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ABSTRACT

Wavelets are mathematical functions that cut up data into different frequency
components and study each component with a resolution matched to its scale.
They have advantages over traditional Fourier methods in analyzing physical
situations where the signal contains discontinuities and sharp spikes. Wavelets
are developed independently in the field of mathematics, quantum physics,
electrical engineering, and seismic geology. Interchange between this field during
the last ten years have led to many new wavelet application such as image
compression, turbulence, human vision, radar and earthquake prediction. In this
we introduce a numerical method of solving integral equation by using CAS
wavelets. This method is method upon CAS wavelet approximations. The
properties of CAS wavelets are first presented. CAS wavelet approximations
methods are then utilized to reduce the integral equations to the solution of

algebraic equations.
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INTRODUCTION

Wavelets theory is a relatively new and emerging area in mathematical research.
It has been applied in a wide range of engineering disciplines; particularly,
wavelets are very successfully used in signal analysis for waveform representation
and segmentations, time-frequency analysis and fast algorithms for easy
implementation [1]. Wavelet algorithms process data at different scales or
resolutions. If we look at a signal at a large “window” we would notice gross
features. Similarly, if we look at a signal with the small “window” we would
notice small “window”. Wavelets permit the accurate representation of a
variety of functions and operators. Moreover, wavelets establish a connection

with fast numerical algorithms [2].

For Fredholm-Hammerstein integral equations, the classical method of successive
approximations was introduced in [3]. A variation of the Nystrom method was
presented in [4]. A collocation type method was developed in [5]. In [6], Yalcinbas

applied a Taylor polynomial solution to Volterra-Fredholm integral equations.



LINEAR FREDHOLM INTEGRAL EQUATIONS

In this thesis, we are concerned with the application of CAS wavelets to

the numerical solution of a Fredholm integral equation of the form
1
y() = £ )+ [ K(x Dyt 0<xt<1 (1)

The general linear Fredholm integral equations of the second kind for a function

@ (x) is an equation of the type
D(x) - ﬂolK(X, y)®(y)dy = f(x) O=<x<I) (2)

While the linear Fredholm integral equation of the first kind is given by

1

K y)o(y)dy = f(x) (0<x<1) (3)
0

In eq. (1), where f(x) and the kernel K(x,t) are assumed to be in L}R) on the

interval 0<x,t<1and eq. (1) has a unique solution y to be determined.

In this thesis, a new numerical method to solve Fredholm integral equations is
introduced. The method consists of reducing the integral equation to a set of
algebraic equations by expanding the solution as CAS wavelets with unknown
coefficients. The CAS wavelets are first given. The product operational matrix and
orthonormality property of CAS wavelets basis are then utilized to evaluate the

coefficients of CAS wavelets expansion.



Properties of CAS wavelets

Wavelets and CAS wavelet

Wavelets constitute a family of functions constructed from dilation and
translation of a single function called the mother wavelet. When the dilation
parameter a and the translation parameter b vary continuously we have the

family of continuous wavelets as [7]

1 (t-a
l//a,b (t):|a| 2 W(T} a’b = R’a 70 ’

If we restrict the parameters a and b to discrete values as
a=a, ,b=nba, “,a,>1b, >0 and n and k are positive integers
We have the following family of discrete wavelets
K k
Y, (t) :|a0|z‘P(a0 t— nbo),
where W_ (t) form a wavelet basis for L?(R).In particular when ay = 2
and by-1 then ¥, (t) forms an orthonormal basis [7].

CAS wavelets ¥ (t) = ¥(k,n,m,t) have four arguments

n=0,1, 2....2k-1, k can be assume any nonnegative integer, m is any

Integer and t is the normalized time. They are defined on the interval [0, 1) as

K n n+1

2 ki _ -

v =2 CAS, (2“t—n) for Je<t<; (4)
0, otherwise

where CAS, (t) =cos(2mat) +sin(2mxt) (5)

The dilation parameter is a=2" and translation parameteris b=n2>".

The set of CAS wavelets are an orthonormal basis.

10



FUNCTION APPROXIMATION

A function f (t) defined over [0, 1) may be expanded as

TOED I NI

n=l me

(6)

where c,, =(f(t),¥, () . If the infinite series in eq. (6) is truncated, then eq. (6)

can be written as

2 ™
Ft) =D D ConPom(®) =CT(t)

n=1l m=—M

where C and ¥(t) are 2(2M+1) x 1 matrices given by
Czlcl(_M),cl(_M+1) ....... Cumy Cogmy oo Caguty 1eees Gt gy revees czk(M)JT

W) = ) (), Fi iy s Fong O oy O gy Qs ¥ 0

The product operational matrix of the CAS wavelet

Let W(t)¥' (t) ~ C¥(t)

Where € is a 2¢(2M+1) x 2“(2M+1) product operational matrix.
Let M =1and k=1, thus we have

C= [C1(-1),C10,C11,C2(-1),C20,C21]T

W (1) = [W 1y (O, Wip(0), Ws(0), Wy (1), Pao (), W (O]

In eq. (12) we have

W, (t) = 272 (cos(4xt) —sin(4xt))
W, (t) =272 0O<t<>
W, (t) = 272 (cos(4xt) + sin(4xt))

11

(7)

(10)

(11)

(12)

(13)



W, (t) = 22 (cos(4t) — sin(4t))

Wo(t) = 22 (14)

N |~
IA
—_
A
[N

W, (t) = 272 (cos(4t) + sin(47t))

12



Method of solving fredholm integral equations

Consider the fredholm integral equations which are given eq. (1). To use CAS
wavelets, we have to approximate y(x) as

y(x) = C"¥(x) (15)
and f(x)=d"¥(x) (16)
and K(xt) = ¥(x)" K¥(t) (17)

where ¢ and ¥(x) are defined as eqn. (6) and (7).

Also where K is 2*(2M+1) x 2(2M+1) matrices and elements of K are calculated as

W (0W, (DK (x, tdtdx

O ey
O e

Where n=1,2...,2%, i=-M, ........,M, 1=1,...,2%, j==M, ....M

Then we have
1

CT¥(x)=d"P(x)+ 1 j ¥(x)T KP ()" Cdt (18)
0

Thus with the orthonormality of CAS Wavelets we have
P(x)'C=P(x)"d+A¥(x)"KC (19)
Eqg. (17) is a linear systems of C and thus

C = (I-K)*d, where | is identity matrix.

13



Example-1
y(X) = cos(47x) + j ty(t)dt

Let us approximate
y(x)=C"¥(x) and f(x)=d"¥(x)
Take k=1and M=1
For x=0
Py (X) = ~/2(cos(4nx) —sin(47x)) = /2
Yoo () =2
W, (X) = v2(cos(47x) +sin(4x)) =2
W, (x)=0
Y,,(x)=0
¥.(x)=0

So, ¥(x) =[v2, 2, 2, 0,0, 0]
and f(x)=d"¥(x)

= cos(4zx) =[d, d, d, d, d; d]

oo Gt

14



=> cos(4nx) = +/2d, ++/2d ++/2d,

=> 1=+/2d, ++/2d ,+/2d, (20)
for x= i
4

W,y (X) = V/2(cos(47x) —sin(42x)) = —/2
W, (x) =2

Y,,(x) = V2(cos(47x) +sin(47x)) = —/2
W, (x)=0

Y,(x)=0

Y,(x)=0

So, W(x) =|-v2,v2,~2,00,0]

So, f(x)=d"¥(x)

-5
2
= cos(4zx) =[d, d, d, d, d, olﬁ]_o2
0
0
= —1=—/2d, +~/2d —/2d, (21)

forx:E
8

W,y (X) = V2(cos(47x) - sin(42x)) = —/2
W0 (X) = J2

Y, (X) = J2 (cos(47x) + sin(4nx)) = V2
W, (x)=0

15



lPlo(x) =0
\Pll(x) =0

So, W() =|-v2, v2, ¥2, 0, 0, 0|

and f(x)=d"¥(x)

A
J2
= cos(4zx) =[d, d, d, d, d, d,] ‘/OE
0
L O -
= 0 =—/2d, ++/2d ,+/2d, (22)
for x = E
2
Wy (X)=0
Yo (x) =0
\P01(X) =0
¥, ) (X) = V2(cos(4nx) —sin(47x)) =2
IP10()() = \/E

W, (X) = +/2(cos(47x) +sin(4x)) = V2

and f(x)=d"¥(x)

= cos(4zx) =[d, d, d, d, d; d]

Simme oo

16



= 0=+/2d, ++/2d +/2d,

forx=§
4

Wy y(x)=0

Wy (x) =0

W, (x) =0

¥,y (X) = V2(cos(47x) —sin(4rx)) = —/2
IP10()() = \/E

W, (X) = v/2(cos(4nx) +sin(4nx)) = —/2

f(x)=d"¥(x)

= cos(4nx) =[d, d, d, d, d; d]

Smbe oo

= —1=—/2d, +~/2d .—/2d,
for x = §
8

Wy y(x)=0

P, (t)=0

¥, (x)=0

¥,y (X) = V2(cos(47x) —sin(4nx)) = 2
Y, (X) = J2

W,,(X) = /2(cos(4nx) + sin(4x)) = —/2
So, ¥(x)=[0. 0, 0,42, V2, v2|

f(x)=dTP(x)

17
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(24)



= cos(4nx) =[d, d, d, d, d, d]

Sinine o o

= 0=-/2d, +~/2d —/2d, (25)

Solving equation (20), (21) and (22) we get

1 1
di= —— ,dg=0,ds= ——
T2t T o2

and on solving equation (23), (24) and (25) we get

1 1
di=—— ,ds=0,dg= ——
YTl T PN

So, d = [dy, dy, ds, ds, ds, d]"

1 1 1 1 T
:> d = 10) 1 lO! 7
N RN AEN AN AR

Now, K is 2(2M+1) x 2“(2M+1) matrices where elements of K can be calculate
as

O'—.I—‘
O e

W, (O, (DK (x, t)dtdx

wheren=1,2..2%i=—M,...,M,1=1,.2",j=-M,.. M
Then we have
1
CTW(x)=d ¥ (x) + 1 j W(x)" KW()P () Cdt
0
Thus with the orthonormality of CAS wavelets we have
Y(x)'C=¥(x)"d+A¥(x)" KC
And answeris C=(I-K)'d

where | is the identity matrix.

18



Here in this example K(x,t) is t
Sincek=1landM=1
So,n=l=1,2andi=j=-1,0,1
So, k will be 6 x 6 matrixes

And since

2 I \/E
J‘\Pl(—l) (x)dx =0 J“Pl(fl) (OHtdt = B
0 0
% %
Yo (X)dx = 2 ¥, (ttdt = V2
0 2 0 8
% A ~
¥, (x)dx =0 W, (t)tdt = -2
0 0 8
1 1 \/E
J.‘PZ(—I) (x)dx =0 I‘Pz(_l)(t)tdt .
% 5
1 V2 1 32
[ o0 (x)dx = == [ @0t ===
and i 2 i )
1 1
I‘I’zl(X)dX =0 j ¥, (t)tdt = -2
8
% 5
0 1 00 1
87 87
0 0125 0 0 0125 O
So, K = -1 -1
o — 00 —/— 0
87 87
0 3 00 3 0
87 87
0 0375 0 0 0375 0
19
87 87

Then ¢ = (1-k)'d

[1 -0.0796 0 0 -0.0796 O]
Now (I_k)-l _|0 12500 0 0 0.2500 0
0 -00796 1 0 -0.0796 O
0 0079 0 1 0.0796.90
0 07500 0 0 1.7500 O
|10 -0.0796 0 0 -0.0796 1




o
1 —0.0796 0 0 —0.0796 0]]|2V2
Then (I-k)%d= [0 12500 0 0 02500 O (1’
0 -00796 1 0 -00796 0||2/7
0 00796 0 1 0079 o0f| 1
0 0750 0 0 17500 O 2\(;5
0 -00796 0 0 -00796 1]| 1
| 242 ]
L
242
0
1
_|2v2
1
242
0
1
| 242 ]
C=(1-K)d
1 1 1 1
=C= 0 0o —
{2\/5 242 242 2\/5}

Now y(x) = C'¥(x)

_2% (cos(47x) — sin(47zx)_
%

{ 1, 11 o 1 7 2%(cos(@m) +sin(4m)
242 242 242 242 | 0

= y(x) = cos(47x)

20



Therefore, y(x) = cos(42x) is the exact solution of the given integral equation.

21



Integro-differential equations

Introduction

wavelets W _ (t)=¥(k,n,m,t) involve four argument n, m, k and t, where
n=0,1,...,.2 1, k is assumed any nonnegative integer, m is any integer and t
is the normalized time. Recently, Yousefi and Banifatemi [11] introduced the
CAS wavelets which are defined by In this thesis, we introduce a new

numerical method to solve the linear Fredholm integro-differential equation

yﬂ)=fﬁ)+£KaﬁhK$d& 0<t<1 (26)

y(0) = o,

Where the function f(t) eL?([0,1]), the kernel K(t,s)eL?([01]x[0,1]) are known
and y(t) is the unknown function to be determined. This method reduces
the integral equation to set of algebraic equations by expanding y(t) as CAS

wavelets with unknown coefficients.

22



Properties of CAS wavelets

Wavelets and CAS wavelets

Wavelets constitute a family of functions constructed from dilation and
translation of a single function @(t) called the mother wavelets. When the
dilation is 2 and the translation parameter is 1 we have the following family of

discrete wavelets [12].

k
P, (t) = 2202t —n),
where ¥_ form a wavelet orthonormal basis for L*(R)

Lkstgn+1

kCASm “t —n), for
y- |2 P2 g

0, otherwise

(27)

where CAS, (t) =cos(2mzat)+sin(2mat)

The set of CAS wavelets also forms an orthonormal basis for L*([0,1]). Here
we use CAS wavelets to solve integro-differential equations by introducing the

operational matrix of integration.

23



Function approximation

A function f(t) defined over [0,1] may be expanded as

F(0)= 2 X tan(® (28)
Where c,, = (1 (0, ¥,y (0), (29)

If the infinite series in equation (28) is truncated, then equation (28) can

be written as

21 M

fO) =2, D CumPan®=CT¥Q) (30)

n=0 m=—-M
Where C and W(t) are 2“(2M+1) x 1 matrices given by

Czlcl(_M),cl(_M+1) ....... Cutmy» Caiomy reees Cauy reees Ce Ly -+ czk(M)JT (31)

W) = [y 0 ¥y O P O oy s Wiy O ey O ¥y, O] (32)

CAS wavelet operational matrix of integration

We have to construct the 6 x 6 matrix P for M=1 and k=1.

The six basis function are given by

Wy, (1) = 272 (cos(4nt) — sin(4xt))

W, () = 272 0<t< % (33)
W, (t) = 272 (cos(4t) + sin(47t))

¥, (t) = 27 (cos(4xt) —sin(4nt)

W, (t) = 2 % <t<1 (34)
W, (t) = 272 (cos(4t) + sin(4:t)) N




By integrating (33) and (34) from 0 to t and representing it to the matrix
form, we obtain

J2

1 -
J‘LPO(—l) (t')dt'= 4z 1
0 0 E <t<l

(cos(4nt) + sin(4at) ~1) O<t< %

= i (=g (1) + ¥y, (1)
Az

1 1
=0,——,—,0,00 |¥ (t
{ 4r ' Arx } (1)

T

1 J2t O£t<%
W, (t)dt'=
.!‘ 00 \/E

— 1£t<1
2 2
1 1 1 1
= i Wy (1) + 1 Woo(t) - e wou(t) + 5 ¥, (t)
- (L1t ololwq
A 4 Ax 2

Similarly we have

i 1

[ ¥or ()t = (o 1y () + Foo 1)
0 T

1 1
=| —,—=,0,0,0,0 |'¥,(t),
{4 Az } +(t)

JT
I\Pl(—l) (t')dt'= i (=W, (1) + Py, (1)

1

"Ar

- _1
= {o,o,o,o, - }‘Ps (t)

25



1 1 1
— Yy (t)+ Z W, () - E P, (1)

1
Y, (t")dt'=
! Lo(t)dt'= >

1 1
= OIO!Ol_!_)_ \P t
[ 4r’ 4 47[} o)

I\Pll(tl)dt': 4i (\Pl(—l) (t) + W, (1))
0 /A
= [o,o,o,o, 1 i}\{g ®).
dr Arx
Thus j“P(t')dt'z Py Vs (1)

Where, Wi (t) = [\PO(—l) » Yoo, You, IP1(—1) , Wios \Pn]r

and
o - 1 o o 0
T T
. -1 6 2 0
T T
1 S O 0 o0 0
P6x6:_ 7z 7 1 1
40 o o 0o —= =
T T
0O o o L 1 _t
T T
0O o o o =+ %
L T 7T |

L F
Hence P, :{ 33 3”}

3x3 L3x3
o -+t %
T T
where L, = 1 1 _1
2 T
L
T T

26



0 0O
and F,,=(0 2 0
0 0O

In general, we have

j‘P(t')dt'z PY(t)

Where ¥ (t) is given as in eq. (32) and P is a 2“(2M+1) x 2“(2M+1) matrix given by

L F F .. .. F

O L F .. ..F
11.. 0

00 . . 0 Lj

Where F and L are (2M+1) x (2M+1) matrices

27



Method to solve linear Fredholm integro-differential equations.

Consider the linear fredholm integro-differential equation in equation (26).
We approximate

yO YO, yO)=Y, @), fO)=X"¥()

and K(t,s)~P(t) K¥((s)

Where Y’, Yo and X are the coefficients. Also K is a 2k(2M + 1) x2k(2M + 1)
matrix and the elements of K can be calculated as

WL OW, (K Es)dds, n=1=0,..2k-1 i, j=-M,.,M

O Ly
O L

Then we have
1 1

y(t) = j y'(s)ds + y(0) ~ j YT W(s)ds+Y, W(t)
0 0

= YT PP(@)+Y, W)= (YT P+Y, )¥(t)
Substituting in equation (26), we have

Y)Y = )X + PO (PTYHY,) + jT(t)T KW (s)®¥(s)" (PTY '+, )ds

= PE)Y'= W)X+ PO PTYHY,) PO K(PTYHY,)
= (I-KPT =PT)Y'=KY, +Y, + X

Thus solving this linear system we can get the vector Y’.
Then YT =Y'P+Y,’

or y(t) =Y ¥(t)

28



Example -2

Consider the integro-differential equation

1
y'(x) = xe* +e* —x +Jw(t)dt
0

y(0)=0

The exact solution is xe*

We first approximate y(0) =Y, ¥(x)

_\PO(—l) (x)]
Woo(X)
Fou(X)

Wiy (X)
Yo (X)
L (X))

For x=0

Wo( 1y (X) = v/2(cos(47x) —sin(4m) =2
Yoo (X) =2

W, (X) = v2(cos(47x) +sin(4x)) =2
¥, (X) =0

¥, (x)=0

Y, (x)=0

So,¥(x) =[V2, 2, 2,0, 0, 0]

29



So, y(x):[yl, Yoo Yar Yar Yso YG]

° oo mNNy

= 0=+/2y, +~/2y, +~/2y,

for x==
4

W,y (X) = V/2(cos(47x) —sin(42x)) = —/2
W, (x) =2

Y,,(x) = V2(cos(47x) +sin(47x)) = —/2
W, (x)=0

Y,(x)=0

Y,(x)=0

So, W(x) =|-v2,v2,~2,00,0]

V2

_J2
So, y(X)=[Yi Yor Yar Yar Vsr Vel

=0= _\/Eyl + \/Eyz _\/Eys

1
X==
8

W,y (X) = V/2(cos(47x) - sin(42x)) = —/2
W, (x) =2

Y,,(X) = V2(cos(47x) +sin(4x)) = /2
W, (x)=0

Y,(x)=0

Y, (x)=0

30
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(35)

(36)



So, W(X) =|-v2, v2, 2, 0, 0, 0|

5
J2
So, YOO =[yy Yo +¥s +Yar Vsr Vel f
0
L 0 .
= 0=—/2y, +/2y, +~/2y, (37)
1
X ==
2
Yoy (x)=0
Wyo(x) =0
\P01(X) =0
¥,y (X) = V2(cos(47x) —sin(4nx)) = 2
\Plo(x) = \/E
W,,(X) = /2(cos(47x) + sin(4x)) = /2
So, w(x)=[0, 0, 0,42, V2, v2|
o
0
0
S0, YO =[yi Yo Yar Yar V5o Vel 7
J2
V2]
:>0:\/Ey4 +\/§y5 +\/§y6 (38)
3
X =—
4
Yoy (x)=0
Wyo(x) =0
\P01(X) =0
¥,y (X) = V2(cos(47x) —sin(4rx)) = —/2
\Plo(x) = \/E

W, (X) = v/2(cos(4nx) +sin(4nx)) = —/2

31



0
0
0
S0, YOO =[yur Yo Yoo Yar Ye Yo _ 5
V2
__ 2_
= 0=—/2y, +/2y, — /2y, (39)
3
X =—
8
Yoy (x)=0
P, (t) =0
\P01(X) =0
W,y (X) = V2(cos(47x) — sin(47x)) = 2
Y, (X) = J2

W, (X) = v/2(cos(4nx) +sin(4nx)) = —/2
So, w(x)=[0. 0, 0,42, V2, +2[

0
0
0
So, Yy =[yi, Y2r Vs Var V51 Ve] 73
V2
-2
= 0=+/2y, + 2y, + /2y, (40)

On solving equation (35), (36), (37), (38), (39) and (40)

We get Y, =[0,0,0,0,0,0]
Fork=1,M =1, We get K=6x6 matrice and here k(x,t) = x

32



0 i 00 i 0
8r 87
0 0125 0 0.125
0 —l 00 —l
8r 8r
1 1
/10 — 00 — 0
so, K = 8r 8r
0 0375 0 0.375
-1 -1
=00 _-
L 87 87 i

Now we approximate f(x)=XT¥(t)
For x=0
Py (X) = V/2(cos(4mx) —sin(47x)) = /2
W, (x) =2
W, (X) = V2 (cos(47x) +sin(4x)) = /2
W, (x)=0
Y,(x)=0
¥, (x)=0

So, W(x)=[v2, v2, V2, 0, 0, 0]

So, f(X)=[X, X, X5 X,, Xs, Xg]

oo it

= ” —0=+/2x, +/2x, +~/2X,
:>1=\/§x1+\/§x2+\/§x3

33

(42)



X =

N

W,y (X) = V/2(cos(47x) - sin(42x)) = —/2
W, (x) =2

Y, (X) = V2(cos(47x) +sin(47x)) = —/2
W (x)=0

LPlo(x) =0
\Pll(x) =0
So, W(X) =|-v2, v2, =2 0, 0, 0]
o
V2
So, f(x):[xl’ Xy K31 Xgy X, Xe] _02
0
L O -
R R NEIRN N
= 1.034 = —/2x, +/2x, —~/2x,
1
X=—
8
Wy (X) = V/2(cos(47x) - sin(42x)) = —/2
Woo(X) = V2

W,,(X) = v2(cos(47x) +sin(47x)) = /2
W, (x)=0

Y,(x)=0

Y, (x)=0

So, W(X) =|-v2, v2, ¥/2, 0, 0, 0]
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(43)



So, f(X)=[X, Xy, X5 X4 Xe» Xg]

1
=e8 —% = —J2x, +/2x, +\/§x3
= 1.008 = —/2x, ++/2x, +~/2x,

X==
2

Wy y(X)=0

P, (x)=0

¥, (x)=0

¥,y (X) = V2(cos(47x) —sin(4nx)) = 2
Y, (X) = J2

W, (X) = /2(cos(4nx) + sin(4nx)) = /2
So, w(x)=[0, 0, 0, V2, V2, ¥2|

SO, f(X):[X]_| X2) X3! X4! XS’Xﬁl]

Simime o o

1
:ez—%zﬁx4+\/§x5+\/§x6
= 1.1487 = /2%, +/2x; +/2x,

3 1
X=—¢€e[=1

~clbd]

‘{10(—1)()():0

Wy(x)=0
\P01(X) =0
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(45)



¥,y (X) = V2(cos(47x) —sin(4rx)) = —/2
IP10()() = \/E
W, (X) = v/2(cos(4nx) +sin(47x)) = —/2

So, f(X)=[x, X, Xg %40 X, Xg]

SIS e © o

3
e _g _ _V2x, + 2%, — 2,
= 1.3670 = —/2x, + /2%, —~/2X, (46)

X==
8

Wy y(x)=0

¥, (x)=0

¥, (x)=0

¥,y (X) = V2(cos(47x) —sin(4nx)) = 2
Y, (X) = J2

W,,(X) = /2(cos(47x) + sin(4x)) = —/2
So, W(x) = [0, 0, 0, v2,v2, ¥2|

0
0
0
SO, f(X):[Xl 1X21 X3 1X4 ’X5’ X6] \/5
V2

3
= eb —g = \/§x4+\/§xs—\/§x6



= 1.0799 = /2%, +~/2x, — /2%, (47)

On solving equation (42), (43), (44), (45), (46) and (47)

We get

X = [-0.002, 0.179, —0.009, —0.101, 0.889, 0.024]
Now, (I — KPT —PT "= KY, +Y, + X

[ -0.123579 ]
0.337076

—0.0590784

Y'= | _0.2257

—0.255339
0.14557

Now, Y =YT P+Y,'
= YT = [0.0221223 0.342209 0.0366578 0.0203233 0.448058 0.0141958]
Then, y(t)=Y "¥(t)

— y(t) = 0.083127613cos(4nt) + 0.020556301sin(4t) + 0.483956609
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Table

This table shows that difference of exact solution and numerical solution.

where y is the exact solution and y is the numerical solution.

Absolute errors in CAS wavelet method (M=1, k=1)

X

A

y y ly — ¥l

0.1 0.110517091 0.46201024 0.351493149
0.2 0.244280551 0.440063871 0.19578332

0.3 0.404957642 0.418117503 0.013159861
0.4 0.596729879 0.39728942 0.199440459
0.5 0.824360635 0.374224765 0.45013587

0.6 1.09327128 0.352278397 0.740992883
0.7 1.409626895 0.330332028 1.079294867
0.8 1.780432743 0.308385659 1.472047084
0.9 2.2136428 0.286439293 1.927203507
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1. CONCLUSION

CAS wavelets gives an efficient and accurate method for solving the
Fredholm integral equations. This method reduces an integral equations into
set of algebraic equations. The integration of the product of two CAS
wavelets function vectors is an identity matrix, which makes computation
of integral equation attractive. It is also shown that the CAS wavelets
provide an exact solution.

CAS wavelet also provide an efficient method for solving integro-differential
equations by reducing an integral equations into a set of algebraic
equations.

39



10.REFERENCE:-

[1] C.K. Chui, Wavelets: A mathematical Tool for signal Analysis, SIAM,
Philadelphia PA, 1997.

[2] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and

numerical algorithms, |, Commun. Pure Appl. Math. 44 (1991) 141-183.
[3] F.G. Tricomi, Integral Equations, Dover Publications, 1982.

[4] L.J. Lardy, A variation of Nystrom’s method for Hammerstein

equations, J. Integral Equat. 3 (1981) 43-60.

[5] S. Kumar, I.H. Sloan, A new collocation-type method for Hommerstein

integral equations, J. Math. Comp. 48 (1987) 123-129.

[6] S. Yalcinbas, Taylor polynomial solution of nonlinear Volterra—

Fredholm integral equations, Appl. Math. Comp. 127 (2002) 195-206

[7] J.S. Gu, W.S. Jiang, The Haar wavelets operational matrix of

integration, Int. J. Sys. Sci. 27 (1996) 623-628.

[8] A.M. Wazwaz, A First Course in Integral Equations, World scientific

Publishing Company, New Jersey, 1997.

[9] M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of

integration, Int. J. Syst. Sci. 32 (4) (2001) 495-502

40



[10] F.Khellat, S.A.Yousefi, The Linear Legendre mother wavelets
operational matrix of integration and its application, J. Franklin Inst.

343 (2006)  181-190.

[11] S. Yousefi, A. Banifatemi, Numerical Solution of Fredholm integral
equations by using CAS wavelets, Appl. Math. Comput. (2006),
doi:10.1016/j.amc.2006.05.081.

[12] J.S. Gu, W.S. lJiang, The Haar wavelets operational matrix of

integration, Int. J. Sys.Sci. 27 (1996) 623628.

[13] M. Tavassoli Kajani, A. Hadi Venchch, Solving linear integro-
differential equation with Legendre wavelets, Int. J. Comp. Math. 81 (6)
(2004) 719726.

[14] P. Darania Ali Ebadian, A method for the numerical solution of
the integro-differential equations, Appl. Math. Comput. (2006),
doi:10.1016/j.amc.2006.10.046.

[15] H. Danfu, S. Xufeng, Numerical solution of integro-differential
equations by using CAS wavelet operational matrix of integration,

Applied Mathematics and computation 194 (2007) 460-466.

[16] IEEE Computational Science and Engineering summer 1995, vol.2,
num.2, Published by IEEE Computer society, 10662 Los vaqueros Circle,
Los Alamitos, CA 90720, USA

41



