tip_x,tip_y) remains within +- 20 pixels for eight continuous frames, then trigger

“Double Left Click” by using java.awt.Robot class

robot = java.awt.Robot;

robot.mousePress(java.awt.event.InputEvent.BUTTON1_MASK);pause(0.1)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON1_MASK);pause(0.1)

robot.mousePress(java.awt.event.InputEvent.BUTTON1_MASK); pause(0.1)

robot.mouseRelease(java.awt.event.InputEvent.BUTTON1_MASK);

28

3.9 Remote Controlling Using Cloud :

 Fig 3.6 Remote Controlling Application

Must have Internet connection both at client side and server side.DROPBOX used as cloud

Hand gesture captured through any camera (Mobile or PC or Laptop), then stored at a

particular location giving a particular name.

At server side PC, the image gets updated automatically where matlab program uses the

above saved image and image procesisng done to recognize the gesture. Then it checks the

corresponding command for the gesture and acts accordingly.

For better user Interface, a small application can be developed in Visual Studio or Android

platform. Its work is only to capture hand gesture and store in dropbox.

It helps in controlling PC(activating/deactivating any application mainly) from any where in

the world only that you should have a camera and internet connection.

CLOUD(DropBox

, Google Drive)

INPUT

CAMERA(LAPTO

P , PC, MOBILE)

Main Computer

(Application Level)

29

3.10 Gesture based Hardware Interfacing Applications:

1. Remote control of home-window

Let‟s take a case, somebody has left his home window opened. When he reaches office, he

notices that it is going to rain. Then he recalls leaving home window opened. There is

nobody at home . At this condition, he would have to run back to home and close the window

otherwise all household objects will get wet and few may get damaged. But using this

application, he will just have to take his mobile out , take a snapshot of a predefined hand-

gesture(i.e. linked to closing the window) and save it in dropbox.

 Then at home, the dropbox or any cloud app will automatically get updated. If a

motor can be interfaced with the PC, then giving command from PC, the window can be

closed. Here serial communication is used. Atmega640 Development board used for the

purpose.

3.10.1 Hardware-

1) Atmega640 Development Board

2) Program Burner(ISP)

3) Motor

4) Adapter

5) Connector

3.10.2 Software-

1) AVR Studio

2) USB-Serial Driver

3) Winavr

4) X-CTU Configuration & Test Utility Software

5) Dropbox/ google drive/ any cloud application

3.10.3 ATMEGA 640 Features-
 High Performance, Low Power AVR® 8-Bit Microcontroller

 32 x 8 General Purpose Working Registers

 Up to 16 MIPS Throughput at 16 MHz

 64K Bytes of In-System Self-Programmable Flash

 In-System Programming by On-chip Boot Program

 4K Bytes EEPROM

30

 8K Bytes Internal SRAM

 Up to 64K Bytes Optional External Memory Space

 Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

 Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture

Mode

 Four 8-bit PWM Channels

 Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits

 16-channel, 10-bit ADC

 Two/Four Programmable Serial USART

 Master/Slave SPI Serial Interface

 Byte Oriented 2-wire Serial Interface

 Programmable Watchdog Timer with Separate On-chip Oscillator

 On-chip Analog Comparator

 Interrupt and Wake-up on Pin Change

Fig 3.7 ATmega 640 Development Board
[12]

3.10.4 Program-
UART Program-

#include<avr/io.h>
#include<util/delay.h>

31

/*Macros definition*/
#define CHECKBIT(x,b) x&(1<<b) //Checks bit status
#define SETBIT(x,b) x|=(1<<b) //Sets the particular bit
#define CLEARBIT(x,b) x&=~(1<<b) //Sets the particular bit
#define TOGGLEBIT(x,b) x^=(1<<b) //Toggles the particular bit
void uart0_init(void)
{
UCSR0B = 0x18;
UCSR0C = 0x86;
UBRR0L = 95;
}
void send0(char data)
{
UDR0 = data;
while(!(CHECKBIT(UCSR0A,UDRE0)))
{
}
_delay_ms(10);
}
char recv0(void)
{
while(!(CHECKBIT(UCSR0A,RXC0)))
{
}
_delay_ms(5);
char atad = UDR0;
return (atad);

void uart1_init(void)
{ UCSR1A = 0x00;
UCSR1B = 0x18;
UCSR1C = 0x86;
UBRR1L = 95;
}
void send1(char data)
{
UDR1 = data;
while(!(CHECKBIT(UCSR1A,UDRE1)))
{
}
_delay_ms(10);
}
char recv1(void)
{
while(!(CHECKBIT(UCSR1A,RXC1)))
{
}
_delay_ms(5);
char atad = UDR1;
return (atad);
}
void uart2_init(void)
{
UCSR2B = 0x18;
UCSR2C = 0x86;

32

UBRR2L = 95;
}
void send2(char data)
{
UDR2 = data;
while(!(CHECKBIT(UCSR2A,UDRE2)))
{
}
_delay_ms(0);
}
char recv2(void)
{
while(!(CHECKBIT(UCSR2A,RXC2)))
{
}
_delay_ms(0);
char atad = UDR2;
return (atad);
}
void uart_init()
{
uart0_init();
uart1_init();
uart2_init();
}

LCD Display Program-

#include<avr/io.h>
#include<util/delay.h>
#define P1 PORTC //data port n controller
#define P3 DDRC //data port
#define rs 4
#define e 5
#define LCD_EN 1<<e
#define LCD_RS 1<<rs

 void delay(int a,int b)
 {
 for(;b>0;b--)
 _delay_ms(a);
 }

 void port()
{

P3=0xFF;P1=0x00;
}
 void data1 (unsigned char dat)
{
P1 = (((dat >> 4) & 0x0F)|LCD_EN|LCD_RS);
P1 = (((dat >> 4) & 0x0F)|LCD_RS);

P1 = ((dat & 0x0F)|LCD_EN|LCD_RS);

33

P1 = ((dat & 0x0F)|LCD_RS);

_delay_us(200);
_delay_us(200);
}
 void instruction(char cmd)
{
P1= ((cmd >> 4) & 0x0F)|LCD_EN;
P1 = ((cmd >> 4) & 0x0F);

P1 = (cmd & 0x0F)|LCD_EN;
P1 = (cmd & 0x0F);

_delay_us(200);
_delay_us(200);
}

 void lcd_cursor(short int r,short int c) //sets position of the cursor to
the Rth roe and Cth column
 {
 if(r==1)
 { instruction(127+c);
 }
 if(r==2)
 { instruction(191+c);
 }
 }
 void character(char c)
 {
 data1(c);

 }
 void lcd_string(char c[])
 {
 while(*c)
 {

 character(*c++);
 }

 }

 void digit(int a)
 {
 data1(48+a);
 }

 void lcd_number(int a,int b,int num,int n)
 { lcd_cursor(a,b);
 int i=b+n-1;

 while(num)
 { lcd_cursor(a,i--);
 digit(num%10);
 num/=10;

34

}
 while(i>=b)
 {
lcd_cursor(a,i--);
digit(0);}
 }
 void number2(float n,int p)
 { int a,c;
 a=n;
 n=n-a;
 for(c=1;c<=p;c++)
 n=n*10;
 }

void clr()
{
instruction(0x01);
}
void reset()
{
P1= 0xFF;
_delay_ms(20);
P1 = 0x03+LCD_EN;
P1 = 0x03;
_delay_ms(10);
P1 = 0x03+LCD_EN;
P1 = 0x03;
_delay_ms(1);
P1 = 0x03+LCD_EN;
P1 = 0x03;
_delay_ms(1);
P1 = 0x02+LCD_EN;
P1 = 0x02;
_delay_ms(1);
}
 void initiate()
{port();
reset(); // Call LCD reset
_delay_us(400);
instruction(0x28); // 4-bit mode - 2 line - 5x7 font.
instruction(0x0C); // Display no cursor - no blink.
instruction(0x06); // Automatic Increment - No Display shift.
instruction(0x80); // Address DDRAM with 0 offset 80h.
}

void clear()
{
lcd_cursor(1,1);
lcd_string(" ");

lcd_cursor(2,1);
lcd_string(" ");
lcd_cursor(1,1);
}

35

Program for Motor Control-
(To close the window)

#include "lcd4.c" //lcd include
#include"uart (2).c"
#include<avr/io.h>
int HIGH;
int data;
void go()
{

PORTA|=0b00000100;
PORTA&=0b11011111;

}
void stop()
{
PORTA&=0b11011011;
}
void back()
{
PORTA|=0b01000000;
PORTA&=0b01111111;

}
void fwd()
{
PORTA&=0b00111111;

}
void main()
{
initiate();
 uart_init(); //serial port configs
 DDRA=0xFF;PORTA=0xFF; // Relay control to l293d
lcd_string("lplp");
while(1)
 {

 data=recv0();
 if(data == 'e')
 { lcd_cursor(2,5);lcd_string("stop ");
 stop();

 }
 if(data == 's')
 { lcd_cursor(2,5);lcd_string("forward");
go();
 }

 }

}

36

Hand gesture captured through any camera (Mobile or PC or Laptop), then stored at a

particular location giving a particular name. At server side PC, the image gets updated

automatically where matlab program uses the above saved image and image procesisng

done to recognize the gesture. Then it checks the corresponding command for the gesture

and acts accordingly. The motor is connected to computer via USB-Serial Connector

through Atmega640. When the respective gesture for window-dooring closing detected,

matlab activates serial port and start signal send to Atmega. Then the motor runs i.e

connected to the Atmega. When the the stop signal is sent, motor stops. By this way, the

motor, closes the window-door.

Fig 3.8 Block Diagram of Window Control

Hardware interfacing application

Gesture

Captured (at

distant location

via mobile,

laptop, PC)

CLOUD (Dropbox /

google drive)

Home PC Gesture Library

Atmega 640

Development

Board

Power Supply

Motor

Window-Door

37

4. CONCLUSION

AND FUTURE

WORK

38

4.1 CONCLUSION:
 The proposed technique is simple , efficient and faster (SEF).

 In simple case, using even only 5 hand gestures, if combined with colors (say 5)

gives 5x5! no of combinations. So 600 no of commands can be given through image

processing.

 In completed case, if two levels of colour used of 5 different types, then total no of

combinations can be 5x5!x5! = 72,000 which is way enough for use in applications.

 If both hand used, then the no of combinations increases exponentially.

 Using different colours and with different hand gestures, different types of interfacing

can be done.

 In case of hand-mouse interfacing, the computer can be controlled from a distant

point depending on the resolution of camera. If the camera is linked to the computer

either by direct connection or by online; then system can be controlled remotely

 Using the cloud feature the hand gesture command can be sent to the main

computer from a faraway area.

 In Hardware interfacing applications , many application can be developed in a similar

way like emergency window closing application. This can have a vast utilisation in

future smart homes.

4.2 FUTURE WORKS:
 Hand Gesture recognition can be optimized using developed techniques

 Instead of using RGB space , HSV colour space can be used to avoid light intensity

fluctuations and thereby giving better results.

 HAND can be used as a remote control to TV if subject to a camera is embedded.

 Many entertainment applications can be developed e.g. virtual piano playing , video

game etc.

 Using high resolution camera or better sensor like a Kinect; high end application can

be developed. This can be also utilised in industries machine controlling applications.

39

REFERENCES

[1]. Henrik Birk and Thomas Baltzer Moeslund, “Recognizing Gestures From the Hand

Alphabet Using Principal Component Analysis”, Master‟s Thesis, Laboratory of Image

Analysis, Aalborg University, Denmark, 1996.

[2]. Tosas, M.,Visual Articulated Hand Tracking for Interactive Surfaces.,University of

Nottingham, 2006

[3]. Gonzalez, Rafael C., and Woods, Richard E., Digital Image Processing, Pearson

Education, 2003

[4]. Gonzalez, Rafael C., and Woods, Richard E., Digital Image Processing using

MATLAB, 2nd Edition, 2009

[5]. Zarit, B. D., Super, B. J. and Quek, F. K. H. (1999). Comparison of five color models

in skin pixel classification. In ICCV‟99 Int‟l Workshop on recognition, analysis

and tracking of faces and gestures in Real-Time systems, 58- 63.

[6]. Zhang, Z., Wu, Y., Shan, Y. and Shafer. S. (2001). Visual panel: Virtual

mouse keyboard and 3d controller with an ordinary piece of paper. In

Workshop on Perceptive User Interfaces. ACM Digital Library, ISBN 1-58113-448-

7.

[7]. Stafford, Q. and Robinson, P. (1996). BrightBoard: A Video-Augmented

Environment. In Proc. of the CHI96, pp. 134-141.

[8]. http://channel9.msdn.com/coding4fun/articles

[9]. http://technologyinterface.nmsu.edu/5_1/5_1.html

[10]. http://www.embedded-vision.com/applications-embedded-vision

[11]. http://www.mathworks.com

[12]. www.alldatasheet.com

[13]. http://www.digi.com/support/productdetl.jsp?pid=4091&osvid=62&tp=5&hit=XCTU%2

0ver.%205.1.4.1%20installer#utilities

[14]. Burande, C.A.; Tugnayat, R.M.; Choudhary, N.K., "Advanced recognition techniques

for human computer interaction", Computer and Automation Engineering (ICCAE),

2010 The 2nd International Conference ,Volume: 2 , Page(s): 480 - 483

[15]. Wang X., "A Six-Degree-of-Freedom Virtual Mouse Based on Hand Gestures",

Electrical and Control Engineering (ICECE), 2010 International Conference, Page(s):

257 - 260

[16]. Rautaray, S.S., "Interaction with Virtual Game through Hand Gesture Recognition ",

Multimedia, Signal Processing and Communication Technologies (IMPACT), 2011

International Conference, Page(s): 244 - 247

http://www.embedded-vision.com/applications-embedded-vision

40

[17]. Panwar, M., "Hand Gesture Recognition based on Shape Parameters", Computing,

Communication and Applications (ICCCA), 2012 International Conference, Page(s):

1 - 6

[18]. Tomita A., Ishii R., "hand Shape Extraction from a Sequence of digitized gray-scale

Images", IEEE Journals

[19]. Abe, K., Saito, H. and Ozawa, S. (2000). 3-D Drawing System via Hand Motion

Recognition from Two Cameras. In Proceeding of the 6th Korea-Japan Joint

Workshop on Computer Vision, pp. 138-143.

[20]. Assan, M. and Grobel, K. (1997). Video Based Sign language Recognition

using Hidden Markov Models. Gesture and Sign Language in Human-Computer

Interaction, Intl. In Proc. of Gesture Workshop, vol. 1371 of Lecture Notes in

Computer Science, pp. 97-110.

[21]. Bowden, R., Heap, A., and Hart, C. (1996). Virtual Datagloves: Interacting with

Virtual Environments Through Computer Vision. In Proc. 3rd UK VR-Sig Conference,

DeMontfort University, Leicester, UK, July 1996.

[22]. Crowley, J., Brard, F. and Coutaz, J. (1995). Finger tracking as an input

device for augmented reality. In Proc. Workshop Automatic Face and Gesture

Recognition, pp. 195-200.

[23]. Isard, M. and MacCormick, J. (2000). Hand tracking for vision-based drawing.

Technical report, Visual Dynamics Group, Dept. Eng. Science, University of Oxford.

[24]. Kurata, T., Kato, T., Kourogi, M., Keechul, J., and Endo, K. (2002). A

functionally-distributed hand tracking method for wearable visual interfaces and its

applications. In IAPR Workshop on Machine Vision Applications, pp. 84-89.

[25]. Kolsch, M. and Turk, M. (2005). Hand tracking with Flocks of Features. Computer

Vision and Pattern Recognition, CVPR, vol. 2, 20-25.

[26]. Lee, J. and Kunii, T. (1995). Model-based analysis of hand posture. IEEE Comput.

Graph. Appl., vol 15. no. 5, pp. 77-86.

THE END

