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                                                        ABSTRACT 

Wavelets are mathematical functions that cut up data into different frequency 

components and study each component with a resolution matched to its scale.  

They have advantages over traditional Fourier methods in analyzing physical 

situations where the signal contains discontinuities and sharp spikes. Wavelets 

are developed independently in the field of mathematics, quantum physics, 

electrical engineering, and seismic geology. Interchange between this field  during  

the  last ten years have led to many new wavelet application such as image  

compression, turbulence, human vision, radar  and earthquake prediction.  In this 

we introduce a numerical method of solving integral equation by using CAS 

wavelets. This method is method upon CAS wavelet approximations. The 

properties of CAS wavelets are first presented. CAS wavelet approximations 

methods are then utilized to reduce the integral equations to the solution of   

algebraic equations.   
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INTRODUCTION 

Wavelets theory is a relatively new and emerging area in mathematical research.  

It has been applied in a wide range of engineering disciplines; particularly, 

wavelets are very successfully used in signal analysis for waveform representation 

and segmentations, time-frequency analysis and fast algorithms for easy 

implementation [1]. Wavelet algorithms process data at different scales or 

resolutions. If we look at a signal at a large “window” we would notice gross 

features.   Similarly,  if  we  look at a signal  with  the  small  “window” we  would 

notice  small  “window”.  Wavelets permit the accurate representation of a 

variety of functions and operators.  Moreover, wavelets establish a connection 

with fast numerical algorithms [2]. 

For Fredholm-Hammerstein integral equations, the classical method of successive 

approximations was introduced in [3]. A variation of the Nystrom method was 

presented in [4]. A collocation type method was developed in [5]. In [6], Yalcinbas 

applied a Taylor polynomial solution to Volterra-Fredholm integral equations.  
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LINEAR FREDHOLM INTEGRAL EQUATIONS 

In this  thesis, we  are  concerned  with  the  application   of  CAS  wavelets   to  

the numerical   solution  of  a  Fredholm  integral  equation  of  the  form 

1 ,0              )(),()()(
1

0
  txdttytxKxfxy                                                                  (1)                    

The general linear Fredholm integral equations of the second kind for a function 

     is an equation of the type 

)1(0           )()(),()(
1

0
  xxfdyyyxKx                                                              (2) 

While the linear Fredholm integral equation of the first kind is given by 

)1(0                 )()(),(

1

0

 xxfdyyyxK                                                                     (3) 

 In  eq. (1) , where        and  the  kernel        are assumed  to be in L2(R)  on the 

interval  1 ,0  tx  and  eq.  (1)  has  a  unique  solution     to  be determined. 

 In this thesis, a new numerical method to solve Fredholm integral equations is 

introduced. The method consists of reducing the integral equation to a set of 

algebraic equations by expanding the solution as CAS wavelets with unknown 

coefficients. The CAS wavelets are first given. The product operational matrix and 

orthonormality property of CAS wavelets basis are then utilized to evaluate the 

coefficients of CAS wavelets expansion. 
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 Properties of CAS wavelets 

Wavelets and CAS wavelet 

 Wavelets constitute a family of functions constructed from dilation and 

translation of a single function called the mother wavelet. When the dilation 

parameter a and the translation parameter b vary continuously we have the 

family of continuous wavelets as [7]  

 0 ≠ R,∈,       ,  )( 2

1

, aba
b

at
atba 







 
   ,       

 If we restrict the parameters a and b to discrete values as 

0,1,, 00000 


baanbbaa
kk

 and   and   are positive integers   

We have the following family of discrete wavelets 

 , )( 00
2

0, nbtaat
k

k

nk   

where  )(tnm  form a wavelet basis for      .In particular when      

 and      then )(, tnk  forms an orthonormal basis [7].  

   CAS wavelets ),,,()( tmnktnm   have four arguments  

   = 0, 1, 2….2k-1,   can be assume any nonnegative integer,   is any  

Integer and   is the normalized time. They are defined on the interval [0, 1) as 

 






 




otherwise                          ,0

2

1

2

n
for      ,22

)( k
2

k

k

m

k

nm

n
tntCAS

t                                                                (4) 

where )2sin()2cos()( tmtmtCASm                                                                               (5) 

The dilation parameter is ka  2  and translation parameter is knb  2 . 

 The set of CAS wavelets are an orthonormal basis. 
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FUNCTION APPROXIMATION  

A function      defined over [0, 1) may be expanded as 

     


 


1

)()(
n m

nmnm tctf                                                                                                    (6)         

where  ))(),(( ttfc nmnm   . If the infinite series in eq. (6) is truncated, then eq.  (6) 

can be  written  as   

 
 


2

)()()(
1

(

k

n

M

Mm

T

nmnm tCtctf                                                                                         (7)                       

where   and        are  2k(2 +1) x 1 matrices  given  by 

 T
MMMMMMM kk cccccccC

)(2)(2)(2)(2)(1)1(1)(1 ,....,,...,,...,,,.....,,
                                            (8) 

 T
MMMMMMM tttttttt kk )(,),........(),.....,(),.....,(),(),.....,(),()(

2)(22)(21)1(1)(1 
   (9) 

The  product  operational   matrix  of  the  CAS  wavelet 

Let )()()( tCtt T 


                                                                                                     (10) 

 Where  Ĉ  is  a  2k(2M+1) x 2k(2M+1)  product  operational  matrix. 

Let   = 1 and   = 1, thus  we  have 

C = [c1(-1),c10,c11,c2(-1),c20,c21]T                                                                                          (11)     

 Tttttttt )(),(),(),(),(),()( 2120)1(21110)1(1                                                           (12)  

In eq. (12) we have 

                                                       

                                                                                                                                           (13) 
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                                                                                                                                     (14) 
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Method of solving fredholm integral equations 

Consider the fredholm integral equations which are given eq. (1). To use CAS 

wavelets, we have to approximate       as 

)()( xCxy T                                                                                                                     (15)  

and  )()( xdxf T                                                                                                            (16) 

 and )()(),( tKxtxK T                                                                                                  (17) 

where    and       are defined as   eqn. (6) and (7). 

Also where   is 2k(2 +1) x 2k(2 +1)  matrices and elements of   are calculated as 

  

1

0

1

0

),()()( dtdxtxKtx ljni  

Where n=1,2…,2k,   i=-        ,   l=1,….,2k,,  j=-      

Then   we have 

 

1

0

)()()()( CdttKxxdxC TTTT                                                                             (18) 

Thus   with the orthonormality of CAS Wavelets we have 

KCxdxCx TTT )()()(                                                                                            (19) 

Eq. (17) is a linear systems of C and thus  

C = (I-K)-1d, where I is identity matrix. 
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Example-1 



1

0

)()4cos()( dtttyxxy   

Let us approximate  

   )()( xCxy T   and  )()( xdxf T    

Take   = 1 and  =1 

For 0x  

     
2))4sin()4(cos(2)()1(0   xxx   

     2)(00  x  

      2))4sin()4(cos(2)(01  xxx   

     0)()1(1   x  

      0)(10  x  

      0)(11  x  

       So,  Tx 0  ,0  ,0  ,2   ,2  ,2)(   

 

     and  )()( xdxf T  

                                                                 

 

 

 

 





























0

0

0

2

2

2

d   d   )4cos( 654     3   2    1 ddddx
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   => 321 222)4cos( dddx   

   => 321 2221 ddd                                                                                            (20) 

        4

1
  xfor  

2))4sin()4(cos(2)()1(0   xxx   

2)(00  x  

2))4sin()4(cos(2)(01  xxx   

0)()1(1   x  

0)(10  x  

0)(11  x  

So,  Tx 0,0,0,2,2,2)(   

 

          So, )()( xdxf T  

 

 

 

 

 

         321 2221 ddd                                                                                        (21) 

          8

1
 x for

 

2))4sin()4(cos(2)()1(0   xxx   

2)(00  x  

2))4sin()4(cos(2)(01  xxx   

0)()1(1   x  
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d   d   )4cos( 654     3   2    1 ddddx
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0)(10  x  

0)(11  x  

So,  Tx 0  ,0  ,0   ,2  ,2  ,2)(   

 

            and  )()( xdxf T  

 

 

 

 

           321 2220 ddd                                                                                        (22) 
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1
 x for

 

0)()1(0   x  
0)(00  x  
0)(01  x  

2))4sin()4(cos(2)()1(1   xxx 
 

2)(10  x  
2))4sin()4(cos(2)(11  xxx   

      and  )()( xdxf T  
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d   d   )4cos( 654     3   2    1 ddddx
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d   d   )4cos( 654     3   2    1 ddddx



17 
 

      654 2220 ddd                                                                                          (23) 

       4

3
 x for  

 0)()1(0   x  
0)(00  x  
0)(01  x  

2))4sin()4(cos(2)()1(1   xxx 
 

2)(10  x  

            2))4sin()4(cos(2)(11  xxx   

              )()( xdxf T   

  

               

   

 

             654 2221 ddd                                                                                    (24)   

            8

3
 x for  

 0)()1(0   x  
0)(00  t  
0)(01  x  

2))4sin()4(cos(2)()1(1   xxx 
 

2)(10  x  
2))4sin()4(cos(2)(11  xxx   

So,  Tx 2  ,2  ,2,0  ,0  ,0)(   

               )()( xdxf T  
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2

0

0

0

d   d   )4cos( 654     3   2    1 ddddx
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          654 2220 ddd                                                                                      (25)  

Solving equation (20), (21) and (22) we get 

  d1 = 
22

1
 , d6 = 0, d3 = 

22

1
 

and  on solving equation  (23),  (24)  and  (25)  we  get 

  d4 =
22

1
   , d5 = 0, d6 = 

22

1
 

So, d = [d1, d2, d3, d4, d5, d6]T       

 d = [
22

1
,0,

22

1
,

22

1
,0,

22

1
, ]T 

Now,  K  is  2k(2M+1) x 2k(2M+1)  matrices  where  elements  of  K  can  be  calculate 

as 

  

where n = 1, 2….2k, i =   ,…..,   , l = 1,…2k , j = - ,…   

Then we have  

                                                    

Thus with the orthonormality of CAS wavelets we have  

KCxdxCx TTT )()()(       

 And answer is   C = (I-K)-1d  

    where I is the identity matrix. 

  

1

0

1

0

),()()( dtdxtxktx ljni

 

1

0

)()()()()( CdtttKxxdxC TTTT 
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2

2

0

0

0

d   d   )4cos( 654     3   2    1 ddddx
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Here   in this example         is  t 

Since   = 1 and   = 1 

So, n = l = 1, 2 and i = j = -1, 0, 1 

So, k will be 6 x 6 matrixes   

And since 
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Then   (I-k)-1d =  

 

 

 

 

 

 

 

 

C = (I – K)-1d 

      

   

Now      = CT     

 

  

 

 

 

)4cos()( xxy   



































































































22

1
0

22

1
22

1
0

22

1

                              

22

1
0

22

1
22

1
0

22

1

  

10796.0000796.00

07500.1007500.00

00796.0100796.00

00796.0010796.00

02500.0002500.10

00796.0000796.01









































0

0

0

)4sin()4(cos(2

2

)4sin()4(cos(2

22

1
0

22

1

22

1
0

22

1 2
1

2
1

2
1

xx

xx















22

1
0

22

1

22

1
0

22

1
C



21 
 

Therefore, )4cos()( xxy  is the exact solution of the given integral equation. 
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 Integro-differential   equations  

 Introduction 

wavelets ),,,()( tmnktnm   involve four argument  ,  ,   and  , where  

n=0,1,.…,2k- 1,  k   is  assumed   any  nonnegative  integer ,    is  any  integer  and     

is  the  normalized  time.  Recently,  Yousefi  and  Banifatemi [11]  introduced  the  

CAS wavelets  which  are  defined  by In  this  thesis , we  introduce   a  new   

numerical   method   to  solve  the  linear Fredholm  integro-differential  equation 











 

,)0(

1t0      ,)(),()()('

0

1

0

yy

dssystKtfty
                                                                          (26) 

Where   the  function ]),1,0([L )( 2tf  the  kernel   [0,1]) x ]1,0([L ),( 2stK   are  known 

and  )(ty   is  the  unknown   function   to  be  determined . This   method   reduces 

the integral equation   to set of   algebraic equations by expanding  )(ty   as CAS 

wavelets   with unknown   coefficients. 
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Properties of CAS wavelets 

Wavelets   and   CAS wavelets 

Wavelets constitute a family of functions constructed from dilation and 

translation of a single function )(t  called the mother wavelets. When the 

dilation is 2 and the translation parameter is 1 we have the following family of 

discrete wavelets [12]. 

),2(2)( 2 ntt k

k

kn   

where   kn   form a wavelet orthonormal basis   for  L2(R) 

 
(27)                                                

otherwise        ,0

1n
for   ,

)( 22
22 k

k







 



k

k

m

nm

n
tntCAS

t  

where  )2sin()2cos()( tmtmtCASm                                                                                

The  set   of  CAS  wavelets  also  forms  an  orthonormal  basis  for  L2([0,1]). Here 

we use CAS wavelets to solve integro-differential equations by introducing the 

operational matrix of integration. 
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Function   approximation 

A   function  f(t)  defined  over  [0,1]  may  be  expanded  as 




 


0

)()(
n Zm

nmnm tctf                                                                                                         (28) 

Where )),(),(( ttfc nmnm                                                                                                 (29) 

  If  the  infinite  series  in  equation  (28)  is   truncated,  then  equation (28)   can  

be  written  as 

 


 


12

0

)()()(

k

n

M

Mm

T

nmnm tCtctf

                                                                                       
(30) 

Where C and Ψ(t) are 2k(2M+1) x 1 matrices given by 

 T
MMMMMMM kk cccccccC

)(2)(2)(2)(2)(1)1(1)(1 ,....,,...,,...,,,.....,,
                                           (31) 

 T
MMMMMMM tttttttt kk )(,),........(),.....,(),.....,(),(),.....,(),()(

2)(22)(21)1(1)(1 
 (32) 

CAS  wavelet  operational  matrix  of  integration 

We have to construct the 6 x 6 matrix  P for M=1 and k=1. 

The   six basis function are given by 
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By  integrating  (33)  and  (34)  from  0  to  t  and  representing  it  to  the  matrix 

form,  we  obtain 
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Similarly we have 
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Thus  
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666 )(')'( tPdtt x  

Where,  Tt 1110)1(10100)1(06 ,,,,,)(    
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and    
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In   general, we have 
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)(')'( tPdtt  

Where      is given as in eq. (32) and P is a 2k(2M+1) x 2k(2M+1) matrix given by 
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Where F and L are (2M+1) x (2M+1) matrices   
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Method  to  solve  linear  Fredholm  integro-differential  equations. 

Consider the linear fredholm integro-differential equation in equation (26).  

We approximate  

)(Xf(t)     ),(Yy(0)      ),()( T

0 tttYty
TT    

and  )(()(),( sKtstK T    

Where Y’, Y0 and X are the coefficients.  Also     is  a                       

matrix and the  elements  of     can  be  calculated   as 

  

1

0

1

0

,...,,        ,12,....,0         ,),()()( MMjiklndtdsstKst ljni  

Then we have 

)()(')0()(')(

1

0

1

0

0 tYdssYydssyty
TT     

 = )()'()()(' 00 tYPYtYtPY
TTTT   

Substituting in equation (26), we have 

XYKYYP

YYPKtYYPtXtYt

dsYYPssKtYYPtXtYt
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TTTTTT

TTTTTTT





 

00

T

)00

1

0

00

')KP-(I

)'()()')()(')(
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Thus solving this   linear   system we can get the vector Y’. 

Then TT YPYY 0'   

or  )()( tYty T  
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 Example -2 

Consider the integro-differential equation 
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The exact solution is xxe  

We first approximate )()0( 0 xYy
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0)(10  x  

0)(11  x  

So,  Tx 0  ,0  ,0  ,2   ,2  ,2)(   
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So,  
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0)(10  x  

0)(11  x  
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0)(10  x  

0)(11  x  
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So,  Tx 0  ,0  ,0   ,2  ,2  ,2)(   
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So,   
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 On   solving equation (35),  (36), (37),  (38), (39)  and  (40) 
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so,  K   = 
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654 222    0799.1  xxx                                                                     (47) 

 

 On solving equation (42), (43), (44), (45), (46)  and (47) 

We get  

 024.0   ,889.0  ,101.0  ,009.0  ,179.0  ,002.0   X  
  XYKYYPKPINow TT  00',  

Y’ =   
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337076.0

123579.0

 

Now, TTT YPYY 0 '   

 0141958.0448058.00203233.00366578.0342209.00221223.0     TY  

)(y(t)    , T tYThen   

483956609.0     )4sin(020556301.0      )4cos(083127613.0     )(  ttty   
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Table  

This  table  shows that difference of exact solution and numerical solution. 

where     is the exact  solution  and     is  the  numerical  solution. 

Absolute  errors in CAS wavelet method (M=1, k=1)  

                                I   I 

               0.1     0.110517091    0.46201024   0.351493149 

               0.2    0.244280551    0.440063871   0.19578332 

               0.3    0.404957642    0.418117503   0.013159861 

              0.4    0.596729879     0.39728942   0.199440459 

              0.5    0.824360635    0.374224765   0.45013587 

              0.6    1.09327128    0.352278397   0.740992883 

              0.7    1.409626895    0.330332028   1.079294867 

              0.8    1.780432743    0.308385659   1.472047084 

              0.9    2.2136428    0.286439293   1.927203507 
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1. CONCLUSION 

 CAS  wavelets  gives  an  efficient  and  accurate  method  for solving  the 

Fredholm  integral  equations.  This  method  reduces  an  integral  equations  into 

set  of  algebraic  equations.  The  integration  of  the  product  of  two  CAS 

wavelets   function  vectors   is  an  identity  matrix, which  makes  computation  

of  integral  equation  attractive.  It  is  also  shown  that  the  CAS  wavelets 

provide  an  exact  solution. 

CAS wavelet also provide  an efficient method  for  solving  integro-differential 

equations  by  reducing  an  integral  equations  into  a  set  of  algebraic 

equations.   
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