
Feature Based Segmentation of

Colour Textured Images

using Markov Random Field Model

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology
(Research)

by

Mridula J
(Roll No.: 608EE307)

under the supervision of

Dr. Dipti Patra

Department of Electrical Engineering

National Institute of Technology Rourkela

Rourkela–769 008, Odisha, India

March 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Department of Electrical Engineering

National Institute of Technology Rourkela

Rourkela–769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Feature Based Segmentation

of Colour Textured Images using Markov Random Field Model by Mridula J is a

record of an original research work carried out by her under my supervision and

guidance in partial fulfillment of the requirements for the award of the degree of

Master of Technology (Research) during the session 2009–2011 under specializa-

tion in Electronic Systems and Communication, in the department of Electrical

Engineering, National Institute of Technology Rourkela. Neither this thesis nor

any part of it has been submitted for any degree or academic award elsewhere.

Dipti Patra
Place: NIT Rourkela Associate Professor
Date: EE department of NIT Rourkela



Acknowledgment

I have been very fortunate to have Dr. Dipti Patra, Associate Professor, Depart-

ment of Electrical Engineering, National Institute of Technology, Rourkela as my

thesis supervisor. She introduced me to the field of Image Processing and Com-

puter Vision, educated me with the methods and principles of research and guided

me patiently throughout this thesis work. She has been very liberal in supporting

me all through to complete this study in time. She has been a perfect motivator,

very cooperative and an inspiring guide to me to fulfill this academic pursuit. I

am highly indebted and express my deep sense of gratitute to her. I am extremely

thankful to herfor her incredible contribution in writing the manuscript.

I am extremely grateful to Prof. Sunil Kumar Sarangi, Director, N.I.T, Rourkela,

and Prof. P. C. Panda for their encouragement and support in completion of this

thesis. In particular, I would like to thank Prof. B. D. Subudhi, H.O.D, Electrical

Engineering Dept., who kept an eye on the progress of my work and always was

available when I needed his help and advises.

I humbly acknowledge the creative criticism and constructive suggestions of

Prof. Susmita Das, Prof. B. Majhi and Prof. K. B. Mohanty, committee members,

while scrutinizing my research work.

I am highly indebted to NIT Rourkela, for providing me all the facilities for

my research work. I am extremely thankful to all the faculty members of the

Department of Electrical Engineering, NIT, Rourkela for their encouragement and

cooperation throughout this period. This work was made thoroughly enjoyable by

the friendly and congenial atmosphere of Image Processing and Computer Vision

Laboratory of Electrical Department. My heartfelt thanks to Kundan Kumar

for the self initiative and the responsibility he took in every stage of my thesis

writing. A special thanks to Subrajeet Mohapatra for helping and guiding me to

learn Latex and complete my thesis early. I also thank Prajna, Venkateshwarulu

and Sushanth for their support.

Many thanks to all the people whose friendship and companionship has given

ii



a lot of encouragement during my research work. My profuse thanks to my close

friends and neighbours Priya, Mitra Binda, Rajani, Madhusmitha, Radhika, Pun-

yatoya and Mishra uncle for their unconditional support.

My deepest gratitude goes to my family for their unflagging love and support

throughout my life. I shall always remain indebted to my parents for the continu-

ous support they gave me and especially for taking care of my son Nenad during

my absence which helped me to complete this thesis on time. I am also grateful

and thankful to my mother-in-law and late father-in-law for their positive encour-

agement that they showered on me to complete this thesis. I also thank my sister

Vinanthi for giving me moral support whenever I needed.

My little son, Nenad suffered a lot in my absence from home and I thank him

profusely for his sense of understanding and unwavering faith in me.

Finally, I would end this note by placing my husband Mahesh at the bottom

of my heart for the moral and emotional support he gave along with the tolerant

effort he put to make this thesis complete, though equally busy with his own

PhD thesis work. Moreover I thankfully appraise him that he accepted every

difficult and challenging situation calmly from the begin to the end of this M Tech

Research. I dedicate this work to all my family members.

Above all, I salute the divine powers, the Almighty for their abundant blessings

for giving me strength and energy to complete this study successfully.

Mridula J

iii



Abstract

The problem of image segmentation has been investigated with a focus on col-

ored textured image segmentation. Texture is a substantial feature for the analysis

of different types of images. Texture segmentation has an assortment of important

applications ranging from vision guided autonomous robotics and remote sensing

to medical diagnosis and retrieval in large image databases. But the main prob-

lem with the textured images is that they contain texture elements of various sizes

and in some cases each of which can itself be textured. Thus the texture image

segmentation is widely discerned as a difficult and thought-provoking problem. In

this thesis an attempt has been made to devise methodologies for automated color

textured image segmentation scheme.

This problem has been addressed in the literature, still many key open is-

sues remain to be investigated. As an initial step in this direction, this thesis

proposes two methods which address the problem of color texture image segmen-

tation through feature extraction approach in partially supervised approach. The

feature extraction approaches can be classified into feature based and model based

techniques. In feature based technique features are assessed without any model

in mind. But in case of model based approach an inherent mathematical model

lets features to be measured by fitting the model to the texture. The inherent

features of the texture are captured in a set of parameters in order to understand

the properties generating the texture. Nevertheless, a clear distinction can not be

made between the two approaches and hence a combination of approaches from

different categories is frequently adopted.

In textured image segmentation, image model assumes a significant role and

is developed by capturing salient spatial properties of an image. Markov random

field (MRF) theory provides a convenient and consistent way to model context de-

pendent entities. In this context a new scheme is proposed using Gaussian MRF

model where the segmentation problem is formulated as a pixel labeling problem.

The a priori class labels are modeled as Markov random field model and the num-
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ber of classes is known a priori in partially supervised framework. The image

label estimation problem is cast in Bayesian framework using Maximum a Pos-

teriori (MAP) criterion and the MAP estimates of the image labels are obtained

using iterated conditional modes (ICM) algorithm. Though the MRF model takes

into account the local spatial interactions, it has a limitation in modeling natu-

ral scenes of distinct regions. Hence in our formulation, the first scheme takes

into account within and between color plane interactions to incorporate spectral

and contextual features. Genetic algorithm is employed for the initialization of

ICM algorithm to obtain MAP estimates of image labels. The faster convergence

property of the ICM algorithm and global convergence property of genetic algo-

rithm are hybridized to obtain segmentation with better accuracy as well as faster

convergence.

Another new scheme is developed by incorporating texture features computed

using gray level co-occurrence matrix (GLCM) for color textured image segmen-

tation. Besides image model, color model also plays a crucial role in color image

segmentation. Hence, Ohta color space is used for better segmentation and the

textural features of the image are computed using GLCM in Ohta color space.

Thus obtained feature matrix is assumed to be the degraded version of the la-

beled image. The unknown class labels are modeled as MRF model. The model

parameters are assumed to be known a priori. Segmentation is obtained by MAP

estimation of image labels using ICM algorithm. In this proposed new scheme,

incorporation of contextual feature using MRF model and textural feature using

GLCM in Ohta color space obtains better segmented results for colored textured

images. Both the proposed schemes are found to be outperforming the existing

methods in terms of percentage of segmentation accuracy and time complexity.
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Chapter 1

Introduction

“Vision - It reaches beyond the thing that is, into the conception of what can

be. Imagination gives you the picture. Vision gives you the impulse to make

the picture your own” quote by Robert Collier emphasizes the implication of

the vision. Humans are fundamentally visual creatures. Vision allows humans

perceive and realize the world surrounding them. The human visual system has

the potentiality to acquire, integrate and interpret all the ample visual information

around it [1,2]. Computer Vision aims to impart such challenging potentialities to

a machine in order to interpret the visual information embedded in still images,

graphics and video or moving images in our sensory world. It is astonishing when

we realize just how much we are environed by images. Images allow us not only

to perform complex tasks on a daily basis, but also to communicate, transmit

information, represent and understand the world around us. Computer vision,

image processing, image analysis, robot vision and machine vision are the terms

that refer to some aspects of the process of computing with images. To accomplish

this, computer vision techniques employ the results and methods of mathematics,

computer science, electronics, pattern recognition, artificial intelligence and other

scientific disciplines [2–4]. With the objective of easing the task of computer vision,

two levels of processing are usually described as

• Low level image processing

• High level image understanding
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In low level image processing, the input and output are both images. In a

computer, an image is represented by a rectangular matrix with elements corre-

sponding to the brightness at appropriate image locations. These images are the

inputs and outputs for low level image processing. High level image understanding

attempts to duplicate the human cognition and the power to arrive at decisions

according to the information contained in the image. To begin with, high level

vision takes some form of formal model of the world, compares the digital image

encompassing the reality to the model and then switches to low level image pro-

cessing to find the information needed to update the model. Low level computer

vision techniques overlap almost with digital image processing. Image process-

ing is not a one-step process. Thus we are able to distinguish between several

steps which must be performed until we can extract the data of interest from the

observed scene.

The following are the different steps that are seen in image processing

• Image Acquisition - This step involves capturing an image by a sensor and

digitizing it.

• Image Enhancement - Includes suppression of noise and enhancing some

object features which are pertinent to empathizing the image.

• Image Compression - Deals with the techniques for reducing the bandwidth

needed for transmitting an image or the storage for saving an image.

• Image Segmentation - In this step the objects are separated from the image

and from each other.

• Object Description - Also called feature selection, addresses the problem of

extracting the attributes that contribute some quantitative information of

interest.

• Recognition - Assigns labels to an object based on its descriptors.

Out of the above stated steps of digital image processing, this thesis deals

with image segmentation. To be more precise, the thesis is dedicated on the

2



1.1 Image Segmentation

segmentation of the colour textured images stated in the Problem Definition.

1.1 Image Segmentation

Image segmentation can be defined as the process of partitioning an image into

different regions that are homogeneous with respect to some image features. The

goal of image segmentation is to detect and extract the regions which constitute

an image. Identification of these regions is not involved in obstinate to the classifi-

cation problem. Image segmentation can be thought of as the first look of a newly

born baby at the world. That is to say, to gander without higher cognition on the

objects that we see in the scene. In simple words, suppose we have an image with

three regions, image segmentation simply says that, “there are three regions in the

image” and the identification of the region is not a part of segmentation process.

Each pixel in the image is labeled with the corresponding region number [5]. Using

their visual sense, humans are able to partition their environment into distinguish-

able objects to help distinguish these objects, classify them, guide their movement

and to perform almost every visual task. This includes analysis of colour, shape,

motion and texture of objects, thus is a complex process. It may be a spontaneous

natural activity for human visual system, but is not so easy to create an artificial

algorithm that performs exactly as that of human visual system. Segmentation is

the initiative step of any image analysis procedure and succeeding tasks such as

feature extraction and objects recognition to a great extent rely on the quality of

segmentation. In this way, the ultimate success or failure of the image analysis

process depend exclusively on segmentation [6].

Many attributes such as gray level, colour, texture features, etc., can be taken

into account during segmentation process. With the colour being a very power-

ful descriptor, colour images rendering incomparably more information than gray

scale images, the colour image segmentation has earned significance in recent years.

The other reasons being

• Availability of the state-of-the-art computers to process colour images.

• Reliability of the segmentation results with the colour images
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1.1 Image Segmentation

• Managing of vast image databases, which are mainly constituted by colour

images, as the Internet

• Irruption of 3G mobile phones, digital cameras and video sets.

However, simplifying assumptions made about the homogeneity of the colours

in local image regions, in many image processing algorithms cannot be adopted in

real images. This is due to the fact that real images exhibit deviation in intensities

within a region which forms the texture. And this has necessiated the researchers

to lead for colour textured image segmentation.

Texture can be defined as the repeating pattern of local spatial variations in

pixel intensities of an image. It is important to note that tone and texture always

form an integral part of an image. But one attribute can overshadow the other on

occasions depending on the smoothness or coarseness of the surface of the objects.

If the variation of the colour within a small area is comparatively small, then the

tonal property will dominate. Contrarily, when there is a wide variation in the

distribution of tone inside an area then the texture will become prevalent. Thus

texture forms an innate attribute of all the objects. The small area which forms

the fundamental unit of the texture is often called as a texel and a texture is

categorized as smooth or coarse depending on the size of the texel. If texels are

small and tonal deviation among texels is prominent, it results in a fine texture.

While a coarse texture results from large sized texels consisting of several pixels.

Even though many image segmentation techniques have been developed during

the past years there is no universal method which can excellently perform the

task for all type of images. In general the texture segmentation can be obtained

through featured based, model based and hybrid methods. In our work we have

considered the hybrid method in which the feature and model based approaches

are combined. The method comprises of two stages viz., feature extraction and

segmentation. Feature extraction process extracts the textural features which is

then followed by segmentation. Segmentation is performed through model based

approach which is categorized as (i) Supervised approach to segmentation and (ii)

Unsupervised approach to segmentation
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1.2 Application of Textured Image Segmentation

1.1.1 Supervised Image Segmentation

Supervised segmentation is an approach where the model parameters are assumed

to be known a priori and are used for estimating the pixel lables in segmentation

problem. The pixel labelling problem, using MRF model has been formulated

using maximum a posteriori (MAP) criterion and Bayesian framework [7–9]. Seg-

mentation of both noisy and textured images could be formulated in supervised

frame work using MRF model. For Brain MR images, D. Patra have proposed

Hybrid Tabu Search (HTS) algorithm to obtain the MAP estimates of the image

labels and thus to accomplish supervised image segmentation [9].

1.1.2 Unsupervised Image Segmentation

In unsupervised framework, the number of class labels and model parameters

are unknown and are to be estimated simultaneously. The unsupervised image

segmentation is viewed as the incomplete data problem as the estimation of image

labels depend upon the optimal set of parameters and vice versa. This type of

problem is usually addressed using iterative schemes such as iterative conditional

mode (ICM) algorithm which was initiated by Besag [8].

1.2 Application of Textured Image Segmenta-

tion

1. Remote Sensing application: As a first step in image analysis, segmentation

of textured images plays a vital role in remote sensing applications which

include

• Classification of land cover classes

• Tree species identification: Tree species identification is a very complex

process. A given area of forest land is often occupied by a complex

mixture of many tree species. The image characteristics like shape,

size, pattern, shadow, tone and texture are used by interpreters for the

process. The arrangement of tree crowns produces a pattern that is
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distinct and give rise to different textures for different species. Thus

segmenting the image according to these textures help in identification

of the species.

• For crop type recognition in agricultural applications.

• To locate objects like detection of roads, to identify water bodies etc.

2. For robotic guidance

3. Medical applications: In medical imaging image segmentation is used to

automatically extract the features from the image which are then used for

variety of classification tasks such as

• To differentiate normal tissue from abnormal one.

• To locate tumors

• Measure tissue volumes

• Computer guided surgery

• Diagnostic treatment planning

• Study of anatomical structure

4. Document processing: In Document processing has applications ranging

from postal address recognition to analysis and interpretation of maps. For

example postal document processing include applications such as recogni-

tion of destination address and zip code information on envelopes. In these

applications first step is the separation of image regions which contain useful

information from background.

1.3 Literature Survey

Texture segmentation is a very significant operation in computer vision. As most

natural surfaces show texture, a successful vision system must be capable to handle

the textured world surrounding it. Specifically, the processing of colour textured
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images has become an important issue due to its huge usage in computer vision ap-

plications. So it is a matter of significance to focus on both the features viz., colour

and texture. Haralick [10,11], Reed and du Buf [12] have made very good surveys

on texture segmentation and feature extraction techniques and categorized tex-

ture segmentation techniques as feature based, model based and structural based

approaches. The main difference between feature based and model based texture

analysis is that texture features are measured without an ideal or model texture in

mind in feature based techniques. But in model based approaches a mathematical

model is assumed which allows features to be measured by fitting the model to

the texture. However it is difficult to make a clear distinction as to which method

is more suitable for texture segmentation and hence combinations of approaches

are frequently adopted [13]. Kyong I. Chang et. al. [14] also reviewed unsuper-

vised texture segmentation algorithms and conceptualized the control scheme of

texture segmentation as two modular processes, (1) Feature computation and (2)

Segmentation of homogeneous regions based on the feature values. The review

of various methods of extracting textural features from images can also be found

in [15] and [16] where in Mihran Tuceryan and A. K. Jain have presented the ge-

ometric, random field, fractal and signal processing models of texture in [15] and

Stephen Haddad has investigated filter bank based methods and local descriptors

in [16].

In feature extraction, properties of textures are derived from statistical mea-

surements from the operation of filters or transformations. These include Gray

Level Co-occurrence Matrices (GLCM), Laws texture energy (LAWS), Gabor fil-

ters, autocorrelation functions, second order spatial averages and two-dimensional

filtering in the spatial and frequency domain etc. A.K. Jain et. al. have presented

an unsupervised texture segmentation using Gabor filters and have proposed a

systematic filter selection scheme [17]. This scheme is based on reconstruction of

the input image from the filtered images and obtaining the texture features by

subjecting each (selected) filtered image to a nonlinear transformation and com-

puting a measure of “energy”in a window around each pixel. An unsupervised
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square error clustering algorithm is then used to integrate the feature images and

produce segmentation. Mihran Tuceryan has presented a texture segmentation

algorithm based on the moments of an image [18]. In this algorithm, the moments

within localized regions of the image around each pixel are computed followed by

the estimation of a feature vector for each pixel based on these moments. Finally it

segments these feature vectors (hence the texture regions) using a partitional clus-

tering algorithm. Later, again, C. Palm and T. M. Lehmann proposed a method

for classification of colour textures by using Gabor filters where in the Fourier do-

main is used for filter bank design and its implementation and Fourier transform

is the main element of the Gabor transform [19]. Their study also confirms the

colour to enhance the intensity texture features as well as composing an inten-

sity independent pattern. M. Varma and A. Zisserman presented a texon based

representation for texture classification suited to model the joint neighbourhood

distribution for Markov random fields [20]. The representation is learnt from train-

ing images and then used to classify novel images into texture classes. From the

studies it is found that the blurring in the filters means that the fine local details

can be lost. Morten Rufus Blas et. al. have presented a fast integrated approach

for online segmentation of colour and textured images for outdoor robot [21] by

developing a compact colour and texture descriptor to describe local colour and

texture variations in an image. Small neighbourhood vectors called textons that

characterize scene textures are found out by clustering the neighbourhood vectors.

Then histograms of textons are clustered over larger areas to find more coherent re-

gions with the same mixture of textons. A texel-based approach to segment image

parts occupied by distinct textures is proposed by Sinisa Todorovic and Narendra

Ahuja [22]. Segmentation is done by capturing intrinsic and placement properties

of distinct groups of texels. The scale or coarseness of texture is lower bounded by

the size of its texels. To account for texel substructure, variable-bandwidth kernel

in the mean shift has been derived and used a hierarchical.

Among the statistical approaches mention must be made on the use of gray

level co-occurrence matrices (GLCM) to extract the textural features [23]. P. V.
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Narasimha Rao et. al. have successfully implemented the GLCM approach to

classify panchromatic satellite data using maximum likelihood classification [24].

Anne Puissant et. al. have utilized GLCM features for classification of high

resolution imagery [25]. The methodology uses panchromatic band to extract the

textural information and the three multispectral bands for spectral information.

The output image generated by texture analysis is then used as an additional band

to the multi-spectral bands and the four bands are then classed by a supervised

classification by discriminant analysis. Very recently G. Christoulas et. al. have

explored the textural characteristics of Medium Resolution Imaging Spectrometer

(MERIS) data using GLCM for the classification of the image [26]. Despite the

fact that GLCM was originally proposed in the context of texture classification,

it has been applied to texture segmentation by many researchers [27–29].

In model based approach, segmentation of the textured images is done with the

help of stochastic models like Markov random field (MRF) models. MRF theory is

a branch of probability theory which provides a foundation for the derivation of the

probability distribution of interacting features. It provides a systematic approach

for depriving optimality criteria based on themaximum a posteriori(MAP) concept

and tells how to model the a priori probability of contextual dependent patterns,

such as textures and object features [30].

Panjwani and Healey have presented an unsupervised segmentation algorithm

using Markov random field model for colour texture that captures spatial in-

teraction within and between the bands of a colour image [31]. In the method

the model parameters from image regions are estimated by maximum likelihood

scheme and the final stage of the segmentation algorithm is a stepwise optimal

merging process that at each iteration selects a merge that maximizes the condi-

tional pseudolikelihood of the image. An important problem that has not been

addressed in the scheme is the selection of neighbours during the design of colour

random field models. Krishnamachari and Chellappa presented a multi resolution

Gaussian Markov random field (MRF) model for texture segmentation in which

coarser resolution sample fields are obtained by sub sampling the sample field at
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fine resolution [32]. It was found that, although the Markov property is lost un-

der such resolution transformation, coarse resolution non-Markov random fields

can be effectively approximated by Markov fields. Again the concept of multi

resolution Markov random field concept was adopted by Chang-Tsun Li for un-

supervised texture segmentation. Chang-Tsun Li followed stochastic relaxation

labeling to assign the class label with highest probability to the block site being

visited and class information is propagated from low spatial resolution to high spa-

tial resolution via appropriate modifications to the interaction energies defining

the field [13]. Din-Chang Tseng and Chih-Ching Lai have demonstrated an evolu-

tionary approach to unsupervised segmentation of Multispectral textured images

using Markov random field model [33]. The powerful global exploration ability of

genetic algorithm (GA) is utilized to improve MRF based segmentation approach

for multi-spectral textured images. Yining Deng and B. S. Manjunath proposed a

new method for unsupervised segmentation of colour textured images [34] which

consisted of two independent steps (i) Colour Quantization and (ii) Spatial Seg-

mentation. In the first step colours in the image are quantized to various classes

which can be used to differentiate regions in the image. Then the image pixels

are replaced by their corresponding colour class labels, which form a class-map of

the image. The main aim of this work is on spatial segmentation, where a crite-

rion for “good”segmentation using the class map is proposed. A region growing

method is used to segment the image on the multiscale J-images. Many texture

segmentation algorithms require the estimation of texture model parameters. The

main aim of this paper is to segment images and video into homogeneous colour

texture regions. A new approach called JSEG is proposed. This approach does not

estimate a specific model for a textured region. But it tests for the homogeneity

of a given colour texture pattern. Huawu Deng and David A. clause have pre-

sented a new implementation scheme by introducing variable weighting parameter

to combine the region labeling component and the feature modeling component in

a simple MRF based segmentation model [35]. Zoltan Kato et. al. proposed a new

MRF image segmentation model which combines colour and texture features [36].
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The proposed model relies on Bayesian estimation via combinatorial optimization

(simulated annealing). The segmentation is obtained by classifying the pixels into

different pixel classes represented by multi-variate Gaussian distributions. Per-

ceptually uniform CIE-L∗u∗v∗ colour values are used as colour features and a set

of Gabor filters as texture features. Ralf Reulke et. al. proposed a method for

road detection in panchromatic images for traffic observation from airplane plat-

forms [37]. As structure based approaches cannot be applied because of the limited

image size the method utilizes texture based algorithms. Since MRF characteris-

tics are independent of illumination of the observed area it is possible to minimize

the influence of cast shadow - a common problem in natural scenes and hence it

is shown that the method is suitable for the distinction of streets and surrounding

areas. Recently Rahul Dey et. al. proposed a new Markov random field model

known as constrained Markov random field model (CMRF) to model the unknown

image labels and Ohta (I1, I2, I3) model is used as colour model [38]. Discover-

ing the inability of the MRF model to model the natural scenes, the proposed

approach constrains the model based on the notion of Martingale to incorporate

a stronger local dependence and hence to obtain segmentation for textured and

natural scene images. The problem of colour image segmentation is addressed as

a pixel labeling problem and the labels are estimated using Maximum a posteriori

(MAP) estimation criterion. A hybrid algorithm is proposed to obtain the MAP

estimate and the performance algorithm is found to be better than that of using

Simulated Annealing (SA) algorithm. Very recently Halawani et. al. have also

addressed the colour image segmentation problem using MRF model where in they

have employed two colour models namely RGB and Ohta model [39]. A new MRF

model called DMRF model is proposed to take care of intra colour plane and inter

colour plane interactions. In RGB and Ohta model, the inter-plane correlation are

decomposed and partial correlation has been introduced due to the DMRF model.

A new hybrid algorithm in which SA algorithm is first run for some pre specified

amounts of epochs and then ICM algorithm is run until the stopping criterion

has been proposed. In order to protect edges an edge penalty function has been
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introduced in the clique potential of the a priori model.

1.4 Motivation

Many image segmentation techniques exist for homogeneous colour regions. But

natural scenes are rich in both colour and texture. Hence texture-segmentation

is an essential initial step for texture-based image analysis and retrieval systems.

But texture segmentation is a difficult problem, as the textured region can contain

texture elements of various sizes, each of which can itself be textured. In addition

to this, a unique solution of the texture segmentation problem is scarcely accom-

plishable because a generally accepted definition of texture is also missing. Due

to this, texture analysis has been realized as one of the hardest areas in the field

of computer vision and image processing. The principal consequences concerning

the textured image analysis are to extract features followed by discrimination of

the textured regions and to classify them. From the literature, it is seen that most

texture segmentation algorithms require the estimation of texture model param-

eters, but are proved to be difficult. A region growing method based on image

colour space quantization, named JSEG, is presented in [34] that provides good

segmentation results on a variety of images and can obtain textured regions as

well. But the segmentation in this approach is not based on texture features. In-

stead, they make use of other information such as colour and spatial arrangement

to handle texture and thus it fails to segment real images accurately. Many fea-

ture based methods like filter banks, gray level co-occurrence matrices (GLCM),

and model based approaches like Gaussian Markov random field (GMRF) models,

multi resolution MRF models are also in use for texture segmentation. However

the distinction cannot always be clearly made and a combination of approaches

from different categories is frequently adopted. Thus the complications involved in

texture segmentation have motivated the need for automatic segmentation tech-

niques that are robust in application. The main objective of this thesis is to

address the image segmentation schemes for colour textured images.
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1.5 Problem Addressed

In this thesis, attempts are made to address the problem of colour textured image

segmentation in partially supervised framework. The schemes have been proposed

using feature based Markov random field(MRF) model. The research work of this

thesis can be broadly categorized as:

1. Colour textured image segmentation using Gaussian Markov Random Field

model (GMRF) and hybrid GA-ICM algorithm

2. Extraction of texture features using gray level co-occurrence matrix (GLCM)

and utilizing the same for MRF model based colour textured image segmen-

tation.

1.6 Summary of the Thesis

In this thesis, the problem of image segmentation in partially supervised framework

is addressed. The focus is on colour textured and natural scene image segmenta-

tion. The observed image is assumed to be corrupted with white Gaussian noise.

The problem is cast as a pixel labeling problem. The coloured textured images

used in the thesis are taken from the web database i.e.,

“http://www.imageafter.com/”, “http://www.cgtextures.com/”and

“http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/”.

Taking inspirations from the work of D. Patra [9], Panjwani and Healey [31],

P.V. Narasimha Rao et. al. [24], G. Christoulas et. al. [26] and Rahul Dey et.

al. [38], feature based as well as model based approach is adopted for segmen-

tation. The first method proposed studies colour textured image segmentation

using compound Gaussian Markov Random Field (GMRF) model hybridized with

genetic algorithm (GA). The Gaussian Markov random field (GMRF) model is a

special case of Markov random field model(MRF) where the pixel value at location

(i, j) statistically depends on the neighbouring pixels of the representing compo-

nent together with the neighbouring pixels of the other components. Hence the

model considers spatial interactions within each colour component and the inter-
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actions between different components. The image label estimation is formulated

in Bayesian framework using MAP criteria. Iterated conditional modes (ICM)

algorithm is used for MAP estimation of image labels. As ICM algorithm heav-

ily depends on initialization and has a probability of trapping into local minima,

the global convergence property of GA is exploited to provide better initialization

condition for ICM algorithm.

It is observed that the utilization of GA for the initialization does not guar-

antee proper initialization in each and every trial of the execution and hence fails

to give accurate results in every trial. This problem could be circumvented with

a new scheme which incorporates the features of gray level co-occurrence matrix

(GLCM) in MRF model using Ohta colour space, to obtain texture segmentation

with better accuracy. The method comprises of two stages, feature extraction

and segmentation. In feature extraction, gray level co-occurrence matrix (GLCM)

denoting the second order joint probability densities of each pixel gray level is

computed. Then the statistical measures describing the texture are deduced from

GLCM to obtain the texture feature matrix. The optimal texture feature ma-

trix from a set of eight feature matrices is determined. Eight features matrices

include angular momentum, contrast, correlation, dissimilarity, entropy, homo-

geneity, mean and standard deviation. Optimal feature matrix thus obtained is

assumed to be the degraded version of the true labeled image and the segmentation

of the feature matrix is done through MAP estimation using ICM algorithm.

1.7 Thesis Organization

The thesis is organized into the following chapters.

Chapter 1: Introduction

It starts with a brief introduction of image processing followed by the formal

description of the problem of segmentation and significance of colouur and texture

in image segmentation. It also includes literature survey, motivation and thesis

contributions in brief.
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Chapter 2: Background on Markov random field model, Gray Level

Co-occurrence matrix and different colour models

This chapter focuses on background on Markov Random Field model and related

models, Gray Level Co-occurrence Matrix, Genetic algorithm and the different

colour models.

Chapter 3: Unsupervised segmentation of coloured textured images

using Gaussian Markov random field model and Genetic algorithm

This Chapter studies colour texture image segmentation using compound Gaussian

Markov Random Field (GMRF) hybridized with genetic algorithm. An attempt

has been made to incorporate colour and contextual features by taking interac-

tions within colour planes and between colour planes of RGB colour space using

GMRF model [31]. Iterated conditional modes (ICM) algorithm is used for MAP

estimation of image labels. GA is used for initializing the ICM algorithm.

Chapter 4: MRF model based image segmentation of colour textured

images using GLCM

This Chapter proposes a new method which blends the features of gray level co-

occurrence matrix (GLCM) and Markov random field model (MRF) to segment

coloured textured images in Ohta colour space. Thus MRF model is used to

incorporate contextual feature along with texture and colour feature. Ohta colour

space is used for better segmentation. It is shown from the simulation that GLCM-

GMRF-ICM scheme is found to be performing better than the scheme 1 proposed

in chapter 3.

Chapter 5: Conclusion

This chapter presents concluding remarks on partially supervised segmentation

schemes for colour textured images, with the scope for further work on the related

problems.

1.8 Image Metrics

The quality of an image is examined by objective as well as subjective evaluation.

The metrics used for comparison of performances of different segmentation schemes
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are defined below.

Misclassification Error (MCE) is a measure of percentage of misclassified pixels

changes their gray scale values in the segmented image. It measures the difference

between two images. In other words, it measures the efficiency of the proposed

schemes with the former existing schemes. Hence, the lower the value of MCE,

better is the segmentation. The MCE can be calculated as

% of MCE =
Number of misclassified pixels in a region

Total number of pixels in the region
× 100 (1.1)

Another image metric used for comparison of different methods is the execu-

tion time. Execution time is defined as the time taken for the simulation of an

algorithm. The less time an algorithm takes for execution, the more efficient it is

considered.

Subjective or Qualitative measure:

Subjective assessment is required to measure the image quality. Because of un-

availability of quantitative performance measure in case of image segmentation,

subjective or qualitative measure is another option for comparison. In a subjec-

tive assessment measures characteristics of human perception become paramount,

and the image quality is correlated with the preference of an observer or the per-

formance of an operator for some specific task. Hence, In usual case of image

segmentation there is no quantitative performance evaluation measure because no

ideal image can be used as reference. Any reasonable measure should be tuned to

the human visual system. However perceptual quality evaluation is not a deter-

ministic process. So, subjective evaluation is the way to prove the performance.

Hence, human observer is the only way by which segmented image quality can be

observed.

The processor used for simulation of the segmentation problem is Intel Pen-

tium D processor, 2.80 GHz, 1 GB RAM, Fedora-10 version in Linux

operating system using C language.
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Chapter 2

Background on Markov Random
Field Model, Gray Level
Co-occurrence Matrix and
Different Colour Models

2.1 Introduction

Image Segmentation techniques using spatial interaction models like Markov Ran-

dom Field (MRF) and Gibbs Random Field (GRF) to model the image have been

very popular recently. The use of contextual information is indispensable in low

level as well as high level Image Processing. Markov Random Field theory pro-

vides a convenient and consistent way of modeling the entities with contextual

constraints. This is achieved through characterizing mutual relationship among

such entities such as pixels of an image and other spatially correlated features us-

ing MRF probabilities. MRF forms a probabilistic model for a set of variables that

interact on a lattice structure. This started with the influential work of Geman

and Geman [7] who linked via statistical mechanics between mechanical systems

and probability theory. The distribution for a single variable at a particular site

is conditioned on the configuration of a predefined neighbourhood surrounding

that site. This chapter gathers together the background information of Markov

Random Field.
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2.2 Markov Random Field

Let us consider a collection of random variables Xi,j, that is a random field defined

over a finite discrete rectangular lattice of size (M ×N). The lattice S is defined

as S = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} where site (i, j) corresponds to each

pixel of the discrete image lattice structure. A neighbourhood system η on this

rectangular lattice can be defined as follows,

Definition 1 A collection of subsets of S described as η = {ηi,j : (i, j) ∈ S, ηi,j ⊂
S} is a neighbourhood system on S if and only if ηi,j , the neighbourhood of pixel

(i, j) is such that

1. a site is not neighbouring to itself: (i, j) /∈ ηij

2. the neighbouring relationship is mutual : If (k, l) ∈ ηij , then (i, j) ∈ ηkl for

any (i, j) ∈ S

The neighbour set of ηij is defined as the set of nearby sites within a radius

r such that ηij = {(k, l) ∈ S | {dist((i, j), (k, l))}2 ≤ r, (i, j) �= (k, l)}, where
dist(A,B) denotes the Euclidean distance between A and B, r takes an inte-

ger value. A hierarchically ordered sequence of neighbourhood systems is shown

in Figure 2.1 where η1, η2, η3 ... are the “first-order”, “second-order”, “third-

order”... neighbourhood systems respectively and are denoted by numbers 1, 2, 3...

as shown in Figure 2.1 Due to the finite lattice used, the neighbourhood of pix-

els on the boundaries are necessarily smaller unless a toroidal (periodic) lattice

structure is assumed. A nearest neighbourhood dependence of pixels on an image

lattice is obtained by going beyond the assumption of statistical independence.

the neighbourhood systems that can be defined over S are neither limited to the

hierarchically ordered sequence of neighbourhood systems, nor they have to be

isotropic or homogeneous.

Definition 2 Let η be a neighbourhood system defined over a lattice S. A random

field X = {Xi,j} defined over lattice S is a Markov Random Field (MRF) with

respect to the neighbourhood system η if and only if
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1. All of its realizations have non zero probabilities

P (X = x)>0 for all x (property of positivity)

2. Its conditional distribution satisfies the following property

P{Xij = xij | Xkl = xkl, (k, l) ∈ S, (k, l) �= (i, j)}
= P{Xij = xij | Xkl = xkl, (k, l) ∈ ηij} for all (i, j) ∈ S (property of

Markovianity)

where xij is the configuration corresponding to the random variables Xij and so

on. When the positivity condition is satisfied, the joint probability P (X) of any

random field is uniquely determined by its local conditional probabilities [40]

Figure 2.1: Hierarchically arranged neighbourhood system of Markov random
Field

The Markovianity depicts the local characteristics of X which is characterized

by the conditional distributions. The Definition 2 says that the image value at

a pixel does not depend on the image data outside the neighbourhood, when the

image data on its neighbourhood are given. Hence, the most attractive feature of

MRF is that “images tend to have a degree of cohesiveness : pixels located near

to each other tend to have the same or similar colours ” [7]. It doesn’t constitute

a theoretical restriction either, because all random field satisfy Definition 2, with

respect to a large enough neighbourhood system, e.g. η = S for all η ∈ S. On the

other hand, MRF models, even with respect to small neighbourhood systems such

as η2 prove to be very flexible and powerful. Let us define the clique associated
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2.3 Gibbs Random Field

with (S, η), a lattice neighbourhood system pair :

Definition 3 A clique of the pair (S, η) denoted by c is a subset of S such that

1. c consists of a single pixel, or

2. for (i, j) �= (k, l), (i, j) ∈ c and (k, l) ∈ c implies that (i, j) ∈ ηk,l

The collection of all cliques of (S, η) is defined by C(S, η). The clique types

associated with first-order and second-order neighbourhood systems.

2.3 Gibbs Random Field

Gibbs Distribution (GD) or equivalently the Gibbs Random Field (GRF) can be

defined as follows,

Definition 4 Let η be a neighbourhood system defined over a finite lattice S.

A random field X is said to be a Gibbs Random Field (GRF) of lattice S with

respect to a neighbourhood system η if and only if its configuration obey a Gibbs

distribution which has the following form

P (X = x) =
1

Z
e−

1
T
U(x) (2.1)

where,

Z =
∑
x

e−
1
T
U(x) (2.2)

is the partition function. Z is simply a normalizing constant so that the sum of

the probabilities of all realizations, x becomes one. T is a constant analogous to

temperature which shall be assumed to be 1 unless otherwise stated and U(x) is

the energy function or Hamiltonian of a Gibbs distribution, which can be expressed

as follows

U(x) =
∑
c∈C

Vc(x) (2.3)

Hence, energy is sum of clique potentials Vc(x) over all possible cliques C. Vc(x)

are a set of potential functions depending on the values of x at the sites in the

clique c. Thus, the key functions in determining the properties of the distribution

are the potential functions Vc(x). P (x) measures the probability of the occurrence
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2.4 Markov-Gibbs Equivalence

of a particular configuration x. The more probable is a particular configuration,

has lesser energy. This is so because the energy is computed as a measure of the

distance between the model and the raw image data. The potential functions are

chosen to reflect the desired properties of the image so that the more likely images

have a lower energy and are thus more probable. The temperature T controls the

sharpness of the distribution. When the temperature is high, all configurations

tend to be equally distributed and when it gradually decreases to zero , global

energy minima is achieved. Gibbs energy formalism has the added advantage that

if the likelihood term is given by an exponential, and the prior is obtained through

a MRF model, The posterior probability continues to be a gibbsian. This makes

the MAP estimation problem equivalent to an energy minimization.

2.4 Markov-Gibbs Equivalence

An MRF is defined in terms of local properties (the classification label assigned to

a pixel is affected only by its neighbours), whereas a GRF is characterized by its

global property(the Gibbs distribution). The popular Hammersley-Clifford’s stats

that “given the neighbourhood structure η of the model, for any set of sites within

the lattice S, their associated contribution to the Gibbs energy function should be

non zero, if and only if the sites form a clique; a random field’s having the Markov

property is equivalent to its having a Gibbs distribution”. This theorem establishes

the equivalence of these two types of properties and provides a very general basis

for the specification of MRF joint distribution function. Many have been used

through out the literature [30]. The difficulties inherit in the MRF formulation

are eliminated by use of this equivalence which are as follows:

1. Readily available joint distribution of random field

2. obtaining local characteristics regardless of inconsistency

3. Characterizing the Gibbs Distribution model with few parameters

By the use of MRF-GRF equivalence, MRF theory provides a mathematical

foundation for solving the problem of making a global inference using local infor-
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2.5 Line Process

mation. It follows from the above equivalence that the local characteristics of the

MRF are readily obtained from the joint distribution in 2.1 as

P (Xi,j = xi,j | Xk,l = xk,l ∈ S, (k, l) �= (i, j))

= P (Xi,j = xi,j | Xk,l = xk,l, (k, l) ∈ ηi,j)

=
e−

∑
c∈CVc(x)∑

xi,j ∈ Se−
∑

c∈CVc(x)
(2.4)

2.5 Line Process

In MRF models, smoothness is a generic contextual constraint which makes the

assumption that the physical properties in a neighbourhood space exhibit some

spatial coherence and homogeneity of image lattice [7]. However improper im-

position of it can lead to undesirable, over-smoothed solutions. It is essential

to take care of discontinuities when using smoothness prior. To avoid the prob-

lem of over-smoothing Geman and Geman [7] proposed combing the underlying

MRF(intensity process) with an additional “line process”.

The line process is neither a data nor the target of estimation. Rather, it is an

adjunct process which is coupled to the intensity process in such a manner that

the joint probability distribution of intensity function is locally smooth with line

process for discontinuities. The prior on the line process is often chosen to ac-

centuate continuous lines and to reject spurious edge elements. Such a model has

the desirable property of promoting structure within the image without causing

over smoothing. A couple of MRFs are defined on the image lattice, one is for

intensity or label field, other is the dual lattice for the edge field or “line field”. A

line process comprises a lattice S ′ of random variable f ∈ F , whose sites i′ ∈ S ′

corresponded with vertical and horizontal boundaries between adjacent pixels of

the image lattice. It takes the value from {0, 1} which signifies the absence or oc-

currence of edges. fi′ = 1 of the line process variable indicates that a discontinuity

is detected between neighbouring pixels j and i, i.e. V(i,j)(xi, xj) is considered as

0 or the bond between two pixels is 0; fi′ = 0 indicates continuity between above

two pixels and V(i,j)(xi, xj) is taken same as before.
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2.6 Gibbs Sampler

Another neighbourhood N is defined over the dual lattice S ′ for line sites. each

pixel has four line site neighbours. Image lattice can be represented as S ∪ S′.

The Eqn.( 2.1) can be represented with the incorporation of line field as

P (X = x, F = f) =
1

Z
e−

1
T
U(x,f) (2.5)

The resulting MAP estimation can therefore be defined using a Gibbs posterior

distribution whose prior energy function is

U(x, f) = U(x | f) + U(f) (2.6)

Assignment of line field is preferred as it results in smaller energy and better

estimation. The fundamental concepts underlying a line process were further

addressed by Geman and Reynolds [41]. They suggested the proper potential

function for cost measurement, giving a prior on the line process, to provide the

ability to model transitions in gray level.

2.6 Gibbs Sampler

To implement the Relaxation algorithm, Geman and Geman [7] developed the

Gibbs Sampler to explore the energy surface. The interpretation of the Theorems

derived by them are as follows,

• The interpretation of the Theorem A is “At constant temperature, if each

site of an image lattice is visited infinite times, as time to infinity, the config-

uration X will be a sample from the Gibbs distribution and this distribution

is independent of the initial configuration”.

• The interpretation of the Theorem B is “To reach equilibrium state with

lowest energy, the temperature is forced to decrease slowly. As time to infin-

ity, X will be a sample from the Gibbs distribution at temperature absolute

zero degree or the Gibbs distribution with minimum energy”.

The Gibbs sampler works by updating each random variable individually, but

conditional on the states of the surrounding sites. The sequential implementation
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2.7 Gray Level Co-occurrence Matrix (GLCM)

corresponding to a raster scan is used for Gibbs sampler. The state of image

evolves by discrete changes.So for convenience time is discretized, say t = 1, 2, 3...

At a given time, each site xi,j is represented by a random variable Xi,j(t) with

values in G = 0, 1, 2, ..., n − 1. Hence the total configuration of the image is

X(t) = {xi,j(t)}; i, j ∈ S. The starting configuration X(0) is arbitrary and at

any time t, the total configuration X(t) evolves due to state change of individual

site. At any instant of time only one state undergoes change. So the state at any

two consecutive instant of time t and t-1 can differ by at most one coordinate. If

n1,n2,...be the sequence in which the sites are visited for replacement; thus nt ∈ S

and Xi,j(t) = Xi,j(t− 1), i �= nt. For replacement at each site a sample is drawn

from its local characteristics. In other words, a state x ∈ Gnt is chosen from the

conditional distribution of Xnt. Given the observed states of the neighbouring

sites. All other sites remaining unchanged, the change in total energy is the

changes due to change at site nt with respect to its neighbourhood. Let U(t−1) is

the old energy and U(t) be the new one. If U(t) is found to be less than U(t− 1),

then the change is accepted; otherwise the old energy U(t − 1) is retained. Wen

all the sites of the image are visited once, one iteration is said to be completed.

2.7 Gray Level Co-occurrence Matrix (GLCM)

Texture is an imperative feature used in visual interpretation and segmentation

of images. One of the delineating characters of the texture is the spatial dis-

tribution of gray values. The widely used approaches to depict the distribution

are the statistical, structural and spectral approaches and the approach based on

the employment of statistical features is one of the early and simple methods.

The statistical approaches employ the first, second, third and higher order tex-

ture measures for texture calculation. First order texture measures are statistics

calculated from the original image measures and do not look at pixel neighbour

relationships. They utilize statistical moments of the histogram of an image. The

moments include first order moment, mean, second order moment, variance or

higher order moments like skewness, kurtosis etc. But this technique suffers from
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2.7 Gray Level Co-occurrence Matrix (GLCM)

an impediment that it does not contain any information concerning the relative

position of pixels with respect to each other. The best way to recover from this

is the application of second order statistical measures. In recent years, there is

a tendency in signal processing to replace the methods based on second order

statistics by higher order statistics. But it has also been found that higher order

statistics have been very useful in problems where non-Gaussianity, nonminimum

phase, colored noise or nonlinearity is important. In our thesis as we have taken

into account the Gaussian noise and Markov Random field model, we have focused

on second order statistics which is more suitable.

A long-familiar statistical tool for extracting second-order texture information

is the gray level co-occurrence matrix. Given an N x N image composed of pixels

each with an intensity in the range {0, 1, .., G−1}, the GLCM is an exemplification

of how frequently different combinations of gray levels concur in an image. A

GLCM denote the second order conditional joint probability densities of each of

the pixels, which is the probability of occurrence of grey level i and grey level j

within a given distance d and along the direction θ. Thus there may be multiple

numbers of cooccurrence matrices depending on various values of d and ‘θ’. GLCM

involves the relation between a pair of pixels at a time. Let the two pixels be called

as the reference and the neighbour pixel. The neighbour pixel is chosen from one

of the four directions namely horizontal, vertical, left diagonal and right diagonal.

Each direction denotes the angles 0o, 90o, 135o and 45o respectively. This is shown

in figure 2.2. Thus GLCM is established by calculating how often a pixel with the

gray level i occurs in a specific spatial relationship to a pixel with the value j.

2.7.1 Genetic Algorithms

Genetic algorithms (GAs) are numerical optimization algorithms inspired by both

natural selection and natural genetics. They belong to a class of search techniques

that mimic the principles of natural selection to develop solutions of large opti-

mization problems.

Genetic algorithms work with the following primal elements,
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2.7 Gray Level Co-occurrence Matrix (GLCM)

A. Chromosomes::

Strings that encode candidate solutions are called chromosomes. These are

raw genetic information that GA deals with.

B. Gene:

A gene is a subdivision of the chromosome which represent individual com-

ponent of the chromosome.

C. Population:

Collection of chromosomes is known as population.

D. An objective or fitness function:

Fitness function is the one that represents the degree of goodness of the

string and is associated with each string. This fitness function is used to

guide the stochastic selection of the chromosomes which are then utilized

to generate new candidate solutions. The choice of fitness function bears a

very authoritative role [42, 43].

The operations that are identified in GA are Fitness compution using objective

function, selection, crossover and mutation and these are dicussed in detail in

Chapter 3

2.7.2 Creation of Gray Level Co-occurrence Matrix

GLCM is established by calculating how often a pixel with the gray level i occurs

in a specific spatial relationship to a pixel with the value j. The spatial relationship

refers to the distance d and angle θ. For example, the value contained in cell (2,

4) represents the number of times that gray levels 2 and 4 occur with a specific

direction and distance. Fig 2.3 illustrates the general form of the GLCM. Figures

2.4 through 2.7 demonstrate the results for four directions 0◦ (horizontal), 90◦

(vertical), 45◦ (right diagonal) and 135◦ (left diagonal) respectively, with distance

d = 1. Then the obtained values are normalized to the range [0, 1] to avoid

scaling effects. The normalized values are obtained for each cell in the matrix by
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2.7 Gray Level Co-occurrence Matrix (GLCM)

computing the total number of nearest neighbour pairs and the procedure for the

computation is as follows,

• For the horizontal direction, considering d = 1, there will be 2 × (number

of columns - 1) pairs in each row. Accordingly, the total number of nearest

neighbour pairs can be found by the generalized expression

2 × (number of columns - 1) × (number of rows) .

• For the vertical direction, with d = 1, there will be 2 × (number of rows -

1) pairs

Figure 2.2: spatial relationship of a pixel with gray level i to a pixel with gray
level j

in each column. So the total number of nearest neighbour pairs will be equal

to

2 × (number of rows - 1) × (number of columns)

• For the left diagonal direction, with d = 1, 2 × (number of columns - 1)

pairs will be present for each row except the last. This constitutes for the

total number of pairs equal to

2 × (number of columns - 1) × (number of rows - 1).

• Similarly, by symmetry, the number of nearest neighbour pairs for the right

diagonal direction again with distance d =1, is same as that of the left

diagonal.
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2.7 Gray Level Co-occurrence Matrix (GLCM)

After having the total number of pairs for each matrix, each matrix is normalized

by

Normalized value =
V alue at each location

Total number of pairs

Figure 2.3: General Form of GLCM with gray values [0-4]
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2.7 Gray Level Co-occurrence Matrix (GLCM)

Figure 2.4: GLCM of the image in horizontal direction. Matrix to the left is the
GLCM and to the right is the 5 × 5 original image

Figure 2.5: GLCM of the image in vertical direction. Matrix to the left is the
GLCM and to the right is the 5 × 5 original image
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Figure 2.6: GLCM of the image in left diagonal direction. Matrix to the left is
the GLCM and to the right is the 5 × 5 original image

Figure 2.7: GLCM of the image in right diagonal direction. Matrix to the left is
the GLCM and to the right is the 5 × 5 original image
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2.8 Colour Models

2.8 Colour Models

Various colour representations are used in colour image processing. Colour can be

represented by a RGB space, where colours are represented by their red, green and

blue component in an orthogonal Cartesian space. From R, G,B, representation,

different kinds of colour spaces are derived using linear and nonlinear transforma-

tion. Any of the colour spaces can be utilized for image segmentation. However

selecting the best colour space for particular types of images is still a challenging

problem. RGB is the commonly used model for the television system and pictures

acquired by digital cameras. But for natural scene segmentation and analysis

RGB is not considered as the good one due to high correlation among R, G and B

components. High correlation here means that if intensity changes, all the three

components will change accordingly. Both RGB and HIS (or HSV) spaces are not

perceptually uniform. From R, G, B representation , other kinds of colour rep-

resentations are derived by using either linear or nonlinear transformations. The

following are the colour spaces, which can be found by linear transformations.

2.8.1 YIQ

In this model each colour is represented in terms of a luminance component (Y)

and two chrominance or colour components: inphase (I) and quadrature (Q) com-

ponent. United States commercial TV broadcasting (NTSC) system utilizes this

model. All the video information needed by a monochrome TV monitor is ren-

dered by Y component. The model is obtained from RGB model by a linear

transformation

⎛
⎜⎜⎜⎝

Y

I

Q

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.299 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

R

G

B

⎞
⎟⎟⎟⎠ (2.7)

The fact that the luminance and chrominance component can be processed

separately is the advantage of this model.Hue and saturation of the image are

described jointly by components I and Q. Y component is used in edge detection.
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2.8 Colour Models

2.8.2 YUV

This colour space representation is being used by European TV system. This is

obtained from RGB model by⎛
⎜⎜⎜⎝

Y

U

V

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.299 0.587 0.114

−0.147 −0.289 0.437

0.615 −0.515 −0.100

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

R

G

B

⎞
⎟⎟⎟⎠ (2.8)

where 0≤R≤1, 0≤G≤1, 0≤B≤1.

2.8.3 Normalized RGB (Nrgb)

The normalized RGB colour space is given by

r = R/(R +G+B)

g = G/(R+G+B)

b = B/(R +G+B)

While performing colour image segmentation, it is necessary to make the colours

independent, on the change in lighting intensities. An effective method is the use

of normalized RGB colour space. This is because, as r+g+b =1, if two components

are given the third component can be determined.

Another normalized colour space is defined in [44] and is given by

Y = c1R + c2G + c3B

T1 =
R

R +G+B

T2 =
G

R +G+B

where c1 + c2 + c3 = 1, c1,c2 and c3 are constants and they are combined to

produce illumination of image pixel. T1 and T2 are determined by the share of

RGB components and hence symbolize the very colour information of an image,

but are independent of the brightness of the image.
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2.8.4 HSI

The HSI (hue-saturation-intensity) system is another commonly used colour spaces

in image processing. In this colour space the colour information is represented by

hue and saturation values and intensity describes the brightness of an image. HSI

coordinates in terms of R, G and B values is given by

H = arctan

( √
3(G−B)

(R−G) + (R− B)

)

I =
R +G+B

3

S = 1− min(R,G,B)

I

The potentiality of this system is that it can represent the colours of the human

perception. To segment the objects using this colour space, segmentation algo-

rithms can be applied to hue component only. But the difficulty with this is to

transform these back to RGB values.

2.8.5 CIE spaces

CIE (International commission on illumination) [45] colour models are highly in-

fluential systems for measuring colour or distinguishing between colours. It has

three primaries denoted as X, Y andZ. The values of X,Y and Z can be computed

as a linear transformation from RGB tristimulus coordinates as⎛
⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.607 0.174 0.200

0.299 0.587 0.114

0.000 0.066 1.116

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

R

G

B

⎞
⎟⎟⎟⎠

Once the tristimulus coordinates are known CIE spaces can be developed. The two

distinctive ones are CIE(L∗a∗b∗) space and CIE(L∗u∗v∗) space. CIE(L∗a∗b∗)
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is defined as

L∗ = 116

(
3

√
y

y0

)
− 16

a∗ = 500

[
3

√
X

X0
− 3

√
Y

Y0

]

b∗ = 200

[
3

√
Y

Y0
− 3

√
Z

Z0

]

Where (X0, Y0, Z0) are X, Y, Z values for the standard white.

Here Y
Y0

> 0.01, X
X0

> 0.01and Z
Z0

> 0.01

CIE(L∗u∗v∗)is defined as:

L∗ = 116

(
3

√
y

y0

)
− 16

u∗ = 13L∗(u1 − u0)

v∗ = 13L∗(v1 − v0)

Where y
y0

> 0.01, y0, u0 and v0 are the values for standard white.

u1 =
4x

x+ 15y + 3z
and

v1 =
6y

x+ 15y + 3z

2.8.6 Munsell Colour system

Munsell Colour system uses three attributes of colour perception, which are Mun-

sell hue, value and chroma. There are five colours regarded as the major hue.

They are red(r), yellow(y), green(g), blue(b) and purple(p). Combinations of

colours:YR, GY, BG, PB and RP are half way hues. Munsell value (v) describes

the lightness of a colour. The value of black as 0 and that of white as 10.

Relationship between v and luminance Y is

Y = 1.2219v − 0.23111v2 + 0.23951v3 − 0.021009v4 + 0.0008404v5 (2.9)

Chroma (C) is similar to the saturation component in the CIE representation,

which describes purity of colour.
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2.8.7 Ohta Colour Space

At each step of the recursive region splitting, new colour features are calculated

by using a transform “Karhunen-Loeve transformation” of R, G and B. It is

applied to eight kinds colour pictures analyzed over 100 colour features, and a set

of effective colour features can be found by

I1 = (R +G+B)/3

I2 = (R−B)/2

I3 = (2G−R− B)/4

Comparing I1, I2, I3 with 7 other colour spaces, i.e., RGB, Y IQ, HIS, Nrgb,

CIEXY Z, CIE, L∗a∗b∗ and CIEL∗a∗b∗, it is seen that I1, I2, I3 was effective in

terms of quality of segmentation and computational complexity of the algorithm.

Major problem in linear colour spaces is (i) There is high correlation of three com-

ponents, by which three components are dependent upon each other and associate

strongly. (ii) These spaces are very difficult to discriminate highlights, shadows

and shading. So if these spaces are used in segmentation, it is performed in a 3-D

spaces, usually one component at a time.
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Chapter 3

Unsupervised Segmentation of
Colour Textured Images using
Gaussian Markov Random Field
Model and Genetic Algorithm

3.1 Introduction

Segmentation of coloured textured images is one of the fundamental operations in

the arena of colour image analysis. Image data at moderate and coarse spatial res-

olutions can be differentiated based on the spectral reflectance patterns alone. But

increase in the size of the objects with high spatial resolution imagery, brings in

the texture effects and thus the role of texture assumes more significance. This is

mainly witnessed in natural scene images as well as remotely sensed multispectral

images. This limits the potential of spectral information and thus the contextual

classifiers utilizing both spatial and spectral information gain importance. Often

the model based approaches have been adhered to obtain proper segmentation of

colour textured images. In this regard, the segmentation problem is cast as unsu-

pervised mode of segmentation. In case of unsupervised method of segmentation,

the number of classes, model parameters as well as image labels are unknown.

Whereas the problem becomes partially unsupervised when the number of classes

are known. In this chapter Gaussian Markov random field model (GMRF) as

proposed by Panjwani and Healey [31] has been employed to formulate the un-

supervised segmentation problem. In this GMRF model within color planes and
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between color bands interaction is taken into account. In MRF based segmenta-

tion, the most popular criterion for optimality has been maximizing a posteriori

probability (MAP) distribution criterion. Simulated annealing (SA) and iterated

conditional modes (ICM) algorithm are two unremarkably used methods for pixel

labeling among the existing MAP criterion algorithms. SA can converge to global

optimum, but suffers from intensive computation. On the other hand, the results

obtained from ICM heavily depend on initialization and hence there is a proba-

bility of trapping into local maxima. Hence it suffers from inaccurate estimations.

Genetic algorithm (GA) has the advantage of coming out of local optima and con-

verges in global optima. Utilizing this property Tseng and Lai [33] have employed

GA to provide better initialization for the ICM algorithm. In this chapter we have

employed the hybridization of GA and GMRF model for segmentation of colour

textured images.

3.2 Gaussian Markov Random Field Model

The Gaussian Markov random field (GMRF) model being examined is a special

case of Markov random field model(MRF) where the pixel value at location (i, j)

statistically depends on the neighbouring pixels of the representing component

together with the neighbouring pixels of the other components. This signifies

that the model considers spatial interactions within each colour component and

the interactions between different components. The image is represented on a

rectangular lattice S = M ×N with p number of bands.

Let X(i, j) = [x1(i, j)x2(i, j)..xp(i, j)] represent a colour vector at location (i,j) in

a textured region R. Let μ1, μ2 . . μp denote the mean colour intensities. It is

assumed that the colour vector at location (i, j) represents the linear combination

of the colour components of neighbouring pixels and the additive Gaussian noise.

Let e1, e2 . . ep represent the spatial interaction of the pixels and vxy be the

expected value of exey. x, y takes on the values from 1 to p. Let φxy be the

associated model parameters and Σ be the correlation matrix.
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The spatial interaction of the colour pixels is defined as

e1(i, j) = (x1(i, j)− μ1)−
∑

(m,n)∈N11

φ11(m,n)
(
x1(i+m, j + n)− μ1

)

−
∑

(m,n)∈N12

φ12(m,n)
(
x2(i+m, j + n)− μ2

)− · · ·

−
∑

(m,n)∈N1p

φ1p(m,n)
(
xp(i+m, j + n)− μp

)
(3.1)

Similarly it is defined for e2(i, j), e3(i, j) . . ep(i, j). The generalized form is

given by

ep(i, j) = (xp(i, j)− μp)−
∑

(m,n)∈Np1

φp1(m,n)
(
x1(i+m, j + n)− μ1

)

−
∑

(m,n)∈Np2

φp2(m,n)
(
x2(i+m, j + n)− μ2

)− · · ·

−
∑

(m,n)∈Npp

φpp(m,n)
(
xp(i+m, j + n)− μp

)
(3.2)

where Nxy denote the neighbouring pixels. This implies that the pixel considered

is in x component and the neighbours are from y colour component. If x = y, then

the neighboring pixels will correspond to the same colour component. Otherwise

the neighbouring pixels will be from other components. The spatial interaction is

graphically represented in Figure 3.1.

The correlation matrix is estimated as follows

∑
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11 v12 . . v1p

v21 v22 . . v2p

. . . . v1p

. . . . v1p

vp1 vp2 . . vpp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

The expected value vkl is represented by,

vkl = E[ekel] =
1

MR

∑
(i,j)∈R

ek(i, j)el(i, j) (3.4)

Having described all the terms, the probability density function of X(i,j) is ob-

tained by,
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P (X(i, j) | R) =
1(

(2π)P |∑ |
) 1

2

exp

{
−1

2
(e1(i, j)e2(i, j)...ep(i, j))

2∑
(e1(i, j)e2(i, j)...ep(i, j))

t

}

(3.5)

3.3 Parameter Estimation

Given the statistical model, maximum likelihood estimation method estimates

the parameters of the model by maximizing the probability (likelihood) of the

sample data. It is regarded as one of the most robust methods. In this work the

maximum likelihood method is applied to formulate maximum likelihood estimates

of the parameters of the GMRF model. For the model, the product of conditional

probability densities of individual pixels of a region is given by

∏
(i,j)∈R

1

((2π)p |∑R |) 1
2

exp

{
−1

2
(e1(i, j)e2(i, j)...ep(i, j))

∑
R

(e1(i, j)e2(i, j)...ep(i, j))
t

}

(3.6)

By maximizing the above function the parameter φxy is estimated by solving a set

of linear equations. Let,

qp(i, j) = xp(i, j)− μp and

qp,mn(i, j) = xp(i+m, j + n)− μp

Then the parameters are found by solving the following equation,

∑
(i,j)∈R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q21,10 q1,10q1,01 ... q1,10qp,10 ...

... ... ... ... ...

q1,mnq1,10 q1,mnq1,01 ... q1,mnqp,10 ...

... ... ... ... ...

qp,10q1,10 qp,10q1,01 ... q2p,10 ...

... ... ... ... ...

qp,mnq1,10 qp,mnq1,01 ... q2p,mn ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ11(1, 0)

...

φ11(m,n)

...

φ1p(1, 0)

...

φ1p(m,n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

(i,j)∈R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1q1,10

...

q1q1,mn

...

q1qp,10

...

q1qp,mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)
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Figure 3.1: Spatial interaction between the colour components

3.4 Average Spatial Filtering

An important application of spatial averaging is to blur an image with an intention

to find a gross representation of objects of interest, such that the intensity of small

objects blends with the background and larger objects become blob like and easy

to detect. In a textured image, an image will be comprised of texture primitives

called texels. The type of texture depends on the size of texels. A fine texture

results when the texels are small and tonal differences between the texels are large.

A coarse texture is an assemblage of large texels. With the application of average

filter, the colour of the texture region can be roughly known using the colours of

nearby texels. The value of each pixel in the image is substituted by the average

of gray values in the neighbourhood as defined by the convolution mask thus

reducing the sharp transitions of gray values in the image. Similar to the random

noise, which typically consists of sharp transitions, a texture image can be viewed

as an image with sharp transitions. This is justified by the fact that a texture

is a function of the spatial variation in pixel intensities over a region. Hence by

applying an average filter produces a coarse segmented result. The centres of all

these regions will be utilized in the following segmentation.
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3.5 Genetic Algorithm

Genetic Algorithm (GA) holds a fixed population of solutions over the search

space on which the different operations of GA are performed. Following are the

operations carried out,

A. Chromosome representation:

A chromosome may be encoded with binary, integer or real numbers. In our

work each of the values of the colour vectorX(i, j) = [x1(i, j)x2(i, j)..xp(i, j)]

representing the components of a pixel is taken as an individual or chromo-

some. The representation is as shown in Figure 3.2.

B. Population initialization:

Population is initialized by using the result of average spatial filtering. One

of the individual is taken from the result where as the other individuals are

generated randomly.

C. Fitness computation:

A fitness function is one that dictates the optimality of a chromosome so

that

Figure 3.2: Representation of a Chromosome

specific chromosome may be stratified versus all the other chromosomes.

Since the colour vector which maximizes the conditional probability density

has to be determined, the fitness function is same as defined in Eq. 3.8
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3.5 Genetic Algorithm

F = P (X(i, j)|R|) = 1

((2π)p |∑ |) 1
2

× exp

{−1

2
(e1(i, j)e2(i, j)...ep(i, j))

1∑ (e1(i, j)e2(i, j)...ep(i, j))
t

}
(3.8)

D. Selection

Once the fitness of every individual or the chromosome is determined, the

next important step is the breeding process where fresh filtered individuals

or off springs are created. The initial step of the breeding process is the

Selection operation. A proportion of the existing population is selected to

breed a new generation during each successive generation. The various se-

lection methods include Roulette Wheel selection, Random selection, Rank

selection Tournament selection and Boltzmann selection. Here we have con-

sidered Roulette Wheel selection.

E. Cross Over

Crossover being the second stair of the breeding phenomena allows solutions

(chromosomes) to exchange information and produce new chromosomes.

Two parents selected through the roulette wheel selection criteria mentioned

above, participate in crossover. A cross site is chosen randomly along the

string length and the values are interchanged after that cite, to produce

children. The crossover is accomplished with a probability μc. The existing

crossover techniques constitute single point crossover, two point crossover,

multi point crossover, uniform crossover and three parent crossover. Single

point cross over procedure by stochastic means is followed in this work.

Example:

P1: (51.0) (67.0) | (78.0) (98.0)
P2: (212.0) (86.0) | (133.0) (19.0)
P1 and P2 represent parent1 and parent2. The line shown is the point

where crossover takes place. The genes after that position are exchanged to

produce children.
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3.6 Hybridization of GA and GMRF for colour texture image segmentation

Child1: (51.0) (67.0) | (133.0) (19.0)
Child2: (212.0) (86.0) | (78.0) (98.0)

F. Mutation

Mutation is an operation employed to prevent the possibility of the algorithm

to get trapped in a local minima. It makes for the purpose of retrieving

the lost genetic information. The strings are subjected to mutation after

the crossover operation and this makes the third step of breeding process.

Biological mutation refers to a sudden change in the characteristics of the

gene. Following the same idea mutation here refers to the change in the value

of the gene. For binary representation of the string, mutation comprises in

flipping the value of each gene with a mutation probability μm. In case of

real or integer value, a gene is replaced with a random number from the

corresponding solution area which is known as random mutation. One more

way is to stochastically changing a gene over time by adding or subtracting a

random number which is acknowledged as dynamic mutation. In this scheme

random mutation strategy is followed.

G. Termination Criteria

The execution is terminated with maximum number of iterations. An elite

chromosome preserved in a location outside the population with maximum

fitness contains the components of the final colour vector of the region.

3.6 Hybridization of GA and GMRF for colour

texture image segmentation

A. Iterated conditional modes (ICM) algorithm was proposed by Besag [8] as

a computationally feasible substitute to MAP estimate. Local convergence

based scheme is followed for rapid convergence in order to obtain the optimal

solution. Iterated conditional modes (ICM) algorithm is adopted as local

convergent algorithm. The steps of ICM algorithm are given as below,

1. Find out number of iterations N , the neighborhood system and model
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3.6 Hybridization of GA and GMRF for colour texture image segmentation

parameters for energy function described in Eqn. 3.8

2. Initialize the image of configuration w for each pixel.

3. Evaluate the energy E of the configuration.

4. Disturb the system reasonably with Gaussian disturbance

• Compute the new energy E∗ of the newly disturbed system and measure

the change in the energy δE = E∗ − E.

5. If δE < 0, accept the disturbed system as new configuration, else retain

the original configuration

6. Repeat steps 3− 6, till the number of iterations are completed.

B. As already stated in sec 3.1 ICM algorithm is sensitive to initialization condi-

tion for proper segmentation. To overcome this bottleneck, genetic algorithm

is hybridized with ICM algorithm and employed in GMRF model for better

initialization and to improve the performance of segmentation. Using this

hybrid method, the fast convergence of ICM algorithm and global explo-

ration of GA are achieved simultaneously. The steps of proposed GMRF-

GA-ICM algorithm are described as follows.

GMRF-GA-ICM Algorithm:

• A coarse segmentation is performed to get the initial regions using

average spatial filtering and K-means algorithm. The result of the

average filter is given as the input to K-means algorithm to perform

clustering. This helps in approximately labelling the pixels, to find the

mean value of the regions and to reduce the amount of time required

in MRF based iterative process.

• The initialization of ICM algorithm is performed using genetic algo-

rithm as follows

The spectral vector X(i, j) = {x1(i, j)x2(i, j)...xp(i, j)} representing

the spectral components of a pixel is encoded as an individual. The re-

sult of the coarse segmentation obtained by average filter and K-means
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3.6 Hybridization of GA and GMRF for colour texture image segmentation

algorithm is taken as the individual in the population initialization

process and the remaining individuals are generated randomly. Each

individual is then evaluated using the fitness function defined in Eq.

3.8 and the better individuals are selected to raise the next generation

using the selection procedure as mentioned in section 3.5. This is fol-

lowed by crossover and mutation operations to get the better solutions.

The procedure is continued till the maximum number of generations is

accomplished. The individual with the highest fitness is used to give

the initial label for ICM algorithm.

• Then the ICM algorithm is executed to produce the final segmented

image.

C. Control parameters: The performance of overall segmentation approach de-

pends on the parameters namely population size, crossover and mutation

probability and the number of iterations of ICM algorithm. The size of

the population governs strongly the performance of GAs. With the small

sized population the evaluation cost of GA is reduced due to insufficient

samples in the search space. GA can get better solutions if the population

size is large because of the presence of more characteristic solutions over the

search space. But this takes more computations which is an hindrance to

faster convergence rate. High crossover probability may result in unstable

solutions and if it is low GA may become idle to search for new solutions.

Furthermore, the search process turns into a haphazard-like process if the

mutation probability is too high. Hence it should be seen that the values of

the parameters are also optimal. After having acknowledged all these facts

population size of 100 with 100 number of generations, Crossover probabil-

ity of 0.8, Mutation probability of 0.1 and 10 number of iterations of ICM

algorithm were considered for simulation.
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3.7 Simulation and Results

In simulation, synthetic textured images and natural scene images are considered

to validate the proposed algorithm. Coloured textured images consisting of 2, 3

and 4 classes are considered for the simulations. The images used for experimenta-

tion are taken from ”http://www.visual28.com”, ”http://www.imageafter.com/”,

”http://www.cgtextures.com/” and ”http://www.sketchpad.net”.

Figure 3.3(a) shows a two class synthetic colour textured image. The size of the

image is 130×130. As stated in the previous sections average spatial filtering and

K-means algorithm is applied in order to speed up the coarse segmentation. Then

the image is initialized using GA followed by execution of ICM algorithm. The

model parameters φxy are obtained as described in section 3.3. The performance

of the proposed technique is compared with that of simulated annealing algorithm

and ICM algorithm using GMRF model.

Figure 3.3(a) shows a 2 class synthetic textured image of size (130 × 130).

Figure 3.3(b) shows the ground truth image and Figures 3.3(c), 3.3(d) and 3.3(e)

show the segmented images using SA algorithm, ICM algorithm and using GMRF-

GA-ICM algorithm respectively. Tables 3.1, 3.2 and 3.3 show the GMRF model

parameters for the spatial interaction of the color components. Table 3.4 depicts

performance comparison of the three techniques with performance index as mis-

classification error and computation time of different techniques. It is found from

the table that SA algorithm obtains satisfactory results but computation time is

high which is 56 seconds. ICM algorithm converges very quickly in only 10 sec-

onds but fails to give accurate results. The proposed algorithm which utilizes the

property of global optimization of GA for initializing the ICM algorithm succeeds

in converging in less time than SA and giving better segmentation results as that

of SA. It converges only in 30 seconds. The misclassification error is found to be

7.04% in case of SA, 16.34% in case of ICM and 6.31% in case of GMRF-GA-ICM

algorithm respectively.

Similarly, the proposed technique is examined for a two class real image. Fig-
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ure 3.4(a) shows a two class real image of size (175×170). Figure 3.4(b) represents

the ground truth image. Figures 3.4(c), 3.4(d) and 3.4(e) show the segmented im-

ages using SA, GMRF-ICM and GMRF-GA-ICM algorithms respectively. Again

it is found that the proposed algorithm is better in terms of both accuracy and

time complexity.

Similarly a three class synthetic textured image of size (180 × 154) is shown

in Figure 3.5(a). The GMRF model parameters are shown by the Tables 3.6, 3.7

and 3.8. Again, the segmented results using SA, GMRF-ICM and GMRF-GA-

ICM algorithms are shown in Figures 3.5(c), 3.5(d) and 3.5(e) respectively. It is

observed that the proposed method performs better than GMRF-ICM as well as

GMRF-SA algorithm. Misclassification error and time complexity are shown in

Table 3.9.

The proposed method is tested also for a 4 class synthetic textured image.

Figure 3.6(a) shows the 4 class synthetic textured image of size (200× 200). The

GMRF model parameters for the 4 class image are depicted in Tables 3.10, 3.11

and 3.12. Misclassification error and the time complexity is shown in Table 3.13.

Few more results are shown in Chapter 4 in comparison with the new scheme

proposed in chapter 4.

3.8 Conclusion

This chapter addresses the problem of color textured image segmentation in unsu-

pervised framework. Color textured image segmentation using compound Gaus-

sian Markov Random Field (GMRF) model hybridized with genetic algorithm is

proposed. Within and between color plane spatial interaction is considered as the

pixel value at location (i, j) statistically depends on the neighbouring pixels of the

representing component together with the neighbouring pixels of the other com-

ponents. The image labels are estimated using MAP criteria. Iterated conditional

modes (ICM) algorithm is used for MAP estimation of image labels. The global
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convergence property of GA is exploited to provide better initialization condition

for ICM algorithm. The proposed method is tested for two class, three class and

four class color textured images and found that it performs better than ICM and

SA algorithm in terms of accuracy and computational time.

Hybrid GMRF-GA-ICM method obtains better segmentation due to the fact

that firstly the model takes into account not only spatial interaction within each

of the color bands but also the interaction between the different bands. Secondly

it uses GA for the initialization of the ICM algorithm. It has the advantage of

combining the fast convergence of ICM and global exploration of GA.
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(a) Original Image (b) Ground truth

(c) GMRF-SA (d) GMRF-ICM

(e) GMRF-GA-ICM

Figure 3.3: Segmentation result of two class synthetic colour textured Image
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(a) Original Image (b) Ground truth

(c) GMRF-SA (d) GMRF-ICM

(e) GMRF-GA-ICM

Figure 3.4: Segmentation result of two class real textured image
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Table 3.1: The GMRF parameters for the spatial interaction of the colour com-
ponent 1 with the other colour components 2 and 3 for the image in Figure 3.3(a)

GMRF Region1 Region2

Parameter

φ11(0, 1) -0.0471 -0.0151

φ11(0, 1) -0.0354 -0.0334

φ11(1, 1) 0.0464 0.0343

φ11(1,−1) 0.0508 0.0261

φ12(1, 0) -0.0354 -0.0334

φ12(0, 1) 0.0261 0.0455

φ12(1, 1) 0.1862 0.1475

φ12(1,−1) 0.061 0.0224

φ13(1, 0) 0.0285 0.0864

φ13(0, 1) 0.0173 0.0794

φ13(1, 1) 0.1759 0.1354

φ13(1,−1) 0.0827 0.07

Table 3.2: The GMRF parameters for the spatial interaction of the colour com-
ponent 2 with the other colour components 1 and 3 for the image in Figure 3.3(a)

GMRF Region1 Region2

Parameter

φ21(1, 0) 0.0422 0.1055

φ21(0, 1) 0.0109 0.0897

φ21(1, 1) -0.0188 -0.0412

φ21(1,−1) 0.0637 0.0129

φ22(1, 0) 0.0129 -0.0462

φ22(0, 1) -0.0214 0.08214

φ22(1, 1) -0.0151 0.0473

φ22(1,−1) 0.0692 0.02631

φ23(1, 0) 0.0224 0.0637

φ23(1, 0) -0.0462 0.0224

φ23(1, 1) -0.0137 0.1862

φ23(1,−1) 0.1264 0.0847
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Table 3.3: The GMRF parameters for the spatial interaction of the colour com-
ponent 3 with the other colour components 1 and 2 for the image in Figure 3.3(a)

GMRF Region1 Region2

Parameter

φ31(1, 0) 0.0182 0.2052

φ31(0, 1) -0.4037 0.0789

φ31(1, 1) 0.0654 0.0724

φ31(1,−1) 0.0539 0.0965

φ32(1, 0) 0.0271 0.3290

φ32(0, 1) 0.0113 -0.0482

φ32(1, 1) 0.0921 0.0675

φ32(1,−1) 0.0507 -0.0356

φ33(1, 0) 0.2175 0.1921

φ33(0, 1) 0.0462 0.0728

φ33(1, 1) 0.06 0.0802

φ33(1,−1) 0.2551 0.0614

Table 3.4: Performance Comparison of various segmentation techniques for Fig-
ure 3.3(a)

Techniques MCE in � Time in sec.

SA 7.04 56

GMRF-ICM ONLY 16.34 10

GMRF-GA-ICM 6.31 30

Table 3.5: Performance Comparison of various segmentation techniques for Fig-
ure 3.4(a)

Techniques MCE in � Time in sec.

SA 5.14 53

GMRF-ICM ONLY 15.46 11

GMRF-GA-ICM 4.91 28
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(a) Original Image (b) Ground truth

(c) GMRF-SA (d) GMRF-ICM

(e) GMRF-GA-ICM

Figure 3.5: Segmentation result of three class synthetic colour textured image
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Table 3.6: The GMRF parameters for the spatial interaction of the colour com-
ponent 1 with the other colour components 2 and 3 for the image in Figure 3.5(a)

GMRF Region1 Region2 Region3

Parameter

φ11(0, 1) 0.0699 0.1275 0.058

φ11(0, 1) 0.1102 0.2543 0.1114

φ11(1, 1) -0.2345 0.0967 0.0447

φ11(1,−1) 0.0158 0.6502 0.1094

φ12(1, 0) 0.2031 0.0911 0.2081

φ12(0, 1) 0.0619 -0.0914 0.2073

φ12(1, 1) 0.1225 0.0418 -0.0061

φ12(1,−1) 0.1479 0.0355 0.0034

φ13(1, 0) 0.0619 0.018 0.0017

φ13(0, 1) 0.0256 0.1609 0.0175

φ13(1, 1) 0.0098 -0.0832 0.2165

φ13(1,−1) 0.0902 0.1067 0.2649

Table 3.7: The GMRF parameters for the spatial interaction of the colour com-
ponent 2 with the other colour components 1 and 3 for the image in Figure 3.5(a)

GMRF Region1 Region2 Region3

Parameter

φ21(1, 0) 0.2045 0.1402 0.4125

φ21(0, 1) -0.2312 0.0117 0.2173

φ21(1, 1) -0.2081 -0.1401 0.0109

φ21(1,−1) 0.5031 0.1708 0.2456

φ22(1, 0) 0.1038 0.1357 -0.1023

φ22(0, 1) 0.048 0.213 0.0645

φ22(1, 1) -0.0901 0.0783 0.0594

φ22(1,−1) 0.4034 0.1897 0.0099

φ23(1, 0) 0.0346 0.0178 0.2319

φ23(1, 0) 0.0303 -0.3251 -0.0265

φ23(1, 1) 0.0146 0.2206 -0.0740

φ23(1,−1) -0.0462 0.0837 0.0629
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Table 3.8: The GMRF parameters for the spatial interaction of the colour com-
ponent 3 with the other colour components 1 and 2 for the image in Figure 3.5(a)

GMRF Region1 Region2 Region3

Parameter

φ31(0, 1) 0.0127 0.3052 -0.1072

φ31(0, 1) 0.0682 0.1487 0.3060

φ31(1, 1) -0.2037 -0.0454 -0.0674

φ31(1,−1) -0.2251 -0.0973 0.0826

φ32(1, 0) 0.0586 0.1225 0.0664

φ32(0, 1) 0.0593 0.2049 -0.0908

φ32(1, 1) 0.1213 0.07908 0.1061

φ32(1,−1) -0.0385 0.2809 0.1009

φ33(1, 0) -0.3001 0.0713 0.1907

φ33(0, 1) 0.2501 0.0439 0.0567

φ33(1, 1) 0.0423 0.3285 0.0758

φ33(1,−1) 0.0905 0.1281 0.1073

Table 3.9: Performance Comparison of various Segmentation Techniques for Fig-
ure 3.5(a)

Techniques MCE in � Time in sec.

SA 4.04 44

GMRF-ICM ONLY 10.42 10

GMRF-GA-ICM 3.68 25
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(a) Original Image (b) Ground truth

(c) GMRF-SA (d) GMRF-ICM

(e) GMRF-GA-ICM

Figure 3.6: Segmentation result of four class synthetic colored textured image
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Table 3.10: The GMRF parameters for the spatial interaction of the colour com-
ponent 1 with the other colour components 2 and 3 for the image in Figure 3.6(a)

GMRF Region1 Region2 Region3 Region4

Parameter

φ11(0, 1) 0.0699 0.1275 0.058 0.2345

φ11(0, 1) 0.1002 0.2543 0.1114 0.0967

φ11(1, 1) -0.0042 0.0343 0.0447 0.0158

φ11(1,−1) 0.0444 0.1524 0.094 0.0368

φ12(1, 0) 0.0311 0.1184 0.051 0.1862

φ12(0, 1) 0.0619 0.1654 0.0767 0.1225

φ12(1, 1) -0.0061 0.0418 0.0034 0.0098

φ12(1,−1) 0.0496 0.0355 0.0619 0.0832

φ13(1, 0) 0.0119 0.018 0.0017 0.0063

φ13(0, 1) 0.0256 0.1479 0.0175 0.2165

φ13(1, 1) 0.0418 -0.0283 -0.0246 0.0649

φ13(1,−1) 0.0224 0.0637 0.0129 -0.0462

Table 3.11: The GMRF parameters for the spatial interaction of the colour com-
ponent 2 with the other colour components 1 and 3 for the image in Figure 3.6(a)

GMRF Region1 Region2 Region3 Region4

Parameter

φ21(1, 0) 0.05 0.0422 0.1055 -0.2312

φ21(0, 1) 0.0895 0.1517 0.1274 0.5643

φ21(1, 1) -0.0188 -0.0412 0.0109 0.0897

φ21(1,−1) 0.0314 0.0708 0.0455 0.1351

φ22(1, 0) 0.0368 0.1057 -0.0137 0.1862

φ22(0, 1) 0.048 0.213 0.0645 -0.0309

φ22(1, 1) -0.0151 0.0473 0.0594 0.1897

φ22(1,−1) 0.0692 0.0303 0.079 0.2351

φ23(1, 0) 0.0224 0.0637 0.0129 -0.0462

φ23(1, 0) 0.0224 0.0637 0.0129 -0.0462

φ23(1, 1) 0.0224 0.0637 0.0129 -0.0462

φ23(1,−1) 0.0224 0.0637 0.0129 -0.0462
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Table 3.12: The GMRF parameters for the spatial interaction of the colour com-
ponent 3 with the other colour components 1 and 2 for the image in Figure 3.6(a)

GMRF Region1 Region2 Region3 Region4

Parameter

φ31(0, 1) 0.0387 0.0252 -0.0471 -0.0151

φ31(0, 1) 0.0372 0.1227 0.0262 0.0473

φ31(1, 1) -0.0351 -0.0354 -0.0334 0.0129

φ31(1,−1) -0.0619 0.1654 0.0767 0.1225

φ32(1, 0) 0.0756 0.1876 0.0464 0.0343

φ32(0, 1) 0.0231 0.0149 -0.0208 0.1713

φ32(1, 1) 0.0717 0.0508 0.0261 0.0455

φ32(1,−1) 0.1075 0.1899 0.0909 -0.0151

φ33(1, 0) 0.1764 0.1862 0.1475 0.5421

φ33(0, 1) 0.0191 0.0439 0.061 0.0224

φ33(1, 1) 0.1023 0.0285 0.08 0.0905

φ33(1,−1) 0.1351 0.0825 0.1033 0.213

Table 3.13: Performance Comparison of various segmentation techniques for Fig-
ure 3.6(a)

Techniques MCE in � Time in sec.

SA 4.04 69

GMRF-ICM ONLY 10.42 19

GMRF-GA-ICM 3.52 46
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Chapter 4

MRF Model Based Image
Segmentation of Color Textured
Images using GLCM

In this chapter we propose a new method which blends the features of gray level

co-occurrence matrix(GLCM) and Markov random field model(MRF) to segment

colored textured images in Ohta colour space. The GMRF-GA model based tech-

nique proposed in Chapter 3 has few limitations. As discussed in Chapter 3 the

method primarily depends on genetic algorithm for the initialization of the ICM

algorithm. But GA does not assure to initialize the ICM algorithm each time

the technique is executed. This is because of the fact that GAs are good at find-

ing near optimal or acceptable good solutions but are not guaranteed to find the

global optimum. Hence the method fails to yield better results in many of the

trials and the results obtained in chapter 3 are the best among 15 to 20 trials. In

order to overcome this difficulty and to improve the performance an attempt has

been made to incorporate texture features of GLCM and MRF model together in

one scheme to segment color textured images in Ohta color space. Texture can

be defined as the variability in the tone with in a neighborhood, or the spatial

relationships among the gray levels of neighboring pixels.

Among the approaches that have been followed to assess texture are the struc-

tural approach and statistical approach [10, 23, 46]. In the structural approach,

a texture is considered as a structure composed of a large number of more or

less ordered, similar elements or patterns with a certain rule of placement. The
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4.1 Computation of Textural Measures using Gray Level Co-occurrence Matrix

complex problem associated with this approach is the extraction of such primi-

tives. In statistical approach the stochastic properties of the spatial distribution

of the gray levels in the image are characterized. Gray level co-occurrence matri-

ces are among the simple and early statistical approaches to extract the textural

features. Section 4.1 describes the GLCM textural measures and Markov random

field model is described in section 1.2. The color models are used to represent

different colors and the similarity in color is better interpreted in transformed

spaces like HSV, YIQ, Ohta (I1, I2, I3), CIE (XYZ, Luv, Lab) etc. In this chapter

we have considered Ohta color model for image segmentation. The Ohta color

space is an expression of the RGB color cube in terms of eigenvectors calculated

over real scenes and produces better segmentations than in the RGB space since

it segments real world imagery with respect to its principal components [38, 47].

4.1 Computation of Textural Measures using Gray

Level Co-occurrence Matrix

Texture features based on GLCM are an efficient means to study the texture of an

image. As already described in Chapter 2 , section 2.7, given the image composed

of pixels each with an intensity, the GLCM is an illustration of how frequently

different combinations of grey levels co-occur in an image. A GLCM denotes the

second order conditional joint probability densities of each pixel gray level, which is

the probability of occurrence of gray level i and grey level j within a given distance

d and along the direction θ. Several statistical measures describing the texture

have been deduced from GLCM. These second order statistics are calculated for

all pair wise combinations of gray levels. Fourteen types of texture features have

been defined by Haralick et. al. [23]. The depiction of the texture information is

then extracted by these series of texture statistics computed from GLCM. In our

study we have looked at eight conventional measures. Let N be the number of

gray levels and p(i, j) be the probability of co-occurrence of gray level i and gray

level j, then the statistical measures are described as below
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4.1 Computation of Textural Measures using Gray Level Co-occurrence Matrix

A. Contrast (CON):

Contrast defined as the difference between the highest and the smallest val-

ues of the adjacent set of pixels considered. The GLCM cumulous around the

principal diagonal interprets a low contrast image and high contrast values

mean a coarse texture.

CON =
N−1∑
i=0

N−1∑
j=0

(i− j)2p(i, j) (4.1)

B. Dissimilarity (DIS):

The heterogeneity of the gray levels is measured by dissimilarity. Over again

the coarser textures are portrayed by higher values of dissimilarity.

DIS =

N−1∑
i=0

N−1∑
j=0

Abs(i− j)p(i, j) (4.2)

C. Homogeneity (HOM):

Homogeneity assesses image homogeneousness and for smaller difference be-

tween grey values it takes on larger values

HOM =
N−1∑
i=0

N−1∑
j=0

p(i, j)[
1 + (i− j)2

] (4.3)

D. Mean (MEAN): Mean is the average gray level with respect to the central

position and is given by

MEAN =
N−1∑
i=0

N−1∑
j=0

ip(i, j) (4.4)

E. Standard Deviation (SD): Standard deviation reflects the degree of distribu-

tion of the gray level values and the copiousness of the data in the image.

SD =

√√√√N−1∑
i=0

N−1∑
j=0

(i ∗MEAN − p(i, j)2) (4.5)

F. Angular Second Moment (ANG):

Angular second moment evaluates the consistency of textural information

and is given by

ANG =

N−1∑
i=0

N−1∑
j=0

p(i, j)2 (4.6)
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4.2 Image model

G. Correlation (COR):

Correlation is a measure of gray tone linear dependencies in the image and

hence the linear relationship between the gray levels of pixel pairs is specu-

lated in this and is estimated as

COR =
N−1∑
i=0

N−1∑
j=0

(i− μ)(j − μ)p(i, j)

σiσj

(4.7)

H. Entropy (ENT):

The disorderliness of an image is given by entropy. Texturally inconsistent

image having very low values for many GLCM elements entails that the

entropy is very large.

ENT =
N−1∑
i=0

N−1∑
j=0

p(i, j)log (p(i, j)) (4.8)

4.2 Image model

Let the image is assumed to be defined over a discrete rectangular lattice S =

(M ×N). Let W denotes the label process associated with the true but unknown

labels and w is the realization of it. In case of color images, w = [w1, w2, w3]
T

denote the labels associated with the three components of some color coordinate

system, for instance w1 corresponds to label associated with I1, w
2 to label as-

sociated with I2 and w3 to label associated with I3 in Ohta color space or it

will correspond to the labels associated with red, green and blue components re-

spectively in RGB color coordinate system. The label process is modeled as MRF.

Let X denotes the observed random field corresponding to the observed de-

graded image and is assumed the degraded version of the label process. x be the

realization of it. Then we consider the following degradation model

Xi,j = Wi,j + Zi,j∀(i, j) ∈ (M ×N) (4.9)

With lexographical ordering this is written as X = W + Z.

Let η denote the neighborhood system on S. By assuming the label process W
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4.3 MAP Estimation of Image Labels

to be Markov random field (MRF) with respect to neighborhood system η, it is

demonstrated by its local characteristics

P (Wi,j = wi,j | Wk,l = wk,l, k, l ∈ S, (k, l) �= (i, j)) = P (Wi,j = wi,j | Wk,l = wk,l, k, l ∈ ηi,j)

(4.10)

Because W is MRF, according to Hammersly-Clifford theorem [40], through

MRF-Gibb’s equivalence, the joint probability distribution can be expressed as

P (W = w | φ) = 1

Z ′ e
−U(w,φ) (4.11)

The model in Eqn.( 4.11)is the a priori distribution of the random field W . Z ′

is the partition function as defined in Chapter 2 . The exponential term U(w, φ)

is called the energy function and takes the form U(w, φ) =
∑

c∈C Vc(w, φ) and

Vc which denotes the clique potential associated with clique c. The followings

assumptions are made for the above mentioned degradation model in ( 4.9)

• Zi,j is statistically independent of Wi,j, for all (i, j) and (k, l) belonging to

S.

• wi,j takes any value from the set G = (0, ..., Gm). Generally Gm = 2 for

binary images and 256 for gray scaled images. In case of a color image each

component is represented as a gray scale image.

4.3 MAP Estimation of Image Labels

In MRF frame work the pixel labels are estimated using the associated model

parameters. Let α, β and σ are the associated model parameters in weak mem-

brane model. Since in partially unsupervised frame work, only the number of

classes are known and the model parameters are not known, model parameters

are selected on ad hoc basis. Let W be the random field associated with noise

free class label and w be the realization of it. W is modeled as MRF. Let X

represent the observed image random field and x be the realization of the same.

Let φ be the representation for associated model parameters. Let w∗ denote the

true but unknown labeling configuration and ŵ denote the estimation for w∗. w∗
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4.3 MAP Estimation of Image Labels

is the realization of the random field W , which is modeled as MRF. The problem

is devised as pixel labeling problem and the ŵ is found by maximum a posteriori

probability condition,

ŵ = arg max
w

P (W = w | X = x, φ) (4.12)

w is unknown and hence it can be computed using Bayes’ theorem as

P (W = w | X = x, φ) =
P (X = x | W = w, φ)P (W = w)

P (X = x | φ) (4.13)

Since X corresponds to the given image P (X = x | φ) is a constant quantity.

P (W = w) is the a priori probability of the labels. Therefore 4.13 can be written

as

P (W = w | X = x, φ) = P (X = x | W = w, φ)P (W = w) (4.14)

Since W is MRF, according to Hammersley-Clifford theorem, prior probability

distribution in ( 4.13) is given as

P (W = w) =
1

Z
e−U(w,φ) (4.15)

U(w, φ) is known as the prior energy and is defined as follows

U(w, φ) =
∑
c∈C

Vc(w, φ) (4.16)

The term Vc(w, φ) is known as clique potential and
∑

c∈C Vc(w, φ) is the sum of

clique potentials over all possible cliques C. φ is the set of clique parameters and

is given by φ = [α, β]. As the color image has three spectral components, Vc is

written as

Vc(w, φ) =
∑
c∈C

Vc(w
(1), w(2), w(3)) (4.17)

Let vi,j represent the vertical line field and hi,j the horizontal line field. Let

W 1
i,j, W

2
i,j and W 3

i,j represent the class labels in each of the color components 1, 2

and 3 respectively. Then we define the following terms

‖Wi,j‖2 = (W 1
i,j)

2 + (W 2
i,j)

2 + (W 3
i,j)

2
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4.3 MAP Estimation of Image Labels

‖Wi,j −Wi,j−1‖2 = 1
3

∑3
q=1

(
W q

i,j −W q
i,j−1

)2

fv(Wi,j,Wi,j−1) =
1
3

∑3
q=1 |W q

i,j −W q
i,j−1| and

fh(Wi,j,Wi−1,j) =
1
3

∑3
q=1 |W q

i,j −W q
i−1,j|

α and β represent external and internal field parameters of clique potential re-

spectively. The clique potential is given by

VC(w) =
∑
i,j

α
[|wi,j − wi,j−1|2(1− vi,j) + |wi,j − wi−1,j|2(1− hi,j)

]
+ β [vi,j + hi,j]

(4.18)

The vertical line field vi,j = 1 if fv ( Wi,j, Wi,j−1) � thresh and the horizontal line

field hi,j = 1 if fh ( Wi,j , Wi−1,j) � thresh. The value of thresh is found out by

dividing alpha by beta.

The conditional distribution of the observed data x given the true label is often

assumed to be Gaussian, and hence can be formulated as

P (X | W ) =
1√

(2π)P |Σ| exp
(
−1

2
(x− w)TΣ−1(x− w)

)
(4.19)

Where Σ is the covariance matrix and P represents the number of color compo-

nents. In our work we have considered color image with three spectral components

and assumed that the components are uncorrelated in Ohta color space having the

same variance. Hence the Eqn. ( 4.19) reduces to,

P (X | W ) =
1

(2π)3σ3
exp

(
− 1

2σ2
(x− w)2

)
(4.20)

From Eqns.( 4.15) through( 4.20) the posteriori probability in Eqn.( 4.12)

reduces to,

ŵ = arg max
w

1

Z
√
(2π)3σ3

exp

(
(x− w)2

2σ2
+ U(w, φ)

)
(4.21)

The maximization of the above function is equal to the minimization of the fol-

lowing,

ŵ = arg min
w

(
(x− w)2

2σ2
+ U(w, φ)

)
(4.22)
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4.4 Proposed GLCM and MRF Model Based Segmentation Approach

For the color image with three spectral components Eqn.( 4.22) is represented

as

ŵ = arg min
w

(
1
3
(x(1) − w1)2 + (x(2) − w2)2 + (x(3) − w(3))2

2σ2
+
∑
c∈C

Vc(w
(1), w(2), w(3))

)

(4.23)

4.4 Proposed GLCM and MRF Model Based Seg-

mentation Approach

The proposed GLCM and MRF model based segmentation technique comprises

of two stages,

i. Texture feature is extracted and optimal texture feature image is obtained

in Ohta color space.

ii. Contextual feature is incorporated by modeling the feature image as de-

scribed in section 4.2. MAP estimation of image labels are obtained using

ICM algorithm.

In the first step, computation of GLCM and derivation of second order statis-

tics from the GLCM is achieved. The choice of the color space also has a very

significant finding, which can dramatically influence the results of the segmen-

tation. It is found that the components of Ohta color space which are a linear

combinations of red, green and blue components of the RGB color model bring

about more beneficial results especially for textured and real world imagery. Hence

in our approach the images are first converted from RGB to ohta color space. Then

I1, I2 and I3 components of the Ohta color space are utilized for obtaining texture

features with the help of a moving window. In the moving window concept, each

cell in the window sits over an occupied image cell. The GLCM is computed for

the window taking the corresponding values of the cells of the image on which

window is placed. Then the computed value is assigned to the center pixel of the

window. The window is moved to next pixel and the process is repeated for the
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4.4 Proposed GLCM and MRF Model Based Segmentation Approach

entire image thus computing the GLCM and the required textural measures for

each pixel of the image. In this way an entire image is constructed with texture

values thus forming textured image of different textural features. This is repre-

sented pictorially as shown in Figure 4.4. As it is already mentioned, each cell in

a window must sit over an occupied image cell and the center pixel gets the value.

This condition easily reveals that the center pixel of the window cannot be an edge

pixel of the image. Hence it becomes mandatory that, for a window of dimension

N x N, a band of (N − 1)/2 pixels wide around the image to stay unoccupied.

This is solved by filling the edge pixels with the nearest texture calculation. For

a 7 × 7 window, the values computed in row 4, column 4, (R − 3)th row and

(C − 3)th column are assigned to the outer three rows and outer three columns of

the image. R and C stand for the number of rows and columns of the image. As

Figure 4.1: Figure demonstrating the moving window concept for the computation
of GLCM and related textural features. The image is of size 10 by 10 with the
window of size 5 by 5

the image edge pixels constitute a very small fraction of total image pixels, this

will not lead to any major problem.The factors that influence in the computation

of gray level co-occurrence matrix are (i) the number of gray levels, (ii)inter pixel

distance d (iii) direction and (iv) the size of the window. The following procedure

was adopted to realize the same.

1. Selection of optimal window size and inter pixel distance: As the

success of segmentation using texture feature matrix depends largely on the
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4.4 Proposed GLCM and MRF Model Based Segmentation Approach

size of the window, identifying optimal window size is one of the important

step in texture feature extraction.If the window size is too large, there is a

chance of overlapping of two types of textures and thus bringing in fallacious

spatial information. Thus, initially, in our proposed work, GLCM values

were calculated for six window sizes (3×3, 5×5, 7×7, 9×9, 11×11and13×13).

It is found that a window size of (3× 3) is optimal and yields better results

for the color textured images. As we have considered synthetic textured

images and natural scenery images inter pixel distance of 1 is considered for

computation.

2. Selection of optimal textural feature: The selection of optimum feature

is exerted by the evaluation of texture features. The following procedure is

followed, initially for a few set of images, regions of interest representing the

different textures of the image are selected from the original image. Textu-

ral features as described in section 4.1 are computed for all representative

texture regions. In order to realize the optimum textural feature, graphs are

plotted for feature values verses each of the textures representing eight re-

gions of interest. With respect to the discriminating capability of the feature,

the optimum texture feature is selected by visually analyzing the group of

texture features. This can be well understood with the help of a figure. Fig

1.2 shows the angular momentum values for different regions of interest for

both the classes. It can be noticed from the figure that none of the texture

matrices of I1, I2 and I1 color component are able to differentiate between

the classes. The values of both the classes are overlapping. Similarly the

figures through 4.3(a) to 4.4(b) represent the texture matrices for contrast,

correlation, dissimilarity, entropy, homogeneity and standard deviation and

have overlapping class values. But it is clearly seen from the Figure 4.4(c)

that texture matrix mean is able to distinguish the classes. Hence mean

texture matrix is considered to be the optimal one for segmentation in our

proposed work.
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4.4 Proposed GLCM and MRF Model Based Segmentation Approach

• Selection of appropriate direction: For choosing the appropriate direc-

tion, the literature suggests that any directions is appropriate, assuming the

redundancy of texture in different directions. Hence GLCM has been cre-

ated in a single direction 45o. This has even helped to considerably reduce

the computational time.

In the second step, segmentation of color textured image is obtained. The

optimal feature image obtained in first step is assumed to be the degraded form

of true labeled image. This feature image is modeled as described in Eqn. 4.9.

MAP estimation of image labels are obtained using ICM algorithm as described

in previous sections and the segmentation is obtained. The true label process is

considered to be a Markov Random Field which incorporates contextual features

along with texture and color features.
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4.4 Proposed GLCM and MRF Model Based Segmentation Approach

(a) Two class color textured
image of size 130 × 130

(b) Angular momentum of two classes at
different locations for I1 component

(c) Angular momentum of two classes at
different locations for I2 component

(d) Angular momentum of two classes at
different locations for I3 component

Figure 4.2: Figure showing the plot of values of angular momentum at differ-
ent locations of the region 1 and region 2 of a two class image for all the three
components I1, I2 and I3 of Ohta color space
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(a) Contrast of two classes at different

locations

(b) Correlation of two classes at differ-

ent locations

(c) Dissimilarity of two classes at differ-

ent locations

(d) Entropy of two classes at different lo-

cations

Figure 4.3: Figure showing the plot of values of contrast, correlation and dissim-

ilarity at different locations of the region 1 and region2 of a two class image in

Figure 4.2(a)
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(a) Contrast of two classes at different

locations

(b) Correlation of two classes at differ-

ent locations

(c) Dissimilarity of two classes at different locations

Figure 4.4: Figure showing the plot of values of homogeneity, standard deviation

and mean at different locations of the region 1 and region2 of a two class image

in Figure 4.2(a)
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4.5 Results and Discussion

In the simulation, both synthetic as well as real scenery images are considered to

validate the proposed algorithm. Synthetic images consisting of 2, 3 and 4 classes

are considered for simulation. Besides, few Berkely set of images are also looked at

for simulation. The simulated synthetic texture images as well as real images are

obtained from http://www.imageafter.com/, http://www.cgtextures.com/ and

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

Two class synthetic textured and natural scenery images:

Figure 4.6(a) shows a two class synthetic colour textured image of size (130 ×
130). The image is originally a RGB image which is converted into Ohta colour

space with components I1, I2 and I3. As already discussed in section 4.4, mean fea-

ture matrix has been regarded as the optimal one for segmentation. However for

a two class image it is noticed that mean texture matrix of I1 and I3 components

are unable to differenciate the different classes of the image. Hence mean texture

matrix of I2 component alone is considered for segmentation of two class textured

images. Figures 4.5(a), 4.5(b) and 4.5(c) show the plot of mean feature value at

eight regions of interest in each of the two classes of I1, I2 and I3 component respec-

tively. After converting the image from RGB to Ohta colour space, the gray level

cooccurence matrix (GLCM) and the mean feature matrix of a two class image

is computed for I2 component. The computed feature matrix is modeled as a de-

graded model for the MAP estimation of the true image labels. The unknown true

image label process is modeled as Markov Random Field model. The model pa-

rameters of each class label (α, β, σ) are taken on ad hoc basis. MAP estimation of

the image labels is obtained through iterated conditional modes (ICM) algorithm

and the algorithm is run for 20 number of iterations for getting the optimal results.

To validate that the mean feature matrix is the optimal one, all the other seven

feature matrices namely angular momentum, contrast, correlation, dissimilarity,

entropy, homogeneity, standard deviation obtained for I2 component are shown for
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the two class textured image in Figures 4.6(b), 4.6(c), 4.6(d), 4.6(e), 4.6(f), 4.6(g)

and 4.7(d) respectively. Figures 4.7(c), 4.7(d) and 4.7(e) shows the mean feature

matrices in I1, I2 and I3 components respectively. It is easily identifiable from the

figure that mean feature matrix of I2 component is more suitable than I1 and I3

components for MAP estimation of image labels.

The first image considered is a synthetic two class textured image as shown in

Figure 4.7(a). Figure 4.7(b) shows the corresponding ground truth image. The

image in the RGB color space is first converted into ohta color space. GLCM

texture feature matrices are computed from the image. The feature matrix in

Figure 4.7(d) is modeled as degraded version of the label image and is segmented

by MAP estimation using ICM algorithm. The values of model parameters α, β

and σ are taken on trial and error basis. The ICM algorithm converges for the

values of model parameters at α = 0.0025, β = 3.0 and σ = 5.0. The values of

the model parameters are shown in Table 4.7. Figures 4.7(f) and 4.7(h) show the

segmented images using JSEG and GLCM-GMRF-ICM techniques respectively. It

can visualized as well as found from Table 4.1 that the proposed method GLCM-

GMRF-ICM found to be performing better than both JSEG and GMRF-GA-ICM

techniques. The JSEG method has an accuracy of 96.44%, GMRF-GA-ICM has

93.69% and GLCM-GMRF-ICM has an accuracy of 98.64% which is outperforming

other two methods. JSEG method has the least computation time of 15 secs, while

GMRF-GA-ICM and GLCM-GMRF-ICM have 29 and 20 secs respectively.

The technique is also validated with real textured images. Figure 4.8(a) shows

a real image which comprises of the regions road and grass. Figure 4.8(b) shows

the corresponding ground truth image. Figsures 4.8(c), 4.8(d) and 4.8(e) shows

the mean feature matrices in I1, I2 and I3 components respectively. The model

parameters for the MAP estimation are α = 0.0029, β = 3.06 and σ = 5.0. The

values of the model parameters are shown in Table 4.7. Figsures 4.8(f), 4.8(g)

and 4.8(h) show the segmented images using JSEG, GMRF-GA-ICM and GLCM-

GMRF-ICM techniques respectively. It is shown from Table 4.2 that the proposed

methods GMRF-GA-ICM and GLCM-GMRF-ICM have greater accuracies than
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the JSEG method. Though the computation time is less in case of JSEG technique,

it does not give accurate results for real images. Overall proposed GLCM-GMRF-

ICM method is more accurate than the other two methods.

Similarily, another real image of size (200 × 146) as shown in Figure 4.9(a)

is considered for simulation. The image comprises of two regions, mud road and

forest area. Figure 4.9(b) shows the corresponding ground truth image. Fig-

ures 4.9(c), 4.9(d) and 4.9(e) shows the mean feature matrices in I1, I2 and I3

components respectively. Figures 4.9(f), 4.9(g) and 4.9(h) show the segmented

images using JSEG, GMRF-GA-ICM and GLCM-GMRF-ICM techniques respec-

tively.The segmented images using the proposed model uses the model parameters

α = 0.0032, β = 3.42 and σ = 5.0. Again the GLCM-GMRF-ICM algorithm out-

performs the other two methods n terms of accuracy.

It can be observed from all the results of the two class images that, the proposed

GLCM-GMRF-ICM technique always outperforms the other two methods. In

case of synthetic textured images, sometimes the accuracy level of JSEG method

becomes almost equal to that of the proposed GLCM-GMRF-ICM method. But

with the real images the technique outperforms the JSEG method. This is well

identified from the results of images in Figures 4.8, 4.9, 4.10 and 4.12. Especially

from the results of the tree and sky image in Figure 4.12, it is clearly seen that the

misclassification error of JSEG method is very high with the value 20%. Where as

the proposed methods GLCM-GMRF-ICM and GMRF-GA-ICM lead this method

with the percentage of misclassification error of only 1.36% and 7.31% respectively.

The techniques are tested for three class and four class images as well. For a

three class image it is found that mean feature matrix of I1 component is unable

to differenciate the different classes of the image. The image can be segmented by

taking the other two components I2 and I3 together in combination. Figure 4.13(a)

shows a three class synthetic textured image. It can be observed from the I2 and

I3 mean feature matrices as shown in Figure 4.13(d) and Figure 4.13(e) respec-

tively that they are able differenciate only two classes when they are considered

separately. But the same feature matrices when taken in combination can segment
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4.5 Results and Discussion

the image accurately. Hence in our proposed approach the MAP estimation of the

image labels are obtained by considering feature matrices of I2 and I3 components.

Figure 4.13(a) shows a three class textured image of size (180× 154). Figure

4.13(b) shows the ground truth image. The MAP estimation of the image labels

are obtained by taking mean feature matrices of I2 and I3 components and seg-

mentation is done using ICM algorithm. Table 4.12 shows the model parameters

of the image. Figures 4.13(f), 4.13(g) and 4.13(h) show the segmented images

using JSEG, GMRF-GA-ICM and GLCM-GMRF-ICM techniques respectively.

The performance measures are presented in Table 4.8. It is observed that JSEG

method, GMRF-GA-ICM and GLCM-GMRF-ICM perform with MCE of 2.57%,

3.68% and 1.89% respectively. It is found that the proposed method GLCM-

GMRF-ICM outperforms the other two methods.

Similarily all the three techniques are examined for three class real image.

Figure 4.14(a) show a three class real image of size (150 × 300). Figure 4.14(b)

shows the ground truth image. Figures 4.15(a), 4.15(b) and 4.15(c) show the seg-

mented images using JSEG, GMRF-GA-ICM and GLCM-GMRF-ICM techniques

respectively. The performance measures are presented in Table 4.9. The misclas-

sification error is found be 5.23% for JSEG method, 3.98% for GMRF-GA-ICM

method and 1.06% for GLCM-GMRF-ICM method. The model parameters are

presented in Table 4.12.

Similarly the same method is followed for four class synthetic image. But in

addition hue component of the HSI color space is also considered for segmenta-

tion for the sake of accuracy. Thus the image is considered to be a three band

image. Figure 4.16(a) and 4.16(b) shows four class synthetic textured image and

its ground truth image. The two feature matrices of I2 and I3 and the hue compo-

nent of the HSI color space is taken for MAP estimation and segmentation of the

image using ICM algorithm. Figures 4.16(f), 4.16(g) and 4.16(h) show the seg-

mented images using JSEG, GMRF-GA-ICM and GLCM-GMRF-ICM techniques

respectively. The performance measures are presented in Table 4.10. The JSEG

method, GMRF-GA-ICM and GLCM-GMRF-ICM perform with MCE of 2.71%,
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3.52% and 1.68% respectively. The model parameters are found in Table 4.12.

Similarly 4 class real image in Figure 4.17(a) is segmented by MAP estimation

using ICM algorithm. Figure 4.16(b) shows the ground truth image. Figures

4.17(f), 4.17(g) and 4.17(h) show the segmented images using JSEG, GMRF-GA-

ICM and GLCM-GMRF-ICM techniques respectively The model parameters are

shown in Table 4.12. The performance measures for Figure 4.16(a) is given in

Table 4.11. The misclassification error is found be 1.02%, 10.46% and 3.78% for

JSEG, GLCM-GMRF-ICM and GMRF-GA-ICM methods repectively. It is found

that again the proposed method outperforms the other two methods for both

synthetic and real images.

4.6 Conclusion

This chapter addresses the segmentation of color textured image segmentation in

Partially supervised frame work. A new scheme GLCM-GMRF-ICM is proposed

which integrates the features of both gray level co-occurence matrix (GLCM) and

Markov random field model (MRF). The textural features in Ohta color space are

extracted using GLCM. Contextual feature is incorporated by modeling the feature

image as MRF model. maximum a posteriori (MAP) estimation of image labels are

obtained using ICM algorithm. The proposed GLCM-GMRF-ICM scheme yielded

the segmentation of synthetic as well as real color textured images with better

performance than the result of GMRF-GA-ICM scheme proposed in Chapter 3.

The scheme works for two class, three class and four class color textured images

and assumes the number of classes to be known a priori. Our method may be

further improved for segmenting the images of more than four classes.
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(a) Mean of two classes at different loca-
tions for I1 component

(b) Mean feature matrix of I2 component

(c) Mean feature matrix of I3 component

Figure 4.5: Figure showing the plot of values of mean at different locations of the
region 1 and region 2 of a two class image in Figure 4.2(a) for all three components
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(a) original Im-
age of size 130×
130

(b) Angular mo-
mentum feature
matrix

(c) Contrast
feature matrix

(d) Correlation
feature matrix

(e) Dissimilar-
ity feature ma-
trix

(f) Entropy fea-
ture matrix

(g) Homogene-
ity feature ma-
trix

(h) Standard
Deviation
feature matrix

(i) Mean fea-
ture matrix of I1
component

(j) Mean fea-
ture matrix of I2
component

(k) Mean fea-
ture matrix of I3
component

Figure 4.6: Figure showing the plot of values of mean at different locations of the
region 1 and region 2 of a two class image in Figure 4.2(a) for all three components
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.7: Segmentation of 2-class synthetic color textured image of size (130 ×
130). (a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 com-
ponent (d)Mean feature matrix in I2 component (e) Mean feature matrix in I3
component (f) Segmented image using JSEG method (g) Segmented image using
proposed GLCM-MRF method
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.8: Segmentation of 2-class real textured image of size (175 × 170).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 compo-
nent (f) Segmented image using JSEG method (g) Segmented image using pro-
posed GLCM-MRF method
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I3 component

(e) Mean feature ma-
trix of I2 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.9: Segmentation of 2-class real textured image of size (200 × 146).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 compo-
nent (f) Segmented image using JSEG method (g) Segmented image using pro-
posed GLCM-MRF method
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I3 component

(e) Mean feature ma-
trix of I2 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.10: Segmentation of 2-class real textured image of size (180 × 135).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 component
(f) Segmented image using JSEG method (g) Segmented image using proposed
GLCM-MRF method
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Table 4.1: Performance comparison of various segmentation techniques for Fig.
4.7

Techniques MCE in � Time in sec.

JSEG 3.56 15

GMRF-GA-ICM 6.31 29

GLCM-GMRF-ICM 1.36 20

Table 4.2: Performance comparison of various segmentation techniques for Fig.
4.8

Techniques MCE in � Time in sec.

JSEG 6.74 12

GMRF-GA-ICM 4.91 27

GLCM-GMRF-ICM 2.52 16

Table 4.3: Performance comparison of various segmentation techniques for Fig.
4.9

Techniques MCE in � Time in sec.

JSEG 9.09 18

GMRF-GA-ICM 3.82 32

GLCM-GMRF-ICM 2.09 20

Table 4.4: Performance comparison of various segmentation techniques for Fig.
4.10

Techniques MCE in � Time in sec.

JSEG 11.27 10

GMRF-GA-ICM 6.01 18

GLCM-GMRF-ICM 1.36 13
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(a) original Image of
size 175 × 170

(b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.11: Segmentation of 2-class real color textured image of size (184 × 93).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 component
(f) Segmented image using JSEG method (g) Segmented image using proposed
GLCM-MRF method
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-MRF

Figure 4.12: Segmentation of 2-class real textured image of size (175 × 131).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 component
(f) Segmented image using JSEG method (g) Segmented image using proposed
GLCM-MRF method
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Table 4.5: Performance comparison of various segmentation techniques for Fig.
4.11

Techniques MCE in � Time in sec.

JSEG 2.65 9

GMRF-GA-ICM 8.09 10

GLCM-GMRF-ICM 4.36 13

Table 4.6: Performance comparison of various segmentation techniques for Fig.
4.12

Techniques MCE in � Time in sec.

JSEG 20 9

GMRF-GA-ICM 7.31 16

GLCM-GMRF-ICM 1.36 11

Table 4.7: Model Parameters for 2 class textured images

Image α β σ

Figure 4.7(a) 0.0025 3.0 5.0

Figure 4.8(a) 0.0029 3.06 5.0

Figure 4.9(a) 0.0032 3.42 5.0

Figure 4.10(a) 0.00237 3.08 5.0

Figure 4.11(a) 0.0034 4.05 5.00

Figure 4.12(a) 0.0025 3.54 5.00
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.13: Segmentation of 3-class synthetic textured image of size (180 × 154).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 component
(f) Segmented image using JSEG method (g) Segmented image using proposed
GLCM-MRF method
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(a) original Image (b) Ground Truth

(c) Mean fea-
ture matrix of I1
component

(d) Mean fea-
ture matrix of I2
component

(e) Mean fea-
ture matrix of I3
component

Figure 4.14: Segmentation of 3-class real textured image of size (150 × 300).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 component
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4.6 Conclusion

(a) JSEG (b) GMRF-GA-
ICM

(c) GLCM-
GMRF-ICM

Figure 4.15: Segmentation of 3-class real textured image of size (150 × 300)
continued from the previous page. (a)JSEG (b) GMRF-GA-ICM (c) GLCM-
GMRF-ICM

Table 4.8: Performance comparison of various segmentation techniques for Fig-
ure 4.13

Techniques MCE in � Time in sec.

JSEG 2.570 12

GMRF-GA-ICM 3.68 25

GLCM-GMRF-ICM 1.89 16

Table 4.9: Performance comparison of various segmentation techniques for Fig.
4.14

Techniques MCE in � Time in sec.

JSEG 5.23 14

GMRF-GA-ICM 3.98 43

GLCM-GMRF-ICM 1.06 28
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4.6 Conclusion

(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.16: Segmentation of 4-class synthetic textured image of size (200 × 200).
(a)Original Image (b) Ground Truth (c) Mean feature matrix in I1 component
(d)Mean feature matrix in I2 component (e) Mean feature matrix in I3 component
(f) Segmented image using JSEG method (g) Segmented image using proposed
GLCM-MRF method
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(a) original Image (b) Ground Truth

(c) Mean feature ma-
trix of I1 component

(d) Mean feature ma-
trix of I2 component

(e) Mean feature ma-
trix of I3 component

(f) JSEG (g) GMRF-GA-ICM (h) GLCM-GMRF-
ICM

Figure 4.17: Segmentation of 4-class real image of size (200 × 160). (a)Original
Image (b) Ground Truth (c) Mean feature matrix in I1 component (d)Mean feature
matrix in I2 component (e) Mean feature matrix in I3 component (f) Segmented
image using JSEG method (g) Segmented image using proposed GLCM-MRF
method
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Table 4.10: Performance comparison of various segmentation techniques for Fig-
ure 4.16

Techniques MCE in � Time in sec.

JSEG 2.71 15

GMRF-GA-ICM 3.52 46

GLCM-GMRF-ICM 1.68 29

Table 4.11: Performance comparison of various segmentation techniques for Fig-
ure 4.17

Techniques MCE in � Time in sec.

JSEG 1.02 7

GMRF-GA-ICM 10.46 38

GLCM-GMRF-ICM 3.78 22

Table 4.12: Model Parameters for 3 and 4 class textured images

Image α β σ

Figure 4.13(a) 0.003 3.0 5.0

Figure 4.14(a) 0.00001 2.5 5.0

Figure 4.16(a) 0.0001 3.02 5.0

Figure 4.17(a) 0.0022 3.5 5.0
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Chapter 5

Conclusion

The objective of this dissertation is to devise methods and strategies for the seg-

mentation of colored textured images. This work attempts to develop partially

supervised color textured image segmentation schemes that would facilitate for

the automatic segmentation.

The initial portion of this thesis provides a background on Markov random

field (MRF) models, gray level co-occurence metrices (GLCM) and the different

color models that are used for segmentation. These are coverd in Chapter 2.

The initial part of the research work is dedicated towards devising unsuper-

vised segmentataion of color textured images using GMRF model hybridized with

Genetic algorithm (GA) which is included in Chapter 3. In this frame work the

problem is cast as a pixel labeling problem and MRF model is employed to model

the a priori unknown class labels and the observed image respectively. In this

method color and contextual features are incorporated by taking iinto account the

interaction within color planes and between color planes. Thus for the color image

in RGB color space, each component of the RGB vector at location (i, j) will be

represent as a linear combination of the color components of the neighbours and

the additive noise. The GMRF model parameters are estimated by the method

of maximum likelihood estimation. In the method, the probability or the likeli-

hood of the sample data is maximized to estimate the model parameters. Image

label estimates are obtained by ICM algorithm. Since ICM algorithm is sensitive

to intilization condition, GA is hybridized with ICM algorithm and employed in

GMRF model for better initialization and to improve the performance of segmen-
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tation. By doing so, the faster convergence of ICM and global exploration of GA

are achieved simultaneously. It is observed that, the proposed GMRF-GA-ICM

algorithm outperformed GMRF-ICM algorithm. The algorithm yielded satisfac-

tory results in both synthetic as well as real colour textured images. Simulated

Annealing (SA) algorithm which also has the ability to converge at global op-

tima undergoes intensive computational burden. Hence, all the three algorithm

namely, SA, GMRF-ICM and GMRF-GA-ICM are compared with respect to two

performance measures that is percentage of misclasification error and execution

time. It is observed that, due to the incorporation of GA for initialization of ICM

algorithm, misclasifiation error and computation time have been reduced in the

proposed scheme.

The segmentation of color textured images based on a new notion where the

textural features of GLCM are incorporated in MRF model is introduced in Chap-

ter 4. In the proposed scheme, benefits of both GLCM and MRF model are

comined together. The textural features of GLCM obtained in Ohta color space

are incorporated in MRF model. It is a two stage technique where in the first

stage the second order joint probabilty densities of each pixel gray level is com-

puted using GLCM to deduce staistical measures. In this process, textural feature

matrix is obtained. The Mean feature matrix which was found to be the optimal

one among the feature matrices is assumed as the degraded form of the true la-

beled image. The unknown class labels are modeled as MRF model. The model

parameters are assumed to be known a priori and the segmentation is obtained

by MAP estimation of image labels using ICM algorithm. The number of classes

are assumed to be known a priori and the model parametres are taken on ad hoc

basis. The problem is formulated in partially supervised domain. The proposed

scheme GLCM-GMRF-ICM is compared with the popular JSEG method proposed

by Yining Deng and B.S. Manjunath and with the scheme proposed in chapter

3 with respect to two performance measures, percentage of misclassification er-

ror and computation time. The scheme outperforms the other two methods in

terms of accuracy and the misclassification error has been reduced to a greater
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extent. The GLCM-GMRF-ICM method is validated with different images. It is

found that the technique yielded satisfactory results for both synthetic as well as

real scene images. It is validated for two, three and four class images. Thus in

this proposed new scheme, incorporation of contextual feature using MRF model

and textural feature using GLCM in Ohta color space obtains better segmented

results for colored textured images. As the proposed technique is addressed in

partially supervised framework, it will be worth persuing in future a totally un-

supervised approach where both the number of classes and the model parameters

are unknown.
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