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ABSTRACT 

Most of the environmental bacteria that are continuously exposed to mercury present in soil 

and sediments of lakes and rivers might adopt the heavy metal genotype to sustain in the toxic 

environment. The most widely studied genetic mechanism of mercury involves mer operon 

mediated mechanism. mer operon present in mercury resistant bacteria harbours certain 

functional genes like merA, merB, merT, merP etc. merB codes for organ mercurial lyase 

which cleaves the C-Hg bond in organo mercurial compounds which is subsequently 

converted to non toxic metallic mercury by mercuric ion reductase encoded by merA gene. In 

the present study, for the first time an attempt has been made to understand the non mer 

mediated mercury resistance mechanism in potent marine bacterial isolates and their role in 

bioremediation of mercury contamination in the environment. Ten strains from four different 

sites of Odisha coast showing minimum inhibitory concentration of 25-50 ppm were isolated, 

which were further studied in order to deduce non mer mediated mercury resistance 

mechanism. The potent mercury resistant isolates when grown under mercury stress were 

studied to understand bioaccumulation and thus their role in mercury bioremediation in the 

environment. From the above results it was concluded that marine bacteria play a significant 

role in detoxification of mercury in the environment either by reducing it to non toxic or by 

accumulating it inside their cells and therefore they are a key regulator in reducing the 

environmental pollution. 

Keywords: mercury, bioremediation, bioaccumulation, marine bacteria 
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1. Introduction 

Microbial world is invisible to unaided human eyes. So what goes on in their world is not 

easily comprehended, unless some direct measurements and analyses are carried out. 

Comprised of bacteria, yeasts, fungi, protozoans, phytoplankton, and other microfauna within 

500 μm sizes, microbial communities perform immense tasks mainly to keep themselves 

perpetuating in their ecosystems. Although it is for their survival, reproduction, and growth 

the microbial activities of photosynthesis (by microscopic phytoplankton), respiration by all 

living organisms and breaking down of organic matters into simpler moieties and finally to 

inorganic molecules by all heterotrophic beings are the pivotal roles that help the earth’s 

ecosystems function and achieve, as far as possible a dynamic equilibrium. All together 

sunlight is the only external input the life on earth requires. All other matters are produced, 

consumed and recycled by an array of organisms inhabiting the earth in her varied and often 

extreme habitats. In essence, the environmental functioning and stability are continuously 

aided and maintained by microscopic organismic activities. Any instability largely due to 

their activities through human and natural effects adversely affects the ecosystems.  

 

Pollution due to anthropogenic activities is the greatest problem all the ecosystems were 

subjected to right from the beginning of human dominance through settled agricultural, the 

hunting-gathering to modern industrialized civilizations. Within the last two millennia or so, 

the rise in human population growth and indiscrete consumptions of earth’s non-renewable 

resources have brought about rapid changes to the extent that there are already innumerable 

degraded/retarded habitats spoiling the Mother Earth rather undesirably. The long term 

outcomes of retarded habitats are too numerous including societal conflicts, shifts in human 

settlements, diseases, shifts in community and species diversity, economic losses, global 

changes and health effects. The one “adjustment” natural organism community makes in the 

face of all and a life-threatening ill effect of pollution in their metabolic potential is 

modification in its life-style so much so that some of its representatives “go-on”. This 

adjustment can be termed variously as tolerance or resistance. While many components of 

organism communities have the potential for such adjustment, the focus of this study will be 

the bacterial resistance.  
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Mercury is a naturally occurring heavy metal.  It is unique because it is liquid at atmospheric 

temperatures and it uniformly expands and contracts in response to changes in temperature 

and pressure. Mercury occurs naturally and is found in very small amounts in oceans, rocks 

and soil. Mercury naturally cycles through the environment when rocks break down, 

volcanoes erupt, and soil decomposes. It then circulates and is distributed throughout the 

environment.  In its metallic form, mercury is a silvery white liquid that reflects light like a 

mirror. 

 Mercury is a chemical element with the symbol Hg and atomic number 80. A heavy, 

silvery d-block element, mercury is the only metal that is liquid at standard conditions for 

temperature and pressure. With a melting point of −38.83 °C and boiling point of 356.73 °C, 

mercury has one of the narrowest ranges of its liquid state of any metal.  It is the 6th most 

toxic and 12th rarest element. Most commonly, pure mercury is called elemental mercury.  

Because elemental mercury has high surface tension, it forms small, compact, spherical 

droplets when it is released into the environment. Although the droplets themselves are static, 

the high vapour pressure of mercury compared with other metals causes the mercury to 

evaporate. 

 

1.1. Origin of mercury 
      Elemental mercury can be produced for human use from an ore called cinnabar, 

which contains high concentrations of mercury sulfide. Because mercury is a chemical 

element, it can neither be created nor be destroyed through ordinary chemical or physical 

means. Mercury is a metal occurring naturally throughout the earth's crust, usually in 

chemical combination with sulfur or other elements in rocks and minerals. For example, 

mercury occurs in coal and in ores containing economically important minerals such as 

copper and zinc. Recovery, purification and use of these materials may release mercury 

into the environment, as an instance, in process waste streams or combustion emissions. 

Eroding rocks and minerals form soils that release mercury by venting to the atmosphere 

and by water transport. Mercury is one of the most toxic elements as it binds to the 

sulfhydryl groups of enzymes and proteins, thereby inactivating crucial cell functions 

(Sheffy, 1978). 
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1.2 General Uses of Mercury 
    A number of common products contain mercury or mercury compounds.  

a. Mercury in medical devices: 

Mercury-containing devices have long been used in hospitals and health care settings. 

This includes thermometers, blood pressure measuring devices (sphygmomanometers), 

and oesophageal dilators.  

 

b. Mercury containing switches and batteries: 

Several kinds of electrical switches contain mercury. These include tilt switches, float 

switches, thermostats, relays that control electronic circuits, and others. Tilt switches 

have been commonly used in automobiles to control lamps in trunks and at other 

locations. Each switch contains, on average, 1.2 g of elemental mercury. Tilt switches 

have also been used in many other products, although their use has become less prevalent 

in recent years. These products include washing machines, clothes dryers, freezers, 

clothes irons, space heaters, television sets, furnace fan limit control switches, security 

and fire alarm systems, children’s novelty shoes with blinking lights, and many others. 

     Mercury is also used in making batteries. The main use of mercury in batteries is to 

prevent a build up of hydrogen gas that can cause the battery to bulge and leak. Mercury 

has also been used as an electrode in mercuric oxide batteries. 

 

c. Mercury in Measuring Devices: 

Mercury expands and contracts evenly with changes in temperature and pressure. This 

characteristic has made mercury useful in scientific, medical, and industrial devices that 

measure temperature and pressure. Thermometers and sphygmomanometers are the most 

common mercury-containing measuring devices. Thermometers are used in a variety of 

applications such as fever thermometers as well as other types of thermometers used in 

homes and in industrial, laboratory, and commercial applications. 

Other mercury-containing measuring devices include the following: 

• Barometers measure atmospheric pressure. (Each may contain 400 g to 620 g of 

mercury.) 

• Manometers measure differences in gas pressure. (Each may contain 30 g to 75 

g of mercury.) 
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• Psychrometers measure humidity. (Each may contain 5 g to 6 g of mercury.) 

• Flow meters measure the flow of gas, water, air, and steam.  

• Hydrometers measure the specific gravity of liquids. 

• Pyrometers measure the temperature of extremely hot materials. (They’re 

primarily used in foundries.) 

 

d. Mercury in dental amalgam: 

Dental amalgam is a material used by dentists to fill dental caries, or cavities, caused by 

tooth decay. Dental amalgam fillings are also sometimes called silver fillings because 

they have a silver-like appearance. The amalgam is a mixture of metals that contains 

elemental mercury and a powdered alloy composed of silver, tin, and copper. By 

weight, approximately 50 percent of dental amalgam is elemental mercury. 

 

e. Mercury containing Pesticides and biocides:  

Both inorganic and organic mercury compounds have been used as pesticides for a 

number of applications. The compounds have been used in seed treatments, to control 

algae and slime in cooling towers and pulp and paper mills, as additives in marine 

paints and water-based paints and coatings, in wound dressings, in protection for seed 

potatoes and apples, for fabric and laundry uses, and others. 

 

1.3 Mercury affecting environment 
 Although mercury is a natural element, the waste and residual contamination from 

past use of the metal and the ongoing burning of fossil fuels for energy continue to emit 

mercury into the environment.  Mercury can turn into airborne when coal, oil, wood, or 

natural gas is combusted as fuel or when mercury containing garbage is incinerated. 

Once in the air, mercury can fall down to the ground with rain and snow. This can then 

contaminate soil, bodies of water, and the creatures living there. 

 

    As, in industrial areas both metal and organic pollution is of vital concern, interest 

in bacterial resistance to metals, especially when associated with degradative activities, is 

of practical significance. In industrial areas, organic pollution (fossil fuels or their 

derivatives, pesticides, PCBs and TBT among others) is often accompanied by inorganic 
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ones mainly of heavy metals (mercury, cadmium, lead, etc). Without effective retention 

technologies, toxic chemicals including Hg are permitted to get discharged into the 

environment, threatening ecosystems and public health. 

 

1.4 Forms of mercury in the environment 
 Mercury occurs in two primary forms: elemental mercury (Hg0) and inorganic 

mercury (Hg2+) fig. 1. Elemental mercury is the pure silvery-white form found in rocks 

and minerals. It does not blend with other chemicals. Inorganic mercury can combine 

with other chemicals to form compounds. Combustion may release both elemental and 

inorganic mercury from materials containing them. Combustion also releases fine 

particles that may carry small amounts of mercury bound to their surfaces.  

In addition to elemental and inorganic mercury, there are other organic mercury 

compounds such as methylmercury (MeHg). Exposure to methylmercury is the main 

cause of public health concern about mercury. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Biogeochemical cycle of mercury in the environment 
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1.5 Mercury Pollution 
 Mercury pollution of the environment by mining activities and industrial has 

resulted in worldwide contamination of large areas of soils and sediments and let to 

elevated atmospheric mercury levels (Baldwin and Marshall, 1999). Because of lack of 

suitable cleanup technologies, efforts to cope with polluted sites are directed toward the 

mechanical removal of contaminated material and its deposition elsewhere. Such 

treatments are costly and frequently result in remobilization of toxic mercury compounds 

during the degrading process (Bogdanova et al., 1992). Sources of mercury pollution 

include: 

ü Dental filling 

ü Production of electrical apparatus 

ü Chloro-alkali industries 

ü Agricultural industries fungicides 

ü Gold extraction 

ü Coal fired power plants 

ü Treatment of syphilis 

ü Steel industry 

 

1.6 Effects of Mercury on Human Health 
       Mercury is one of the most toxic elements as it binds to the sulfhydryl groups of 

enzymes and proteins, hence inactivating crucial cell functions (Sheffy, 1978). After 

discharge of mercury into the environment, mercury enters the sediments where it 

remains for many decades. It is acquired by aquatic organisms in the form of highly toxic 

methyl mercury and is subsequently biomagnified through the food chain and thus the 

health of top predators, e.g., birds, fish, seals, and man, is ultimately threatened. 

  At high concentrations, mercury vapour inhalation produces acute necrotizing 

bronchitis and pneumonitis, which is result in death due to respiratory failure. Long term 

exposure to mercury vapour primarily affects the central nervous system and it also 

accumulates in kidney tissues, straight away causing renal toxicity, including proteinuria 

or nephritic syndrome. High concentration of Hg2+ causes impairment of pulmonary 

function and kidney, chest pain and dyspnousea (Carrier, 2001). Mercury poisoning 

causes a decreased ability to see, hear, talk and walk. It can lead to personality changes, 
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natural depression, irritability, nervousness, and the inability to concentrate.  Mercury is 

a serious problem particularly for pregnant women and children. Foetuses and young 

children suffer the greatest risk because their nervous systems are still developing. They 

are 4-5 times more sensitive to mercury than adults. Therefore, the discharge of mercury 

into the environment needs to be prevented by efficient and cost-effective end-of-pipe 

treatment technologies for mercury emitting industries (Kleinert and Degurse, 1972). 

Cleaning of areas polluted by heavy metals such as mercury is difficult, because the 

metals cannot be altered into harmless elements. 

 Over a few decades, community is devoting concentrated efforts for the treatment and 

removal of heavy metals in order to face this problem. Various types of technology is 

available for removing of mercury in water and wastewater including chemical 

precipitation, conventional coagulation, reverse osmosis, ultrafiltration, magnetic 

filtration, ion exchange and activated carbon adsorption and chemical reduction (Wood, 

1972). 

 

1.7 Bacterial Transformation of Mercury in the Environment 
          Biological systems have been thought to be adapted for removal of toxic heavy 

metals. Bioremoval in biological systems for removal of metals ion from polluted water 

has the potential to achieve greater performance at lower cost than non-biological 

wastewater treatment. Developments in the area of environment biotechnology indicate 

the bacteria, fungi, yeasts and algae can withdraw heavy metals from aqueous solution 

by adsorption. 

           Bacteria have a unique important role in the mercury biogeochemical cycle. 

Earlier it was generally assumed that discharges of elemental mercury remained 

relatively inert in the environment. More recent epochs have shown that inorganic 

mercury can be methylated by organisms present in the soil and sediment of rivers and 

lakes. Their most substantial contribution is the conversion of inorganic mercury to 

methylmercury by the insertion of a covalent bond between the carbon and mercury 

atoms. This reaction allows the mercury to penetrate cell membranes more rapidly and 

accumulate within the cells by complexing with important proteins, enzymes and 

nucleic acids. These reactions demonstrate that all mercury compounds represents a 

potential threat to living beings, since in the presence of bacteria, any compound 

containing mercury cab be transformed to the highly poisonous organic substances 
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which are readily incorporated into living tissues. The end products of bacterial 

reactions (fig.2) with mercury are either a gas or an insoluble precipitate which is 

removed from their immediate environment (Baldi, 1997). 

 

 

 

 

 

 

 

 

 

 

             

 

        Fig 2. Bacterial Transformation of Mercury in the Environment 

 

1.8 Bacterial Resistant to Mercury by mer Operon 
 As a response to toxic mercury compounds globally distributed by geological and 

anthropogenic activities, microbes have acquired a surprising array of resistance 

mechanisms to overcome mercury toxicity. The best studied resistance system primarily  

based on clustered genes in an operon (i.e. mer), allows bacteria to detoxify Hg2+ into 

volatile mercury by enzymatic reduction (Komura & Izaki, 1971; Summers, 1986; 

Mishra, 1992; Silver, 1996; Osborn et al., 1997 and Barkay et al., 2003). Resistance 

against mercury compounds in the environment, mediated by the microbial mer operon 

was discovered in the early 1970’s (Summers and Lewis, 1973). Since then, several 

“archetypical” mer operons (Liebert et al., 1999) have been well studied in depth with 

respect to structure, function and regulation of the individual gene products (Ji and 

Silver, 1995 and Barkay et al., 2003). Genes conferring resistances to mercury 

compounds are clustered in an operon in most known naturally occurring systems (Silver 

and Phung, 1996 and Barkay et al., 2003). 
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The mer resistance elements can be subgrouped into three categories based on their 

functional roles: 

• transporters of Hg(II) into the cells, 

• converters (enzymatically) of toxic mercury compounds into a relatively 

 nontoxic form [Hg(0)], and 

• regulators of operon expression. 

Most mer operons contain atleast the mercury-resistance genes merR, merD, merT, merP 

and merA (Silver & Phung, 1996 and Osborn et al., 1997). Expression of mer operon is 

regulated by the products of merR and merD and is inducible by Hg (II). The product of 

merR represses operon expression in the absence of inducer and activates transcription in 

the presence of inducer. The product of merD coregulates expression of operon (Misra, 

1992; Silver & Phung, 1996). Products of periplasmic merT and inner membrane-merP 

take part in the transport of metal across the cell membrane. Products of merC and merF, 

(membrane proteins) were found to act as mercury transport system (Kusano et al., 

1990). Bacteria that are resistant solely to Hg(II) have a so-called “narrow spectrum 

resistance”, whereas others that are resistant to both Hg(II) and certain organomercurials 

are with broad-spectrum resistance. Resistance against organomercurials depends on the 

organomercurial lyase (encoded by merB) that cleaves the carbon-mercury bond of the 

organomercurials, and the resultant product Hg (II) can be subsequently reduced by the 

mercuric reductase (Silver & Mishra, 1984). In some cases, the mer operon contains 

different functional genes. The merG product renders phenylmercury resistance, 

presumptively by reducing the in-cell permeability to phenylmercury (Kiyono & Pan-

Hou, 1999). 

 Although the presence of mercuric reductase is essential for enzymatic 

detoxification and hence resistance to inorganic mercury, expression of merA gene (and 

merR), has been reported in a very high proportion of gram-positive environmental 

strains sensitive to mercury, suggesting the existence of non-functional mer operons in 

which the mercury transport genes are either absent or non-functional (Bogdanova et al., 

1992).  

 

Although the physical arrangement of the mer operons may vary, all contain the requisite 

genes but surprisingly, only limited studies have sought to characterize mercury 
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resistance at the molecular level in marine bacterial isolates (Barkay et al., 1989 and 

Rasmussen & Sorensen, 1998). 

 

1.9 Alternative Mechanism of Mercury Resistant in Bacteria 

There are certain groups of bacteria capable of tolerating high concentration of mercury 

but does not have mer operon in their genotype. Hence definitely an alternative 

mechanism of mercury resistance exists in those group of microorganisms which not 

only convert the toxic form of mercury to non toxic form (mer operon mediated), but 

accumulation of mercury in the bacterial cell mass which reduces the concentration of 

mercury in the environments. Hence, mercury bioaccumulation results in gradual 

decrease of mercury concentration in the polluted sites when mercury accumulating 

bacteria are employed in those sites. Though mercury is highly toxic to any living 

organisms by readily binding with the sulphur containing amino acids of the proteins, 

hence mercury bioaccumulation provides a new discovery regarding mercury 

bioremediation. Bioaccumulation of other heavy metals in bacterial cytoplasm have been 

reported by many workers (Kotrba et al., 1999; El-Hendawy et al., 2009; Ahemad and 

Malik, 2012), however so far there is no report regarding bioaccumulation of mercury in 

bacterial cell. Hence the present work will provide a new line of discovery regarding 

mechanism of mercury resistance in marine bacteria which can be potentially utilized in 

the contaminated sites for remediation of the same for a better future. 
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2. Review of Literature 

 

Mercury and its compounds are distributed widely all around the earth. Many of the chemical 

forms of mercury are toxic to all living organisms. However, bacteria have developed 

mechanisms of resistance to several of these totally different chemical forms, and thus play a 

major role in the global cycling of mercury in the natural environment. Five different 

mechanisms of resistance to mercury compounds have been described, of which resistance to 

inorganic mercury (HgR) is best studied, both in terms of the mechanisms of resistance to 

mercury and resistances to heavy metals in general.  

 
i) Reduced uptake of mercuric ions. 

This has been reported in a strain of Enterobacter aerogenes where resistance is believed 

to be due to the expression of two plasmids encoded proteins which cause a reduction in 

the cellular permeability to Hg2+ ions (Pan et. al., 1981).  

 
ii) Demethylation of methylmercury followed by conversion to mercuric     

 sulphide compounds. 
In Clostridium cochlearium T-2P two plasmids encoded genetic factors are believed to 

be responsible for the demethylation of organomercurial compounds which are 

subsequently inactivated by reaction with hydrogen sulphide to form insoluble mercuric 

sulphide (Pan et. al., 1981). 

 

iii) Sequestration of methylmercury. 
In Desulfovibrio desulfuricans API, methylmercury is maintained at subtoxic levels by 

the continuous production of hydrogen sulphide, from the dissimilative reduction of 

sulphate, which reacts with methymercury to form insoluble dimethylmercury sulphide 

(Baldi et. al., 1993). 

 

iv) Mercury methylation. 
Although methymercury is generally considered to be more toxic than Hg2+, in some 

bacteria methylmercury may be the less toxic form, possibly due to subsequent 

sequestration or volatilisation from the cell. Methylation has been identified in bacteria 
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from sediment, water, soil and the gastrointestinal tract, and is both plasmid and 

chromosomally encoded (Trevors, 1986). In Desulfovibrio desulfuricans LS the 

methylation of mercury occurs as a two step process which involves the transfer of a 

methyl group from methyltetrahydrofolate to methylcobalamin to Hg (Choi et al.,1994) 

 

v) Enzymatic Reduction of Hg2+ to Hg0. 
Reduction occurs both in Gram-negative and Gram-positive aerobic bacteria from a 

variety of natural and clinical environments across the globe, and as such has become the 

best studied of the mercury resistance mechanisms. Mercury resistance is often located 

on conjugative plasmids and/or transposons (Radford et al., 1981, Kelly et al., 1984, 

Jobling et al., 1988a and Peters et al., 1991) and in particular is often borne on class II 

transposable elements, typified by that carried by Tn2I (Grinsted et al., 1990). 

Furthermore, such HgR plasmids or transposons often carry resistances to other heavy 

metals and/or antibiotics. 

 

Resistance to inorganic mercury can be located on transposons, plasmids and bacterial 

chromosomes and is encoded by the genes of the mer operon. Such systems have a 

worldwide geographical distribution, and moreover, they are found across a wide range of 

both Gram-negative and Gram-positive bacteria from both natural and clinical 

environments. The presence of mer genes in the bacteria from sediment cores suggests that 

mer is an ancient system. DNA sequences analysis from mer operons and genes have 

revealed genetic variation both in operon structure and between individual genes from 

different mer operons, although analysis of bacteria which are sensitive to inorganic 

mercury has identified number of vestigial non-functional operons. It is speculated that 

mer, due to its ubiquity with respect to environment, species range and geographical 

locations is an ancient system and that ancient bacteria carried genes conferring resistance 

to mercury in response to increased levels of mercury in natural environments, possibly 

resulting from volcanic activity. The mer operons from both gram-positive and gram-

negative bacteria have been cloned and sequenced. Biochemical and Genetic studies have 

advanced our knowledge, leading to in- depth understanding of gene evolution, resistance 

mechanism, and regulation of expression of the mer genes (Mishra, 1992). 
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Mercury resistant bacteria (MRB) are those bacteria that grow in presence of 10 ppm 

mercury (as HgCl2) in the seawater nutrient agar medium (SWNA). Izaki (1981) had used 

2 ppm mercury (as HgCl2) to isolate mercury-resistant bacteria whereas Baldi et al. (1989) 

had used 10 ppm Hg for the same. Many of those MRB were able to grow at an Hg (as 

HgCl2) concentrations of 25 ppm or higher and were termed as bacteria highly resistant to 

mercury (Nascimento et al., 2003). 

 

2.1 Mercury in the environment: 
Mercury, the only metal in liquid form at room temperature is the most toxic of the 

heavy metals (Dechwar et al., 2004) and the sixth most toxic chemical in the list of 

hazardous compounds (White et al., 2005). Erupted from the core of earth by volcanic 

activity it exists as mineral (mostly as cinnabar-HgS), as mercuric oxide, oxychloride, 

sulfate mineral (Kiyono and Pan Hau, 2006) or also as elemental mercury. It also exists 

as gas due to its high vapour pressure.  

 

In a biogeochemical cycle (Fig. 3) mercury is globally diffused undergoing many 

physical and chemical transformations (Barkay et al., 2003): 

• in the atmosphere elemental mercury is photo-oxidized to ionic mercury (Hg2+). 

• rain precipitates the inorganic mercury on the surface of the earth, where carried out 

mainly by microorganisms in aquatic systems, 

• it is reduced back to its elemental form or 

• methylated. 

• elemental mercury evaporates into air where the cycle begins anew. 

 

Mercury is rapidly adsorbed on top of sediments, which can serve well  as a source of 

mercury for years (Kornad, 1971; Matsumura et al., 1972; McDuffie et al., 1976). For 

this reason, most of the mercury available for cycling in freshwaters is present in bed 

sediments. 
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Fig 3. Fate of mercury in the environment 

             The major public health concern with mercury is the bioaccumulation and       

 biomagnificattion of methyl  mercury (CH3Hg2+) by the aquatic food chain. These in 

 turn, are determined by rates of Hg transformation and transport in the environment. 

 Black arrow depicts the transformation and gray arrow depicts the transfer pathways 

 (Barkay et al., 2003). 

 

2.2 Bacterial bioremediation of mercury contamination: 
There are two main types of reactions in the mercury cycle that convert mercury 

through its various forms: oxidation-reduction and methylation-demethylation. In 

oxidation-reduction reactions, mercury is either oxidized to a higher valence state (e.g. 

from relatively inert Hg0 to the more reactive Hg2+) by the loss of electrons, or mercury 

is reduced, the reverse of being oxidized, to a lower valence state. 

 

i) Mercury Oxidation 
The oxidation of Hg0 in the atmosphere is an important mechanism involved in the 

deposition of mercury on water and land. Elemental mercury (Hg0) can volatilize 

relatively easily and be emitted into the atmosphere, where it may be transported onto the 
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wind currents for a year or more and be re-deposited in the environment for further 

cycling. In contrast, Hg2+ has an atmospheric residence time of less than two weeks due 

to its low volatility, solubility in water and reactive properties. Therefore, when (Hg0) is 

converted to Hg2+, it can be rapidly taken up in rain water, snow, or adsorbed onto small 

particles, and be subsequently deposited in the environment through "wet" or "dry" 

deposition. 

 

ii) Mercury Methylation 
 In the environment, mercury is transformed into methylmercury when the oxidized or 

mercuric species (Hg2+), gains a methyl group (CH3). The methylation of Hg2+ is 

mainly a natural, biological process leading to the production of highly toxic and 

bioaccumulative methylmercury compounds (MeHg+) that build up in living tissue 

and increase in concentration of mercury in the food chain, from microorganisms to 

small fishes, then to fish eating species like loons and humans (Fig.4). 

 Understanding the variables influencing the formation of methylmercury is critically 

important due to its highly toxic, bioaccumulative and tenacious nature. Many 

microorganisms, particularly methanogenic (methane producing) and sulfate-

dependant bacteria are thought to be involved in the conversion of Hg2+ to MeHg 

under anaerobic (oxygen poor) conditions found, for example, in rivers sediments and 

wetlands, as well as in certain soils. Methylation mainly occurs in aquatic, low pH 

(acidic) environments with high concentrations of organic matter. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The bioaccumulation of methylmercury in organisms. 
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2.3 Toxicity of Mercury 
Even small amounts of mercury are toxic for all organisms. Mercury binds to the 

sulfhydryl groups of enzymes and proteins, hence inactivating vital cell functions 

(Dobler et al., 2000b).The most noted examples of environmental contamination with 

mercury occurred in Japan between 1953 and 1970 (Irukayama, 1966; Tsubaki, 1968). In 

Minamata, between 1953 and 1961, 121 fishermen and their families were stricken with 

a mysterious illness characterized by cerebellar ataxia, constriction of visual fields, and 

dysarthria. Of these 121 cases, a total of 46 deaths resulted. Additional cases of mercury 

induced poisoning, termed "Minamata Disease," were assured in the coastal town of 

Niigata and in the riverside villages along the Agano River between 1965 and 1970 

(Konrad, 1971). Six persons died and another forty-one were irreversibly poisoned. In 

both incidents, the disease broke off mainly among fishermen and their families, and also 

among other people who fished frequently and/or liked to eat locally caught aquatic 

produce. Characteristically, the patients in Minamata as well as in Niigata had eaten a 

great amount of fish and/or shellfish from contaminated waters. 

 

2.3.1. Inorganic Mercury Compounds 
The toxicity of heavy metals is a result of their binding to active sites of important 

enzyme systems in the cells and their binding to 1igands in the cell membrane thereby 

resulting in a variety of toxic effects (Passow et al., 1961). Inorganic mercury 

compounds concentrate in the liver, spleen and kidney. They are readily egested, 

however, and do no damage unless the threshold tolerance level of the organ is 

exceeded (D’Itri, 1972). Prolonged exposure to inorganic mercury compounds is 

required for toxic symptoms to develop. The symptoms of inorganic mercury 

poisoning develop gradually. The first clear physical symptoms are numbness of the 

fingers and toes and then of the tongue and lips (D’Itri, 1972). Weakness, anorexia, 

loss of weight, fatigue and disturbances of gastrointestinal functions are associated 

with fully developed clinical forms of chronic poisoning (Friberg and Vostal, 1972). 

Late phases are characterised by mercurial tremor, psychic disturbances, and changes 

in personality (Friberg and Vostal, 1972). Prolonged exposure to high concentrations 

of inorganic mercury can result in death. 
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2.3.2 Organic Mercury Compounds 

 Organic mercury compounds are most toxic forms of mercury and can be divided into 

two categories: those in which the mercury atom is bonded to one organic radical and 

those in which it is bonded to two organic radicals. The first type dissociates in water 

to yield the R-Hg+ cation and the X- anion, making it soluble in water. Mercury is 

covalently linked to a carbon atom in organic mercury compounds (Nordberg, 1976). 

Methyl mercury can be formed from mercuric ion by a variety of microorganisms, 

including anaerobes, aerobes, and facultative anaerobes. Hence, the potential for 

microbial methylation exists under both aerobic and anaerobic conditions. Most 

organic mercury compounds are rapidly excreted and therefore, pose no serious health 

problems (Jugo, 1979). However the short-chain alkyl mercury compounds, such as 

methyl mercury, are formed in aquatic environments via methylation of inorganic 

mercury. Methylmercury is amongst the most toxic of all mercury compounds 

(Cassidy and Furr, 1978; D’Itri, 1972). 

The mercury-carbon bond in methyl mercury is extremely stable and the 

attachment of the alkyl radical increases solubility of lipids. This helps in penetration 

of the blood brain barrier and cell membranes (Felton et al., 1972). Nervous tissue 

tends to accumulate the greatest concentrations of methyl mercury (Chang and 

Hustman, 1972). Methyl mercury rapidly diffuses through the cell membrane and 

enters the cell where it is rapidly bound by sulfhydryl groups. Inside the cell, methyl 

mercury suppresses protein and RNA syntheses (Jugo, 1979). Methyl mercury 

concentrates in the body during a latent period during which no symptoms are 

observed. After threshold levels are exceeded, serious effects on the central nervous 

system might occur (D’Itri, 1972). Symptoms of methyl mercury poisoning include 

headache, numbness of the extremities, fatigue, blurred vision that can lead to 

blindness, and poor muscular coordination (Jugo, 1979). 

 

2.4 Sources of Mercury: 
The four main natural processes that leads to Hg emission are: 

i. degassing from geological mineral deposits, 

ii. emissions from volcanic activities, 

iii. photoreduction of divalent mercury in aquatic systems and 

iv. biological formation of elemental and methyl mercury. 
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Although it is undisputed that mercury occurs naturally and toxic concentrations in some 

locations, mercury emissions owing to anthropogenic activities (mainly through 

chloralkali electrolysis and chlorine production), mining and burning fossil fuel or waste 

incineration are immense, contributing considerably to the mercury pool participating in 

the biogeochemical cycle (Komura et al.,1971). However, the concentrations of mercury 

in various compartments from natural and anthropogenic sources are highly variable. 

 

2.5 Effects of Mercury Contamination on Microorganisms: 
 
a. Effects on microbial activities: 

Few studies have been attempted to determine the effect of mercury contamination on 

other microbial activities. Pedersen and Sayler (Nordberg, 1976) found that HgCl2 had no 

significant effects on methanogenesis. Research by Winfrey (unpublished) confirmed 

these resu1ts. The sediment environment may protect the methanogenic population from 

the toxic effects of mercury (Pederson and Sayler, 1981). Effects of mercury on other 

microbial activities have apparently not been investigated. 

b. Ecology of mercury resistant bacteria: 
Many bacteria possess a variety of resistance mechanisms to the toxic effects of mercury. 

Resistance depends on the strain, species, and genus of bacteria. Nelson and Colwell 

(Nelson and Colwell, 1975) showed that H2S production is not an exclusive property of 

mercury resistant bacteria. 

 

2.6 Bacterial resistance to mercury: 
As a response to toxic mercury compounds globally distributed by geological and 

anthropogenic activities, microbes have developed a surprising array of resistance 

mechanisms to overcome Hg toxicity (Pahan et al., 1990). However, some bacterial 

communities residing in the mercury contaminated areas can exchange mercury 

resistance genes between each other, because of continually exposure to the toxic levels 

of mercury. After the acquisition of resistance genes, those bacteria will be resistant to 

mercury (Nascimento and Souza, 2003). An extensively studied resistance system 

based on clustered genes in an operon (i.e. mer), allows bacteria to detoxify Hg2+ into 

volatile mercury by enzymatic reduction (Deckwer et al., 2004; White et al., 2005; 

Kiyono and Pan Hau, 2006). It appears that bacterial resistance to mercury is an ancient 
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mechanism, probably acquired even before anthropogenic usage of mercury. Since the 

same biotransformation that constitute the Hg biogeochemical cycle can take place 

inside the human body, understanding its external transformations and transport 

processes will help in figuring out which of these processes can exacerbate or 

ameliorate Hg toxicity in humans (Barkay et al., 2003). 

 

2.6.1 Biochemical Basis and Molecular Basis of Bacterial Mercury      

 Resistance: 
a. Formation of insoluble HgS: 

In the presence of hydrogen sulfide, mercuric ions (Hg2+) spontaneously 

precipitate as mercuric sulfide (HgS) (Furukaura et al., 1969). Under anaerobic 

conditions, the formation of mercuric sulfide effectively reduced availability of 

mercuric ion for biological conversions. In the presence of oxygen, mercuric sulfide 

may be converted to methyl mercury by bacteria; however, this occurs at a rate 100-

1000 times slower than mercuric ion methylation (Fagerstrom and Jernelov, 1971). 

Therefore, the presence of sulfide reducing bacteria prevents methyl mercury 

[(CH3)2Hg] and mercuric sulfide in the presence of hydrogen sulfide. Mercuric ion may 

also be reduced to the volatile elemental mercury by resistant bacteria. This reaction 

results in the release of mercury from aquatic systems (Colwell et al., 1976).  

 

Mercury volatilization might be expected to occur readily than methylation due to the 

large numbers of bacteria capable of carrying out this reaction in aquatic sediments 

(Colwell et al., 1976) and the kinetics of volatilization in bacterial cultures compared to 

methylation. 

 

b. Enzymatic reduction Hg2+
 to Hg0

 and volatilization: 

The biochemical basis of resistance to inorganic mercury compounds such as 

HgCl2 appears to be quite similar in several different species (Canovas et al., 2003). It 

involves the reduction of Hg2+ to volatile Hg0 by an inducible enzyme, mercuric 

reductase. This reductase is a flavoprotein, which catalyzes the NADPH-dependent 

reduction of Hg2+ to Hg0. Since mercury has such a high vapor pressure, it volatilizes 

and the bacterial environment is left mercury free. This mercuric reductase is found 

intracellularly (Furukawa and Tonomura, 1972; Summers1972; Schottel, 1978).  
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As a response to toxic mercury compounds globally distributed by geological and 

anthropogenic activities, microorganisms have developed a surprising array of 

resistance systems to overcome the poisonous environment (Canstein et al., 1999). An 

extensively studied resistance system, based on clustered genes in an operon (mer 

operon), allows bacteria to detoxify Hg2+ into volatile metallic mercury by enzymatic 

reduction (Komura and Izaki, 1971; Summers, 1986; Misra, 1992; Silver, 1996; Osborn 

et al., 1997). Mercury-resistance determinants have been found in a wide range of 

Gram-negative and Gram-positive bacteria isolated from different environments. They 

vary in the number and identity of genes involved and are encoded by mer operons, 

usually located on plasmids (Summers and Silver, 1972; Brown et al., 1986; Griffin et 

al., 1987; Radstrom et al., 1994) and chromosomes  (Wang et al., 1987; Inoue et al., 

1991); they are often components of transposons (Misra et al., 1984; Kholodii et al., 

1993) and integrons (Liebert et al., 1999).Two main mer determinant types have been 

described: narrow-spectrum mer determinants confer resistance to inorganic mercury 

salts only, whereas broad-spectrum mer determinants confer resistance to 

organomercurials such as methyl mercury and phenyl mercury, as well as to inorganic 

mercury salts (Misra, 1992; Silver and Phung, 1996; Bogdanova et al., 1998). The 

functions of mer operon are as follows: 

i. Transport of Hg2+ into the cell 

ii. Enzymatic NADPH dependent conversion of the ionic mercury into 

relatively less toxic elemental mercury (Hg0) 

iii. Regulation of the functional genes 

iv. Cleavage of mercury from the organic residue and the resistance is 

termed as “Broad spectrum” 

The genes involved in mer operon are shown in Fig.5: 

a) mer T, mer P (Transport) 

b) mer A (Mercury reduction) 

c) mer B (Cleavage of mercury from organic residue) 

d) mer R and mer D (regulation) 

e) mer C and mer F (Membrane proteins, conferring transport functions) 

f) mer G (resistance to phenyl mercury) 
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 Fig. 5 The mer operon including the regulators (merR and merD), transporters 

(merP and merT), mercuric reductase (merA) and organomercurial lyase (merB). 

 

Different mer genes in mer operon play different roles. The functions of these genes are as 

follows: 

1. mer R: Metalloregulatory DNA binding protein that acts as a repressor of both its 

own and structural gene transcription in the absence of Hg (II). In addition it acts as a 

positive effector of structural gene transcription when Hg (II) is present. 

2. mer B: Organomercury lyase, catalyzes the protonolytic fragmentation of 

organomercurials to the parent hydrocarbon and Hg(II) by SE2 mechanism. 

3. mer A: Mercuric ion reductase, is an FAD containing and redox active disulfide 

containing enzyme with homology to glutathione reductase.This enzyme reduces Hg2+ 

compounds to the metallic mercury Hg 0 which is obviously less toxic to them 

(Deckwer et al., 2004). It has the unique capacity to reduce Hg(II) to Hg(0) and 

thereby complete the detoxification scheme.  

Based on a comparison with other bacterial periplasmic binding, protein-dependent 

transport systems, it has been proposed that Hg2+ diffuses across the outer membrane 

(Brown, 1985). Mercuric ions are transported outside the cell by a series of 

transporter proteins. This mechanism involves the binding of Hg2+ by a pair of 

cysteine residues on the merP protein located in the periplasm(Chang et al., 1993). 

Hg2+ is then transferred to a pair of cysteine residues on merT, a cytoplasmic 

membrane protein, and finally to a cysteine pair at the active site of MerA (mercuric 
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reductase) (Hamlett et al., 1992). Next, Hg2+ is reduced to Hg0 in an NADPH-

dependent reaction. The non-toxic Hg0 is then released into the cytoplasm and 

volatilizes from the cell. 

4. mer D: A small, cysteine-rich open reading frame (ORF) lying just beyond the mer A 

gene of Tn501. Purified mer D binds to mer O although with a lower apparent affinity 

compared to mer R. Thus, mer D appears to be an antagonist of mer R function, 

perhaps replacing it at mer O although other mechanisms or roles for mer D have not 

been ruled out. Mer D is also unique protein with no homologs with identified 

functions.  

5. mer P: Although mer P does not resemble any periplasmic transporter involved in 

normal metabolism, the mer P motifs appears to be quite ancient and widely 

disseminated in proteins involved in both membrane transiting and cell interior 

trafficking of thiophilic metal cations. Interstingly, mer P is not essential for Hg (II) 

uptake as mer T alone will suffice. 

6. mer T: mer T is the other player in Hg (II) transport in both Gram-positive and Gram-

negative bacteria (excepting Acidothiobacilli which apparently use only mer C) 

(Hamlett et al., 1992 and Lund and Brown, 1987). There are no reported physical 

studies on mer T, largely owing to the difficulty of such studies on membrane 

proteins. Possible homologs of the mer inner membrane proteins with known 

functions have not been spotted, although doing so might be difficult. 

7. mer C: This 161-residue membrane-bound protein with four predicted 

transmembrane helices is the largest of the generally small mer operon encoded 

membrane proteins. Its appearance in only one of the first two, otherwise very similar 

mer operons sequenced was the first hint of the mosaic character of the opeon 

(Summers, 1986). Studies (Liebert et al., 2000) concluded that mer C is evolving 

differently than genes immediately adjacent to it in the operons where it occurs and 

may be also evolving in different hosts. It has been suggested that mer C may be 

needed under conditions of very high Hg(II) exposure (Olson et al., 1992), but this 

point has not been explicitly tested. mer C is not uniquely associated with mer B 

(Liebert and Summers, 1997) or mer G (Kholodii et al., 2002). 
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8. mer F: The mer F gene was first noted between the mer P and mer A genes in a 

plasmid-borne mer operon in an environmental pseudomonad (Hobman et al., 1994). 

Nigel Brown's group (Wilson et al., 2000) demonstrated that mer F is located in a 

crude membrane fraction derived from radiolabelled maxicells. Expression of mer F 

facilitated volatilization of Hg(II) but this activity was not enhanced by mer P. 
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3. OBJECTIVES AND PLAN OF WORK 

 

Keeping in mind the above views, present research is based on the following objectives: 

 

3.1 Objectives 
• To study the pollution status in study sites of Bay of Bengal by enumerating mercury 

resistant marine bacterial populations as indicator organisms 

• To determine minimum inhibitory concentration (MIC) of the isolates 

• To know the mechanism of mercury resistance in these isolates 

• To deduce an alternative mechanism in the isolates other than mer operon mediated 

mercury resistance mechanism in mercury resistant marine bacteria 
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3.2 Plan of Work 

 
  Collection of sediment samples from four different study sites of Odisha. 

 

 

Enumeration of Mercury Resistant Marine Bacterial (MRMB) population 

 

 

Minimal inhibitory concentration (MIC) test 

 

 

Selection of MRMB showing MIC result above 10ppm 

 

 

Amplification of conserved region of merA gene to know the genetic mechanism of mercury 

resistance in these isolates 

   

   

H2S Assay to know the mercury accumulation potential in the isolates 

 

          

Biochemical Test of the potent isolates 

 

         

Antibiotic Sensitivity Test 

 

Quantification of mercury bioaccumulation by Atomic Absorption Spectroscopy 

 

 

Confirmation of mercury bioaccumulation by Scanning Electron Microscopy (SEM) 
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4. MATERIALS AND METHODS 
 

4.1. Sample Collection 
Water samples were collected from the study sites of four different places of Bay 

of Bengal along the Odisha coast. The four study sites include Chilika (19°44.582' N & 

85°12.768'E), Bhitarakanika (20°44.33'N & 086°52.06'E), Gopalpur (19°19.218'N & 

084° 57.730'E) and Rushikulya (19°22.647'N & 85°03.165'E) (fig.6). The samples were 

collected in sterilized falcon tubes and transported to the laboratory by keeping them on 

ice and processed immediately in the laboratory for enumeration of mercury resistant 

marine bacteria in the population as soon as possible. 

 

 
Fig 6. Study sites [A: Bhitarakanika, B: Chilika, C: Gopalpur and   

      D: Rushikulya] 
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4.2 Enumeration of Mercury Resistant Marine Bacterial (MRMB) 

populations 
Samples from different locations were plated onto Sea Water Nutrient Agar 

(SWNA) amended with 10ppm Hg (≡50µM; as HgCl2). For enumeration of MRMB, 10-

15ml water sample was filtered through 0.22µm filters, plates were incubated at 

temperature 370C and final counts of colony forming units (CFUs) taken after 48h. Total 

viable counts (TVC) from each sample were also enumerated by plating aliquots in 

triplicates on SWNA without added Mercury (Jayashankar and Ramaiah, 2006).  

 A total of ten mercury resistance isolates were selected for further characterization 

based upon their observable distinguished colony morphology. 

 

4.3 Colony Morphology 
   Size, shape, color, elevation and margins of the isolated bacterial colonies were 

observed for 24 hours incubated cultures, on the Sea Water Nutrient agar (SWNA) media 

plates supplemented with 10ppm HgCl2. 

 

4.4 Determination of Minimum Inhibitory Concentration (MIC) 
Minimum inhibitory concentration is the lowest concentration of metal that 

completely prevented bacterium growth (De and Ramaiah, 2007; Gupta et al., 2005). 

MIC test was done by micro dilution technique as per Cinical Laboratory Standard 

Institute (CLSI) guide lines. (CLSI, 2006) which is as follows: 

1. 300µl of 100ppm HgCl2 in MHB was taken in the wells of the first column and 150 µl 

was taken in the 12th column. 

2. 150 µl of sterilized MHB as taken in rest all the wells.  

3. 150 µl from the first well was transferred to the second well and subsequent transfer 

was done till the 10th well (serial dilution). 

4. 150 µl was discarded from the 10th well. 

5. 2-3 colonies were mixed with 1-2ml of sterilized distilled water and the turbidity was 

compared with 0.5 Mc Farland standards. 

6.  20 µl of the culture was transferred to each well except the 12th well which acts as 

negative control.  
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7. The plate was incubated at 37oC for 24 hours and absorbance was taken at 595nm in 

an ELISA Plate Reader. 

8. OD595 at each well was checked with the negative control and the MIC was 

determined accordingly.  

 
 
4.5 Determination of Cell Morphology under oil immersion microscope by 

Gram’s staining 
To study the gram’s stain i.e. Gram (+ve) or Gram (–ve) characters of the 

isolates, diluted suspensions of the bacteria were smeared on clean slides, air dried, heat 

fixed by passing over a flame for 4 to 5 times. The slides, were teemed with crystal violet 

solution for one minute, washed with water and flooded with Gram’s iodine for one 

minute. 

The slide were washed with water and decolorized with 95% ethyl alcohol 

dropped from a dropping bottle till no violet colour was visible from drain off solution. 

The slides were washed with water and counter stained with safranin stain for about 30 

second and washed with water. The slides were air dried and examined under a 

microscope using 100x objectives using a daylight filter. Cells were then identified as 

purple for Gram positive and pink or red for Gram negative cells by the colour observed. 

 

4.6 Amplification of merA gene in the resistant isolates 
merA gene was amplified by the following primers: F1merA-5’    

TCGTGATGTTCGACCGCT3’; F2 merA-5’ TACTCCCGCCGTTTCCAAT3’ (Sotero-

Martins et al., 2008). The amplification reactions were performed in a total volume of 

20µL by using a thermal cycler (BioRad). The PCR mixture contained 1U/µL Taq 

polymerase (Sigma), 1X Enzyme buffer, 200µM of each dNTP (Sigma), 1.25 mM 

MgCl2 and 0.5µM of each primer. The optimized amplification conditions included a pre 

denaturation step at 94°C for 1 min followed by 30 cycles of 94°C for 1 min, 55°C for 1 

min and an extension step at 72°C for 1 min and final extension at 72°C for 7 minutes. 

The PCR product was analyzed using gel electrophoresis (1.5% agar) and visualized in 

Gel Documentation System (BioRad). A mercury resistant strain of PW-05 was used as 

the positive control. 
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4.7 Study of mercury bioaccumulation by H2S assay of the mer negative 

isolates 
Lueria Bertani (LB) broth (5 ml) was prepared. As per MIC of each strain 

mercury was supplemented in the broth and pure cultures were used as inoculums. The 

colonies were transferred and incubated at 35 ± 20C till the development of moderate 

turbidity. Samples (5ml) of broth cultures from test flasks with Hg were centrifuged at 

7,500xg at 40C for 10 min. Supernatant and pellets were collected in different eppendorf 

tubes. The cells were washed with PBS before exposing the pellets to H2S gas. The cell 

mass of each strain was exposed to H2S gas for 10 min (Fig. 7). 

 
Fig 7. Set-up for the determination of mercury bioaccumulation in mer negative isolates by 

H2S assay 

 

4.8 Biochemical Characterization of the isolates 
Commercially offered systems cut back the need for preparing a variety of test 

media and reagents and the time required for interpretation of results, thereby making the 

identification of various bacterial species more plausible in the routine laboratory. Hi 

Media Rapid Biochemical Identification kit, Bacillus Identification Kit [KB013 Hi25®] 

and Motility Test kit (KBM001 to KBM003) are a number of methods used worldwide. 

Hi Media provides a range of Biochemical Identification test kit (KB001 to KB012) 

involving single step procedure of inoculation that leads to final identification of test for 

the organism being studied. The Biochemical Identification test kit is a standardized 
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colorimetric identification system utilizing conventional biochemical tests and 

carbohydrate utilization tests. The tests are primarily based on the principle of pH change 

and substrate utilization by the organism. On incubation organisms undergo metabolic 

changes that are indicated by a colour change in the media that is either interpreted 

visually or when a reagent is added. 

 

4.9 Antibiotic Susceptibility testing of the isolates 
Antibiotic susceptibility test was done by six different antibiotic discs of 30 mcg 

each [Amoxycillin(AM30),Chloramphenicol(C30), Gentamycin(GEN10), Kanamycin(K30), 

Neomycin (N30) and Tetracycline(T30)].  

 

Ø Mueller Hinton Agar (MHA) plates were prepared for performing the antibiotic 

susceptibility test of the potent isolated strains. 

Ø The pure culture colonies used as inoculums were transferred to Lueria Bertani (LB) 

broth (5 ml), incubated at 35 ± 20C till the development of moderate turbidity. 

Ø A sterile non toxic cotton swab is dipped into the inoculum in the broth and rotated 

firmly against the upper inside wall of the tube to express excess fluid. The entire agar 

surface was streaked with the swab for 3 times turning the plate at 60o angle between 

each streaking. The inoculums were allowed to dry for 5 mins. 

Ø The discs were dispensed using aseptic technique at least 24 mm apart. Petri plates 

were incubated immediately at 370Cand examined after 16-18 hours. The zones 

showing complete inhibition were measured and the diameters of the zones were 

measured to the nearest millimetre. 

Ø By the antibiotic zone scale, the area of inhibition was measured for each antibiotic. 

Sensitivity of the isolates to each antibiotic was determined according to the chart 

provided by Himedia, Mumbai. 
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4.10   Quantification of mercury accumulation by Atomic Absorption 

 Spectroscopy 
 Lueria Bertani (LB) broth (5 ml) was prepared. As per the MIC of each strain 

mercury was supplemented in the broth and pure cultures were used as inoculums. The 

colonies were transferred and incubated at 35 ± 20C till the development of moderate 

turbidity. Samples (5ml) of broth cultures from test flasks with Hg were centrifuged at 

7,500xg at 40C for 10 min. Supernatant and pellets were collected in different eppendorf 

tubes.  

          The corresponding cell pellets were resuspended with lysis buffer [100 mM 

NaH2PO4, 10 mM Tris–Cl, and 8 M urea (pH 8.0)] for 1 hr and then centrifuged at 

13,000 rpm for 10 minutes to collect cell associated mercury. 

 

4.11 Confirmation of bioaccumulation of mercury by Scanning Electron 

 Microscopy (SEM) 
Samples (10ml) of broth cultures from test flasks with Hg were centrifuged at 

8,000xg at 4oC for 5min. The cells were washed twice with 0.1 M phosphate buffered 

saline (PBS; 15 mM phosphate buffer, 138 mM NaCl, 2.7 mM KCl, pH 7.4 at 25oC) 

and fixed overnight in 2% glutaraldehyde (prepared in 0.1 M PBS). The cell mass were 

washed with PBS and distilled water before dehydration through an ethanol series (10% 

to absolute), held at each concentration for 30 min. Samples were placed on a brass 

stub, sputter-coated with gold or platinum, and was examined by scanning electron 

microscopy (SEM) (De et al., 2008). 
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5. RESULTS 
 

5.1 Isolation of Mercury Resistant Marine Bacteria (MRMB) 

       A total of 10 bacterial strains, showing visible distinguished colony morphology, 

capable of tolerating mercury were isolated when isolated from the environmental 

samples by plating on SWNA+10 ppm HgCl2 plates. The isolates were then 

characterized further for their resistance mechanism towards mercury the result of which 

has been given below. The pure cultures of the isolates were obtained by repeated 

streaking on the same plate and were stored on soft agar tubes for preservation.  

5.2 Phenotypic Characterization of the Isolated Colonies 

 The observed colony morphology characteristics pertaining to their colour and shape 

have been collectively displayed in Table 1 and Fig.8.  

Table 1. Colony Morphology of the Isolated Strains 

Sl. No. Strain Name Color 
 

Shape 

01 CW601 Yellowish Orange Round 

02 GW702 Yellow Small rounded 

03 RW404 White Rough rounded 

04 CW302 Yellow Round 

05 RW402 Yellow Round 

06 RW403 Yellowish Orange Round 

07 CW501 Whitish yellow Small rounded 

08 RW203 Yellow Round 

09 BW02 Yellow Round 

10 GW601 White Very small round 
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Fig 8. Isolated colonies on SWNA+10 ppm HgCl2 plates [a1-CW-302, a2-RW-402; b1-BW-

02, b2-CW-601; c1-RW-404, c2-GW-702; d1-CW-501, d2-RW-203; e-GW-601] 
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5.3 Cell Morphology 

        Cell morphology of strains was studied by gram staining and observing under oil 

immersion microscope, the result of which has been given in the Table 2 and Fig. 9. 

Table 2. Cell Morphology of the Isolated Strains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl.No. Strain Name Color Gram 
Staining 

Shape 

01 CW601 Pink -ve Cocci 

02 GW702 Pink -ve Rods 

03 RW404 Pink -ve Filamentous 

04 CW302 Pink -ve Rods 

05 RW402 Pink -ve Cocci 

06 RW403 Pink -ve Rods 

07 CW501 Pink -ve Cocci 

08 RW203 Pink -ve Rods 

09 BW02 Pink -ve Cocci 

10 GW601 Pink -ve Rods 
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Fig 9. Gram Staining results of the isolates [a-CW-601, b-GW-702, c-RW-404, d-CW-302, e-

RW-402, f- Rw-203, g-GW-601] 
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5.4 Minimum Inhibitory Concentration Test (MIC) 

 Minimum Inhibitory Concentration refers to the minimum concentration of mercury 

at which bacterial growth can be inhibited. After the test it was concluded that all the 10 

isolates gave the result well above the MIC value in the range of 25-50 ppm. The results 

of Minimum Inhibitory Concentration Test (MIC) of HgCl2 for 10 strains have been 

shown in Table 3 and Fig.10.  

Table 3. MIC Results of Bacterial Isolates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl. No. Sample Name MIC (ppm) 

01 CW601 25 

02 GW702 50 

03 RW404 50 

04 CW302 25 

05 RW402 50 

06 RW403 50 

07 CW501 25 

08 RW203 50 

09 BW02 50 

10 GW601 25 
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Fig 10. MIC results for bacterial isolates 

 

5.5 Amplification of merA gene in the resistant isolates 
Non mer mediated genes were not amplified in the gel run showing absence of mer A 

gene in the genome of the bacterial isolates. PW05 is the positive control and thus a 

thick single band of 431 bp was seen in the lane 15 fig. 11.  

 
Fig 11. Gel photograph showing merA amplification in the isolated strains. Lane 1-100bp 

ladder, lane2-Cw-601, lane3-GW-702, lane4-RW-404, lane5-CW-302, lane6- RW-402, 

lane7- RW-403, lane8- CW-501, lane9- RW-203, lane10- BW-02, lane11- GW-601, lane13- 

RW-401, lane14- -ve control and lane15 PW-05 are +ve control. 
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5.6 Mercury bioaccumulation by H2S assay of the mer negative isolates 
The 10 isolates showing MIC more than 10ppm were selected to study the 

bioaccumulation of mercury in the samples by H2S assay. Mercury has high affinity for 

sulphur and thus accumulation of mercury was confirmed by exposing the cell mass to 

Hydrogen sulphide gas. One by one each sample was exposed to H2S for 10 min and 

corresponding readings were noted. Mercury bioaccumulation by H2S assay of the mer 

negative isolates is shown in Table 4 and fig 12, 13 and 14. PW-05, another isolate 

which is harboring merA gene has been taken as positive control and the most potent 

isolates which showed black colony in relatively lesser amount of time i.e., GW-702, 

RW-404 and BW-02 were characterized further.  

Table 4. H2S Assay Result of Bacterial Isolates 

Sl.No. Strain Name MIC (ppm) Time (min) Interpretation 

01 CW601 25 10 -ve 

02 GW702 50 5 +ve 

03 RW404 50 4 +ve 

04 CW302 25 10 -ve 

05 RW402 50 10 +ve 

06 RW403 50 10 +ve 

07 CW501 25 10 -ve 

08 RW203 50 10 -ve 

09 BW02 50 2 +ve 

10 GW601 25 10 -ve 
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Fig 12. H2S assay result of the bacterial isolates when exposed to H2S gas [(a) 

before; (b) after] 
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Fig 14. H2S assay of bacterial isolates 

 

 

 

 

 

 

 

 

 

             

A. Before                                         B. After 

Fig 13. Visual Changes in the color of the pellet. Black arrow 

shows the change in the color. 
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5.7 Biochemical Characterization of the isolates 

 Different biochemical tests were performed to characterize the mercury resistant 

bacterial strains and observations are collectively given in Table 5 and fig. 15.  

Table 5. Biochemical Test Results 

Sl.No. Tests Conducted BW02 GW702 RW404 

01 Malonate - - - 

02 Voges Proskauer's  - - - 

03 Citrate + + + 

04 ONPG + + - 

05 Nitrate Reduction - - + 

06 Catalase + - + 

07 Arginine + + + 

08 Sucrose + + + 

09 Mannitol + + + 

10 Glucose + + - 

11 Arabinose - - - 

12 Trehalose + + + 
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Fig 15. Himedia Rapid Biochemical Identification kit, Bacillus Identification Kit [KB013 

Hi25®] 

[(A) = Strain BW02; (B) = Strain GW702; (C) = Strain RW404] 

[From left to right; Test name: Malonate, Voges Proskauer's, Citrate, ONPG, Nitrate 

Reduction, Catalase, Arginine, Sucrose, Mannitol, Glucose, Arabinose and Trehalose] 
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5.8 Antibiotic Susceptibility Test 

Antibiotic susceptibility test of the bacterial strains is shown in Table 6 and fig. 16 and fig. 

17 (a,b). 

Table 6. Antibiotic Susceptibility Test Result (Mean±SD, n=3) 

 CW601: 

Sl. No. Antibiotic Mean ± SD (mm)  Interpretation 

1. Amoxycillin (Am30)   25±0    AMS 

2. Chloramphenicol (C30)   18.6±2.51    CS 

3. Gentamicin (GEN10)    22.3±0.57    GENS 

4. Kanamycin (K30)    20.6±1.15     KS 

5. Neomycin (N30)    20±0     NS 

6. Tetracycline (T30)    25±0     TS 

 

GW702: 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 17±0.1 Intermediate 

2. Chloramphenicol (C30) 29.3±1.15 CS 

3. Gentamicin (GEN10) 20.6±0.5 GENS 

4. Kanamycin (K30) 17.6±0.5 KS 

5. Neomycin (N30) 20.3±0.5 NS 

6. Tetracycline (T30) 21±1 TS 
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RW404 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 15.3±0.5 Intermediate 

2. Chloramphenicol (C30) 30±0 CS 

3. Gentamicin (GEN10) 30.6±0.5 GENS 

4. Kanamycin (K30) 20.3±0.5 KS 

5. Neomycin (N30) 27.6±1.15 NS 

6. Tetracycline (T30) 20.6±0.5 TS 

 

CW302 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 12±0 AMS 

2. Chloramphenicol (C30) 32.6±0.5 CS 

3. Gentamicin (GEN10) 29.6±0.5 GENS 

4. Kanamycin (K30) 26.6±0.5 KS 

5. Neomycin (N30) 28.6±0.5 NS 

6. Tetracycline (T30) 31±1 TS 

 

RW402 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 17.6±0.5 Intermediate 

2. Chloramphenicol (C30) 31±1 CS 
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3. Gentamicin (GEN10) 30.6±1.15 GENS 

4. Kanamycin (K30) 25.3±0.5 KS 

5. Neomycin (N30) 29±1 NS 

6. Tetracycline (T30) 31±0 TS 

 

CW501 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 22±1 AMS 

2. Chloramphenicol (C30) 22.6±0.5 CS 

3. Gentamicin (GEN10) 27.6±0.5 GENS 

4. Kanamycin (K30) 25.3±0.5 KS 

5. Neomycin (N30) 25±0 NS 

6. Tetracycline (T30) 23.6±0.5 TS 

 

RW203 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 19±0 Intermediate 

2. Chloramphenicol (C30) 22±0 CS 

3. Gentamicin (GEN10) 28.3±0.5 GENS 

4. Kanamycin (K30) 23.6±0.5 KS 

5. Neomycin (N30) 26±0 NS 

6. Tetracycline (T30) 27.3±0.5 TS 
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BW02 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 18.6±0.5 Intermediate 

2. Chloramphenicol (C30) 33.3±1.15 CS 

3. Gentamicin (GEN10) 33.3±0.5 GENS 

4. Kanamycin (K30) 29.3±1.15 KS 

5. Neomycin (N30) 31.3±0.5 NS 

6. Tetracycline (T30) 34.6±0.5 TS 

 

GW601 

Sl. No. Antibiotic Mean ± SD(mm) Interpretation 

1. Amoxycillin (Am30) 19.6±0.5 Intermediate 

2. Chloramphenicol (C30) 18.6±1.15 CS 

3. Gentamicin (GEN10) 29.6±0.5 GENS 

4. Kanamycin (K30) 22.3±0.5 KS 

5. Neomycin (N30) 26.3±0.5 NS 

6. Tetracycline (T30) 22±1 TS 
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Fig 16. Antibiotic Susceptibility Test Results [Zone of inhibition in mm (mean±SD), n=3]
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Fig 17 (a). Antibiotic Susceptibility Test Results 

[a1,a2: CW601; b1,b2: GW702; c1,c2: RW 404; d1,d2: CW 302] 
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Fig 17 (b). Antibiotic Susceptibility Test Results 

[e1,e2: RW 402; f1,f2: CW 501; g1,g2: RW 203; h1,h2: BW 02; i1,i2: GW 601] 
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5.9 Quantification of mercury accumulation by Atomic Absorption Spectroscopy 

  Bacterial strains showing maximum affinity to H2S gas were selected and amount of 

mercury accumulated in the bacterial strains (quantification) was done by Atomic 

Absorption Spectroscopy. Atomic Absorption Spectroscopy results of the bacterial 

strains are shown in Table 7 and fig. 18. 

Table 7 Atomic Absorption Spectroscopy Results 

Initial Hg 
Supplemented (ppm) 

Final Hg 
(Supernatant) 

±SD(ppm) 

Final Hg (Pellet) 
±SD(ppm) 

% Hg 
Bioaccumulated 

PW-05 

             50             0.66±1.15       1.96±1.45         3.93 

GW-702 

            50             1.73±0.75      23.66±2.08         47.33 

RW-404 

            50             1.76±0.25       28.16±1.04         56.33 

BW-02 

           50             1.53±0.30       36.16±0.76         72.33 

 

 

 

 

 

 

 

 

Fig 18. Atomic Absorption Spectroscopy result showing bioaccumulation of mercury in the 

isolates. 
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5.10 Confirmation of bioaccumulation by Fluorescent Microscopy and 

Scanning Electron Microscopy (SEM) 

        Mercury accumulations in the bacterial strains were future confirmed by 

Fluorescent Microscopy and Scanning Electron Microscopy (SEM). Fig 19 and fig. 20 

shows the photographs of the potent mercury resistant isolates at different 

magnifications. 

 

 

Fig 19. SEM Photograph of the potent mercury resistant isolates when grown under 

mercury stress (a) BW-02, (b) GW-702, (c) PW-05, (d) RW-404 
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Fig. 20 SEM Photograph of the potent mercury resistant isolates when grown without 

mercury stress (a) BW-02, (b) PW-05, (c) RW-404 
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6. Discussion 

A total of 10 mercury resistant bacteria from four different sites of Bay of Bengal along the 

Odisha coast were isolated on Sea Water Nutrient Agar (SWNA) supplemented with 10 ppm 

of HgCl2. These 10 strains were tested for minimum inhibitory concentration (MIC) and all 

these strains showed MIC above 25 ppm and were further amplified by PCR to show the 

absence of merA gene in the isolates taking PW05 as positive control having merA gene. All 

the 10 isolates showed negative result to PCR amplification and thus absence of merA gene in 

the isolates were confirmed.  

The mer negative isolates were exposed to H2S gas to study mercury bioaccumulation and to 

deduce the alternative mechanism by which these isolates are able to resist mercury inside 

them. All the 10 strains were exposed to H2S gas one by one for 10 mins each. The change in 

the color of cell mass from white to black was interpreted as accumulation of mercury within 

the cell as mercury has high affinity for sulphur. Out of the 10 isolates, 50% of the isolates 

showed positive results i.e GW-702, RW-404, RW-402, RW-403 and BW-02. Out of those 5 

strains, GW-702, RW-404 and BW-02 were selected as they showed change in color of the 

cell mass within 5 mins. The quantity of mercury accumulation was studied by Atomic 

Absorption Spectroscopy, which suggested that a percentage of mercury bioaccumulation in 

the three strains BW-02, GW-702 and RW-404 were 72.33%, 47.33% and 56.33% 

respectively. Out of those three strains BW-02 has the highest percentage of mercury 

accumulation and thus Bhitarkanika mangrove ecosystem bacterial communities have highest 

potential of mercury bioaccumulation was confirmed. The morphological and colonial 

characteristics were also studied. Approximately all the strains were whitish yellow, round 

and gram negative. Except RW-404 which is filamentous in shape, rest all were rods or 

coccus. Characterization of the isolated strains was done by biochemical analysis which 

showed that strains are positive for Citrate, Arginine, Sucrose, Mannitol and Trehalose and 

negative for Malonate, VP and Arabinose. The isolated strains were subjected to Antibiotics 

susceptibility test viz. Amoxycillin, Chloramphenicol, Gentamicin, Kanamycin, Neomycin 

and Tetracycline to understand their antibiotic resistant strength. Out of the ten isolates, GW-

702, Rw-404, RW-402, RW-203, BW-02 and GW-601 were resistant to Amoxycillin and rest 

all the isolates were sensitive to all the other antibiotics (Kotrba et al., 1999).  

The potent mercury resistant isolates when grown under mercury stress showed change in the 

morphology of the cell due to accumulation of mercury. Mercury accumulations in the 
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bacterial strains were thus confirmed by Scanning Electron Microscopy (SEM) which 

showed clear picture of mercury bioaccumulation in the cells. There was no change in the 

shape of the PW-05 positive control strain, which suggested that the potent bacterial cells 

have changed due to accumulation of mercury (El-Hendawy et al., 2009; Ahemad and Malik, 

2012). Quantification of mercury accumulation and biochemical characterization tests has 

shown that BW-02 is highly potent among all the strains. 
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7. Conclusion 

 
Ten strains were isolated from four different sites of Odisha coast out of which six strains viz. 

GW 702, RW 404, RW 402, RW 403, RW 203 and BW 02 showed highest minimum 

inhibitory concentration (MIC) of 50ppm of HgCl2 and rest four strains viz. CW 601, CW 

302, CW 501 and GW 601 showed MIC of 25 ppm respectively. Absence of merA gene in 

the genome of these isolated strains was confirmed by PCR amplification and thus there is an 

alternative mechanism of mercury resistance i.e., non mer mediated which was established in 

these isolates. The proposed alternative mechanism i.e., bioaccumulation of mercury was 

further confirmed by H2S assay and Scanning Electron Microscopy. Change in the color of 

the cell mass after exposure to hydrogen sulphide gas showed bioaccumulation of mercury in 

the isolates and the change in the shape of the bacterial cell showed that there is accumulation 

of mercury inside the cell and thus the bacterial cells can accumulate mercury inside the 

cytoplasm and help in bioremediation. Bacterial mobile genetic elements such as plasmids or 

transposons, carry multiple genes encoding metal and antibiotic resistance. Mercury resistant 

marine bacteria (MRMB) isolated from contaminated environments is extremely potential to 

remove mercury from contaminated sites. So, it is suggested that mercury elimination ability 

of these bacteria should be evaluated. Moreover these isolates can be genetically engineered 

to reach better results in removal of mercury. However, before exploiting the strain as an 

efficient biotechnological tool for mercury detoxification further investigation needs to be 

carried out in laboratory scale and in-situ metal reduction potential of the genus has to be 

assessed. 

 

The following conclusions can be withdrawn from the present investigation: 

i. Chilika, Bhitarakanika, Gopalpur and Rushikulya are mercury polluted sites in the 

Odisha coast. 

ii. Bacterial community play a vital role in bioremediation by reducing the toxic form of 

mercury to non toxic form either by converting toxic form to non toxic form  or by 

accumulating mercury within them. 

iii. Ten mercury resistant bacteria were isolated that helped in detoxification of mercury 

in the environment. 
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7.1 Future perspectives: 
1. Future investigation on mercury-resistant bacteria may lead to new and better 

understanding of the existing concept. For instance, absence of merA gene in the 

genome of marine bacteria but still having potential for bioremediation. 

2. Future studies on bioaccumulation potentials of bacteria may lead to better and 

healthy mercury contaminated free environment. 

3. Future studies including on-site experiments will be useful in developing practical 

means for environmental cleanup.  
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Appendix 

A. Media: 

     The media used and their compositions are given below: 

Table 1: Details of media used and their used and their composition 

1. Sea Water Nutrient Agar (SWNA): 

 Components     Quantity (Gram's/Litre) 

 Peptone     5.0g 

 Yeast Extract     3.0g 

 NaCl      15g 

 Agar Powder     15g 

 Milli Q      1000ml 

 pH (at 370C)     7.5±0.1 

2. Mueller Hinton Agar (MHA): 

           Components     Quantity (Grams/Litre)  

           Beef infusion solids    4.0 

 Starch      1.5 

 Casein hydrolysate     17.5 

 Agar Powder     17.5 

 pH (at 370C)     7.4±0.2 

3. Mueller Hinton Broth (MHB): 

 Components     Quantity (Grams/Litre)  

           Beef infusion solids    4.0 
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 Starch      1.5 

 Casein hydrolysate     17.5 

 pH (at 370C)     7.4±0.2 

4. Luria Bertani Media: 

 Components     Quantity 

 Tryptone      2.00    

 NaCl      1.00 

 Yeast Extract      0.5% 

 pH (at 250C)     7.0 

B.  Stains: 

      Bacterial isolates were stained by using Gram's staining methods: 

      TABLE 2: COMPOSITION OF GRAM'S STAIN: 

      Ingredients                Uses 

      Crystal violet      Primary Staining Agent 

      Safranin       Secondary Staining Agent 

      Lugol's Iodine     Mordant 

      Acetone       Decolourising Agent 

i) HgCl2 Solution: 

     HgCl2      15gm 

    Conc. HCl       2.5gm 

 
 

 


