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Abstract:-  

If you don't move forward-you begin to move backward. 

Technological advancement today has brought us to a frontier where the human has become the 

basic constraint in our ascent towards safer and faster transportation. Human error is mostly 

responsible for many road traffic accidents which every year take the lives of lots of people and 

injure many more. Driving protection is thus a major concern leading to research in autonomous 

driving systems. 

Automatic motion planning and navigation is the primary task of an automated guided vehicle or 

mobile robots. All such navigation systems consist of a data collection system, a decision making 

system and a hardware control system. In this research our artificial intelligence system is based 

on neural network model for navigation of an AGV in unpredictable and imprecise environment. 

A five layered with gradient descent momentum back-propagation system which uses heading 

angle and obstacle distances as input.  

The networks are trained by real data obtained from vehicle tracking live test runs. Considering 

the high amount of risk of testing the vehicle in real space-time conditions, it would initially be 

tested in simulated environment with the use of MATLAB®. The hardware control for an AGV 

should be robust and precise. An Aerial and a Grounded prototype were developed to test our 

neural network model in real time situation. 
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1.1 INTRODUCTION 

It is anticipated that the increase in the number of vehicles in the next two decades will place a 

considerable amount of strain on the capacity and safety of the present highway system in 

India. One particularly striking solution to improve highway capacity and safety is through 

vehicle automation. One of the functions of such autonomous vehicles is the ability to steer 

automatically while following a designated lane or a vehicle ahead. There has been many 

advances in the area of automated guided vehicle. Still it’s performance in actual traffic 

conditions and it’s reliability have a long way to go before it’s implementation in commercial 

vehicle. 

Mobile robots have been extensively used in various fields such as space exploration, military 

missions and hazardous or unreachable environments. Mobile robots are crucial in automated 

manufacturing systems or flexible manufacturing systems because they transport materials to 

and from workstation and ware houses. Also in the ever changing shop floor they can easily 

navigate their way through to the desired location without any changes in model. Hence an 

AGV would form the backbone of a flexible manufacturing system in the upcoming years. 
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2.1Literature Review 

Review of Neural Network Technique for Vehicle Navigation: 

In the present autonomous vehicles, a path planning module is utilized to translate observed 

heading angles at specified ranges into appropriate steering commands. In contrast to path 

planning, a human driver decides the path trajectory and turns the steering wheel in direct 

reaction to an observed heading angle and range. Kehtarnavaz and Sohndeals[1] worked with 

neural network scheme to emulate human driving in order to eliminate the difficulties associated 

with path planning. The heading angle and range information is computed from the data captured 

by passive or active sensors. These data were the boundaries of a road or a feature at the back of 

a lead vehicle.  

Though a lot of blood and sweat has been drained into the area of AGV ( Automated guided 

Vehicle) the tests which feed the decision modeling system with data have largely remained 

costly and inconvenient.[2] A paper proposed by, Todd et al.  The Robotics Institute, Carnegie 

Mellon University, Pittsburgh, USA, describes a simple but a powerful platform, designed to 

work on any passenger vehicle, developed at Camegie Mellon University. The platform, called 

PANS (Portable Advanced Navigation Support) is a robust but a very simple system which could 

provide better on-road performance than the current Navlab 2 at a substantially lesser cost. A 

rehabilitated US Army HMMWV called “The Navlab 2”is a good platform for off-road steering, 

where additional ruggedness is necessary and short missions are the norm. It is not well built for 

on-road driving research because of its size, complexity, and temperamental operational nature. 

 

A substitute of using image processing was presented in a paper by BirselAyrulu, 

BillurBarshan[3]. The study investigates the processing of sonar signals using neural networks 
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which are commonly encountered features in indoor robot environments. Differentiation of such 

features is of interest for intelligent systems in different applications. Different representations of 

amplitude and time-of-flight measurement patterns acquired from a real sonar system are 

processed. In most cases, best results are obtained with low-frequency component of the discrete 

wavelet transform of these patterns. Modular and non-modular neural network structures mostly 

trained with the back-propagation and generating shrinking algorithms are used to incorporate 

learning in the identification of parameter relations for target primitives. 

A back-propagation neural network was proposed by Cheni et al. [4] , as a controller for an AGV 

system (driverless "automated guided vehicle"). At the present stage of development, the input 

layer consists of two neurons and receives the state signals of the tracking errors the camera 

image processor, and the sole neuron in the output layer provides the command signal of a 

reference yaw rate signal for the vehicle. Simulations and preliminary experimentation on a 

prototype vehicle showed that one hidden layer is adequate to provide good driving for such a 

time-varying nonlinear dynamic system.  

Kurd S. and Oguchi K. ,[5] presented the idea of using Discrete reference markers The 

conventional control of Automatic Guided Vehicles (AGV) which use discrete reference markers 

includes a three-term PID controller to control the operation and the motors of the vehicle. The 

parameters of the PID controller were altered whenever the vehicle was to be operated. The best 

performance with respect to chosen PID parameters was a matter of trial and error. In this paper, 

a neural network controller is proposed as an indirect-controller to obtain the best control 

parameters for the main controller in use with respect to the location of the AGV. 

Steering of an autonomous vehicle requires the permanent adaptation of behavior in relationship 

to the various situations the vehicle is in. A paper described by Kuhnert et al. University of 
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Siegen, Institute for Real-Time-Systems / Germany[6], which implements such adaptation and 

optimization based on Reinforcement Learning (RL) which in detail purely learns from 

evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-

optimizes actions for situations in a defined environment. The target of this research is to 

determine to what extent RL-based Systems serve as an enhancement or even an alternative to 

classical concepts of autonomous intelligent vehicles such as modeling or neural nets. 

The research reported in this paper, by Alain et al. Kornhauser Princeton University [7] 

highlights on the automated steering aspects of intelligent highway vehicles. Proposed is a 

machine vision system for capturing driver views of the on-coming highway environment. In this 

paper acceptable steering commands for the vehicle is generated to investigate various designs of 

artificial neural networks for processing the resulting images. A computer graphical simulation 

system, called the Road Machine has been developed, which is used as the experimental 

environment for analyzing, through simulation, alternative neural network approaches for 

controlling autonomous highway vehicles in various environments.  

Another paper by Chan et al. [8] state that, Human blunder is the main cause of the numerous 

road traffic accidents which every year take the lives of lots of people. Driving protection is thus 

a major concern foremost to investigation in autonomous driving systems. A project at the 

Centre for Computational Intelligence (C2i), NTU, aims at using fuzzy neural constructions such 

as GenSoFNN-Yager to recognize intelligent driving i.e., to learn to autonomously park, make 

U-turns, drive, and even choose when to change lane, leave behind, etc. The recent work on 

Intelligent Speed Adaptation and Steering Control (ISASC), a novel feature of which is the 

ability to anticipate the road outline and negotiate through curves safely, s presented here in this 

project. The planned system was developed and tested on a driving simulator. Experimental 
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results from the simulator show the robustness of the system in learning from example the 

desired human driving skill and applying this knowledge to negotiate new unseen roads. 

Proportional-Integral-Derivative (PID) is another concept for automated navigation by Ahmad 

saifizul Abdullah et al. [9]. It describes how Proportional-Integral-Derivative (PID) controller 

and vision based concept to an automatic steering control system is used to cause the vehicle to 

track the reference under various path planning. Simulation results show that the proposed 

control system achieved its objective even though it is less robust in maintaining its performance 

under various environments. 

Visual control of locomotion is essential for most mammals and requires coordination between 

perceptual processes and action systems according to, Wilkie RM, WannJP[10]. Previous 

research on the neural systems engaged by self-motion has focused on heading perception. This 

is only one perceptual subcomponent. For effective steering, it is necessary to perceive an 

appropriate future path and then bring about the required change to heading. By means of 

function magnetic resonance imaging (FMRI) in humans, we reveal a role for the parietal eye 

fields (PEFs) in directing spatially selective processes relating to future path information. A 

parietal area close to PEFs appears to be specialized for processing the future path information. 

When steering adjustments are imprecise a separate parietal area responds to visual position error 

signals. A network of three areas, the cerebellum, the supplementary eye fields, and dorsal pre 

motor cortex, was found to be involved in generating appropriate motor responses for steering 

responses.  

Another paper by Tung et al. [11] says that existing neural fuzzy (neuro-fuzzy) networks can be 

broadly classified into two groups. The first group is basically fuzzy systems with self-tuning 

abilities and requires an initial rule base for its training. The second group of neural fuzzy 
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networks, alternatively, is capable of formulating the fuzzy rules from the numerical training 

data. No preliminary rule base needs to be specified prior to training. However, most existing 

neural fuzzy systems encountered one or more of the following major difficulties. Those are (1) 

Inconsistent rule-base; (2) Heuristically defined node operations; (3) Susceptibility to noisy 

training data and the stability-plasticity dilemma and (4) Requirements for preceding knowledge 

such as the number of bunches to be computed. Here, a novel neural fuzzy system that is 

immune to the above-mentioned insufficiencies is proposed. Driving a vehicle is a very hard task 

that humans can perform relatively well. It is very appealing to capture the human driving 

expertise in the form of an intuitive set of IF-THEN fuzzy rules. The driving simulator records 

and stores the steering and speed control actions of a human driver under different road 

scenarios. Subsequently, the GenSoFNN network is used to formulate a set of fuzzy rules that 

fits the recorded driving behavior from the simulator of the human driver. This set of fuzzy rules 

generally forms the knowledge base of the auto pilot system and is subsequently validated in 

auto-pilot mode. 

The paper [12] proposes an innovative approach for solving the problem of obstacle evading 

during management tasks performed by redundant manipulators. Q-learning reinforcement 

technique has been used in the developed solution, which is based on a double neural network. 

Q-learning has been generally applied in the field of robotics for attaining obstacle avoidance 

navigation or computing path planning problems. Classical Jacobean matrix approach or 

minimization of redundancy resolution of manipulators operating in known environments is used 

in most studies to solve inverse kinematics and obstacle avoidance problems. Researchers who 

tried to use neural networks for solving inverse kinematics often dealt with a single obstacle 

present in the working field. This paper focuses on calculating inverse kinematics and obstacle 
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avoidance for complex and unknown environments, having multiple obstacles in the working 

field. 

In this thesis Ian Lane Davis, present both a novel neural network example and a method for 

solving sensing and control tasks for mobile robots using this neural network paradigm. Real 

world responsibilities have driven the advancement of this methodology and its components, and 

we apply our methodology successfully to two robotics applications. We conclude that for some 

tasks, our novel modular neural network method can attain comparable or beuer performance 

than an old-fashioned monolithic network in a much reduced training time. 

In this paper, an intelligent transportation control system (ITCS) using wavelet neural network 

(WNN) and proportional-integral-derivative-type (PID-type) learning algorithms [14] is 

proposed to increase the protection and effectiveness in transportation process. The proposed 

control system is composed of two controllers and those are neural controller and an auxiliary 

compensation controller. The neural controller acts as the chief tracking controller, which is 

designed via a WNN to mimic the merits of an ideal total sliding-mode control (TSMC) law. To 

regulate the parameters of WNN on-line for further promising system stability and obtaining a 

fast convergence the PID-type learning algorithms are used which are derived from the 

Lyapunov stability theorem. Moreover, based on H1 control technique, the auxiliary 

compensation controller is developed to attenuate the effect of the approximation error between 

WNN and ideal TSMC law, so that the attenuation level can be achieved within limit. Finally, it 

is applied to control a marine transportation system and a land transportation system to 

investigate the effectiveness of the proposed control strategy. The simulation results demonstrate 

that the proposed WNN-based ITCS with PID-type learning algorithms can be used to achieve 

favorable control performance than other control methods. 
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Autonomous Land Vehicle in a Neural Network (ALVINN) [15] is an ANN based navigation 

system that calculated a steer angle to keep an autonomous vehicle inside the road limits. In this 

work, the gray-scale levels of a 30 x 32 image were used as the input of neural networks. In 

order to improve training, the original road image and steering were generated, allowing 

ALVINN to quickly learn how to navigate in new roads. A disadvantage of this work is the high 

computational time. The architecture has 960 input units fully connected to the hidden layer to 4 

units, also fully connected to 30 units in output layer. This ANN topology requires larger 

computational use as compared to other methods. Regarding that issue, this problem requires real 

time decisions therefore these topology are not efficient. 

Later, the EUREKA project Prometheus [16] for road following was successfully performed, 

which provided trucks with an automatic driving system to reproduce drivers in repetitious long 

driving situations. In this project, the developed system also included a function to warn the 

driver in dangerous situations. A limitation of this project was an excessive number of heuristics 

created by the authors to limit the false alarms caused by shadows or discontinuities in the color 

of the road surface. 

Another interesting work developing an autonomous vehicle e-control system, by Shihavuddin et 

al. [17], approaches the path map generation of an unknown environment using a proposed 

Trapezoidal Approximation (TA) of road periphery. At first, a blind map of the unknown 

environment is generated in computer, and then the image of the unknown environment is 

captured by the vehicle and a radio frequency transmitter module to send the signal to computer 

using. After that, the image s preprocessed and the road boundaries are detected using the TA. 

So, the vehicle operates independently avoiding all obstacles, and the issue with this approach is 
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the dependency of the camera tilt angle, because the vehicle moves through the trapezium and 

reaches the next approximated trapezium having a previously tilt angle.  

Chronis and Skubic [18] have in their research worked on the difficulties in programming robots. 

A programming by demonstration or PbD paradigm has been discussed. This paradigm extracts 

robot behavior from the control actions demonstrated and its environment. The work is in an 

attempt to develop robot programming methods that allow the task use by domain experts for 

robots as semi-autonomous tools. Due to this, there was an intention of injecting human behavior 

into the acquired behavior. For these reasons, the programming by demonstration paradigm was 

chosen as opposed to preferring an autonomous learning method. The study tests the feasibility 

of training a neural network from demonstrated navigation actions which are generally collected 

from a simulator. The network was trained with three different training data collection and the 

results were compared. The three methods were a mouse driven software joystick, a novel PDA 

interface and a programmed control. For the purpose of corridor following behavior a neural 

network configuration was developed that can be used in training a mobile robot. A mapping 

between inputs and outputs of the network from the training data set is required for good level of 

convergence of the feed forward MLP. For robust control and better path planning the network 

should be provided with a range of conditions the training data must contain the complete range 

of possible sensor variations. From experimental results it can be found out that the most robust 

behaviors are produced by the PDA generated training sets. 
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CHAPTER 3 
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3.1 Analysis of Neural Technique for Automated Navigation 

3.1.1 Introduction to neural networks: 

An Artificial Neural Network (ANN) is a paradigm for information processing that is inspired by 

the way biological neural network, such as the brain, processes information. The central block of 

this paradigm is the unique structure of the information processing system. It consists of a large 

number of highly interconnected and organized processing elements (neurons) working together 

to process and solve. ANNs are like people and they learn by example. An ANN is usually 

implemented for a specific task, such as pattern appreciation or data classification, through a 

learning process.  

3.1.2 A simple neuron: - 

A synthetic neuron is an element which takes many inputs and gives one output. There are 

basically two modes of operation; the training mode and the using mode. In the training mode, 

for particular input patterns the neuron can be trained to fire or not fire. In the using mode, if the 

input pattern is taught, the taught output becomes the current output. If the input pattern is not, 

the firing rule is used to determine whether to fire or not. 

X1 

X2 

| 

| 

Xn 

  

(Figure: 1: A Simple Neuron) 

Neuron Output 

Teach/Use 

Teaching Input 
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3.1.3 Network layers: - 

The artificial neural networks consist of three layers: input layer, hidden layer and output layer. 

1. The input units convert the raw information that is fed into the network. 

2. The output from each hidden unit is determined by input units and the weights on the 

connections between them. 

3. The behavior of the output units depends on the output of the hidden units and the 

weights between them. 

The hidden units are free to build their own representations of the input. The weights determine 

when each hidden unit is active, and so with modification of weights, a hidden unit can choose 

what it represents. 

3.1.4 The Learning Process 

The memorization of patterns and the succeeding response of the network can be classified into 

two general paradigms. In Associative mapping the network learns to produce an output on the 

set of input units whenever another output is applied on the set of input units. The associative 

mapping is of two types. 

Auto-association: An input pattern is associated with itself and the pattern output units match the 

trained one. This is used to offer pattern completion, i.e. to produce a pattern when some portion 

of it or a partial pattern is presented. In the second case, the network essentially stores pairs of 

patterns associating two sets of patterns.  

Hetero-association: is associated with two recall mechanisms:  
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Nearest-neighbor recall, where the output produced corresponds to the input pattern stored, 

which is closest to the pattern presented Interpolative recall, where the output pattern leads to 

interpolation which is similarity dependent of the patterns stored compared to the pattern 

presented. Another model, which is a variant associative mapping, is classification, i.e. when 

input patterns are to be classified into a fixed set of classifications. 

 Every neural network owns knowledge which is contained in the weights. A learning rule for 

altering the values of the weights must lead to modification of the knowledge stored in the 

network as a function of practice. 

 

                                    (Figure 2: Sample ANN model) 

Data is stored in the weight matrix W of a neural network. The determination of the weights is 

called the learning process. Following the way learning is performed, we can discriminate two 

major categories of neural networks: 

Fixed networks: The weights are fixed, i.e./dt=0. In such networks, the weights are determined 

according to the problem to solve. 

Adaptive networks: The weights can be changed, i.e. dW/dt not= 0. 
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Entirely, the learning methods used for adaptive neural networks can be classified into two chief 

categories: 

Supervised learning which includes an external teacher, so that each output unit is told what its 

anticipated response to input signals ought to be. In the learning process global information may 

be a necessity. Models of supervised learning comprise error-correction learning, reinforcement 

learning and stochastic learning. A vital issue about supervised learning is the problem of error 

convergence, i.e. the minimization of difference between the desired and computed values. The 

goal is to find out a set of weights which reduces the error. One well-known method, which is 

common to many learning methods, is the least mean square (LMS) convergence. 

Unsupervised learning uses no external teacher and is centered upon local information. It is also 

stated to as self-organization, in the way that it self-organizes data presented to the network and 

detects their emergent group properties. Examples of unsupervised learning are Hibbing learning 

and competitive learning. 

3.1.5 Transfer Function: - 

The characteristics of an ANN (Artificial Neural Network) depend on both the weights and the 

input-output function (transfer function) that is quantified for the units. These functions are of 

three types:  

1. linear (or ramp) 

2. Threshold 

3. Sigmoid 
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For linear units, the output is proportional to the total weights and input. For threshold units, the 

output are binary, liable on whether the entire input is larger than or less than some threshold 

value. The output varies continuously but not linearly as the input changes in case of sigmoid 

units. Sigmoid units bear a greater similarity to real neurons than do linear or threshold units, but 

all three must are rough approximations. 

3.1.6 Types of Neural Network 

1. Feed-forward neural network: It was the first and possibly most simple type of artificial 

neural network invented. In this network the information moves in single direction. From the 

input nodes information goes to the hidden nodes (if any) and finally to the output nodes. 

There is absence of any cycles or loops in the network. Feed-forward networks can be 

constructed from various types of units, e.g. binary McCulloch-Pitts neurons, one example 

being the perceptron. 

2. Learning Vector Quantization: Learning Vector Quantization (LVQ) may be understood as 

neural network architecture. It was proposed by Teuvo Kohonen, firstly. In LVQ, 

representatives of the classes parameterize, together with an appropriate distance measure, a 

distance-based classification scheme. 

3. Recurrent neural network: Opposing to feed-forward networks recurrent neural networks 

(RNNs) are models with bi-directional data flow. While a feed-forward network transmits 

data linearly from input to output, RNNs also propagate data from later units to earlier units. 

RNNs can be used as general sequence processors. 

4. Fully recurrent network: This is the basic architecture established in the 1980s: a network of 

neuron-like units, each with a directed link to every other unit. All units have a time-varying 
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real-valued initiation. Each assembly has a modifiable real-valued weight. Some of the nodes 

are called input nodes; some are called output nodes, the rest hidden nodes. Most architecture 

below is special cases. 

5. Hopfield network: The Hopfield network is of historic interest although it is not all-purpose 

RNN, as it is not designed to process systems of patterns. Instead it requires static inputs. It is 

an RNN in which all contacts are symmetric. Designed by John Hopfield in 1982, assures 

that its dynamics will converge. If the links are trained using Hebbian learning then the 

Hopfield network will perform as robust content-addressable memory, resistant to connection 

alteration. 

6. Simple recurrent networks: This special case of the Hopfield network was employed by Jeff 

Elman and Michael I. Jordan. A three-layer network is used, along a set of "context units" in 

the input layer. There are links from the hidden layer or from the output layer to the context 

units fixed with a weight of one. At each time step, the input is transmitted in a standard 

feed-forward fashion, and then a simple backprop-like learning rule is applied. The fixed 

back connections result in the context units always preserving a copy of the previous values 

of the hidden units (since they propagate over the connections before the learning rule is 

applied). 

7. Echo state network: The echo state network (ESN) is a recurrent neural network with a 

sporadically linked random hidden layer. Only the weights of output neurons can be changed 

and be trained. ESN are good at replicating certain time series  
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3.1.7 The Back-Propagation Algorithm: - 

To train a neural network to perform some task, we must change the weights of each unit in such 

a manner that the difference between the desired output and the actual output is reduced. It 

requires that the neural network computes the error offshoot of the weights (EW). In other 

words, it must calculate how the error fluctuates as each weight is increased or decreased 

slightly. The back propagation algorithm is a commonly used method for finding the EW. 

The back-propagation algorithm is easiest to realize if all the units in the network are linear. The 

algorithm computes each EW by first determining the EA, the rate at which the error variations 

as the movement level of a unit is altered. For output units, the EA is just the difference between 

the real and the wanted output. To compute the EA for a hidden unit in the layer just before the 

output layer, we first recognize all the weights amongst that hidden unit and the output units to 

which it is linked. Product of weights the EAs of those output units and add the products. These 

sum equivalents the EA for the chosen hidden unit. After computing all the EAs in the hidden 

layer penultimate to output layer, we can similarly compute the EAs for other layers, affecting 

from layer to layer in the opposite direction of the way activities propagate through the network. 

This is what gives back propagation its name. Once the EA has been computed for a unit, it is 

simple to calculate the EW for each incoming link of the unit. The EW is the creation of the EA 

and the activity through the incoming link. 
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CHAPTER 4  

 

System Modeling using Neural Technique 
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4.1 System modeling using Neural Technique: 

A neural network based model was designed to control the steering angle of the vehicle. A four 

layered model with 2 hidden layers was used. A sigmoid function was used as transfer function. 

The input neurons are that of left obstacle side distance, right obstacle side distance, front 

obstacle distance, and target angle. The output neuron was that of steering angle. The model was 

trained with simulated data and the weights were updated through back propagation. Then with 

the help of MATLAB and its neural network tool box, simulation was carried out .the model was 

simulated with various type of obstacles, target range. 

 

   (Figure 3: Neural model developed for the project) 

Steps involved in setting up the neural network in MATLAB:- 

1. The network manager was opened with the command nntool in command window. 

2. The input 4X10 matrix and the target matrix 10X1 were defined. 

3. A new network was created with the input and output matrix and to other data were as 

follows 

i. Network type: feed forward backprop 
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ii. Training function: TRAINGD 

iii. Adaptation learning function: LEARNGDM 

iv. Performance function: MSE  

4. The numbers of hidden layers were varied to get the best possible result by hit and trail. 

5. The termination criteria were 1000 epochs or E<1.1e^(-10), which reaches first the 

training stops. 

6. Then new input matrix was imported and the output steering angle was found out by 

using the function “simulate network” in NNTOOL. 

This neural network will be used to intelligently navigate a grounded vehicle and an aerial 

automotive.  

4.2 STEPS INVOLVED MODELING OF NEURAL NETWORK IN MATLAB INTERFACE: - 

1. Create feed-forward back-propagation network. net = newff([S1 S2...S(N-l)],{TF1 

TF2...TFNl}); where, Si size of ith layer, for N-1 layers, TFi Transfer function of ith 

layer. (Default = 'tansig' for hidden layers and 'purelin' for output layer. Various transfer 

functions are as follows 

Compet: Competitive transfer function 

Hardlim: Hard limit transfer function 

Hardlims: Symmetric hard limit transfer function 

Logsig: Log-sigmoid transfer function 

Netinv:Inverse transfer function 

Poslin: Positive linear transfer function 

Purelin: Linear transfer function 

Radbas: Radial basis transfer function 
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Satlin: Saturating linear transfer function 

Satlins: Symmetric saturating linear transfer function 

Softmax:  Softmax transfer function 

Tansig:Hyperbolic tangent sigmoid transfer function 

Tribas: Triangular basis transfer function 

2. Create an input matrix containing input values.  

3. Create a target matrix whose values are fixed by manual calculations. 

4. Set the train function. There are many train functions such as 

a. trainb: Batch training with weight and bias learning rules 

b. trainbfg: BFGS quasi-Newton backpropagation 

c. trainbfgc: BFGS quasi-Newton backpropagation for use with NN model reference 

adaptive controller 

d. trainbr: Bayesian regularization 

e. trainbuwb: Batch unsupervised weight/bias training 

f. trainc: Cyclical order incremental update 

g. traincgb: Powell-Beale conjugate gradient backpropagation 

h. traincgf: Fletcher-Powell conjugate gradient backpropagation 

i. traincgp: Polak-Ribiére conjugate gradient backpropagation 

j. traingd: Gradient descent backpropagation 

k. traingda: Gradient descent with adaptive learning rule backpropagation 

l. traingdm: Gradient descent with momentum backpropagation 

m. traingdx: Gradient descent with momentum and adaptive learning rule 

backpropagation 
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n. trainlm: Levenberg-Marquardt backpropagation 

o. trainoss: One step secant backpropagation 

p. trainr: Random order incremental training with learning functions 

q. trainrp: Resilient backpropagation (Rprop) 

r. trains: Sequential order incremental training with learning functions 

s. trainscg: Scaled conjugate gradient backpropagation 

5. Set the train parameters such as  

SYNTAX MEANING 

net.trainParam.epochs Maximum number of epochs to train 

net.trainParam.goal Learning rate 

net.trainParam.max_fail Maximum validation failures 

net.trainParam.mc Momentum constant 

net.trainParam.min_grad Minimum performance gradient 

net.trainParam.show Epochs between showing progress 

net.trainParam.showCommandLine Generate command-line output 

net.trainParam.showWindow Show training GUI 

net.trainParam.time Maximum time to train in seconds 

(Table 1: Syntax Definition) 

6. Train the network. net = train(net,input,target); 

7. Then analyze the output by giving the same input. 
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4.3 MATLAB PROGRAMME:  

net = newff(minmax(input),[8 12 6 1], {'logsig','logsig','logsig','logsig','purelin'}); 

net = init(net); 

net.trainFcn = 'traingdm'; 

net.trainParam.lr = 0.05; 

net.trainParam.mc = 0.9; 

net.trainParam.epochs = 210000; 

net.trainParam.show = 1000;  

net.trainParam.goal = 1e-4; 

net.trainParam.lr_inc = 1.05; 

net.trainParam.show=NaN; 

net = train(net,input,target); 

output = sim(net,input) 

net.IW{1,1}; 

net.LW{2,1}; 

net.LW{3,2}; 
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(Figure 4: GUI of MATLAB showing the Neural Network Programme) 

 
(Figure 5 training of Neural Network) 
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(Figure 6: Training of Neural Network showing Training State) 
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(Figure 8: Performance plot) 

(Figure 7: Completion of training due to Maximum epochs reached) 
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(Figure 9: Training Plot) 

 

(Figure 10: Regression Plot) 
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CHAPTER 5 

 

Experimental Model 
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5.1 Experimental Model 

The descriptions of these automotives are as follows: - 

5.1.1 Grounded vehicle: - 

Our setup utilizes a rack and pinion control steering system as is conventionally used in regular 

passenger cars. The pinion is mounted over the shaft of the stepper motor.                                                                

The stepper motor is controlled by an ECU (Electronic Control Unit) whose output is the angle 

of rotation of the pinion. The ECU is feed with the digital signal from an Atmega 32 whose basic 

purpose is to accept the analog signals from the proximity sensors.  

The Atmega 32 uses neural network based code to process the analog signals and sends the 

output signal, steering angle to ECU. 

 

(Figure 11: Schematic representation of grounded vehicle with INS) 
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Proximity Sensor: This sensor uses ultrasonic waves to detect objects. Its range is 6”-254”.It is 

programmed to detect objects around the vehicle and to give an analog signal which is fed to the 

Atmega 32. 

Stepper motor: A stepper motor (or step motor) is a brushless, electric motor that can divide a 

full rotation into a large number of steps. The motor's position can be controlled precisely 

without any feedback mechanism, as long as the motor is carefully sized to the application. 

Stepper motors are similar to switched reluctance motor.  

 

(Figure 12 Hardware arrangements on REVAi)          (Figure 13: AB pedal control assembly) 

The grounded prototype was developed by modifying a REVAi.  REVAi is an electric car, 

whose compact build and light weight make it an ideal choice for the prototype. Its specifications 

are as follows: 

Integrated Power System Motor: High torque (52 Nm), AC Induction motor, 3 phase 13 kW 

peak Controller: 350 Amp microprocessor based with regenerative braking 

Charger: 220 V, 2.2 kW, high Frequency switch mode type (optional 100-120V)  

EMS: Microprocessor-based battery management system Power Pack: 48 V, 200 Amp-hr, EV 

lead acid batteries. 
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REVAi Dimensions  

Length: 2638 mm 

Width: 1324 mm 

Height: 1510 mm 

Ground Clearance: 150 mm 

Turning Radius: 3503 mm 

Curb Weight: 700 kg  

The hardware control consisted of a chain drive system driven by a wiper motor to control the 

steering gear, servo motors to control accelerator and brake actuators. Use of servo motors 

provides high degree of accuracy in control which is critical in these actuators. A DC gear motor 

with Max Torque ≥ 120Nm is necessary for steering control. 

5.1.2 Aerial Automotive (Quadrotor): - 

(Figure 14: Developed Aerial Prototype- Quardrotor) 
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(Figure 15: Brushless out runner DC Motor        (Figure 16: Altitude Flight 

 with ESC)                                                     Stabilization System with Receiver) 

In this aerial automotive we have used 4 stepper motors, 4 ESCs, 1 AFSS, 1 Li-Po 30C 3s 11.1V 

battery, 1 Pair receiver and transmitter. 

AFSS (Altitude Flight Stabilization System): - The FY90Q Pro which is used here is a 3 axis 

gyro and accelerometer which can detect the deviation of its 4 sides from the horizontal plane 

and send signals accordingly to minimize the deviation. 

ESC (Electronic Speed Controller): - This aerial automotive uses 20A ESCs to control the speed 

of stepper motor according to throttle position of transmitter.  

Li-Po Battery: - The battery used was POWER HD 305C 5000Mah 3S battery. 

Stepper Motor: - 4 brushless DC stepper motor was used to provide thrust to the aerial 

automotive each having a thrust capacity of 700 gms. 
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Chapter 6 

 

Results and Discussion  
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6 Results and Discussion: 

Following the theoretical analysis of neural network model the navigation mechanism for the 

areal and grounded vehicle have been developed. The Gradient descent with momentum back-

propagation algorithm under the neural network paradigm was developed for decision making.  

Each of the automated vehicle was controlled by taking four inputs from its environment Left 

Distance (Distance between the AGV and the nearest obstacle to its left); Right Distance 

(Distance between the AGV and the nearest obstacle to its right); Front Distance (Distance 

between the AGV and the nearest obstacle ahead of it) and Heading Angle (position of the AGV 

in relation with the target destination expressed as an angle). The output was generated after 

processing the inputs through the above mentioned neural network, which is steering angle (The 

angle to which the steering wheel of the AGV must be turned). 

Experimental data sets were collected by attaching sensors to a commercial vehicle driven by a 

expert driver in real time space co-ordinate. Experimental data sets include the inputs as well as 

output (steering angle). This experimental data set is used for training of the neural network 

model developed in MATLAB.  

To evaluate the performance of neural network model, simulations were conducted, maintaining 

a constant set of input data sets. The input and output training data matrices are as follows.  

input = 

0.9641818 

0.9635322 

0.9626826 

0.961733 

0.9606336 

0.9593344 

0.9578852 

0.9562362 

0.9543872 

0.9522384 

0.9498896 

0.947191 

0.9441428 

0.9407446 

0.9367968 

0.9323492 

0.927252 

0.914609 

0.8976184 

0.9642816 

0.963632 

0.9628824 

0.961983 

0.9609336 

0.9597342 

0.958385 

0.9568858 

0.9551368 

0.9531878 

0.950939 

0.9484404 

0.945592 

0.9423938 

0.9387458 

0.934548 

0.9297506 

0.9179072 

0.901966 

0.9643316 

0.963732 

0.9629824 

0.9621328 

0.9611334 

0.959984 

0.9586348 

[0.9571856 

0.9554866 

0.9535876 

0.9514888 

0.94904 

0.9463416 

0.9431932 

0.9396952 

0.9356474 

0.931 

0.9195562 

0.9040648 

0.9643816 

0.963782 

0.9631324 

0.9622328 

0.9612834 

0.960184 

0.9589346 

0.9574854 

0.9558864 

0.9540374 

0.9519884 

0.9496398 
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0.9470412 

0.9440428 

0.9405948 

0.9366968 

0.9322492 

0.9211554 

0.9061636 

0.9644316 

0.9639318 

0.9632322 

0.9624826 

0.9615832 

0.9605838 

0.9593844 

0.958085 

0.956586 

0.9548868 

0.9529878 

0.950839 

0.9483904 

0.945592 

0.9423938 

0.9387958 

0.934648 

0.9243036 

0.9102614 

0.9645316 

0.9640318 

0.9634322 

0.9627326 

0.961883 

0.9609336 

0.9598842 

0.9586348 

0.9572856 

0.9556864 

0.9539374 

0.9519384 

0.9496898 

0.9470912 

0.9441428 

0.9407946 

0.9369468 

0.927352 

0.9142592 

0.9645816 

0.9641318 

0.963582 

0.9629324 

0.9621828 

0.9612834 

0.9603338 

0.9591844 

0.9579352 

0.956486 

0.9548368 

0.9530378 

0.950939 

0.9485404 

0.9458418 

0.9427436 

0.9391456 

0.9302504 

0.918157 

0.9646814 

0.9642816 

0.963732 

0.9631324 

0.9624328 

0.9616332 

0.9607336 

0.9597342 

0.9585348 

0.9572356 

0.9557364 

0.9540374 

0.9521384 

0.9499396 

0.947441 

0.9445926 

0.9412944 

0.9330988 

0.921855 

0.9647314 

0.9643316 

0.963832 

0.9632322 

0.9625826 

0.961833 

0.9609336 

0.959984 

0.9588346 

0.9575854 

0.9561862 

0.954537 

0.952688 

0.9506392 

0.9482406 

0.945492 

0.9423438 

0.934448 

0.923704 

0.9647314 

0.9643816 

0.963882 

0.9633322 

0.9627326 

0.961983 

0.9611834 

0.960234 

0.9591346 

0.9579352 

0.956586 

0.9550368 

0.9532878 

0.9512888 

0.94899 

0.9463916 

0.9433432 

0.9357974 

0.925453 

0.9648314 

0.9644816 

0.9640318 

0.9635322 

0.9629824 

0.9622828 

0.9615332 

0.9606836 

0.9597342 

0.9586348 

0.9573854 

0.9559862 

0.9543872 

0.9525382 

0.9504394 

0.9480906 

0.9452922 

0.938396 

0.9289012 

0.9648814 

0.9645816 

0.9641818 

0.963732 

0.9631822 

0.9625826 

0.961933 

0.9611334 

0.9602838 

0.9592844 

0.958135 

0.9568858 

0.9554366 

0.9537374 

0.9518386 

0.9496898 

0.947191 

0.9408946 

0.9321994 

0.9649314 

0.9646316 

0.9642816 

0.963882 

0.9634322 

0.9628824 

0.9622828 

0.9615832 

0.9607836 

0.9598842 

0.9588846 

0.9577352 

0.956386 

0.9548868 

0.9531878 

0.9512388 

0.9489402 

0.9432432 

0.9353476 

0.9649814 

0.9647314 

0.9644316 

0.9640818 

0.963632 

0.9631324 

0.9625826 

0.961983 

0.9612834 

0.9604338 

0.9595344 

0.9584848 

0.9573356 

0.9559862 

0.9544372 

0.952688 

0.9506392 

0.945492 

0.938346 

0.9650312 

0.9647814 

0.9644816 

0.9641318 

0.963732 

0.9632822 

0.9627826 

0.9621828 

0.9614832 

0.9607336 

0.9598842 

0.9588846 

0.9577852 

0.956486 

0.9550368 

0.9533378 

0.9514388 

0.9465414 

0.9397952 

0.9650312 

0.9648314 

0.9645316 

0.9642318 

0.963832 

0.9633822 

0.9629324 

0.9623328 

0.961733 

0.9609836 

0.960184 

0.9592344 

0.958185 

0.9569858 

0.9556364 

0.9540374 

0.9521884 

0.9475908 

0.9411944 

0.9650812 

0.9648814 

0.9646316 

0.9643316 

0.9640318 

0.963632 

0.9631822 

0.9627326 

0.9621328 

0.9614832 

0.9607836 

0.959934 

0.9590346 

0.9579352 

0.9567358 

0.9552866 

0.9536876 

0.9495398 

0.943843 

0.9651312 

0.9649314 

0.9647314 

0.9644816 

0.9641818 

0.963832 

0.9634822 

0.9630324 

0.9625326 

0.961983 

0.9613334 

0.9605838 

0.9597842 

0.9588346 

0.9577352 

0.956486 

0.9550368 

0.9514388 

0.9463416 

0.9651812 

0.9650312 

0.9648314 

0.9646316 

0.9643316 

0.9640818 

0.963732 

0.9633322 

0.9628824 

0.9623828 

0.961833 

0.9612334 

0.9604838 

0.9596342 

0.9586848 

0.9575854 

0.956336 

0.9531378 

0.9486902 

0.9652312 

0.9650812 

0.9649314 

0.9647314 

0.9644816 

0.9642318 

0.9639318 

0.963632 

0.9632322 

0.9627826 

0.9623328 

0.961783 

0.9611334 

0.9604338 

0.9595842 

0.9586348 

0.9575354 

0.954737 

0.950839 

0.9652312 

0.9650812 

0.9649314 

0.9647814 

0.9645816 

0.9643316 

0.9640818 

0.963732 

0.9633822 

0.9629824 

0.9625326 
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0.962033 

0.9614332 

0.9607836 

0.959984 

0.9590846 

0.958085 

0.9554866 

0.9518386 

0.9652312 

0.9651312 

0.9649814 

0.9648314 

0.9646316 

0.9644316 

0.9641818 

0.963882 

0.9635322 

0.9631822 

0.9627326 

0.9622828 

0.961733 

0.9610834 

0.9603838 

0.9595842 

0.9585848 

0.9561862 

0.952788 

0.9652812 

0.9651812 

0.9650812 

0.9649314 

0.9647314 

0.9645816 

0.9643316 

0.9640818 

0.963832 

0.9634822 

0.9631324 

0.9627326 

0.9622828 

0.961733 

0.9611334 

0.9604338 

0.9595842 

0.9575354 

0.954587 

0.9653312 

0.9652312 

0.9651312 

0.9649814 

0.9648814 

0.9646814 

0.9645316 

0.9643316 

0.9640818 

0.963782 

0.9634822 

0.9631324 

0.9627326 

0.9622828 

0.961783 

0.9611834 

0.9604838 

0.9587348 

0.9562362 

0.9653312 

0.9652812 

0.9651812 

0.9650812 

0.9649814 

0.9648314 

0.9646814 

0.9644816 

0.9642816 

0.9640818 

0.963832 

0.9635322 

0.9631822 

0.9628324 

0.9623828 

0.961883 

0.9612834 

0.9597842 

0.9577352 

0.9653312 

0.9652812 

0.9652312 

0.9651312 

0.9650312 

0.9649314 

0.9648314 

0.9646814 

0.9644816 

0.9643316 

0.9640818 

0.963832 

0.963582 

0.9632822 

0.9628824 

0.9624826 

0.961983 

0.9607836 

0.9590346 

0.965381 

0.9653312 

0.9652312 

0.9651812 

0.9650812 

0.9649814 

0.9648814 

0.9647314 

0.9645816 

0.9644316 

0.9642318 

0.9640318 

0.963782 

0.9634822 

0.9631324 

0.9627826 

0.9623328 

0.9611834 

0.9596342 

0.965381 

0.9653312 

0.9652812 

0.9651812 

0.9651312 

0.9650312 

0.9649314 

0.9648314 

0.9646814 

0.9645316 

0.9643316 

0.9641318 

0.9639318 

0.963682 

0.9633822 

0.9630324 

0.9626326 

0.9616332 

0.960184 

0.965381 

0.965381 

0.9653312 

0.9652312 

0.9651812 

0.9651312 

0.9650312 

0.9649314 

0.9648314 

0.9646814 

0.9645816 

0.9643816 

0.9642318 

0.9640318 

0.963782 

0.9634822 

0.9631822 

0.9623328 

0.9611834 

0.965431 

0.965381 

0.9653312 

0.9652812 

0.9652312 

0.9651812 

0.9651312 

0.9650312 

0.9649814 

0.9648814 

0.9647314 

0.9646316 

0.9644816 

0.9643316 

0.9641318 

0.963882 

0.963632 

0.9629824 

0.962083 

0.965431 

0.965381 

0.965381 

0.9653312 

0.9652812 

0.9652312 

0.9651812 

0.9651312 

0.9650812 

0.9649814 

0.9648814 

0.9648314 

0.9646814 

0.9645816 

0.9644316 

0.9642318 

0.9640318 

0.9635322 

0.9628324 

0.965431 

0.965431 

0.965381 

0.965381 

0.9653312 

0.9652812 

0.9652812 

0.9652312 

0.9651812 

0.9650812 

0.9650312 

0.9649814 

0.9648814 

0.9647814 

0.9646814 

0.9645316 

0.9643816 

0.9639818 

0.9634322 

0.965431 

0.965431 

0.965381 

0.965381 

0.9653312 

0.9653312 

0.9652812 

0.9652312 

0.9651812 

0.9651312 

0.9650812 

0.9650312 

0.9649314 

0.9648814 

0.9647814 

0.9646814 

0.9645316 

0.9641818 

0.963732 

0.965431 

0.965431 

0.965431 

0.965381 

0.965381 

0.9653312 

0.9653312 

0.9652812 

0.9652312 

0.9651812 

0.9651312 

0.9650812 

0.9650312 

0.9649314 

0.9648814 

0.9647814 

0.9646316 

0.9643816 

0.9639818 

0.965431 

0.965431 

0.965431 

0.965431 

0.965381 

0.965381 

0.965381 

0.9653312 

0.9652812 

0.9652812 

0.9652312 

0.9651812 

0.9651312 

0.9650812 

0.9650312 

0.9649814 

0.9648814 

0.9646814 

0.9643816 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965381 

0.965381 

0.965381 

0.9653312 

0.9653312 

0.9652812 

0.9652812 

0.9652312 

0.9651812 

0.9651812 

0.9651312 

0.9650312 

0.9649314 

0.9646814 

0.965481 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965381 

0.965381 

0.965381 

0.965381 

0.9653312 

0.9653312 

0.9652812 

0.9652812 

0.9652312 

0.9651812 

0.9650812 

0.9649314 

0.965481 

0.965481 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 
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0.965381 

0.965381 

0.965381 

0.9653312 

0.9653312 

0.9653312 

0.9652812 

0.9652312 

0.9651312 

0.965481 

0.965481 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965381 

0.965381 

0.965381 

0.965381 

0.9653312 

0.9653312 

0.9652812 

0.9652312 

0.965481 

0.965481 

0.965481 

0.965481 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965381 

0.965381 

0.965381 

0.965381 

0.9653312 

0.9652812 

0.965481 

0.965481 

0.965481 

0.965481 

0.965481 

0.965481 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431 

0.965431; 

3.021877 

3.020101 

3.017974 

3.015496 

3.012618 

3.00934 

3.005637 

3.001458 

2.996778 

2.991498 

2.985592 

2.978986 

2.971553 

2.963245 

2.953886 

2.943351 

2.931514 

2.903011 

2.866476 

3.022703 

3.021377 

3.0198 

3.017924 

3.015771 

3.013319 

3.010541 

3.007388 

3.00386 

2.999906 

2.995452 

2.990447 

2.984816 

2.97851 

2.971378 

2.963345 

2.954286 

2.93234 

2.903912 

3.023054 

3.021953 

3.020601 

3.019025 

3.017173 

3.015096 

3.012719 

3.010041 

3.007038 

3.00366 

2.999856 

2.995577 

2.990772 

2.985367 

2.979261 

2.972354 

2.964572 

2.945628 

2.921004 

3.023404 

3.022478 

3.021327 

3.020001 

3.018474 

3.016722 

3.01472 

3.012493 

3.009941 

3.007113 

3.00391 

3.000306 

2.996252 

2.991673 

2.986518 

2.980687 

2.974081 

2.95799 

2.936945 

3.024005 

3.023379 

3.022628 

3.021727 

3.020701 

3.019525 

3.018199 

3.016697 

3.014996 

3.013094 

3.010942 

3.008514 

3.005787 

3.002709 

2.999205 

2.995251 

2.990747 

2.979711 

2.965172 

3.02448 

3.024105 

3.023629 

3.023104 

3.022478 

3.021777 

3.020952 

3.020051 

3.019025 

3.017849 

3.016547 

3.015071 

3.013394 

3.011517 

3.009365 

3.006938 

3.00416 

2.997328 

2.988245 

3.024805 

3.024605 

3.02438 

3.024105 

3.023779 

3.023429 

3.023004 

3.022528 

3.022003 

3.021402 

3.020726 

3.019951 

3.0191 

3.018099 

3.016998 

3.015721 

3.014245 

3.010667 

3.005837 

3.025031 

3.024955 

3.02488 

3.02478 

3.024655 

3.024505 

3.024355 

3.02418 

3.023979 

3.023754 

3.023479 

3.023204 

3.022853 

3.022478 

3.022053 

3.021577 

3.021027 

3.019625 

3.017748 

3.025106 

3.025081 

3.025031 

3.02498 

3.02493 

3.024855 

3.02478 

3.024705 

3.024605 

3.02448 

3.024355 

3.02423 

3.024055 

3.023879 

3.023679 

3.023429 

3.023179 

3.022503 

3.021577 

3.025156 

3.025156 

3.025131 

3.025106 

3.025081 

3.025081 

3.025031 

3.025005 

3.02498 

3.024955 

3.024905 

3.02488 

3.02483 

3.024755 

3.024705 

3.02463 

3.02453 

3.024305 

3.02403 

3.025181 

3.025156 

3.025156 

3.025156 

3.025156 

3.025156 

3.025156 

3.025131 

3.025131 

3.025131 

3.025106 

3.025106 

3.025081 

3.025081 

3.025056 

3.025031 

3.025005 

3.024955 

3.02488 

3.025081 

3.025056 

3.025005 

3.024955 

3.02488 

3.024805 

3.024705 

3.024605 

3.02448 

3.024355 

3.024205 

3.024055 

3.023854 

3.023629 

3.023379 

3.023104 

3.022778 

3.021953 

3.020826 

3.024955 

3.02483 

3.02468 

3.024505 

3.024305 

3.02408 

3.023829 

3.023529 

3.023204 

3.022828 

3.022403 

3.021902 

3.021352 

3.020726 

3.020001 

3.019175 

3.018224 

3.015872 

3.012593 

3.02473 

3.024505 

3.024255 

3.023904 

3.023529 

3.023104 

3.022603 

3.022028 

3.021377 

3.020676 

3.01985 

3.018925 

3.017874 
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3.016672 

3.015296 

3.013719 

3.011893 

3.007363 

3.001107 

3.02463 

3.02433 

3.023954 

3.023554 

3.023054 

3.022503 

3.021877 

3.021152 

3.020351 

3.019425 

3.018374 

3.017198 

3.015847 

3.01432 

3.012568 

3.010541 

3.008239 

3.002433 

2.994476 

3.02453 

3.02413 

3.023679 

3.023179 

3.022578 

3.021902 

3.021127 

3.020226 

3.019225 

3.018099 

3.016797 

3.015346 

3.013694 

3.011793 

3.009641 

3.007163 

3.00431 

2.997178 

2.987394 

3.024255 

3.023729 

3.023104 

3.022403 

3.021552 

3.020601 

3.0195 

3.018274 

3.016848 

3.015271 

3.013469 

3.011442 

3.009115 

3.006487 

3.003459 

3.000031 

2.996052 

2.986093 

2.972479 

3.023929 

3.023279 

3.022503 

3.021577 

3.020501 

3.019275 

3.017849 

3.016247 

3.014445 

3.012393 

3.010091 

3.007463 

3.00446 

3.001082 

2.997178 

2.992749 

2.987644 

2.974857 

2.95739 

3.023654 

3.022878 

3.021953 

3.020801 

3.019475 

3.017974 

3.016272 

3.014345 

3.012118 

3.009641 

3.006838 

3.003635 

3.000006 

2.995877 

2.991172 

2.985792 

2.979586 

2.964121 

2.943 

3.023454 

3.022553 

3.021402 

3.020076 

3.018574 

3.016797 

3.014821 

3.012593 

3.010041 

3.007138 

3.003885 

3.000181 

2.995977 

2.991223 

2.985742 

2.979511 

2.972354 

2.954462 

2.930088 

3.023354 

3.022378 

3.021202 

3.019775 

3.018174 

3.016322 

3.01422 

3.011818 

3.00909 

3.006037 

3.002584 

2.998655 

2.9942 

2.989146 

2.983365 

2.976733 

2.969151 

2.950208 

2.924357 

3.023279 

3.022178 

3.020977 

3.019475 

3.017773 

3.015847 

3.013644 

3.011142 

3.008289 

3.005061 

3.001407 

2.997278 

2.992599 

2.987269 

2.981188 

2.974256 

2.966273 

2.946354 

2.919252 

3.023129 

3.021978 

3.020651 

3.019025 

3.017223 

3.015121 

3.012719 

3.009991 

3.006963 

3.003459 

2.999531 

2.995101 

2.990021 

2.984291 

2.977734 

2.970227 

2.961619 

2.940148 

2.910969 

3.022928 

3.021852 

3.020401 

3.018774 

3.016848 

3.014645 

3.012143 

3.00929 

3.006087 

3.002433 

2.998329 

2.993675 

2.98837 

2.982339 

2.975482 

2.967625 

2.958616 

2.936119 

2.905514 

3.022928 

3.021777 

3.020301 

3.018674 

3.016672 

3.014445 

3.011893 

3.009015 

3.005712 

3.002008 

2.997829 

2.993074 

2.987669 

2.981538 

2.974531 

2.966523 

2.957339 

2.934342 

2.903087 

3.023004 

3.021777 

3.020376 

3.018699 

3.016747 

3.01452 

3.012018 

3.009115 

3.005887 

3.002183 

2.998029 

2.9933 

2.987944 

2.981863 

2.974907 

2.966899 

2.957765 

2.934868 

2.903612 

3.023079 

3.021852 

3.020451 

3.018799 

3.016873 

3.01467 

3.012193 

3.00934 

3.006162 

3.002509 

2.998405 

2.9937 

2.98842 

2.982439 

2.975557 

2.967675 

2.958616 

2.935969 

2.905038 

3.023079 

3.021852 

3.020601 

3.018925 

3.017048 

3.014896 

3.012468 

3.009666 

3.006512 

3.002959 

2.99893 

2.994351 

2.989146 

2.98324 

2.976483 

2.968751 

2.959867 

2.93757 

2.907141 

3.023204 

3.022103 

3.020751 

3.019325 

3.017548 

3.015471 

3.013194 

3.010566 

3.007614 

3.004235 

3.000457 

2.996102 

2.991198 

2.985617 

2.979236 

2.971904 

2.96347 

2.942325 

2.913246 

3.023204 

3.022378 

3.021277 

3.01975 

3.018199 

3.016322 

3.014195 

3.011793 

3.009015 

3.005962 

3.002433 

2.998482.994 

2.988795 

2.982939 

2.976208 

2.968325 

2.948731 

2.921805 

3.023729 

3.022678 

3.021602 

3.020351 

3.0189 

3.017273 

3.015346 

3.013244 

3.010792 

3.008014 

3.004886 

3.001357 

2.997278 
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2.992674 

2.987394 

2.981313 

2.974306 

2.956614 

2.93219 

3.023704 

3.023004 

3.022053 

3.020977 

3.019775 

3.018299 

3.016647 

3.014796 

3.012693 

3.010291 

3.007589 

3.00446 

3.000957 

2.996953 

2.992374 

2.987018 

2.980938 

2.965447 

2.944001 

3.023929 

3.023179 

3.022353 

3.021327 

3.020226 

3.018875 

3.017348    

3.015646 

3.013694 

3.011492 

3.008965 

3.006137 

3.002884 

2.999205 

2.994951 

2.990046 

2.984341 

2.970127 

2.950182 

3.024055 

3.023354 

3.022603 

3.021677 

3.020576 

3.019425 

3.018049 

3.016522 

3.01472 

3.012693 

3.010416 

3.007764 

3.004836 

3.001432 

2.997554 

2.993074 

2.987894 

2.974781 

2.956439 

3.02428 

3.023754 

3.023029 

3.022328 

3.021527 

3.020501 

3.0194 

3.018099 

3.016722 

3.015046 

3.013194 

3.011067 

3.00864 

3.005937 

3.002759 

2.99908 

2.994851 

2.984141 

2.969151 

3.024405 

3.023954 

3.023479 

3.022953 

3.022303 

3.021502 

3.020726 

3.019725 

3.018549 

3.017323 

3.015822 

3.01417 

3.012318 

3.010191 

3.007664 

3.004836 

3.001533 

2.993099 

2.981288 

3.024605 

3.02428 

3.024005 

3.023554 

3.023029 

3.022453 

3.021827 

3.021102 

3.020276 

3.019375 

3.018224 

3.017023 

3.015621 

3.01402 

3.012168 

3.010041 

3.007589 

3.001307 

2.992499 

3.02473 

3.02463 

3.024355 

3.023979 

3.023704 

3.023304 

3.022828 

3.022328 

3.021727 

3.021077 

3.020326 

3.01945 

3.018449 

3.017348 

3.016047 

3.014545 

3.012819 

3.008414 

3.002133 

3.024905 

3.024655 

3.024455 

3.024205 

3.023929 

3.023604 

3.023254 

3.022803 

3.022353 

3.021827 

3.021202 

3.020501 

3.0197 

3.018749 

3.017723 

3.016497 

3.015046 

3.011492 

3.006387 

3.024905 

3.02483 

3.02463 

3.02443 

3.024205 

3.023954 

3.023629 

3.023304 

3.022903 

3.022478 

3.021978 

3.021402 

3.020776 

3.020101 

3.019225 

3.018199 

3.017048 

3.01417 

3.010091 

3.025081 

3.02493 

3.02483 

3.02473 

3.024605 

3.024405 

3.024255 

3.024055 

3.023854 

3.023579 

3.023254 

3.022953 

3.022553 

3.022078 

3.021577; 

8.462978 

8.458799 

8.453994 

8.448214 

8.441557 

8.43405 

8.425566 

8.416132 

8.405397 

8.39356 

8.380297 

8.365333 

8.349067 

8.330924 

8.310579 

8.287982 

8.262783 

8.2036 

8.130328 

8.466306 

8.463754 

8.461001 

8.457698 

8.453969 

8.44964 

8.444685 

8.43918 

8.432899 

8.425867 

8.418309 

8.409676 

8.399891 

8.389081 

8.377119 

8.363556 

8.348141 

8.312181 

8.266686 

8.467582 

8.465931 

8.463729 

8.461376 

8.458799 

8.455571 

8.452292 

8.448339 

8.443809 

8.438854 

8.433374 

8.427218 

8.420111 

8.412579 

8.40387 

8.394061 

8.38305 

8.356674 

8.323041 

8.468458 

8.467507 

8.466181 

8.464579 

8.462853 

8.460676 

8.458524 

8.455696 

8.452918 

8.44964 

8.445811 

8.441782 

8.437153 

8.431898 

8.425867 

8.419235 

8.412053 

8.394061 

8.370788 

8.470035 

8.46976 

8.469284 

8.468683 

8.468358 

8.467582 

8.466982 

8.466181 

8.46528 

8.464279 

8.463153 

8.461827 

8.460325 

8.458799 

8.456972 

8.45487 

8.452443 

8.446537 

8.43918 

8.470685 

8.470685 

8.47051 

8.47051 

8.47051 

8.47051 

8.47051 

8.47051 

8.470335 

8.470335 

8.470335 

8.470185 

8.470185 

8.470035 

8.470035 

8.46991 

8.46976 

8.469509 

8.469159 

8.47051 

8.470335 

8.470335 

8.470185 

8.470035 

8.46991 

8.46976 

8.469509 

8.469284 

8.469059 

8.468533 

8.468358 

8.468008 

8.467582 

8.467057 

8.466506 
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8.465806 

8.464229 

8.462027 

8.46976 

8.469284 

8.468683 

8.468183 

8.467507 

8.466631 

8.46563 

8.464579 

8.463153 

8.461902 

8.460325 

8.458524 

8.456271 

8.454019 

8.451317 

8.448464 

8.444935 

8.436052 

8.42444 

8.469284 

8.468483 

8.467833 

8.466707 

8.46563 

8.464329 

8.462678 

8.461001 

8.458949 

8.456647 

8.454344 

8.451542 

8.448214 

8.44456 

8.440306 

8.435576 

8.430046 

8.416382 

8.397739 

8.468633 

8.467833 

8.466631 

8.46523 

8.463378 

8.461476 

8.459525 

8.456997 

8.454344 

8.451216 

8.447688 

8.443659 

8.438904 

8.433925 

8.427919 

8.421237    

8.41363 

8.394236 

8.367735 

8.467582 

8.466056 

8.464179 

8.461902 

8.459174 

8.456196 

8.452743 

8.448789 

8.44436 

8.439205 

8.433599 

8.427218 

8.419986 

8.411603 

8.402169 

8.391333 

8.378921 

8.347866 

8.305674 

8.466631 

8.464479 

8.461902 

8.458799 

8.45502 

8.451116 

8.446312 

8.441182 

8.435176 

8.428519 

8.420862 

8.412278 

8.402269 

8.391508 

8.378771 

8.364332 

8.347791 

8.30655 

8.250671 

8.465931 

8.463153 

8.460225 

8.456396 

8.452292 

8.447463 

8.441982 

8.435751 

8.428669 

8.420812 

8.411828 

8.401243 

8.390057 

8.376919 

8.362054 

8.344963 

8.325569 

8.277297 

8.212333 

8.465505 

8.462678 

8.459424 

8.455295 

8.450916 

8.445761 

8.439905 

8.433074 

8.425566 

8.417083 

8.407499 

8.396538 

8.384201 

8.370187 

8.354347 

8.336179 

8.315509 

8.264359 

8.195742 

8.465505 

8.462678 

8.459424 

8.455295 

8.450916 

8.445586 

8.439705 

8.433074 

8.425491 

8.416933 

8.407249 

8.396463 

8.384151 

8.370187 

8.354222 

8.336179 

8.315509 

8.264409 

8.196118 

8.465505 

8.462853 

8.459625 

8.455571 

8.451317 

8.446187 

8.440306 

8.433824 

8.426317 

8.418059 

8.40855 

8.39799 

8.385853 

8.372239 

8.356674 

8.339007 

8.318737 

8.268864 

8.202048 

8.466306 

8.463704 

8.460676 

8.457247 

8.453268 

8.448664 

8.443259 

8.437328 

8.430847 

8.423314 

8.415006 

8.405397 

8.394461 

8.382099 

8.368336 

8.352445 

8.334277 

8.289509 

8.229725 

8.466982 

8.464955 

8.462552 

8.45975 

8.456371 

8.452743 

8.448464 

8.443734 

8.438304 

8.432123 

8.425166 

8.417433 

8.40855 

8.39859 

8.387254 

8.374091 

8.359477 

8.322816 

8.273843 

8.467858 

8.466631 

8.464604 

8.462678 

8.460325 

8.457698 

8.454445 

8.451216 

8.447188 

8.442758 

8.437553 

8.432123 

8.425641 

8.418635 

8.410352 

8.400742 

8.390057 

8.363556 

8.327746 

8.469159 

8.468183 

8.467132 

8.465931 

8.464529 

8.462853 

8.460926 

8.458799 

8.456221 

8.453719 

8.450641 

8.447188 

8.443259 

8.438854 

8.433824 

8.427919 

8.421537 

8.405121 

8.382374 

8.469509 

8.468809 

8.468183 

8.467282 

8.466306 

8.465005 

8.463704 

8.462227 

8.4605 

8.458674 

8.456246 

8.454019 

8.451317 

8.448038 

8.44456 

8.440306 

8.435576 

8.424015 

8.4084 

8.46991 

8.469509 

8.469059 

8.468458 

8.467833 

8.467132 

8.466306 

8.46528 

8.464229 

8.462978 

8.461351 

8.46005 

8.458223 

8.456196 

8.453719 

8.451216 

8.448214 

8.440631 

8.430346 

8.47051 

8.47051 

8.470335 

8.470185 

8.470035 

8.46991 

8.46976 

8.469509 

8.469284 

8.468759 

8.468458 

8.468358 

8.467833 

8.467507 

8.466982 

8.466306       

8.46563 

8.464029 

8.461752 

8.470685 

8.470685 

8.470685 

8.470685 

8.470685 

8.470685 

8.470685 

8.470685 

8.470685 

8.470685 

8.47051 

8.47051 

8.47051 

8.47051 

8.47051 
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8.47051 

8.47051 

8.47051 

8.470335 

8.470335 

8.470185 

8.470035 

8.46976 

8.469509 

8.469159 

8.468708 

8.468458 

8.468083 

8.467582 

8.466982 

8.466306 

8.465505 

8.464655 

8.463729 

8.462678 

8.461426 

8.458373 

8.454244 

8.46976 

8.469159 

8.468458 

8.467582 

8.466732 

8.465806 

8.464579 

8.463203 

8.461602 

8.46005 

8.458073 

8.455896 

8.453444 

8.450616 

8.447413 

8.443784 

8.43963 

8.42937 

8.415457 

8.469184 

8.468458 

8.467582 

8.466181 

8.464855 

8.463604 

8.461526 

8.459625 

8.457372 

8.45497 

8.452017 

8.448789 

8.445161 

8.441006 

8.436377 

8.431097 

8.424841 

8.409751 

8.389231 

8.468809 

8.467833 

8.466131 

8.464479 

8.462853 

8.460651 

8.458173 

8.455496 

8.452468 

8.449039 

8.445186 

8.440806 

8.435876 

8.430196 

8.42384 

8.416608 

8.40835 

8.387479 

8.360153 

8.467682 

8.466056 

8.463654 

8.460901 

8.458198 

8.45477 

8.450966 

8.446687 

8.441832 

8.436402 

8.430096 

8.423089 

8.415306 

8.406598 

8.396313 

8.384802 

8.372114 

8.339457 

8.296616 

8.466406 

8.464179 

8.460776 

8.457297 

8.453268 

8.448889 

8.443609 

8.437678 

8.431122 

8.423865 

8.415306 

8.405822 

8.394811 

8.382775 

8.369312 

8.353446 

8.334928 

8.291961 

8.232403 

8.465455 

8.462277 

8.458223 

8.454069 

8.449164 

8.443609 

8.437303 

8.429971 

8.421663 

8.412679 

8.401568 

8.389781 

8.376519 

8.362605 

8.344462 

8.325769 

8.303723 

8.25032 

8.177224 

8.46523 

8.461001 

8.456997 

8.451817 

8.446412 

8.43953 

8.432698 

8.42419 

8.414856 

8.404846 

8.392509 

8.379697 

8.363331 

8.346414 

8.327496 

8.306 8.28065 

8.219265 

8.134207 

8.464429 

8.461276 

8.456922 

8.451091 

8.445836 

8.439055 

8.430872 

8.422614 

8.413204 

8.402419 

8.389706 

8.375593 

8.359577 

8.342635 

8.320939 

8.299594 

8.272667 

8.207354 

8.122195 

8.464104 

8.460751 

8.455971 

8.450566 

8.445161 

8.437953 

8.430421 

8.421412 

8.412904 

8.400767 

8.389006 

8.372815 

8.357925 

8.342385 

8.320063 

8.298217 

8.27044 

8.202849 

8.114363 

8.46548 

8.461201 

8.456822 

8.452067 

8.445361 

8.43933 

8.432323 

8.423965 

8.414631 

8.403195 

8.390357 

8.376168 

8.359152 

8.339733 

8.324167 

8.299819 

8.273443 

8.206953 

8.111985 

8.466506 

8.462402 

8.457573 

8.453369 

8.448339 

8.442458 

8.435726 

8.428419 

8.41906 

8.408174 

8.396263 

8.382224 

8.365908 

8.352395 

8.334227 

8.310129 

8.285255 

8.221242 

8.142165 

8.466732 

8.463629 

8.4603 

8.456697 

8.452968 

8.444835 

8.43928 

8.433049 

8.425667 

8.416758 

8.407349 

8.395662 

8.382925 

8.36736 

8.350894  

8.331099 

8.308127 

8.254449 

8.187859 

8.468083 

8.465881 

8.463053 

8.459199 

8.45522 

8.452393 

8.446587 

8.442658 

8.438004 

8.427744 

8.426217 

8.414806 

8.399041 

8.396938 

8.378971 

8.355023 

8.350793 

8.31168 

8.256001 

8.466832 

8.465555 

8.463478 

8.4603 

8.456747 

8.453894 

8.453043 

8.44491 

8.443684 

8.433499 

8.425817 

8.41906 

8.415957 

8.39804 

8.394436 

8.37279 

8.366534 

8.33145 

8.28533 

8.468984 

8.467557 

8.465981 

8.464604 

8.460075 

8.459199 

8.452318 

8.450966 

8.448714 

8.439255 

8.436777 

8.432398 

8.420261 

8.415757 

8.40915 

8.389556 

8.382199 

8.345038 

8.318937 

8.46991 

8.468859 

8.466581 

8.465731 

8.464504 

8.463253 

8.461627 

8.458048 

8.452718 

8.45014 

8.447012 

8.443759 

8.43973 

8.435051 

8.429745 
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8.42364 

8.416458; 

1.406949757 

1.587584249 

1.747647304 

1.876352901 

1.989234575 

2.093322907 

2.185945383 

2.271935887 

2.351751677 

2.429188946 

2.500674666 

2.570672625 

2.63820003 

2.703051203 

2.768161966 

2.83156995 

2.89466026 

3.021061474 

3.149309966 

0.649232213 

0.84262147 

0.992341886 

1.123363847 

1.23895942 

1.341388422 

1.433642806 

1.51744294 

1.598177139 

1.673562838 

1.746938254 

1.816161794 

1.883628393 

1.948737538 

2.0128309 

2.076559256 

2.139579383 

2.264889806 

2.391678773 

0.358473952 

0.546965771 

0.704891618 

0.833642282 

0.948407146 

1.051156383 

1.146865709 

1.230770436 

1.312052257 

1.387909778 

1.458599327 

1.528777138 

1.59498226 

1.661225755 

1.724642571 

1.788039408 

1.850936485 

1.975415769 

2.101598963 

0.087119892 

0.280841872 

0.424713274 

0.567346026 

0.679947558 

0.781638997 

0.873860373 

3.076075822 

1.040428271 

1.117052436 

1.188549681 

1.258233925 

1.324037452 

1.389258251 

1.453720641 

1.516506023 

1.57834301 

1.702125044 

1.826657662 

-0.481532256 

-0.308241059 

-0.14081317 -

0.014678227 

0.098931545 

0.198379655 

0.294011191 

0.377457426 

0.456900069 

0.53174516 

0.602332968 

0.669911652 

0.735652066 

0.799518367 

0.861960074 

0.922225498 

0.981929544 

1.099530096 

1.215309935 

-3.310495974 

-2.771926769 

-2.839789962 

-2.336117199 

-.184398413 -

2.032696009 

-1.788247441 

-1.590975282 

-1.448813587 

-1.289231935 

-1.143146457 

-0.992821273 

-0.860855744 

-0.724416864 

-0.590495468 

-0.463844982 

-0.334675722 

-0.077475443 

0.187281229 

-0.889373595 

-0.707456636 

-0.554092675 

-0.42154956 -

0.307527017 

-0.200136751 

-0.109777897 

-0.020302925 

0.061134559 

0.140058746 

0.215810929 

0.286831992 

0.358106626 

0.428295356 

0.496760046 

0.565326471 

0.634879235 

0.774999822 

0.92165043 -

0.77139281   -

0.58820863 -

0.418936665 

-0.287926542 

-0.172354082 

-0.068979695 

0.024334172 

0.108753718 

0.192693431 

0.269055293 

0.343473585 

0.41519378 

0.484018525 

0.552689261 

0.620140533 

0.686861758 

0.754064116 

0.889400038 

1.030563293 

-0.76190319 -

0.567673331 

-0.406307969 

-0.267459972 

-0.155152931 

-0.053338253 

0.043961623 

0.127993544 

0.212018383 

0.288481294 

0.360919296 

0.433642326 

0.50339569 

0.569962676 

0.637423279 

0.704303866 

0.770829192 

0.905855059 

1.045093642 

-0.736237803 

-0.561584557 

-0.39347504 -

0.261905979 

-0.153070684 

-0.046179202 

0.044914707 

0.133114306 

0.217096065 

0.293748496 

0.366644438 

0.437913155 

0.506891126 

0.574799 

0.642014758 

0.707912112 

0.775010613 

0.908994935 

1.047894123 

-0.773903756 

-0.577317928 

-0.409806302 

-0.277603606 

-0.277757365 

-0.057982318 

0.035289621 

0.121157205 

0.200857335 

0.278212911 

0.352312594 

0.420979015 

0.491944798 

0.560529385 

0.627541075 

0.692530818 

0.759580826 

0.892659931 

1.030659216 

-0.79999375 -

0.538519332 

-0.447434956 

-0.314670992 

-0.193306505 

-0.090484942 

-0.0010965 

0.088548561 

0.1671424 

0.244800681 

0.319951745 

0.389297948 

0.458317486 

0.527627066 

0.594277055 

0.659491106 

0.725177692 

0.858386371 

0.996304413 

-0.838704486 

-0.637503577 

-0.481792016 

-0.352753404 

-0.242713698 

-0.136952796 

-0.04511998 

0.042161101 

0.124385528 

0.201681098 

0.274249781 

0.345076387 

0.416068393 

0.483623522 

0.549590022 

0.614987017 

0.68169294 

0.814328519 

0.951858893 

-0.887052657 

-0.697936528 

-0.544833576 

-0.415673865 

-0.290893269 

-0.18502803 -

0.091729393 

-0.008661155 

0.071679167 

0.153086773 

0.225391997 

0.297094009 

0.364274197 

0.431992232 

0.49886761 

0.56410929 

0.630111243 

0.763053815 

0.900706401 

-0.939384495 

-0.732465259 

-0.569655288 

-0.434400319 

-0.318236295 

-0.216735547 

-0.128105957 

-0.037133145 

0.047657968 

0.123422032 

0.195990375 

0.268472895 

0.336475144 

0.405444206 

0.47142682 

0.538206892 

0.602736421 

0.736139356 

0.873063088 

-0.936860371 

-0.769600131 

-0.596266749 

-0.472233131 

-0.347823693 

-0.240552984 

-0.154230006 

-0.060876135 

0.016147143 

0.096433765 

0.16854315 

0.24132031 

0.309817257 

0.376943398 

0.442102223 

0.508732881 

0.575109873 

0.707387223 

0.844467794 

-1.006656723 

-0.814481076 

-0.65429112 -

0.516670076 

-0.412818703 

-0.304272789 

-0.207517328 

-0.128359766 

-0.041176143 

0.037118797 

0.108162337 

0.181473995 

0.247706719 

0.317168142 

0.382333908 

0.450088913 
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0.514567807 

0.648434079 

0.784935017 

-1.078378231 

-0.862970465 

-0.719394772 

-0.588346124 

-0.469761102 

-0.363247495 

-0.277737443 

-0.187764404 

-0.105400797 

-0.030045701 

0.045050971 

0.118293502 

0.185004691 

0.252930421 

0.32044894 

0.386484162 

0.452465583 

0.583662303 

0.721644447 

-1.165267772 

-0.967723411 

-0.793901164 

-0.670979012 

-0.533747943 

-0.445571173 

-0.345710036 

-0.254393211 

-0.169893621 

-0.092163314 

-0.020272027 

0.047010315 

0.118581153 

0.187761772 

0.254123726 

0.320249549 

0.385100911 

0.517750622 

0.654469087 

-1.266387263 

-1.031719489 

-0.880321243 

-0.73641908 -

0.605762017 

-0.505191673 

-0.408470724 

-0.329787741 

-0.24284138 -

0.162067671 

-0.093922594 

-0.022969945 

0.048398294 

0.114141412 

0.182830771 

0.24860315 

0.314241269 

0.447506103 

0.584731631 

-1.270689876 

-1.035955401 

-0.884709087 

-0.772771146 

-0.657723227 

-0.546907735 

-0.458539704 

-0.358765214 

-0.277704762 

-0.200463511 

-0.127296453 

-0.058123149 

0.012597242 

0.078152923 

0.147451236 

0.214249995 

0.278253188 

0.411192945 

0.54896572 -

1.27497165 -

1.10570604 -

0.933906009 

-0.811153604 

-0.688376659 

-0.592334158 

-0.495991816 

-0.403040228 

-0.315091563 

-0.241766257 

-0.162646195 

-0.095643613 

-0.025633542 

0.044750193 

0.109899003 

0.174157244 

0.243075769 

0.427814465 

0.512639577 

-1.401325357 

-1.191491269 

-1.048977824 

-0.897523759 

-0.753789814 

-0.670432504 

-0.559577254 

-0.471372754 

-0.397858803 

-0.312377502 

-0.240855134 

-0.171119275 

-0.104071404 

-0.034158339 

0.031285632 

0.096997558 

0.165693528 

0.297081519 

0.436488325 

-1.571985302 

-1.291341111 

-1.122258567 

-0.950455216 

-0.865560864 

-0.732465728 

-0.65436969 -

0.56773352 -

0.479537298 

-0.392857781 

-0.320418946 

-0.248810228 

-0.17924771 -

0.112275658 

-0.048221755 

0.017994821 

0.084511933 

0.216720495 

0.355761374 

-1.579597637 

-1.415527201 

-1.207535187 

-1.064701367 

-0.958509017 

-0.835612343 

-0.740274515 

-0.638822745 

-0.556368918 

-0.487418321 

-0.413899468 

-0.339500792 

-0.266132464 

-0.203558404 

-0.134143032 

-0.068132946 

-0.000230715 

0.134434674 

0.269980843 

-1.587186784 

-1.423124807 

-1.307409769 

-1.138278053 

-1.016183351 

-0.92101242 -

0.843263422 

-0.74774909 -

0.646269523 

-0.583034476 

-0.494810258 

-0.421279668 

-0.35846 075 

-0.293235037 

-0.219330138 

-0.156034089 

-0.087906497 

0.041997907 

0.181450259 

-1.85307081 -

1.588975247 

-1.310903011 

-1.217775984 

-1.075301977 

-0.969855453 

-0.884137637 

-0.780773954 

-0.697525341 

-0.627785268 

-0.549243741 

-0.482587933 

-0.411733225 

-0.339326868 

-0.267762614 

-0.206291175 

-0.138137334 

-0.000783957 

0.134860536 

-1.857969257 

-1.592675052 

-1.430717641 

-1.221262992 

-1.144666837 

-1.023358587 

-0.92815259 -

0.850044444 

-0.754821818 

-0.676564524 

-0.590094084 

-0.518128306 

-0.456138232 

-0.389655134 

-0.321100119 

-0.25278363 -

0.185829612 

-0.052994362 

0.087875079 

-1.863401496 

-1.862377545 

-1.600024799 

-1.319758518 

-1.228044957 

-1.151047627 

-1.029811805 

-0.934386305 

-0.856698785 

-0.761363858 

-0.707784923 

-0.616659207 

-0.559341969 

-0.492707863 

-0.421758139 

-0.349435377 

-0.28725638 -

0.148179329 

-0.010823171 

-2.620814179 

-1.868256261 

-1.606033494 

-1.442738286 

-1.325838333 

-1.234227316 

-1.15736655 -

1.035285094 

-0.98582443 -

0.900600118 

-0.797000312 

-0.740209801 

-0.666001894 

-0.602891505 

-0.530904378 

-0.454732108 

-0.390121205 

-0.256459506 

-0.120709277 

-2.622792679 

-1.873861447 

-1.87349293 -

1.612765052 

-1.448066448 

-1.332419113 

-1.240320675 

-1.163440568 

-1.097711156 

-0.991204865 

-0.906254466 

-0.86852698 -

0.773265059 

-0.719665021 

-0.649779708 

-

0.571256648-

0.527450365 

-0.37235829 -

0.236512557 

-2.632755929 

0.425777058-

1.87883721 -

1.877435188 

-1.616900913 

-1.454660467 

-1.454396155 

-1.337519733 

-1.245845075 

-1.103117234 

-1.046733723 

-0.996282328 

-0.911095624 

-0.840163712 

-0.778868602 

-0.700410339 

-0.633876202 

-0.494799674 

-0.355671426 

-2.63166104 

0.672005075 

-1.880718701 

-1.87969232 -

1.618906228 

-1.619281292 

-1.456712526 

-1.339874876 

-1.248376215 

-1.17116378 -

1.105339464 

-1.049198636 

-0.954524849 

-0.914039049 

-0.842194304 

-0.781188357 

-0.70277607 -

0.561111145 

-0.428410179 

-2.632565242 

0.57488824 

0.794847324 

-1.881560334 

-1.885245275 

-1.621600645 

-1.622701947 

-1.45909656 -

1.342748567-

1.250604995 

-1.173320653 

-1.107732215 

-1.051549084 

-0.956744245 
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-0.916136335 

-0.844823436 

-0.755984029 

-0.638805919 

-0.499659219 

-2.637976755 

0.654319421 

0.89831751 -

2.65077805 -

1.890297965 

-1.889332528 

-1.888689757 

-1.625880278 

-1.463190396 

-1.46331091 -

1.34657975 -

1.254294534 

-1.177534884 

-1.112270765 

-1.056062413 

-1.006342931 

-0.920936753 

-0.787922449 

-0.643196362 

-2.646541182 

0.606477566 

0.883256814 

-2.651805575 

-2.657134565 

-1.893207221 

-1.892284778 

-1.89044575 -

1.630267195 

-1.629763452 

-1.467302172 

0.189849504 

-1.351368079 

-1.258590423 

-1.258947646 

-1.181585909 

-1.06014632 -

0.965199143 

-0.791979705 

-2.079069855 

0.615 930808 

0.714206916 

-2.654556474 

-2.65794959 -

2.634737083 

-2.659655844 

-1.893634332 

-1.895396478 

-1.895396478 

-1.894514341 

-1.63488507 -

1.63391714 -

1.471183148 

-1.471626507 

-1.355447091 

-1.262434867 

-1.11971268 -

0.968694567 

-2.08185287 -

2.08185287 

0.71332385 -

2.655553885 

-2.660424748 

-2.636599955 

-2.663702406 

-2.64126131 -

2.657171444 

-2.647555633 

-1.897496319 

-1.898342955 

-1.897778348 

-1.63658566 -

1.634735023 

-1.638755066 

-1.475050619 

-1.357980687 

-1.188076559 

-2.083820981 

-2.083820981 

0.577159288 

-2.659221468 

-2.662414961 

-2.639017902 

-2.66563191 -

2.643597599 

-2.659221468 

-2.646677653 

-2.645134895 

-1.899477134 

-1.899477134 

-1.900307967 

-1.896719457 

-1.640220088 

-1.636882758 

-1.475121942 

-1.359516675 

-2.08489736 -

2.08448319 -

2.085726992 

-2.085726992 

-2.66434235 -

2.641358096 

-2.665918575 

-2.64585851 -

2.662771425 

-2.648885034 

-2.647369135 

-2.648885034 

-2.662771425 

-1.90193907 -

1.898147801 

-1.898957508 

-1.903573539 

-1.640448704 

-1.476839706 

-2.086961207 

-2.087359798 

-2.088158131 

-2.088158131 

-2.088158131 

-2.086961207 

-2.666497913 

-2.645813164 

-2.663482031 

-2.650163399 

-2.648708603 

-2.650163593 

-2.663482031 

-2.653088085 

-2.663482031 

-2.654557846 

-2.65308808; 

1.650733739 

1.838886224 

1.993296617 

2.123553083 

2.238907561 

2.342145236 

2.435970433 

2.523312476 

2.604876144 

2.682826952 

2.75747172 

2.829669006 

2.900189387 

2.969264675 

3.037934604 

3.106484975 

3.175234565 

3.316238812 

3.466044052 

0.814462092 

1.003140294 

1.15562112 

1.287595055 

1.401943758 

1.5047497 

1.598372092 

1.685004604 

1.766329103 

1.84307492 

1.916741751 

1.988119848 

2.057629594 

2.125363486 

2.192645775 

2.259368073 

2.326014323 

2.461477367 

2.603070829 

0.485138996 

0.66809113 

0.820462877 

0.950745134 

1.067714192 

1.169266982 

1.26276329 

1.349594728 

1.430175067 

1.506612037 

1.580148022 

1.651051404 

1.719798979 

1.787134241 

1.853611709 

1.919823967 

1.985487235 

2.118730194 

2.25682306 

0.160605671 

0.346369994 

0.499262476 

0.629503176 

0.743167054 

0.845461702 

0.93908634 

1.025249321 

1.106666762 

1.182187744 

1.255408563 

1.325885559 

1.394403345 

1.461341528 

1.527098499 

1.592350774 

1.65725411 

1.788294185 

1.923369055 

-0.554410585 

-0.363987882 

-0.212999356 

-0.079166619 

0.03452739 

0.137504442 

0.229027733 

0.314906175 

0.395318179 

0.470560278 

0.54322743 

0.612758858 

0.680053811 

0.745764038 

0.810494092 

0.874140858 

0.937661446 

1.06446061 

1.19334197 -

3.447751561 

-3.735773125 

-3.434686645 

-3.153190926 

-3.085213676 

-2.810608516 

-2.611738899 

-2.484297392 

-2.304751031 

-2.131052484 

-2.001057142 

-1.861672982 

-1.732694248 

-1.591967052 

-1.46254637 -

1.33511857 -

1.211565829 

-0.959549175 

-0.704365837 

-1.369723595 

-1.175279323 

-1.029227547 

-0.903041001 

-0.784840344 

-0.684604478 

-0.590769075 

-0.502402412 

-0.422569787 

-0.347433908 

-0.273815224 

-0.202919655 

-0.13673503 -

0.068450957 

-0.003465038 

0.06097721 

0.125590558 

0.253766756 

0.384843355 

-1.614560864 

-1.411877716 

-1.29227308 -

1.166719049 

-1.029662284 

-0.913660461 

0.172910448 

-0.74794423 -

0.662966056 

-0.588148564 

-0.508088921 

-0.441499749 

-0.370611301 

-0.302479655 

-0.240019274 

-0.177195596 

-0.113802494 

0.013350906 

0.142398853 

-1.86432617 -

1.777552771 

-1.566426483 

-1.437552959 

-1.327544966 

-1.180460539 

-1.11787032 -

1.027735031 

-0.936859245 

-0.852054836 

-0.778033399 

-0.72257348 -

0.645434063 

-0.580629209 

-0.516320577 

-0.44596148 -

0.387804958 

-0.260205265 

-0.128263709 

-0.7619667 -

0.587972955 

-2.156803113 

-1.836460274 

-1.741676222 

-1.738132871 

-1.52882759 -

1.469561826 

-1.404787926 

-1.330026409 

-1.238731768 

-1.206638256 

-1.146256111 

-1.043536839 

-0.992457473 
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-0.925084136 

-0.85067125 -

0.716390577 

-0.598462644 

-2.316391715 

-0.650030291 

-4.236211243 

-3.759089739 

-3.96736593 -

3.905218024 

-3.905218024 

-2.105869438 

-2.108635737 

-2.106329266 

-1.785725079 

-1.785725079 

-1.690705902 

-1.687011322 

-1.595844586 

-1.482702866 

-1.424022481 

-1.283017925 

-1.159029817 

-1.660681153 

-1.559074711 

-1.389688903 

-1.249442316 

-1.126318102 

-1.01540892 -

0.911459231 

-0.820555934 

-0.736048798 

-0.661918995 

-0.592279972 

-0.529535997 

-0.453788736 

-0.385568424 

-0.317492741 

-0.257869073 

-0.189914132 

-0.061125429 

0.070950589 

-1.224927347 

-1.039783166 

-0.858307591 

-0.723600472 

-0.61094135 -

0.512898124 

-0.417440324 

-0.331175444 

-0.251352872 

-0.176962763 

-0.102854858 

-0.030531668 

0.040022894 

0.105808809 

0.172138034 

0.238232835 

0.302407562 

0.432572636 

0.567988046 

-0.898817463 

-0.702036501 

-0.56929896 -

0.424311965 

-0.309328229 

-0.211222841 

-0.111826742 

-0.02588783 

0.05771668 

0.131647852 

0.206858514 

0.278424327 

0.347164854 

0.415101112 

0.481936268 

0.548525398 

0.614712602 

0.748289997 

0.887538198 

-0.787215717 

-0.589427228 

-0.431799567 

-0.305619025 

-0.187601554 

-0.08692306 

0.006800513 

0.093940777 

0.174695512 

0.251743801 

0.326880845 

0.355170393 

0.466699799 

0.534686062 

0.602154657 

0.67006783 

0.736396662 

0.872414557 

1.013615727 

-0.702187202 

-0.491011989 

-0.332484196 

-0.204019377 

-0.089230926 

0.012419595 

0.107314798 

0.196388995 

0.277748991 

0.354405618 

0.429778918 

0.501084059 

0.571141433 

0.639947135 

0.707556977 

0.775560572 

0.843430253 

0.981307252 

1.125688767 

-0.526890702 

-0.324680567 

-0.168508271 

-0.038243229 

0.079126232 

0.182031551 

0.278584879 

0.365140785 

0.448942567 

0.526850565 

0.6023921 

0.67434565 

0.745941422 

0.815641958 

0.885231138 

0.954376686 

1.024011708 

1.167208009 

1.318956478 

-0.369312033 

-0.181316227 

-0.031294358 

0.101099272 

0.215265492 

0.319566147 

0.415764046 

0.503797899 

0.586916951 

0.666331212 

0.742020028 

0.815561943 

0.888424551 

0.959579441 

1.031122342 

1.102217877 

0.694371055 

1.323808383 

1.485395867 

-0.261731069 

-0.070271916 

0.077944643 

0.212603316 

0.330435082 

0.434482675 

0.529878663 

0.617650981 

0.702577517 

0.782259223 

0.859549211 

0.934981663 

1.00887684 

1.082121218 

1.15531903 

1.228922379 

1.304072404 

1.461350385 

1.635953174 

-0.1689761 

0.014997832 

0.175547472 

0.310829207 

0.424689754 

0.532088162 

0.627848945 

0.7163004 

0.801645283 

0.878097577 

0.960903144 

1.03797042 

1.113319525 

1.188117606 

1.264121686 

1.340794384 

1.419381539 

1.586747267 

1.777928473 

-0.128516676 

0.062061271 

0.216219229 

0.352366234 

0.468514221 

0.573521976 

0.669820537 

0.760799914 

0.846376952 

0.927912123 

1.006815049 

1.084375706 

1.160920298 

1.236989206 

1.313872491 

1.392536569 

1.473030685 

1.646209868 

1.848055297 

-0.093924319 

0.108442904 

0.256868496 

0.393097831 

0.509555327 

0.614061766 

0.710902026 

0.801687315 

0.887419741 

0.970047789 

1.050128698 

1.12840767 

1.205930199 

1.283356417 

1.362041548 

1.44182988 

1.524713191 

1.704620091 

1.918171879 

-0.026007145 

0.173775227 

0.327742987 

0.464128727 

0.580412753 

0.687212801 

0.785455549 

0.877458081 

0.963419512 

1.047848225 

1.129390487 

1.209023877 

1.28939361 

1.369424417 

1.455924985 

1.535493242 

1.623538724 

1.818955133 

2.063149392 

0.061520332 

0.233616378 

0.393865163 

0.525600737 

0.644975463 

0.752903358 

0.851068013 

0.944799937 

1.032457986 

1.118259434 

1.201162706 

1.283110052 

1.36576981 

1.449185171 

1.534643204 

1.623649587 

1.71786165 

1.932911339 

2.222000726 

0.109655478 

0.292199343 

0.453059827 

0.583051111 

0.704943453 

0.81203881 

0.911690851 

1.005271482 

1.095818738 

1.182433199 

1.267244731 

1.351991773 

1.43729241 

1.524112732 

1.613975577 

1.708637568 

1.810293154 

2.05138447 

2.409687348 

0.145948697 

0.347552278 

0.501018571 

0.636821864 

0.757922633 

0.867390463 

0.967089432 

1.063173425 

1.153572811 

1.24280446 

1.329860609 

1.416991129 

1.505208468 

1.595863673 

1.690890484 

1.792807293 

1.903580029 

2.179427689 

2.664626747 

0.163754545 

0.367990869 

0.526017056 

0.662005757 

0.782715575 

0.893085056 

0.993646184 

1.090095383 

1.181284074 

1.271003795 

1.359299395 

1.448770609 

1.53858542 

1.631035665 
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1.729097047 

1.834689781 

1.951288209 

2.249557144 

2.848699498 

0.196201617 

0.400761555 

0.543038291 

0.68635782 

0.807641018 

0.916884082 

1.018584006 

1.116077834 

1.209201512 

1.299402907 

1.38899446 

1.479199008 

1.571338068 

1.666755654 

1.767953567 

1.877469886 

2.000226209 

2.32635061 

3.139484265 

0.240412948 

0.438650869 

0.603037465 

0.730207788 

0.853245251 

0.967518117 

1.069935102 

1.16781929 

1.262288496 

1.355340777 

1.447218983 

1.541211061 

1.637011743 

1.737890373 

1.846317872 

1.966395756 

2.105067149 

2.509655002 

3.282942109 

0.32388544 

0.482033039 

0.631462439 

0.782313354 

0.899933328 

1.014295773 

1.119474961 

1.2189806 

1.317513646 

1.411880373 

1.507956072 

1.604570435 

1.704898387 

1.813534488 

1.930415025 

2.063610663 

2.226504273 

2.785265327 

2.792537994 

0.281694083 

0.526824356 

0.690531775 

0.83071246 

0.954622881 

1.066027222 

1.174124671 

1.273898581 

1.373825636 

1.472088848 

1.571080339 

1.672591379 

1.780874839 

1.896657423 

2.027173408 

2.18097642 

2.377557938 

3.506504762 

2.581327623 

0.404902617 

0.580766389 

0.749418051 

0.887637777 

1.008539281 

1.125970263 

1.235485773 

1.339053338 

1.440304426 

1.542458797 

1.645674912 

1.755663829 

1.871541997 

2.000049941 

2.149603032 

2.339530144 

2.609808303 

3.002295683 

2.443898392 

0.396978808 

0.613368384 

0.772581692 

0.917298816 

1.039589388 

1.159097757 

1.269507574 

1.375549677 

1.479669299 

1.584308717 

1.691854043 

1.80405877 

1.927828902 

2.064882716 

2.231349531 

2.451041358 

2.814671425 

2.779540506 

2.386811153 

0.424370142 

0.649586112 

0.810739795 

0.953201852 

1.086694322 

1.198643893 

1.311199941 

1.416013406 

1.523915601 

1.633088635 

1.744228812 

1.8661604 

1.995518577 

2.148882943 

2.338821705 

2.614075496 

3.228902125 

2.623118569 

2.333825983 

0.517578015  

0.726294492 

0.919759087 

1.060711058 

1.18148915 

1.3095746 

1.425933933 

1.54342854 

1.653735861 

1.776969812 

1.905164913 

2.049178857 

2.218076286 

2.434591257 

2.787587981 

3.910967757 

2.792862014 

2.396697715 

2.234435276 

0.734845576 

0.950650265 

1.113210782 

1.248075571 

1.387125253 

1.528746418 

1.645941834 

1.783439751 

1.934411382 

2.090245705 

2.293313487 

2.567605745 

3.119666229 

3.058055729 

2.638337577 

2.458715939 

2.347165245 

2.211449476 

2.131390231 

1.295140072 

1.548639235 

1.716234043 

1.968414717 

2.256028484 

2.692459934 

3.477979874 

2.658150349 

2.439692456 

2.323711322 

2.242124823 

2.188775259 

2.149138406 

2.118177726 

2.09383092 

2.074070774 

2.058044711 

2.032982803 

2.014989861 

0.803009685 

0.8957122 

1.059403983 

1.199052445 

1.272762171 

1.35567273 

1.428009349 

1.488650395 

1.542036635 

1.587616802 

1.628699161 

1.667111828 

1.701074439 

1.730316815 

1.757727925 

1.782392709 

1.804345622 

1.842497657 

1.87408921 

0.383477669 

0.665119061 

0.796679217 

0.91992691 

1.019373882 

1.110594424 

1.185291081 

1.26231271 

1.321160809 

1.377288945 

1.433031466 

1.481064786 

1.52677852 

1.570392078 

1.60794491 

1.644751051 

1.679136422 

1.738639231 

1.79076129 

0.250843843 

0.343106551 

0.55598028 

0.691168342 

0.794675666 

0.890782166 

0.984007289 

1.05986622 

1.131496763 

1.197870247 

1.257301703 

1.313776557 

1.365709194 

1.411488893 

1.46124544 

1.507716255 

1.550711313 

1.627652151 

1.697742519 

-0.407022369 

0.036096079 

0.182514226 

0.298864425 

0.420723094 

0.547002747 

0.618202532 

0.700084103 

0.77176682 

0.849228147 

0.92326423 

1.488650395 

1.542036635 

1.587616802 

1.628699161 

1.667111828 

1.701074439 

1.730316815 

1.757727925 

1.782392709 

1.804345622; 

2.572896451 

2.688227996 

2.864085953 

3.054184676 

3.165805904 

3.300570486 

3.432756418 

3.566478032 

3.703205887 

3.863692983 

4.049587404 

4.263908157 

4.654816919 

5.338238893 

4.502754629 

4.293250486 

4.169227274 

4.021605609 

3.942347067 

1.676822782 

1.712045562 

1.971955711 

2.038961344 

2.170505204 

2.292973173 

2.409035386 

2.519062515 

2.629022129 

2.745964418 

2.851386172 

2.968433539 

3.094267735 

3.240016037 

3.417724889 

3.711641153 

4.320580156 

3.78252852 

3.441252448 

0.993859869 

1.449438285 

1.580323158 

1.610566162 

1.737243705 

1.912523832 

1.965583693 

2.070436865 

2.173068497 

2.271070572 

2.367735437 
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2.46653933 

2.575433914 

2.678887691 

2.799491837 

2.937792724 

3.087360757 

3.723079832 

3.642868553 

0.520350145 

1.056639622 

1.177434912 

1.150149538 

1.39045712 

1.410660338 

1.577312185 

1.676407247 

1.710312119 

1.801231811 

1.893345516 

1.998913514 

2.066901497 

2.157638064 

2.260095965 

2.352489118 

2.455345914 

2.71314734 

3.091709506 

0.151742993 

0.214952673 

-0.473167897 

-0.080757378 

0.040719006 

0.241780249 

0.594595395 

0.663834208 

0.731360197 

0.662335039 

0.871008921 

0.833616356 

0.915391814 

0.986804372 

1.061393664 

1.136386317 

1.252459076 

1.393012977 

1.520041939 

-3.232629267 

-3.275381337 

-2.897256978 

-2.884847653 

-2.936764622 

-2.884847653 

-2.878773473 

-2.884847653 

-3.084311558 

-3.10405562 -

3.084311505 

-3.034121506 

-2.917868717 

-3.223875038 

-3.237447843 

-4.339270142 

-2.731236276 

-3.023413127 

-3.05541232 -

0.254360056 

-0.561313069 

-0.561279856 

-0.677965216 

-0.118211426 

-1.034783901 

-0.055641465 

0.033205347 

-0.744745108 

0.07430105 -

0.290949447 

-0.229916043 

-0.127279919 

-0.027683788 

0.070849885 

0.36909576 

0.426105079 

0.399546702 

0.556547567 

0.158768247 

-0.530886388 

-0.1381556 

0.436474018 

0.489330477 

0.590322109 

0.479544504 

0.584034808 

0.821907032 

0.876668822 

0.867450929 

1.020284611 

1.044233137 

1.17002132 

1.249393318 

1.318107389 

1.373428616 

1.579112551 

1.786546148 

-0.468948435 

0.003112699 

0.51612852 

0.629240028 

0.54196719 

0.668632351 

0.900896972 

0.982367717 

1.068171014 

1.094139079 

1.225412673 

1.266038974 

1.393825881 

1.449573424 

1.54536341 

1.643379827 

1.761872684 

2.007514357 

2.388809107 

-0.005284421 

0.565988234 

0.703121583 

0.634357445 

0.913566976 

0.918867435 

1.021847687 

1.191934227 

1.278362102 

1.329050305 

1.426930064 

1.526536733 

1.632976212 

1.736246186 

1.864322193 

1.98388025 

2.134958581 

2.60552537 

2.854281259 

0.377652055 

0.621906384 

0.812814393 

1.074698712 

1.074696152 

1.249207655 

1.414916051 

1.488779789 

1.634505685 

1.74720852 

1.849861346 

1.985329095 

2.140997684 

2.338416051 

2.619536377 

3.267149426 

2.981354312 

2.465599647 

2.259756291 

0.855082037 

0.857743796 

1.148741434 

1.215163625 

1.371295299 

1.503429347 

1.674373962 

1.775560499 

1.92035388 

2.077568107 

2.267753293 

2.520825855 

2.999389126 

3.316798073 

2.730450939 

2.501167069 

2.381464362 

2.248176135 

2.156490999 

0.983324612 

1.166077976 

1.304223104 

1.397769732 

1.5503777 

1.703129068 

1.858229835 

2.046571247 

2.219856072 

2.467585169 

2.885911656 

3.359864498 

2.726676851 

2.51353641 

2.403305357 

2.308827258 

2.257661779 

2.173742625 

2.11945451 

0.901500659 

1.264061871 

1.344672215 

1.591703218 

1.695814362 

1.865695587 

2.077253774 

2.268131046 

2.560376318 

3.185048938 

3.003766326 

2.626858542 

2.468778604 

2.364978326 

2.283586593 

2.230916686 

2.190617678 

2.137107139 

2.093524643 

0.942901978 

1.3095252 

1.391606861 

1.645362918 

1.753726268 

1.939264791 

2.175459915 

2.384707445 

2.773405283 

3.612625363 

2.755475426 

2.534385457 

2.405593409 

2.32176139 

2.252846723 

2.207841099 

2.172609644 

2.125228748 

2.086202816 

0.987595351 

1.348876859 

1.430698624 

1.69431487 

1.860960608 

1.996286192 

2.21801162 

2.540259882 

3.136097209 

3.037860973 

2.639598336 

2.460819993 

2.361693658 

2.289733173 

2.230746184 

2.196012222 

2.15900923 

2.116126367 

2.080387992 

1.224392937 

1.26835164 

1.488864198 

1.6831928 

1.876583776 

2.087242473 

2.351197387 

2.745267916 

3.456691784 

2.735404701 

2.517049744 

2.392464623 

2.305222782 

2.246272265 

2.202926749 

2.17272112 

2.1413858 

2.103811244 

2.072423434 

1.268881591 

1.277646798 

1.499645575 

1.701050754 

2.009619991 

2.209499734 

2.494593678 

2.844762697 

3.089070323 

2.647299429 

2.466493195 

2.36180166 

2.287388954 

2.234637735 

2.191341169 

2.158922793 

2.136601358 

2.097923688 

2.068496809 

1.324650112 

1.492133631 

1.481515865 

1.828420904 

1.87484354 

2.0852995 

2.364508971 

2.743074547 

3.499706323 

2.716947075 

2.489784305 

2.364138454 

2.293837256 

2.239048091 

2.196631803 

2.163627931 

2.136007994 

2.09682384 

2.069219143 

0.573331084 

1.518841117 

1.317463469 

1.81207958 

1.725400873 

2.141793624 

2.15802186 

2.440654095 

3.634644406 

2.821494597 
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2.6498059 

2.463146884 

2.353730862 

2.280994484 

2.222073395 

2.18398065 

2.156223157 

2.110316591 

2.077089068 

1.41377957 

1.514471246 

1.660688026 

1.771445191 

1.943099118 

1.821314022 

2.016400228 

2.607249945 

2.559011391 

3.198207167 

2.885538182 

2.495894684 

2.382959394 

2.334322035 

2.268763958 

2.217059971 

2.178867929 

2.124837317 

2.088553166 

0.365619751 

1.571191562 

1.627401602 

1.205555394 

1.878141966 

1.604277906 

2.206340598 

2.382711718 

2.200070365 

3.357980369 

2.92182262 

2.661713042 

2.489133943 

2.462310831 

2.30567439 

2.280663719 

2.209845971 

2.154399625 

2.107042666 

1.647452608 

1.647424637 

1.124775411 

1.021961243 

1.858172285 

0.690232683 

1.971078423 

2.15962704 

1.046082525 

1.46934638 

1.633192338 

1.682577711 

3.184901431 

3.765237175 

2.907680669 

2.587663044 

4.210310225 

2.337761864 

2.309795551 

1.834732228 

1.834738582 

1.834736549 

1.834731911 

1.834739472 

1.834736231 

1.834736549 

1.834736295 

1.834739472 

1.834736295 

2.181118397 

2.181135568 

2.181129845 

2.181128414 

2.181076324 

2.181132706 

2.181118397 

2.181132706 

1.766208815 

0.891642924 

1.464766668 

1.645321839 

1.678175178 

1.721193924 

1.299110521 

1.773008552 

1.560075166 

1.628998354 

1.692167814 

1.831398062 

1.852745918 

1.816565673 

1.878231939 

1.89010723 

1.901019337 

1.895503099 

1.928963751 

1.939046163 

1.53298802 

1.091649023 

1.388203011 

1.550710825 

1.74744164 

1.777637466 

1.755406403 

1.796493572 

1.854449669 

1.870676278 

1.873329962 

1.899929117 

1.904794014 

1.921845237 

1.927576732 

1.936467395 

1.944155051 

1.957152644 

1.966289649 

1.023373469 

1.345540554 

1.51412813 

1.742597102 

1.780721673 

1.763856162 

1.812149128 

1.841365353 

1.878852503 

1.893688486 

1.907478274 

1.914544547 

1.928815399 

1.937024592 

1.944234757 

1.949903147 

1.956330684 

1.965575654 

1.972864795 

1.580950622 

1.651706571 

1.729300648 

1.719300371 

1.808970897 

1.839962477 

1.848789014 

1.873027718 

1.892248249 

1.907838619 

1.923629841 

1.931186988 

1.941273102 

1.947668207 

1.954352276 

1.959518377 

1.964249586 

1.972069057 

1.977876816 

1.647293852 

1.625071464 

1.737558139 

1.803358091 

1.858008203 

1.882546793 

1.895101292 

1.916058587 

1.928096967 

1.936589134 

1.945605991 

1.952888878 

1.958886116 

1.9637274 

1.968294713 

1.972009354 

1.975112795 

1.980354621 

1.983926446 

1.607613914 

1.726138761 

1.838007948 

1.855536358 

1.886193893 

1.907314225 

1.924057326 

1.936683959 

1.947212058 

1.954331386 

1.960544121 

1.965757036 

1.969984596 

1.973847539 

1.976574314 

1.979222258 

1.981619529 

1.985550188 

1.98839872 

1.691074062 

1.829257703 

1.87294533 

1.899110611 

1.919035393 

1.930651287 

1.944377195 

1.953180956 

1.959981505 

1.965706422 

1.970600544 

1.97438742 

1.977559502 

1.98003052 

1.982542311 

1.984734645 

1.986154508 

1.988913471 

1.991071076 

1.732338987 

1.864091298 

1.896374794 

1.915110719 

1.936214157 

1.948519472 

1.9568815 

1.963639623 

1.969354119 

1.973542545 

1.977503202 

1.980394106 

1.982832784 

1.984887156 

1.986863553 

1.988342291 

1.989442387 

1.991756964 

1.993412685 

1.829111483 

1.871509071 

1.894672769 

1.929228561 

1.939835174 

1.958336978 

1.961502297 

1.967756229 

1.97271406 

1.97675281 

1.979913275 

1.982844892 

1.985085552 

1.986611822 

1.988530196 

1.989770703 

1.990735267 

1.992677029 

1.994243664 

1.806179092 

1.868796327 

1.909744896 

1.933076893 

1.949106207 

1.959016288 

1.965496056 

1.971649246 

1.975456579 

1.979470158 

1.982230833 

1.984939225 

1.613759605 

1.988201476 

1.98954601 

1.990703101 

1.991983259 

1.993561563 

1.994983088 

1.851724506 

1.905290294 

1.922992075 

1.94614127 

1.957178575 

1.965195114 

1.971347576 

1.976286963 

1.980075308 

1.983311434 

1.98581658 

1.987814445 

1.989537602 

1.990787483 

1.991833132 

1.992877682 

1.993581574 

1.995113421 

1.996131761 

1.865189759 

1.920104012 

1.937624346 

1.956350517 

1.963286825 

1.971836589 

1.976857582 

1.980347942 

1.983822104 

1.986507943 

1.98852703 

1.990205482 

1.991615924 

1.992649158 

1.993563017 

1.994460178 

1.995012786 

1.996279928 

1.997013535 

1.896816018 

1.914779824 

1.942977457 

1.958004387 

1.966928197 

1.977410663 

1.981894183 

1.984459171 

1.987084761 
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1.989110704 

1.990671553 

1.992088003 

1.993113057 

1.994108139 

1.994966085 

1.995650285 

1.996235992 

1.997128484 

1.997715039 

1.81664855 

1.940023839 

1.958379615 

1.966213515 

1.975240355 

1.980639931 

1.985081686 

1.986521518 

1.988458353 

1.99122581 

1.991613489 

1.993266271 

1.994704721 

1.994894684 

1.995887495 

1.996680323 

1.99685127 

1.997626491 

1.998246868 

1.91169894 

1.936937174 

1.95700887 

1.971042028 

1.97880183 

1.982567628 

1.984715572 

1.988817138 

1.989308694 

1.992444953 

1.993679764 

1.994484502 

1.9947969 

1.996069842 

1.996284265 

1.997118647 

1.997253323 

1.997951037 

1.998515392 

1.781315977 

1.953262456 

1.948571298 

1.961911119 

1.979433822 

1.981141731 

1.988525202 

1.989335444 

1.990470011 

1.993450339 

1.993941262 

1.994743933 

1.995963643 

1.996317685 

1.996722289 

1.997514557 

1.99776114 

1.99842984 

1.998715849 

2.687690432 

1.975269642 

1.977388704 

1.982115673 

1.98986558 

1.988949958 

1.991183929 

1.994653062 

1.995876139 

1.996699578 

1.996698746 

1.99744864 

1.997801998 

1.998066479 

1.998361708 

1.998585547 

1.998795117 

1.999196333 

1.999511057]

; 

 

 

 

target =100* 

[0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 0.3 

25 0.35 0.375 

0.4 0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0 .175 

0.2 0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.15 

0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55  

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1  0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 
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0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6 0.1 0.125 

0.15 0.175 0.2 

0.225 0.25 

0.275 0.3 

0.325 0.35 

0.375 0.4 

0.425 0.45 

0.475 0.5 0.55 

0.6]; 

 

(Table 2: Training Data Table) 

After training and learning process is completed, this neural network model along with its 

peripheral components (sensors and steeper motors) can be used in an AGV in unknown and 

unconstructed environment. This can be implemented in real space time co-ordinate because of 

the precise output generated by the decision making system. The outputs were obtained similar 

to the target matrix. Thus the system is capable of navigating a vehicle replacing a human and 

there is no room for error in this domain which is generally present in a human driver domain. 

The training of neural network ended with a mean square error of ~10e-3. This can be further 

decreased by training the neural network for more number of epochs which would enhance the 

performance of the model. 
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INPUTS OUTPUT 

D_Left D_Right D_Front Heading_angle Steering Angle 

0.9641818  3.021877  8.462978  1.406949757  9.24 

0.9635322 3.020101 8.458799 1.587584249 11.98 

0.9626826 3.017974 8.453994 1.747647304 14.37 

0.961733 3.015496 8.448214 1.876352901 17.13 

0.9606336 3.012618 8.441557 1.989234575 20.65 

0.9593344 3.00934 8.43405 2.093322907 23.2 

0.9578852 3.005637 8.425566 2.185945383 24.56 

0.9562362 3.001458 8.416132 2.271935887 29.04 

0.9543872 2.996778 8.405397 2.351751677 31.85 

0.9522384 2.991498 8.39356 2.429188946 33.16 

 

(Table 3: Output Data Table) 
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CHAPTER 7  

 

Conclusion and Scope for Future Work 
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7 Conclusion and Scope for Future Work: 

An aerial and a grounded prototype were developed, which were guided by the developed ANN 

model. These prototypes were equipped with proximity sensors which fed the ECU with analog 

signals regarding the topology of the environment. Then the output of the ECU is fed to the 

hardware control system of the prototypes. For grounded prototype the hardware consists of 

servo motors, chain drive mechanism, and rack & pinion gear system. In aerial vehicle the output 

is fed to the receiver which then manipulates the rpm of the rotor through ESC.  

The performance of the prototypes can be vastly improved by further optimization of the ANN. 

This can be done by reducing the Mean Square Error. Numerous algorithms are available for this 

optimization. Further, the proximity sensors maybe replaced by LASER sensors, which are more 

precise and reliable. Use of LASER sensors, would provide analog signals similar to the 

proximity sensors. Hence, the ANN model would remain vastly unaffected. 
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