
DEVELOPMENT AND CHARACTERISATION OF 

CLINDAMYCIN HYDROCHLORIDE LOADED PLA/PLGA 

NANOPARTICLES 

 
Thesis submitted to 

National Institute of Technology, Rourkela 
For the partial fulfillment of the Master degree in 

Life science 
 

 
 
 
 
 
 
 
 

SUBMITTED BY                                                                                   SUPERVISED BY 

 

NILADRI MOHAN DAS                                                                    DR.BISMITA NAYAK 

ROLL NO:-410LS2051                                                                           ASST.PROFESSOR 

  

 

 

 

DEPARTMENT OF LIFE SCIENCE 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA-769008 

2011  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53188246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  
 

DEPARTMENT OF LIFESCIENCE 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA-769008 

............................................................................................................................... 

  

Dr. (Miss) Bismita Nayak, M.Sc., Ph.D.,                      Ref. No.  

Assistant Professor.                                                                Date: ............................ 

 

CERTIFICATE 

  This is to certify that the dissertation entitled " DEVELOPMENT AND 

CHARACTERISATION OF CLINDAMYCIN HYDROCHLORIDE LOADED 

PLA/PLGA NANOPARTICLES” submitted to the NIT, Rourkela, in partial 

fulfillment of the requirements for the one year project in M. Sc. Life science 

.This bonafide research work carried out by Niladri Mohan Das at National 

institute of technology, Rourkela under the supervision of Dr. B .Nayak. It is 

further testified that no part of this work has been submitted for any other 

degree or diploma. 

Dr. (Ms) Bismita Nayak 

Advisor 

…………………………………………………………………………….................................................... 

Phone no.: 0661-2462682                                                Email: bismita.nayak@gmail.com              



DECLARATION 

 

 
I hereby declare that the thesis entitled “DEVELOPMENT AND CHARACTERISATION OF 

CLINDAMYCIN HYDROCHLORIDE LOADED PLA/PLGA NANOPARTICLES”, 

submitted to the Department of Life Science, National Institute of Technology, Rourkela for the 

partial fulfillment of the Master Degree in Life Science is a faithful record of bonafied and 

original research work carried out by me under the guidance and supervision of Dr. (Miss) 

Bismita Nayak, Assistant Professor, Department of Life Science , National Institute of 

Technology, Rourkela. No part of this thesis has been submitted by any other research persons or 

any students.  

 

 

 

  Date: 

  Place: NIT, Rourkela                                                   NILADRI MOHAN DAS  



ACKNOWLEDGEMENTS 

 

I express my deep sense of gratitude and reverence to my advisor, Dr. (Miss.) Bismita 

Nayak, Assistant Professor, Department of Life Science, NIT-Rourkela, for her excellent 

guidance, constant and untiring supervision, active co-operation and encouragement throughout 

the period of investigation and preparation of this manuscript.  

 

I am extremely grateful and indebted to Dr. S.K. Patra, HOD, Department of Life 

Science, NIT-Rourkela, Dr.B.mallick ,  Dr.S.Jha , Dr.R.Jaibalan , Dr. S.K. Bhutia and Dr. S. Das 

for their inspiring suggestions and valuable advice not only for this investigation but also in 

many other fronts without which it would have been difficult to carry out this work.  

 

I express my sincere obligations to Dr.S.Mishra(Biotechnology ,KIIT,BBSR ), Dr. S.K. 

Paria (Chemical Engg.) and Dr. S. Mohapatra (Chemisty),Dr.M.Pal (Biotechnology and 

biomedical),Dr.D.Chaira (metallurgy and engg), and faculty of other departments for their 

constant help and support.  

 

I am highly obliged to Pradipta Ranjan Rauta, Ph.D. Scholar, Department of Life 

Science, NIT-Rourkela, for his constant help and encouragement during the period of my project. 

I am solely impressed by his great personality.  

My heart full thanks to all of my friends for their moral support, help and encouragement 

throughout the course of this work. I take the pleasure to acknowledge the constant help and 

support of my friends has always been cherished.  

Lastly, I acknowledge with highest sense of regards to my parents, my brother and other 

members of my family for their supreme sacrifice, blessings, unwavering support, love and 

affection without which the parent investigation would not have been successful in any sphere of 

my life.  

At the end, I bow down my head to the almighty whose omnipresence has always guided 

me and made me energiesed to carry out such a project.   

 

Place: NIT, Rourkela                                                                                NILADRI MOHAN DAS 



CONTENTS 

SL.NO PARTICULARS PAGE NO 

1 LIST OF FIGURE i 

2 LIST OF TABLES  ii 

3 ABSTRACT iii 

4 INTRODUCTION 1 

5 REVIEW OF LITERATURE 6 

6 OBJECTIVE 15 

7 PLAN OF WORK 15 

8 MATERIALS AND METHODS 

i.    NANOPARTICLE PREPARATION 

ii. DRUG CONJUGATION 

iii. MORPHOLOGY 

iv. PARTICLE SIZE AND ZETA POTENTIAL 

v. DSC ANALYSIS 

vi. FTIR ANALYSIS 

16 

9 RESULT AND DISCUSION 

i. PARTICLE SIZE ANALYSIS 

ii. SURFACE CHARGE ANALYSIS 

iii. MORPHOLOGY STDY THROUGH SEM 

iv. DSC ANALYSIS 

v. FTIR ANALYSIS 

20 

11 CONCLUSION 33 

11 ACKNOWEDLGMENT 34 

12 REFERENCES 35 

 



LIST OF FIGURES 

 

 

Fig. 

No. 

PARTICULARS PAGE 

No. 

1 STRUCTURE OF POLY LACTIC-ACID 2 

2 STRUCTURE OF POLY (LACTIC-CO-GLYCOLIC ACID). 

 

2 

3 STRUCTURE OF CLINDAMYCIN HYDROCHLORIDE 4 

4 TARGETED AND UNTARGETED DRUG DELIVERY 5 

5 COORELATION OF MICROENCAPSULATION METHODS 

 

12 

6 PREPARATION OF NANOPARTICLE BY EMULSION SOLVENT 

EVAPORATION METHOD 

17 

7 SIZE AND POTENTIAL OF PLA-CLHAND PLGA-CLH PARTICLES 22 

8 SEM STRUCTURE OF PLA-CLH AND PLGA-CLH 

NANOPARTICLE 

26 

9 DSC THERMOGRPH 29 

10 FTIR DATA ANALYSIS OF  PLA-CLH AND PLGA –CLH 31 

   

   

 

 

 

  

(i) 



LIST OF TABLES 

 

 

TABLE 

NO. 

PARTICULARS PAGE 

NO. 

I PARTICLE SIZE AND ZETA AND ZETA POTENTIAL OF 

PLA/PLGA CONJUGATED CLINDAMYCIN HYDROCHLORIDE 

DRUG.    

20 

II DSC  TG VALUES OF THERMOGRAPH 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) 



ABSTRACT 

Clindamycin hydrochloride drug most commonly used as antibiotics in dental and oral infection 

acts upon various bacterial infections also. In this experiment PLA and PLGA nanoparticle 

prepared and conjugated with Clindamycin hydrochloride drug. From these two nanoparticles   

PLGA shows good result. It is found through SEM and Zeta sizer study that these polymers after 

conjugation with clindamycin hydrochloride gaining mean particular size of 178.6 nm with zeta 

potential -17.5 mv. Due to very less zeta potential nanoparticles are remain far apart so no 

clumping found among the drugs. In DSC study it is shown that the Tg (glass transition 

temperature) of Clindamycin hydrochloride is about 150
0
C so it take time to disperse inside the 

body but after conjugation with PLGA its Tg getting reduced to about 48
0
C.Due to this low glass 

transition temperature it can easily disperse inside the body. After conjugation with Clindamycin 

hydrochloride there also an investigation done through FTIR studies from which we got that 

there must be a good conjugation of clindamycin hydrochloride with PLGA nanoparticle. This is 

because the abundance of OH, C=O, group both are common in PLGA and Clindamycin 

hydrochloride drug.  The stretching band in PLGA-clindamycin hydrochloride is 3644.32 cm
-1

   

refers to the absence of hydrogen bond among the Clindamycin hydrochloride and PLGA which 

may stands for hydrophobic bond due to much abundance of OH group. At the end it can be tell 

that after conjugation there is no serious alteration of Clindamycin hydrochloride structure but 

due to very easily dispersible nature it can shows its bactericidal effect more rapidly in 

comparison to the conventional medicine which generally takes two to three days. 

 

 

 

 

(iii) 
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 INTRODUCTION 

 

There is emergent interest in developing biodegradable nanoparticle because of their 

application with small molecular drug, proteins or genes by either localized or targeted delivery 

to the tissue of interest. Nanoparticles are uniform colloidal system of size range typically from   

10 to 100 nm. These biodegradable polymer based nanoparticles are conjugated with curative 

agents those are either entrapped or adhered chemically onto the polymer matrix. Although there 

are  number of polymers that have been used for formulating biodegradable nanoparticles but 

among them poly (D,L- lactide-co-glycolide) (PLGA), poly lactic acid (PLA), are FDA approved 

and considered as biodegradable and biocompatible polymer for its application in human 

use(Parket et al., 1995; Vert et al., 1998). PLGA and PLA polymers have the advantage of being 

well characterized and commercially used for microparticulate and nanoparticulate drug delivery 

systems (Allemann and Leroux, 1999). 

Drug delivery research is clearly moving from the micro to nano size scale. 

Nanotechnology is therefore evolving as a promising field in medicine that elicits significant 

therapeutic benefits. The development of effective nano delivery systems has capable of carrying 

the drug specifically to a desired site of action is one of the most challenging tasks of 

pharmaceutical formulators. Attempts have been made to reformulate these formulations for 

better use and add new advantages to the existing drugs for positive scientific outcomes and 

therapeutic breakthroughs. The nanodelivery systems mainly include nanoemulsions, liposomes 

and lipid or polymeric nanoparticles. Nanoemulsions are mainly used as vehicles for lipophilic 

drugs in subsequent intravenous administration. Where as, the ultimate objective of the other 

nanodelivery system is to alter the normal biofate of potent drug molecules in the body following 

their intravenous administration to markedly improve their efficacy and reduce their  severe 

adverse effects. 

  The lactide/glycolide polymers chains are cleaved by hydrolysis into natural metabolites 

(lactic and glycolic acids), which are eliminated   by normal metabolic pathway (citric acid 

cycle). PLGA provides a wide range of degradation rates, ranges from months to years. It 

depends on its composition and molecular weight (Brannon et al., 1995; Anderson et al., 1997)      
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Poly (lactic acid) (PLA): 

Fully biodegradable synthetic polymers have been available since many years, such as 

poly (lactic acids) (PLA). Among all biopolymers, PLA was broadly studied in medical implants, 

suture, and mostly in drug delivery systems since 80s due to its extensive biodegradability 

nature.  

 

 

                            

                                   Figure.1:  Structure of Poly lactic-acid; n- no of chains                                 

 

 

 Polylactic acid or polylactide (PLA) thermoplastic aliphatic polyester derived 

from renewable resources (corn starch), tapioca products (roots, chips or starch mostly in Asia) 

or sugarcanes (in the rest of world). The biodegradability depends upon certain conditions, such 

as the presence of oxygen that is difficult to recycle. The name "polylactic acid" is to be used 

with caution, not complying with standard nomenclatures (such as IUPAC) and potentially 

leading to ambiguity. But PLA is not a polyacid (polyelectrolyte), but rather polyester. 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Thermoplastic
http://en.wikipedia.org/wiki/Aliphatic
http://en.wikipedia.org/wiki/Polyester
http://en.wikipedia.org/wiki/Renewable_resource
http://en.wikipedia.org/wiki/Corn_starch
http://en.wikipedia.org/wiki/Tapioca
http://en.wikipedia.org/wiki/Sugarcane
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Poly (lactic-co-glycolic acid) (PLGA): 

Over the past few decades, poly (lactic-co-glycolic acid) (PLGA), have been broadly 

studied for a wide variety of pharmaceutical and biomedical applications. This biodegradable 

polyester has been regarded as one of the few synthetic biodegradable polymers with excellent 

biocompatibility, convenient biodegradability,  and high safety. Among these polyesters PLGA 

plays an important role in drug delivery system. 

 

 

 

 

 

                    

 

 

 

FIG.2: Structure of poly (lactic-co-glycolic acid). X: number of units of lactic acid; y: number of 

units of glycolic acid 

 

Poly (lactic-co-glycolic acid) (PLGA) copolymer is an attractive delivery vehicle because 

of its superb biocompatibility, high safety profile. Whereas Inject able PLGA delivery systems 

involve encapsulation of a growth factor, as the PLGA capsule is hydrolytically degraded over 

time in vivo or in vitro, growth factors are released into the surrounding region. In addition, the 

release kinetics of this system can be easily adjusted by altering the ratio of PLA: PGA. 

Recently, focus has been shifted to encapsulation of bioactive substances of nanometer scale and 

their delivery to targeted site. Nanoparticle encapsulation confers several advantages over micro 

particle encapsulation, including a lower risk of mobilization. 
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Clindamycin hydrochloride (CLH) 

 

 

                             

 

                             Figure.3:  Structure of Clindamycin hydrochloride                                 

Clindamycin hydrochloride antibiotics have the chemical name 7-chloro-7-

deoxylincomycin hydrochloride which is a semi synthetic analogue of natural antibiotic 

lincomycin. It is shaped by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of lincomycin. 

Antibacterial and antiprotozoal antibiotic of the licosamide class inhibits protein synthesis in 

bacterial by binding to 50s ribosomal subunit. It is active mainly towards gram-positive 

microorganisms. It is used mostly in the treatment of penicillin-resistant infections and in 

patients allergic to penicillin. It may be used alone or with combined medicines. Chemical name 

of clindamycin is Methyl 7-chloro-6,7,8-trideoxy- 6-(1 -methyl-trans-4-propyl-L-2-pyrrolidine- 

carboxamido)-1 -thio-L-threo-a-o-galacto- octopyranoside. If we take into consideration of 

clindamycin antibiotic then it is divisible into three types of antibiotics these are Clindamycin 

Hydrochloride which is the hydrochloride salt of clindamycin it is white crystalline powder in 

nature and administered orally.  Next one is the Clindamycin Palmitate Hydrochloride which is 

the palmitic ester of clindamycin in hydrochloride form it is also a white crystalline powder and 

it soluble in water for the preparation of solutions. Clindamycin Phosphate is the phosphoric acid 

ester of clindamycin having properties of white crystalline powder, soluble in water and 

administered intramuscularly or intravenously. Clindamycin is used to treat a wide variety 

of bacterial infections that works by stopping the growth of bacteria. This antibiotic treatment is 

only done for bacterial infections. It will not work for virus infections (e.g.,common cold, flu). 

Unnecessary use or misuse of any antibiotic can lead to its decreased efficiency. This drug may 

http://www.webmd.com/drugs/drug-12235-clindamycin+hcl+oral.aspx
http://www.webmd.com/a-to-z-guides/bacterial-and-viral-infections
http://www.webmd.com/cold-and-flu/default.htm
http://www.webmd.com/cold-and-flu/default.htm


5 
 

also be used before dental procedures in patients with certain heart conditions (e.g., artificial 

heart valves) to help prevent serious infection of the heart (bacterial endocarditis). 

 

                            

Figure.4: NTS (Nanotech systems inc.) utilizes polymer based nano particles that have been 

formulated to encapsulate a drug, which allow for an intracellular site of action.   The drug binds to 

the cytoplasmic receptors and the succeeding drug-receptor complex is transported to the nucleus 

resulting in the manifestation of the drug product. 

 

MOTIVATION TO DO THIS WORK:  

 As Clindamycin hydrochloride antibiotics most profoundly prescribed by physician to 

use during oral infection, dental infection, immunological irresponse after using penicillin  and 

other bactericidal infections as for its very successful bactericidal effect. But generally this 

antibiotic takes two/three days for the medication (www.ehow.com/how). In dental infection it 

most profoundly prescribed by doctors to use it within two days but as its bactericidal effect 

takes two to three days so patient bound to suffer more two/three days with pain of this disease 

.In this experiment Clindamycin hydrochloride drug conjugated with PLA/PLGA nanoparticle 

and its characters after conjugation is studied.   

http://www.webmd.com/heart/picture-of-the-heart


6 
 

2. Review of Literature  

Conventional preparations like solution, suspension or emulsion for drug delivery 

purpose has various boundaries like high dose and low availability, faster reach effect, 

intolerance, instability. They exhibit some changes in blood plasma drug levels and do not 

provide sustained effect. Due to presence of various acidic and basic medium inside our body it 

is necessary that every drug should reach to its target site without any alteration in its physical 

and chemical properties.  Therefore, there is a need for some novel carriers which could reach to 

its target side without making any adverse effect to body and can carry the drug easily and safely 

to its destination. Recently nanoparticles delivery system has been proposed as colloidal drug 

carriers. Nanoparticles (NP) are a type of colloidal drug delivery system comprising particles 

with a size range from 10 to 1000 nm (diameter). Nanoparticles may or may not exhibit size-

related properties that differ significantly from those observed in fine particles or bulk materials 

(Buzea et al., 2007). The major advantages of nanoparticles are improved bioavailability by 

enhancing aqueous solubility, increasing resistance time in the body (increasing half life for 

clearance/increasing specificity for its associated receptors and targeting drug to specific location 

in the body .This is why nanoparticle are increasingly used in variety of applications that 

includes drug carrier systems and to pass organ barriers such as the blood-brain barrier, cell 

membrane etc (Abhilash, 2010). They are based on biocompatible lipid that provide sustained 

effect by either diffusion or dissolution (Cavalli et al., 1995; Muller et al., 2000).  Moreover it 

can be said that nanoparticles are now a day’s acting as very prolific device for drug delivery 

system. The first nanoparticulate drug delivery systems was liposomes  which  proposed by Dr. 

Gregory Gregoriadis in 1974  leading to several breakthrough discoveries by using nanoparticles 

as drug carriers resulting from cutting-edge researches based on multidisciplinary approaches 

and many more applications have developed since then. 

 

NANOPARTICLE DRUG DELIVERY SYSTEMS FOR BLOOD BRAIN BARRIER: 

 

Effectiveness of the chemotherapy of brain pathologies is often impeded by inadequate 

drug delivery across the blood–brain barrier (BBB). Galeperina(2006) from Russia has patented 

poly(butyl cyanoacrylate) nanoparticles coated with polysorbate 80,which  showing the 
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proficient brain-targeting drug delivery system by  crossing the BBB . Doxorubicin in free form 

cannot pass the BBB but after employment of poly butyl cyanoacrylate nanoparticles showed 

high effectiveness of nanoparticle-bound doxorubicin in intracranial glioblastoma in rats. 

Another research review, covering various techniques used for crossing the BBB, discusses the 

application of nanoparticulate drug delivery systems for this purpose (Juillerat JL 2008). Kreuter 

et al.,(2007) have described the application of covalently bonded apolipoprotein A-I and 

apolipoprotien B-100 to albumin nanoparticles, enabling these to deliver the drug into the  brain . 

A fascinating review on the application of nanotechnology in breast cancer therapy is exposed by 

Takemi et al., (2009). According to him a PEGylated form of liposomally encapsulated 

doxorubicin is routinely used for the treatment of metastatic cancer, and albumin nanoparticulate 

chaperones of paclitaxel are standard for the locally recurrent and metastatic cancer tumors. 

Above 150 clinical trials are being conducted through worldwide for the treatment of breast 

cancer by using nanotechnology based yield. This review covers different generations of 

nanotechnology tools used for drug delivery, especially in breast cancer.Generally injectable 

drug delivery nano vectors are used for cancer therapy, especially while multiple-drug therapy is 

used. These vectors need to be large enough to equivocate the body defense but it should be 

sufficiently small to avoid blockages in even the capillaries. The nano size plays an important 

and supportive role in such capillary blockages. As these vectors are smaller than the diameters 

of the capillaries, the blockages can be successfully prevented. The anticancer drugs can be 

integrated in such nanovectors. These nanovectors can functionalize in order to actively bind to 

specific sites and cells after extravasations thorough ligand–receptor interactions. Nano sized 

vectors incorporate fusion proteins and immunotoxins/polymers, dendrimers, polymer–drug 

conjugates, polymeric micelles, polymerosomes and liposomes, and metal nanoparticles like 

gold nanoparticles or nanoshells. The major alarm of nanovectors based on polymers is their 

biodegradability, biocompatibility,  and release of drug from the polymer nanosystem in to the 

body at the site of action. 

 

ANTIBODY TARGETING OF NANOPARTICLES 

Many studies have been reported about the antibody mediation of the nanoparticles to 

build up targeted drug delivery systems, particularly in the application of cancer treatment. 

Antibody targeting of drugs can improve the therapeutic efficacy of the drug substance, as well 
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as it can progress the circulation and absorption of the drug at the targeted site of drug action 

McCarron et al.,(2008). Two novel approaches to create immune   nanoparticles with improved 

therapeutic effect against colorectal tumor cells were studied by using poly (lactide) polymers 

and CD95/ APO-1 antibody to target nanoparticles. Pan et al., in 2007 used dendrimer–magnetic 

nanoparticles for proficient delivery of gene-targeted systems for cancer treatment. Later the use 

of nanostructures calcium nanophosphates for non viral gene delivery were described and they 

studied the influence of various synthesis and formulation parameters on transfection efficiency 

(Olton D, Li J;Wilson ME, et al., 2007). 

 

HYDROGEL NANOPARTICLES IN DRUG DELIVERY 

Hydrogel nanoparticles and their applications in drug delivery as well as therapeutic 

applications in various disease conditions is more fruitful (Hamidi M, et al 2008). Scientists have 

used polymeric group of poly (lactide)- tocopheryl polyethylene glycol succinate (PLA-TPGS) 

copolymers, were  used to convey protein and peptide drugs (Lee SH et al.,2007) through 

double-emulsion technique for protein drug formulation, with BSA as the model drug. They have 

used confocal laser scanning microscopy observations to demonstrate the intracellular uptake of 

the PLA-TPGS nanoparticles by fibroblast cells and Caco-2 cells, having great potential of these 

polymeric carriers for protein and peptide drugs. 

Nano vehicular intracellular delivery systems (Prokop A et al., 2008.) recently developed 

system by which various aspects of nanodrug delivery systems and their uptake was studied in 

biological environment at different cellular levels. (Devapally et al., 2007). With many 

examples, they have shown that nanoparticulate drug delivery systems show a gifted approach to 

attain desirable delivery properties by altering the biopharmaceutic and pharmacokinetic 

properties of the molecule. 

The industrial scene of nanotechnology developments is very promising. Its application   

to drug delivery is broadly expected to create novel therapeutics, capable of enhancing the 

landscape of pharmaceutical and biotechnology industries. Various nanotechnology platforms 

were investigated, either in development or in clinical stages, and many areas of interest where 

there will be effectual and safer targeted therapeutics for a numerous of clinical applications 

were used. It will be evolving out very soon for the detriment of humanity at large scale. 

Biodegradable polymers are valuable in many ways over other materials for use in drug delivery 
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systems such as nanoparticles. They can be fabricated into various shapes and sizes, with 

modified pore morphologies, mechanical properties, and degradation kinetics for variety of 

applications. By selecting the appropriate polymer type, molecular weight, and copolymer blend 

ratio, the degradation erosion rate of the nanoparticles can be controlled to accomplish the much 

preferred type and rate of release of the encapsulated drug. The common biodegradable polymers 

used in drug delivery include (i) polyesters, such as lactide and glycolide copolymers, 

polycaprolactones, poly(hydroxybutyrates), (ii) polyamides, which includes natural polymers 

such as collagen, gelatin, and albumin, and semisynthetic pseudo-poly(amino acids) such as 

poly(N-palmitoyl hydroxyproline ester),  (iii) polyurethanes, (iv) polyphosphazenes, (v) 

polyorthoesters, (vi) polyanhydrides, and (vii) poly(alkyl cyanoacrylates) by  D’Mello et al.,2005 

One of the most popular biodegradable polymers used in drug delivery are aliphatic polyester 

copolymers based on lactic and glycolic acids. Poly (d,l-lacticco- glycolic acid) (PLGA) is used 

for the manufacture of implants and internal sutures. As PLGA is degrading to produce the 

natural products lactic acid and glycolic acid it is known as biocompatible material. PLGA 

nanoparticles undergo homogenous hydrolytic degradation, which is modulated by various 

factors such as chemical composition, porosity, hydrophilicity/hydrophobicity, morphology 

(crystalline/ amorphous), and molecular weight and molecular weight distribution. Owing to the 

presence of methyl groups in the lactide polymers, these are more hydrophobic than the 

glycolide polymers. As glycolide ratio in the copolymer increases the water uptake  also 

increases.  The homopolymers, PLA is highly crystalline compared with PGA and erode slowly 

since it is more resistant to hydrolysis, whereas the PLGA copolymers with an increasing ratio of 

PGA tend to be less crystalline and thus have a faster rate of biodegradation. The transition glass 

temperatures of the copolymers range from 36
0
C to about 67

0
C. PLGA polymers undergo bulk 

hydrolysis/erosion of the ester bonds and metabolized to monomeric acids due to molecular 

weight decreases whereas the mass remains unchanged and undergoes elimination through Krebs 

cycle. Pitt et al., demonstrated that molecular weight of the polymer decreases in first stage of 

degradation owing to the random hydrolytic cleavage of the ester linkage, followed by the onset 

of weight loss and a change in the rate of chain scission in the second stage (Pitt CG et al.,  

1981). Furthermore, hydrolysis is enhanced by the accumulation of acidic products and the 

reduction of pH facilitated by the carboxylic acid end groups, which is an autocatalytic 

degradation process (Pistner H et al., 1993). The degradation of these polymers differs in vivo 
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and in vitro conditions, mainly because, although in vivo there is no major influence of enzymes 

during the glassy state of the polymer, these enzymes can play a significant role when the 

polymer becomes rubbery (Amidon GL et al., 1995). Normally, 50:50 lactide/glycolide 

copolymers have the fastest half-life of degradation, around 50 to 60 days, whereas 65:35, 75:25, 

and 85:15 lactide/glycolide copolymers have progressively longer degradation half-lives in vivo 

condition  (Jalil R et a.,l 1990) demonstrated that although physical properties of the 

microparticles were not seriously affected by the molecular weight of poly(d,l-lactide), swelling 

properties (which are a function of hydrophilicity of the polymer) could be affected due to the 

core loading and the variations in the molecular weight. The half-life of these linear polyesters 

can be increased by co blending with more hydrophobic co monomers such as polycaprolactone. 

The complete breakdown of the poly(d,l-lactide) nanoparticles was achieved within 480 days, 

whereas the PLGA nanoparticles degraded in 63 days, this is due to hydrophilic and 

semicrystalline nature of the glycolide part. 

The nanoparticle is coated by polymer, which releases the drug by controlled diffusion or 

erosion from the core across the polymeric membrane or matrix .But the membrane coating acts 

as a barrier to release the drugs from core of nanoparticle, therefore, the solubility and diffusivity 

of drug in polymer membrane becomes the influential factor in drug release. Furthermore release 

rate can also be affected by ionic interaction between the drug and addition of supporting 

ingredients. When the drug is involved in interaction with these supporting ingredients to form a 

less water soluble complex, then the drug release can be very slow with almost no burst release 

effect (Chen et al., 1994). To develop a successful nanoparticulate system, both drug release and 

polymer biodegradation are two important consideration factors. Moreover, drug release rate 

depends on solubility of drug, desorption of the surface bound/ adsorbed drug, drug diffusion 

through the nanoparticle matrix, nanoparticle matrix erosion/degradation and combination of 

erosion/diffusion process (Mohanraj and Chen, 2006). Thus solubility, diffusion and 

biodegradation of the matrix materials govern the release process. There is a wide range of 

nanoparticulate materials and structures have been developed for the delivery of therapeutic 

compound and each has its own scrupulous advantages, but as these nanoparticles become 

optimized for their unambiguous application, the outcome will be better-controlled therapy. As a 

result of targeted delivery of smaller amounts of effective drugs to the required sites in the body, 

various types of nanoparticles those are on focus due to their use  in drug delivery and various 
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biomedical approaches  are recognized as Fullerenes, Solid lipid nanoparticles (SLNs), 

Liposomes, Nanostructured lipid carriers (NLC), Quantum dots (QD), Super paramagnetic 

nanoparticles and dendrimers. 

PLGA generally used for the manufacture of implants and internal sutures and is known 

to be biocompatible, degrading to produce the natural products lactic acid and glycolic acid 

(Visscher GE et al.,1985) and these acids are eliminated from body through lactic acid cycle . 

PLGA nanoparticles undergo homogenous hydrolytic degradation, which is modulated by 

different factors such as chemical composition, porosity, hydrophilicity/hydrophobicity, 

morphology (crystalline/ amorphous), and molecular weight and molecular weight distribution 

(Anderson JM et al.,1997). Due to the presence of methyl groups in the lactide polymers, these 

are more hydrophobic than the glycolide polymers. Also, the water uptake increases as the 

glycolide ratio in the copolymer increases (Gilding DK et al., 1979). As PLA is more resistant to 

hydrolysis it slowly erodes and it is highly crystalline on compared with PGA whereas the PLGA 

copolymers with an increasing ratio of PGA tend to be less crystalline and thus have a faster rate 

of biodegradation. The transition glass temperatures of the copolymers range from 36◦C to about 

67◦C.PLGA polymers undergo bulk hydrolysis and erosion of the ester bonds, due to which the 

molecular weight decreases and the mass remains unchanged. Furthermore, hydrolysis is 

enhanced by the accumulation of acidic products and the reduction of pH facilitated by the 

carboxylic acid end groups. The degradation of these polymers differs in vivo and in vitro, 

although in vivo there is no major influence of enzymes during the glassy state of the polymer, 

these enzymes can play a significant role when the polymer becomes hard (Li SM et al., 1990). It 

was verified that although physical properties of the microparticles were not seriously affected 

by the molecular weight of poly(d,l-lactide), swelling properties (which are a function of 

hydrophilicity of the polymer) could be affected due to the variations in the molecular weight 

and the core loading. The half-life of these linear polyesters can be increased by co-blending 

with more hydrophobic co-monomers such as polycaprolactone. Visscher et al., performed the 

biodegradation studies of poly(d,l-lactide) and 50:50 poly(d,l-lactide-coglycolide) in the rat 

gastrocnemius muscles (Visscher GE et al., 1985). The 50:50 ratio of PLGA is thus 

advantageous as polymeric nanoparticles for small-molecule drugs (Jalil R et al ., 1990) 

compared with other polymers due to its fastest degradation rate, and as a result, fastest drug 

release from the nanoparticles. 
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For encapsulating peptide or protein generally PLGA nanoparticls/microparticless are 

used followed by mainly three methods: water–oil–water (w/o/w) emulsion technique, phase 

separation methods and spray drying (Freitas, 2005). Generally, peptides or proteins are 

dispersed in an organic solution of PLGA and processed in an aqueous solution of water-in-oil 

(w/o) emulsion. The dispersion step is carried out by means of high speed sonicator. 

Raghavendra et al., (2008), reported that, micro particles are produced by either extracting 

organic solvent or by adding a non-solvent i.e., silicone oil, thereby inducing coacervation. The 

first process is frequently referred as w/o/w method,which also known as the phase separation 

technique. In both of the cases, the particle formation occurs in the liquid phase. But In spray 

drying technique, particle formation is achieved by atomizing the emulsion into a stream of hot 

air under vigorous solvent evaporation. Different methods are schematically displayed in Fig: 5. 

 

 

 

 

Figure.5: correlation of microencapsulation methods: (i) solvent evaporation, (ii) polymer phase separation 

and (iii) spray drying. Aqueous solution is dispersed in the organic polymer solution by ultrasonication (w/o) 

emulsion; the w/o emulsion is processed further by specific methods to prepare the drug-loaded 

microparticles. 

 

According to Raghavendra et al., (2008), proteins encapsulated by w/o or w/o/w 

techniques into nanoparticles or microparticles are susceptible to denaturation, aggregation, 

oxidation and cleavage, particularly at the aqueous phase-solvent interface. Protein denaturation 
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may also result in a loss of biological activity. Improved protein integrity has been achieved by 

the addition of stabilizers such as carrier proteins (e.g., albumin), surfactants during the primary 

emulsion phase or molecules such as trehalose and mannitol to the protein phase. Protein 

stability may also be improved if the protein is encapsulated as a solid rather than in solution. It 

should be noted that all the nano/micro-encapsulation techniques create mechanical, thermal and 

chemical stresses on the system under investigation.  

At present PLA is one of the most promising biodegradable polymers (biopolymers) and 

has been the subject of profuse of literature over the last decade. PLA can be processed with a 

large number of techniques and is commercially available (large-scale production) in a wide 

variety of grades. It is relatively economical and has some remarkable properties, which make it 

suitable for different applications. Its biodegradability is modified to short-term packaging, and 

its biocompatibility in contact with living tissues is exploited for biomedical applications like 

implants, sutures, drug encapsulation. PLA belongs to the family of aliphatic polyesters 

commonly made from hydroxy acids (D’Mello et al), for example, polyglycolic acid (PGA). It is 

one of among the few polymers in which the stereo chemical structure can easily be modified by 

polymerizing a controlled mixture of l and d isomers to yield high molecular weight and 

amorphous or semi-crystalline polymers. Properties can be modified through the variation in the 

relative contents isomers (l / d ratio) and the homo and (d ,l )copolymers. Besides these PLA can 

be adapted by formulation involving adding plasticizers, other biopolymers and fillers. PLA is 

considered both as biodegradable and as biocompatible in contact with living tissues as it is 

widely used for biomedical applications. PLA can be degraded by a biotic degradation which 

represents simple hydrolysis of the ester bond without requiring the presence of enzymes to 

catalyze it. During the biodegradation process, the enzymes degrade the residual oligomers till 

final mineralization (biotic degradation).As long as the basic monomers (lactic acid) are 

produced from renewable resources (carbohydrates) by fermentation; PLA complies with the 

rising worldwide concept of sustainable development and is classified as an environmental 

friendly material. 

Antibiotics Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. 

Clindamycin hydrochloride is a semi synthetic antibiotic shaped by a 7(S)-chloro substitution of 

the 7(R) hydroxyl group of the parent compound linomycin. Cleocin   HCl Capsules contain 

clindamycin hydrochloride equivalent to 75 mg, 150mg, or 300 mg of clindamycin. Serum level 
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studies with a 150 mg oral dose of clindamycin hydrochloride in 24 normal adult volunteers 

showed that the clindamycin drug was rapidly absorbed after oral administration. An average 

peak serum level of 2.50 mcg/mL was reached within 45 minutes; serum levels averaged 1.51 

mcg/mL at 3 hours and 0.70 mcg/mL at 6 hours. Absorption of an oral dose is virtually complete 

(90%), and the affiliated administration of food does not significantly modify the serum 

concentrations; serum levels have been uniform and predictable from person to person and dose 

to dose. Serum level studies following multiple doses of Cleocin HCl for up to 14 days .But there 

is no evidence of accumulation or altered metabolism of drug found. Next it is found that   

healthy volunteers were well tolerated to the doses of up to 2 grams of clindamycin per day for 

14 days, except that incidence of gastrointestinal side effects is greater with the higher doses. 

Concentrations of clindamycin in the serum increased linearly with increased doses .Serum 

levels surpass the MIC (minimum inhibitory concentration) for most indicated organisms for at 

least six hours following the administration of recommended doses. Clindamycin is widely 

circulated in body fluids and tissues (including bones). No significant levels of clindamycin are 

found to attained in the cerebrospinal fluid, even in the existence of inflamed meninges. 

Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome 

(Wayne, PA: Clinical and Laboratory Standards Institute; 2010). It has activity against Gram-

positive aerobes and anaerobes as well as –some Gram-negative anaerobes. As Clindamycin is 

also bacteriostatic so cross-resistance between clindamycin and lincomycin is complete. 

Antagonism in vitro has been demonstrated between clindamycin and erythromycin. 

Clindamycin has inducible resistance which has been identified in macrolide-resistant 

staphylococci and beta-hemolytic streptococci. Macrolide-resistant isolates of these organisms 

should be screened for clindamycin by using the D-zone test. Clindamycin can also be treated in 

case of serious infections due to susceptible strains of streptococci, pneumocooci and 

styphalocooci. Its uses should be reserve for penicillin allergic patients and this antibiotics   is 

also used for  the treatment of infected wounds, abscesses, and dental infections in dogs and cats 

and  osteomyelitis in dogs (Bioequivalence Guideline, October 9, 2002) . 
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OBJECTIVES: 

 

1. To prepare PLA and PLGA conjugated clindamycin hydrochloride drug 

nanoparticles.  

2. Characterization study of PLA/PLGA conjugated Clindamycin hydrochloride 

drug like its efficiencies, surface morphology, particle size, surface charge, 

chemical composition study by FTIR, dispersion rate was studied. 

 

 

 

PLAN OF WORK: 

           

Loading of Clindamycin hydrochloride drugs into PLA and PLGA 

microparticles/nanoparticles 

↓↓ 

Measurement of particle size and zeta potential using Zeta sizer 

↓↓ 

Morphological characterization by using scanning electron microscope (SEM) 

↓↓ 

Differential scanning calorimetric (DSC) measurements 

↓↓ 

Fourier transform infra-red (FTIR) measurements 
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3. MATERIALS AND METHODS  

3.1 Materials 

The biodegradable polymers Polylactic acid (PLA) and Poly (d,l-lacticco- glycolic acid) 

(PLGA) 50:50 H (sigma Aldrich, USA), with an average molecular weight of 40000-65000  Da 

and  40000-75000 Da respectively were studied. As surface active agent polyvinyl alcohol 

(PVA,) from Sigma-Aldrich, USA was used. Antibiotic Clindamycin hydrochloride powder usp 

(manufactured by Pfizer pgm, France) those are commercially available were used to analyze 

and to prepare drug containing nanoparticle.  Ultrapure water from Milli-Q water system used. 

 

EQUIPMENTS 

 Stratos low-temperature high-speed centrifuge(Thermo, Germany) 

 Cooling centrifuge (REMI) 

 Magnetic stirrer 

 Sonicator  

 Zeta sizer (Malvern) 

 Scanning electron microscope (Jeol Jsm-6480 LV) 

 Fourier transform infra-red (FTIR)  

 Differential scanning calorimetry (DSC) [NETZCH] 
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3.2. Methods 

3.2.1 Preparation of drug loaded nanoparticle by (w1/o) w2 solvent evaporation method 

            ORGANIC PHASE                                                                  INTERNAL AQUEOUS PHASE  
        (POLYMER+DCM+ACETONE)                                 (CLINDAMYCIN HYDROCHLORIDE+PBS)                                                       

 

 

                                                                                           

       EMULISIFICATION (SONICATION) 

 

                   INNER EMULSION                         WATER+PVA 

                           (W1+O)         (W2) 

 

             

       EMULSIFICATION (SONICATION) 

 

                                                                     SECONDARY EMULSION 

                       (W1/O/W2) 

                                        DCM 

ACETONE 

(CENTRIFUGATION)   

      

  

    NANOPARTICLE AND MICROPARTICLE 

            FORMATION 

                                                                 

             

            LYPHOLIZED TO RECOVER THE PARTICLE 

Fig-6: Preparation of Nanoparticle by Emulsion Solvent Evaporation Method   
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In organic phase 0.4 gm of PLGA and PLA polymers were taken separately each in 8ml 

of mixture of DCM and acetone (85:15,v/v) to prepare nanoparticle  and in internal aqueous 

phase 40 mg Clindamycin hydrochloride antibiotic (10% dry weight of polymer) dissolve in 

PBS(67mM,pH 6.0).The two solutions were mixed by ultrasonication for 30 sec under cooling 

(output 4,40% duty cycle) to form W1/O emulsion. This is so called inner emulsion was slowly 

added to 100 ml of 1% (w/v) aqueous PVA solution which was homogenized with a high speed 

mixture for 8 min at 8500 rpm. The resulting w1/o/w2 emulsion was stirred at 300 rpm over night 

to maximum evaporation of organic solvent. Then the samples were washed 3 times with milli-Q 

water at 12000 rpm for 15 min then nanoparticles/microparticles were formed. These 

nanoparticles/microparticles were taken for lyphophilization where as supernatants were 

preserved for further analysis. 

 

3.2.2 Morphology 

The morphology of the nanoparticle was investigated by Scanning electron microscopy 

(Jeol JSM microscope). The nanoparticles were fixed on adequate supports and coated with 

platinum using platinum sputter module in a higher vacuum evaporator. Observations under 

different magnifications were performed at 20kv. 

 

3.2.3 Particle size and zeta potential 

The size, size distribution and zeta potential of the nanoparticles were analyzed by Zeta 

sizer(ZS  90 malvrn). The lyophilized samples were made a dilution with PBS of 67 mm and ph 

6.0 on mg/ml and analyzed. During analysis of size  these samples were first kept in an another  

clean cubet and put it on to the zeta size analysis chamber to get various peak and next to find its 

average zeta size. On for analysis surface charge potential or zeta potential samples were kept 

into the zeta sizer analysis chamber observe for its peak to get an data of zeta potential. During 

analysis of these data monodisperse nature are always took in to consideration rather than 

polydisperse character. 
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3.2.4 DSC analysis 

The physical   state of Clindamycin hydrochloride entrapped in the nanoparticles as well 

as the polymers and the blank nanoparticles of PLA and PLGA were characterized by differential 

scanning calorimetry thermogram analysis (Netzch DSC 200 F
s)
. The samples (~12 mg) were 

weighed and sealed in Aluminum pans and heated under nitrogen by heating rate of 10
0
 C/min, 

the heat flow being recorded from 30
0
C to 200

0
C. Indium was used as standard reference 

material to calibrate the temperature and energy scales of the DSC instruments. After getting 

data through Microsoft exel we got the DSC thermograph. 

 

3.2.5 FTIR analysis 

PLA and PLGA nanoparticles were conjugated with Clindamycin hydrochloride. Due to 

this conjugation there may be chances of adsorption of some functional groups to the newly 

formed conjugated nanoparticles. Hence, FTIR analysis was done to study the chemical 

properties of nanoparticles conjugated clindamycin hydrochloride and after knowing the 

functional groups its bonding nature with nanoparticle was also characterized. 
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4. RESULT AND DISCUSSION 

4.1   Zeta size and Zeta potential 

Clindamycin hydrochloride loaded PLA nanoparticles: 

Blank –PLA, code L in table II was the normal sample without any conjugation called as 

blank PLA. The particle size observed was 43 nm taken comparison between PLA conjugated 

Clindamycin hydrochloride and blank PLA.  But after conjugation of clindamycin hydrochloride 

with PLA nanoparticles, the size observed was 323.5 nm.  

Clindamycin hydrochloride loaded PLGA nanoparticles: 

Blank- PLGA was the  normal sample with particle size analyzed 178.6nm taken for 

comparison between PLGA conjugated Clindamycin hydrochloride and blank PLGA. When 

Clindamycin hydrochloride was conjugated with PLGA nanoparticle, the observed size was 

45.64nm.   

 

Table I: PLA/PLGA blank nanoparticles and PLA/PLGA nanoparticle  with Clindamycin 

hydrochloride , their mean particle size,   zeta potential. 

Sl.No Sample  name Code name Mean Particle 

Size 

Zeta Potential 

1 Blank -PLA L 42.93nm -24.8mv 

2 Blank- PLGA G 258.3nm -32.7mv 

3 CLH+PLA 2 323.5 nm -11.5 mv 

4 CLH+PLGA 3 178.6nm -17.5 mv 

 

In this study Blank-PLA and Blank-PLGA were taken as standard for comparison of particle size 

and zeta potential of CLH conjugated PLA and CLH conjugated PLGA. From blank-PLA we 

found that its mean particle size was 42.93 nm but when we took consideration about CLH 

conjugated PLA its size increases to   323.5 nm from 42.93 nm. In case of blank-PLGA we 
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found that its mean particle size was 258.3 nm but it was interesting to see that when PLGA 

conjugated with CLH drug its size reduces to 178.6 nm. As such as particle size, zeta potential 

also plays a vital role by preventing drugs to aggregate. More -/+ the zeta potential more is the 

repulsion of nanoparticle so they can remain far apart without aggregation. It can be deduced 

from the table- II that blank-PLA and blank-PLGA having zeta potential -24.8 mv and -32.7 mv 

but after conjugation of CLH-PLA and CLH-PLGA these zeta potential value shifts to -11.5 mv 

and -17.5 mv respectively. Due to very high zeta potential nanoparticles will gain the 

characteristic to remain separated without aggregation that is very essential for drug delivery.
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                 Fig.7.1: Sample code L showing the size (42.93nm) and potential (-24.8mv). 
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                  Fig.7.2: Sample code G showing the size (258.3nm) and potential (-32.7mv)  
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                   FIG 7.3: Sample code 2   showing the size (323.5 nm) and potential (-11.5 mv) 
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                   FIG 7.4: Sample code 3 showing the size (45.64nm) and potential (-17.5 mv) 
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4.2   Morphology 

The morphology of these PLA and PLGA particles were spherical structures as resolute 

by using scanning electron microscope (SEM). Figure 8(A) is the structure of PLGA-CLH 

particles where as Figure 8(B)  are structure of PLA-CLH particles. The surfaces of the particles 

were rough and rounded. It was reported that, when the ratio of the IAP to EAP was increased, 

the relative sizes of the pores also lean to increase (Nayak et al., 2009).  

 

                                                               

 

       Fig 8 (A): Surface structure of PLGA-CLH                              Fig 8 (B): Surface structure of PLA-CLH       

 

 

   

 

 

 

 

 

 

 

 

 

 

1 µm 1 µm 



27 
 

4.3   DSC studies 

Figure 9 and Table III shows the values for the DSC data of blank PLA, blank PLGA, 

Clindamycin hydrochloride conjugated with PLA, Clindamycin hydrochloride conjugated with 

PLGA and the melting point of Clindamycin hydrochloride alone. 
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Fig 9: DSC data of Clindamycin hydrochloride tablet, blank PLA, blank PLGA, Clindamycin 

hydrochloride conjugated with PLA and Clindamycin hydrochloride conjugated with PLGA. 

 

Table II: The glass transition temperature (Tg) obtained from   DSC analysis of Clindamycin 

hydrochloride tablet, blank PLA, blank PLGA , Clindamycin hydrochloride  conjugated with PLA 

nanoparticleand Clindamycin hydrochloride conjugated with PLGA nanoparticle. 

Materials Temperature(
0
c) 

Clindamycin hydrochloride tablet 150 

Blank PLA 50 

Blank PLGA 170 

Clindamycin hydrochloride-PLA 160 

Clindamycin hydrochloride-PLGA 48 

 

This is a comparable study for blank PLA/PLGA nanoparticle and Clindamycin 

hydrochloride conjugated with nanoparticle. On DSC result it was found that Clindamycin 

Hydrochloride having    glass transition temperature of 150
0
C whereas blank PLA and PLGA 

polymer showed glass transition temperature at 50
0
C and 170

0
C respectively. But interestingly 
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on conjugation of PLA to the Clindamycin hydrochloride  its glass transition   increases from  

50
0
c  to 160

0
c but  it  was observed that  PLGA on  conjugation  with Clindamycin hydrochloride 

its glass transition temperature decreased  from 170
0
C to 48

0
 C. 

Thermal analytical studies of polymeric drug delivery system are significant since the processes 

used to their preparation are able to modify the organization of the polymer chains (Dubernet, 

1995). Thermal analysis data (fig and table) showed a Tg for blank PLA around 50
0
C, of   170

0
C   

for blank PLGA, around 160
0
C for clindamycin hydrochloride-containing PLA and 48

0
c for 

clindamycin hydrochloride-containing PLGA. For lactic acid polymer, the Tg represents a 

measure of the polymer chain flexibility and indicates how the hydrolysis of the ester bonds will 

occur (Ford and Timmins, 1998). 

The thermo gram of the drugs alone shows an endotherm corresponding to the clindamycin 

hydrochloride melting at 150
0
 C. However such a peak is not visible in the thermo gram of 

PLGA nanoparticle containing drug. In this way it can be suggested that the drug can easily 

dispersed throughout the system (Ford and Timmins, 1989). It is a well known fact that through 

the determination of Tg it is possible to assess the drug dispersion within the carrier system and 

that the disappearance of the peak in thermograph is referred to the crystalline melting of drug. It 

indicates that the drug is homogeneously dispersed throughout the polymer matrix at an equal 

molecular level (Hariharan and price, 2002). 

4.4   FTIR analysis 

FTIR studies of Clindamycin hydrochloride conjugated PLA/PLGA nanoparticle were 

performed to characterize the chemical structure of drug conjugated nanoparticle. FTIR spectra 

of Clindamycin hydrochloride conjugated PLA /PLGA nanoparticle shown in figure10. A sharp 

peak band found at 1761.31 cm 
-1 for

 PLA-CLH and another sharp shift at 1761.58 cm
-1 

was 

found for PLGA-CLH. These values lies between range of 1700-1800 cm 
-1   

so that this peak is 

attributed to C=O group. The shift at 3505.73 cm
-1 

is a sharp peak for PLA-CLH and a shallow 

peak found on the same region on for PLGA-CLH attributed to secondary amine stretching 

frequency (2
0 

N-H group) as the value lies between 3475-3150 cm
-1

 range.   
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Fig 10: FTIR data analysis of  PLA-CLH(sampl-2)and PLGA-CLH(sample-3) . 

SAMPLE-2 

SAMPLE-3 
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A sharp peak and low intense spectrum found for PLA-CLH which gives band at 3648.58 

cm
-1

 and on for PLGA-CLH  the band found at 3644.32 cm
-1

  as its range lies above the 3600 

cm
-1 

there is no hydrogen bonding found and which stands for  free OH group present. Another 

two peaks of 2946.07 cm
-1 

 and 2996.80 cm
-1 

for PLA-CLH and for PLGA-CLH  2999.32 cm
-1 

and 2955.49 cm
-1 

giving two low intense peak, as the result lies nearby 3000 cm
-1 

 so this is 

attributed to sp
3
 hybridized CH stretching frequency.  The strong intense peak of 1080.97 cm

-1 

for PLA-CLH and 1086.30 cm
-1 

stretching frequency for PLGA-CLH which ranges lies between 

1260 cm
-1 

to 1000 cm
-1

 so it is attributed to C-O group. 

 

As drug has secondary amine group on its general structure so it is found in FTIR studies 

that there is no alteration of secondary amine after conjugation with PLA/PLGA nanoparticle. 

But after conjugation PLA/PLGA some groups like C=O, OH those are abundant in PLGA/PLA 

nanoparticle and this functional group present in CLH drug is very less. It was also found by 

FTIR studies, that there is not much alteration in general structure of CLH drug because of OH 

group and it is present in free form without forming any hydrogen bond with any other group. 

CH group stretching band was also found through FTIR studies. As CH group is also present in 

CLH drug, there is no alteration of CH group in the conjugated drug. C-O bond is common in 

both the polymers and CLH drug so it has also no effect on to the drug’s general structure. For 

further structural details of the compound investigation on various functional groups can be 

carried by NMR studies.  
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CONCLUSION 

 From all the above studies we concluded that PLGA nanoparticle shows maximum 

efficiency towards Clindamycin hydrochloride drug in comparison to PLA nanoparticle. From 

size analysis we concluded that the prepared PLGA-CLH samples were of nanoparticle range 

with a mean diameter of 178.6 nm and having zeta potential of -17.5 mv. From DSC analysis we 

concluded that PLGA nanoparticle on conjugation with CLH drug showed very low glass 

transition temperature of about 48
0
C which is very close to our normal body temperature. 

Therefore, it can easily disperse in our body in comparison to present available drug in market 

without PLGA conjugated nanoparticle. Due to easy disperse in our body its bactericidal and 

therapeutic effect may be appear early within the same day compared to the conventional 

medicine which generally takes two to three days. For more convincing data regarding this in 

vitro drug release study through HPLC will be a necessary step. Due to lack of time scope this 

part could not be included as the part of the thesis. From FTIR data analysis we concluded that 

after conjugation with nanoparticle CLH has not shown very serious alteration in its general 

structure. For more appropriate structural analysis study on various functional groups by NMR 

studies could be beneficial. In conclusion, we have seen that the solubility, dispersion and 

properties of PLGA nanoparticle conjugated Clindamycin drug increases to be better used for 

drug delivery purpose.   
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