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ABSTRACT

Electrical Discharge Machining (EDM) is one of the most popular non-traditional ma-

chining process for “difficult to machine” conducting materials and is quite extensively

and successfully used in industry owing to its favourable features and advantages that

it can offer. In EDM, the objective is always to get improved Material Removal Rate

(MRR) along with achieving better surface quality of machined component. Fur-

thermore, the essential requirements are as small a thermally affected region of the

workpiece surface as possible and a lower radial overcut with minimal tool wear. The

quality of a machined surface is becoming increasingly significant to satisfy the in-

creasing demands of superior component performance, longevity, and reliability thus

preserving the integrity of the surface is essential. In order to sustain and/or improve

reliability of the components, it is always necessary to have knowledge of the effects

of the manufacturing parameters on the surface integrity, precision and productivity

of the EDMed components.

AISI D2 tool steel has a growing range of application in die and mould industries.

They are widely used in the manufacture of blanking and cold-forming dies for the

production of a wide range of automotive and electronic components. This steel has

greater strength and toughness, and is categorised as “difficult to machine” material,

which pose a major challenge during machining.

An experimental investigation is presented to explore the surface integrity, pro-

ductivity and accuracy of the EDMed surface. Parametric analysis has been carried

out by conducting a set of experiments using AISI D2 tool steel workpiece with cop-

per electrode. The investigating factors were discharge current (Ip), pulse duration

(Ton), duty factor (Tau) and discharge voltage (V ). The effect of the machining

parameters on the responses such as surface roughness, residual stress, White Layer

Thickness (WLT), Surface Crack Density (SCD), MRR, Tool Wear Rate (TWR), and



overcut are investigated.

An experimental analysis was performed to establish the most important machin-

ing parameters that contribute to white layer formation and surface crack density.

The experimental plan for these investigations was conducted according to the Re-

sponse surface methodology and the results were statistically evaluated using analysis

of variance. Surface topography and sub-surface structures are investigated by scan-

ning electron microscopy. It is established that average recast layer thickness with an

increasing discharge current, pulse duration and duty cycle, but the SCD decreases

with increase in discharge current and pulse duration. However, the pulse current is

the most dominating parameter followed by pulse duration for both the responses.

Results showed that current is the most significant parameter that influenced the

machining responses. However, the recast layer thickness increases with increasing

discharge current, pulse duration and duty cycle. But the SCD decreases with increase

in discharge current and pulse duration.

Besides, similar investigation is conducted for the surface roughness and the input

factors that significantly influenced the output response are discharge current, pulse

duration and Tau. Also it reveals that in order to obtain better surface quality the

discharge current, pulse on time and the duty factor should be set as low as possible.

Finite Element Method (FEM) was employed to evaluate the residual stress. The

results show that the peak temperature sharply increases with pulse current. The

workpiece is severely affected by the thermal stresses to a larger depth with increasing

pulse energy. The nature of residual stresses is predominantly tensile in nature and

the stress levels reaches its maximum values close to the surface but diminishes very

rapidly to comparatively low values of compressive residual stresses in the sub-surface

area. The residual stresses were obtained by XRD measurement technique and the

trend of these stresses with depth has an excellent agreement with the FEM results.

The maximum tensile and compressive residual stresses are not effected much by the

machining parameters. However, with the pulse energy the depth at which they occur

increases.

Full factorial design is employed to evaluate MRR, TWR and Radial overcut (OC).

Soft computing predictive modelling (ANN, Neuro-fuzzy Mamdani and Neuro-fuzzy
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Sugeno) of these responses has been conducted from experimentally obtained data.

The discharge current is the most dominant factor, followed by pulse duration, duty

factor and discharge voltage, for MRR and overcut. While, the same for TWR is pulse

duration, discharge current, discharge voltage, and duty factor. The performance of

soft computing models for predicting these responses are found to be comparable

in terms of the prediction accuracy and speed. However, the Mamdani model is

converging with a lower Mean Square Error (MSE) than the Sugeno system and the

ANN network is in general converging much faster than the other two. The average

prediction errors for all these models are quite comparable.

Keywords: Electric Discharge Machining, White Layer Thickness, Surface Crack

Density, Surface Roughness, Residual Stresses, Finite Element Modelling, Material

Removal Rate, Tool Wear Rate, Radial Overcut, Neuro-Fuzzy Model, Artificial Neural

Network.
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NOMENCLATURE

αt coefficient of thermal expansion, (K−1)

βi unknown linear coefficient in the regression model

βo unknown constant coefficient in the regression model

βij unknown interaction coefficient in the regression model

ǫθθ normal strain in circumferential direction

ǫrr normal strain in radial direction

ǫzz normal strain in axial direction

ǫ error in the regression model

γrz shear strain

[D] elasticity matrix

{ǫ} strain matrix

{σ} stress matrix

ν poisson’s ratio

ρt density of the electrode, (kg/m3)

ρw density of the workpiece,(kg/m3)

σθθ normal stress in circumferential direction, (Pa)

σrr normal stress in radial direction, (Pa)

σzz normal stress in axial direction, (Pa)



σ0 initial stress produced by change in temperature ∆T , (Pa)

σrz shear stress, (Pa)

Cp specific heat capacity of workpiece material, (J/kgK)

di diameter of the impression or cavity produce by the tool on the workpiece,(µm)

dt diameter of the tool,(µm)

E modulus of elasticity, (Pa)

Ip discharge current, (A)

k thermal conductivity of the material, (W/mk)

l discharge length, (µm)

Pf percentage of heat input distributed to the workpiece

R2 Coefficient of determination

R2
adj Adjusted coefficient of determination

Rp spark radius, plasma radius, (µm)

Ra centre-line average surface roughness, (µm)

T temperature (K)

t duration (time) of the machining process,(s)

Tb boiling temperature, (K)

Toff cooling period, pulse off time, (µs)

Ton heating period, pulse on time, (µs)

Ton + Toff pulse period, (µs)

u displacement in radial direction, (µm)

Ub breakdown (discharge) voltage, (V )
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w displacement in axial direction, (µm)

X2
ii square terms in the regression model

Xi input variables in the regression model

XiXj interaction terms in the regression model

Y response variable in the regression model

∆T change in temperature, (K)

∆Vt volume loss from the electrode/tool, (mm3)

∆Vw volume loss from the workpiece, (mm3)

∆Wt weight loss from the electrode/tool, (g)

∆Ww weight loss from the workpiece, (g)

xii



CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background of Research . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Types of Electric Discharge Machines . . . . . . . . . . . . . . 4

1.2.2 Mechanism of Material Removal in Electrical Discharge Ma-

chining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 EDM process parameters . . . . . . . . . . . . . . . . . . . . . 9

1.3 Key areas of research in Die Sinking EDM . . . . . . . . . . . . . . . 11

1.3.1 EDM performance measures . . . . . . . . . . . . . . . . . . . 11

1.3.2 Surface integrity of EDMed surface . . . . . . . . . . . . . . . 16

1.3.3 EDM Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.4 EDM on AISI D2 steel . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Research scope and Problem statement . . . . . . . . . . . . . . . . . 32

1.4.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Summary of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2. Response surface model for prediction of White Layer Thickness and Surface

Crack Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Equipment and workpiece material . . . . . . . . . . . . . . . 41

2.2.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . 41



2.3 Measurement of Responses . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Measurements of White Layer Thickness . . . . . . . . . . . . 42

2.3.2 Measurements of Surface crack density . . . . . . . . . . . . . 42

2.4 Planning based on RSM . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Elucidation of response model for WLT . . . . . . . . . . . . . . . . . 44

2.6 Elucidation of response model for SCD . . . . . . . . . . . . . . . . . 55

2.7 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7.1 Effect of machining parameters on WLT . . . . . . . . . . . . 62

2.7.2 Scanning Electron Microscopy (SEM) images for WLT . . . . 68

2.7.3 Effect of the machining parameters on SCD . . . . . . . . . . 71

2.7.4 Scanning Electron Microscopy (SEM) images for SCD . . . . . 73

2.8 Confirmation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3. Response surface model for prediction of Surface Roughness . . . . . . . . 82

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Surface roughness measurements . . . . . . . . . . . . . . . . . . . . . 84

3.4 Planning based on Response Surface Methodology . . . . . . . . . . . 86

3.4.1 RSM model development and Residual Analysis. . . . . . . . . 89

3.5 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Scanning Electron Microscopy (SEM) results . . . . . . . . . . . . . . 99

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4. Finite-Element Modelling of Residual Stress . . . . . . . . . . . . . . . . . 104

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Model detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.2 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.3 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . 106

4.2.4 Stress-Strain-Temperature Relations . . . . . . . . . . . . . . 108

4.2.5 Spark radius/Plasma radius . . . . . . . . . . . . . . . . . . . 109

xiv



4.2.6 Heat Flux and Energy Portion . . . . . . . . . . . . . . . . . . 110

4.2.7 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.8 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 116

4.3.2 X-ray diffraction measurements and data analysis . . . . . . . 119

4.4 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.1 Temperature distribution . . . . . . . . . . . . . . . . . . . . . 128

4.4.2 Thermal stress distribution . . . . . . . . . . . . . . . . . . . . 133

4.4.3 Residual stress distribution . . . . . . . . . . . . . . . . . . . 133

4.4.4 Effect of machining parameters on Temperature profile . . . . 139

4.4.5 Effect of machining parameters on thermal stress . . . . . . . 141

4.4.6 Effect of machining parameters on residual stress . . . . . . . 143

4.4.7 Experimental Validation of residual stress . . . . . . . . . . . 145

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5. Soft computing models based prediction of MRR, TWR and Overcut . . . 153

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Description of the experiments . . . . . . . . . . . . . . . . . . . . . . 154

5.2.1 Equipment and workpiece material . . . . . . . . . . . . . . . 154

5.2.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 154

5.2.3 Machining performance evaluations . . . . . . . . . . . . . . . 154

5.2.4 Experimental design and parameter selection . . . . . . . . . . 156

5.3 Proposed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.1 Artificial neural network (ANN) . . . . . . . . . . . . . . . . . 165

5.3.2 Neuro-fuzzy (NF) models . . . . . . . . . . . . . . . . . . . . . 167

5.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.1 Analysis on responses . . . . . . . . . . . . . . . . . . . . . . . 174

5.4.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xv



6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.1 Major Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . 196

Appendix 197

A. Equipments used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B. Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C. X-Ray Diffraction Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D. Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

E. Neuro-Fuzzy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

xvi



LIST OF TABLES

1.1 Comparative analysis on research on AISI D2 steel and copper tool . 29

1.1 Comparative analysis on research on AISI D2 steel and copper tool.(Contd.) 30

1.1 Comparative analysis on research on AISI D2 steel and copper tool.(Contd.) 31

2.1 Input variables used in the experiment and their levels. . . . . . . . . 42

2.2 Observation for Crack Length and WLT. . . . . . . . . . . . . . . . . 49

2.2 Observation for Crack Length and WLT.(Contd.) . . . . . . . . . . . 50

2.2 Observation for Crack Length and WLT.(Contd.) . . . . . . . . . . . 51

2.3 Comparison of experimental and model prediction results for WLT and

SCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Comparison of experimental and model prediction results for WLT and

SCD.(Contd.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Comparison of experimental and model prediction results for WLT and

SCD.(Contd.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 R2 and R2
adj test for WLT regression model. . . . . . . . . . . . . . . 54

2.5 Estimated Regression Coefficients for WLT (Before elimination). . . . 55

2.6 Estimated Regression Coefficients for WLT (After backward elimination). 55

2.7 The ANOVA for the fitted WLT models. . . . . . . . . . . . . . . . . 56

2.8 R2 and R2
adj test for SCD regression model. . . . . . . . . . . . . . . . 60

2.9 Estimated Regression Coefficients for SCD (Before elimination). . . . 60

2.10 Estimated Regression Coefficients for SCD (After backward elimination). 61

2.11 The ANOVA for the fitted SCD models. . . . . . . . . . . . . . . . . 61

2.12 Sample predicted data from the RSM model. . . . . . . . . . . . . . . 80

3.1 Input variables used in the experiment and their levels. . . . . . . . . 86

3.2 Observation for Surface Roughness. . . . . . . . . . . . . . . . . . . . 87

3.2 Observation for Surface Roughness.(Contd.) . . . . . . . . . . . . . . 88



3.3 Comparison of experimental and model prediction results for surface

roughness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Comparison of experimental and model prediction results for surface

roughness.(Contd.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 R2 and R2
adj test for SR regression model. . . . . . . . . . . . . . . . . 90

3.5 Estimated Regression Coefficients for Surface roughness (Before elim-

ination). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Estimated Regression Coefficients for Surface roughness(After back-

ward elimination). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 The ANOVA table for the fitted Surface roughness models. . . . . . . 93

4.1 Spark Radius obtain from Equation 4.12 . . . . . . . . . . . . . . . . 110

4.2 Input variables used in the experiment and their levels. . . . . . . . . 120

4.3 Experimental design matrix for RS . . . . . . . . . . . . . . . . . . . 120

4.4 X-ray diffraction conditions. . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Experimental result of residual stress for all specimens . . . . . . . . 122

4.6 Peak thermal and residual stress from FEM . . . . . . . . . . . . . . 150

5.1 Experimental conditions . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 Observations for MRR, TWR and G. . . . . . . . . . . . . . . . . . . 157

5.2 Observation for MRR, TWR and G.(Contd.) . . . . . . . . . . . . . . 158

5.2 Observation for MRR, TWR and G.(Contd.) . . . . . . . . . . . . . . 159

5.2 Observation for MRR, TWR and G.(Contd.) . . . . . . . . . . . . . . 160

5.2 Observation for MRR, TWR and G.(Contd.) . . . . . . . . . . . . . . 161

5.2 Observation for MRR, TWR and G.(Contd.) . . . . . . . . . . . . . . 162

5.2 Observation for MRR, TWR and G.(Contd.) . . . . . . . . . . . . . . 163

5.3 ANOVA for MRR,TWR and G . . . . . . . . . . . . . . . . . . . . . 164

5.4 Learning behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.5 Testing the capability of all the models for prediction of MRR . . . . 188

5.6 Testing the capability of all the models for prediction of TWR . . . . 189

5.7 Testing the capability of all the models for prediction of G . . . . . . 190

A.1 Technical Specifications of electro discharge machine . . . . . . . . . 199

A.2 Chemical composition of AISI D2 (wt %) . . . . . . . . . . . . . . . . 201

xviii



A.3 Thermal properties of workpiece material (Kansal et al., 2007) . . . . 201

A.4 Temperature dependent modulus of elasticity, Poisson’s ratio and den-

sity of Tool steel (Bhadeshia, 2002) . . . . . . . . . . . . . . . . . . 201

A.5 Temperature dependent yield stress of steel (Barsoum, 2008; Jonsson

et al., 1985) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xix



LIST OF FIGURES

1.1 Schematic of an electric discharge machining machine tool . . . . . . 6

1.2 The plasma channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research Design Flow Chart . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Surface layers in EDMed workpiece . . . . . . . . . . . . . . . . . . . 39

2.2 SEM Micrograph (at 1000x) of an EDM surface showing globules and

micro-cracks and pores. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Cut section of workpiece . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Normal plot of residuals for WLT ( The dotted lines show 95% confi-

dance interval). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Histogram plot of residuals WLT. . . . . . . . . . . . . . . . . . . . . 47

2.6 Plot of standardised residuals vs. fitted value for WLT. . . . . . . . . 47

2.7 Predicted vs. experimental for WLT. . . . . . . . . . . . . . . . . . . 48

2.8 Normal plot of residuals for SCD. . . . . . . . . . . . . . . . . . . . . 58

2.9 Histogram plot of residuals SCD. . . . . . . . . . . . . . . . . . . . . 58

2.10 Plot of standardised residuals vs. fitted value for SCD . . . . . . . . . 59

2.11 Predicted vs. experimental SCD. . . . . . . . . . . . . . . . . . . . . 59

2.12 Effect of factors on WLT. . . . . . . . . . . . . . . . . . . . . . . . . 63

2.13 Comparison results for WLT obtained by Guu et al. (2003) and Lee

et al. (1988) with different Ip and Ton . . . . . . . . . . . . . . . . . 65

2.14 Interaction effect of factors on WLT. . . . . . . . . . . . . . . . . . . 66

2.15 (a) Contour plot, (b) Response surface plot representing the effect of

Ip and Ton on WLT . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.16 (a) Contour plot, (b) Response surface plot representing the effect of

Ip and Tau on WLT . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



2.17 (a) Contour plot, (b) Response surface plot representing the effect of

Ton and Tau on WLT. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.18 SEM snap WLT at 1/75/85/50 . . . . . . . . . . . . . . . . . . . . . 70

2.19 SEM snap WLT at 5/75/85/50 . . . . . . . . . . . . . . . . . . . . . 70

2.20 SEM snap WLT at 9/75/85/50 . . . . . . . . . . . . . . . . . . . . . 70

2.21 SEM snap WLT at 5/50/85/50 . . . . . . . . . . . . . . . . . . . . . 70

2.22 SEM snap WLT at 5/100/85/50 . . . . . . . . . . . . . . . . . . . . . 70

2.23 SEM snap WLT at 5/75/80/50 . . . . . . . . . . . . . . . . . . . . . 70

2.24 SEM snap WLT at 5/75/90/50 . . . . . . . . . . . . . . . . . . . . . 70

2.25 Effect of factors on SCD. . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.26 Interaction effect of factors on SCD. . . . . . . . . . . . . . . . . . . . 74

2.27 (a) Contour plot, (b) Response surface plot representing the effect of

Ip and Ton on SCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.28 SEM micrograph for 9/100/90/60 (SCD=0.01761µm/µm2) . . . . . . 75

2.29 (a) Contour plot, (b) Response surface plot representing the effect of

Ip and V on SCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.30 SEM snap SCD at 1/75/85/50 . . . . . . . . . . . . . . . . . . . . . . 77

2.31 SEM snap SCD at 5/75/85/50 . . . . . . . . . . . . . . . . . . . . . . 77

2.32 SEM snap SCD at 9/75/85/50 . . . . . . . . . . . . . . . . . . . . . . 77

2.33 SEM snap SCD at 5/50/85/50 . . . . . . . . . . . . . . . . . . . . . . 77

2.34 SEM snap SCD at 5/100/85/50 . . . . . . . . . . . . . . . . . . . . . 77

2.35 SEM snap SCD at 5/75/85/40 . . . . . . . . . . . . . . . . . . . . . . 77

2.36 SEM snap SCD at 5/75/85/60 . . . . . . . . . . . . . . . . . . . . . . 77

2.37 WLT and SCD as a function of power for AISI D2 tool steels. . . . . 78

3.1 SEM micrograph of a EDMed AISI D2 tool steel surface . . . . . . . 83

3.2 Idealised stylus profile showing the mean line . . . . . . . . . . . . . . 85

3.3 Normal plot of residuals for Ra. . . . . . . . . . . . . . . . . . . . . . 94

3.4 Histogram plot of residuals for Ra. . . . . . . . . . . . . . . . . . . . 94

3.5 Plot of residuals vs. fitted value for Ra. . . . . . . . . . . . . . . . . . 95

3.6 Predicted vs. experimental Ra. . . . . . . . . . . . . . . . . . . . . . 95

3.7 Effect of factors on Ra. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xxi



3.8 Comparison results for Surface roughness obtained by Guu et al. (2003)

and Lee et al. (1988) with different Ip and Ton . . . . . . . . . . . . 97

3.9 Interaction effect of factors on Ra. . . . . . . . . . . . . . . . . . . . . 98

3.10 (a) Contour & (b) Response surface plot depicting the effect of Ip &

Ton on Ra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.11 SEM of EDMed surfaces of D2 Steel Ip=1A; Ton=75 µs; Tau=85% &

V=50V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.12 SEM of EDMed surfaces of D2 Steel Ip=9A; Ton=75 µs;Tau=85% &

V=50V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.13 SEM of EDMed surfaces of D2 Steel Ip=5A;Ton=50 µs, Tau=85% &

V=50V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.14 SEM of EDMed surfaces of D2 Steel Ip=5A;Ton=100 µs, Tau=85% &

V=50V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 Schematic sketch of the physical model. . . . . . . . . . . . . . . . . . 107

4.2 An axisymmetric model for the EDM process simulation. . . . . . . . 107

4.3 Mesh generation for FEM full model. . . . . . . . . . . . . . . . . . . 113

4.4 Temperature dependent bilinear kinematic isotropic hardening. . . . . 115

4.5 Heating and cooling cycle . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Flow chart for ANSYS solution procedure . . . . . . . . . . . . . . . 117

4.7 Convergence graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Isothermal lines at the end of pulse on time for Ip=9A & Ton=100µs. 118

4.9 Diffraction patterns obtained by scanning the topmost layer for 2θ=70o

to 165o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.10 X-ray diffraction peak in layer 1 for 2θ=70o to 75o . . . . . . . . . . 124

4.11 d versus sin2ψ plot of layer 1 for 2θ=70o to 75o . . . . . . . . . . . . 124

4.12 X-ray diffraction peak in layer 2 for 2θ=70o to 75o . . . . . . . . . . . 125

4.13 d versus sin2ψ plot of layer 2 for 2θ=70o to 75o . . . . . . . . . . . . 125

4.14 X-ray diffraction peak in layer 3 for 2θ=70o to 75o . . . . . . . . . . . 126

4.15 d versus sin2ψ plot of layer 3 for 2θ=70o to 75o . . . . . . . . . . . . 126

4.16 X-ray diffraction peak in layer 4 for 2θ=70o to 75o . . . . . . . . . . . 127

4.17 d versus sin2ψ plot of layer 4 for 2θ=70o to 75o . . . . . . . . . . . . 127

xxii



4.18 Temperature distribution at the end of Ton just before material ejection.129

4.19 Temperature distribution at the end of pulse on time subsequent to

material removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.20 Detached/killed elements from the spark vicinity at the end of pulse. 130

4.21 Temperature distribution at the end of pulse off time.(Ip=9A,Ton=100µs)131

4.22 Paths on working domain. . . . . . . . . . . . . . . . . . . . . . . . . 131

4.23 Variation of temperature with respect to time on diagonal path. . . . 132

4.24 Radial component of thermal stress (σrr) at the end of pulse. . . . . . 134

4.25 Axial component of thermal stress (σzz) at the end of pulse. . . . . . 134

4.26 Shear component of thermal stress (σrz) at the end of pulse. . . . . . 135

4.27 Von Misses thermal stress at the end of pulse. . . . . . . . . . . . . . 135

4.28 Radial component of residual stress (σrr) at the end of pulse period. . 137

4.29 Axial component of residual stress (σzz) at the end of pulse period. . 137

4.30 Shear component of residual stress (σrz) at the end of pulse period. . 138

4.31 Von Misses residual stress at the end of pulse period. . . . . . . . . . 138

4.32 Residual stresses on surface path. . . . . . . . . . . . . . . . . . . . . 139

4.33 Residual stresses on diagonal path. . . . . . . . . . . . . . . . . . . . 140

4.34 Residual stresses on symmetry path. . . . . . . . . . . . . . . . . . . 140

4.35 The effect of Ip on the temperature variation with depth for Ton=100µs142

4.36 The effect of Ton on the temperature distribution for Ip=9A . . . . . 142

4.37 Effect of Ip and Ton on thermal stress in radial direction along the

centreline of workpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.38 Effect of Ip and Ton on thermal stress in axial direction along the

centreline of workpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.39 FEA residual stress in radial direction (σrr) along symmetric path . . 145

4.40 FEA residual stress in axial direction (σzz) along symmetric path. . . 146

4.41 FEA residual shear stress (σrz) along symmetric path. . . . . . . . . . 146

4.42 Experimental residual stress in radial direction(σrr) along symmetric

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.43 Experimental residual shear stress (σrz) along symmetric path. . . . . 147

xxiii



4.44 Effect of Ip and Ton on (a) peak Tensile residual stress (b) Depth at

which it occurs (µm). . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Optimal number of neurons in the hidden layer in ANN model . . . . 168

5.3 Neuro fuzzy architecture . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.4 Optimal number of membership functions in Mamdani model . . . . . 172

5.5 Main effect plot of the factors on MRR . . . . . . . . . . . . . . . . . 175

5.6 Effect of pulse on-time (Ton) on MRR . . . . . . . . . . . . . . . . . 175

5.7 Interaction effect plot of the factors on MRR . . . . . . . . . . . . . . 176

5.8 SEM Micrograph at 4A/100µs/90%/40 V . . . . . . . . . . . . . . . 177

5.9 SEM Micrograph at 10A/100µs/90%/40 V . . . . . . . . . . . . . . 177

5.10 Main effect plot of the factors on TWR . . . . . . . . . . . . . . . . . 178

5.11 Interaction effect plot of the factors on TWR . . . . . . . . . . . . . . 179

5.12 Main effect plot of the factors on G . . . . . . . . . . . . . . . . . . . 180

5.13 Interaction effect plot of the factors on G . . . . . . . . . . . . . . . . 180

5.14 Residuals of the validation data on MRR for the models. . . . . . . . 182

5.15 Residuals of the validation data on TWR for the models. . . . . . . . 182

5.16 Residuals of the validation data on G for the models. . . . . . . . . . 183

5.17 Comparison of model predictions with experimental MRR . . . . . . 184

5.18 Comparison of model predictions with experimental TWR . . . . . . 184

5.19 Comparison of model predictions with experimental G . . . . . . . . 185

A.1 Die Sinker EDM, Brand : Electronica Elektra Plus; Model : PS 50ZNC 198

A.2 Copper Electrode and AISI D2 workpiece for MRR, TWR and OC . 200

A.3 AISI D2 workpiece for WLT, SCD, SR and RS . . . . . . . . . . . . 200

A.4 Induction furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.5 Electronic Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.6 Talysurf Surface Roughness Analyser . . . . . . . . . . . . . . . . . . 203

A.7 Electro Polishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.8 Tool maker microscope . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.9 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . . . . 206

xxiv



A.10 Panalytical MRD System for Bulk Texture and Residual Stress Mea-

surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.11 X-ray texture and/or residual stress measurements . . . . . . . . . . 208

B.1 Two-Variable Face Centered CCD . . . . . . . . . . . . . . . . . . . 216

C.1 Schematic diagram of x-ray diffraction stress measurement of the orien-

tation of the measured lattice planes related specimen structure. D:x-

ray detector; S: X-ray source; N: normal to the surface. . . . . . . . . 222

C.2 Plane stress elastic model of a flat specimen . . . . . . . . . . . . . . 223

D.1 A Biological Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

D.2 Mathematical model of a neuron . . . . . . . . . . . . . . . . . . . . . 227

D.3 A representation of a simple 3-layer feed-forward ANN . . . . . . . . 228

D.4 Hyperbolic tangent sigmoid transfer function . . . . . . . . . . . . . . 230

D.5 Supervised learning model . . . . . . . . . . . . . . . . . . . . . . . . 231

E.1 Crisp and Fuzzy sets for SHORT, MEDIUM and TALL . . . . . . . . 234

E.2 Fuzzy inference system . . . . . . . . . . . . . . . . . . . . . . . . . . 235

E.3 Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms . 236

E.4 Defuzzification using the centre of mass . . . . . . . . . . . . . . . . . 239

E.5 Block-diagram of the back-propagation learning algorithm . . . . . . 240

xxv



Chapter I

Introduction



1. INTRODUCTION

The history of Electrical Discharge Machining (EDM) techniques goes as far back as

the 1768 when it was discovered by Sir Joseph Priestley an English Scientist. It took

more than a century to make use of this some practical use. However, EDM was not

fully taken advantage of until 1943 when Russian scientists learned how the erosive

effects of the technique could be controlled and used for machining purposes. The

popularity of this machining was grown by leaps and bounds in last sixty years. The

advantages of EDM over other machining processes are in terms of accuracy, surface

quality (SQ), and as the hardness and stiffness of the workpiece material are not

important for the material removal. The researches and improvements of the process

are still going on because, still there does not exist a machining process that could

successfully substitute the EDM process.

1.1 Overview

There is a growing trend to use light, slim and compact mechanical component in re-

cent years, thus there has been an increased interest in development of new generation

of advance materials having high hardness, temperature resistance, and high strength

to weight ratio; used in mould and die making industries, aerospace component, medi-

cal appliance, and automotive industries. In response to this, there is a heavy demand

for new technologies to meet the unique challenges posed while manufacturing com-

ponents with such materials. The development of appropriate machining systems to

support this growth is essential because the traditional processes are unable to cope

up with those challenges. EDM has been a mainstay of manufacturing for more than

six decades, providing unique capabilities to machine “difficult to machine” materials

with desire shape, size, and required dimensional accuracy. It is the most widely and

successfully applied machining process for various workpiece materials in the said
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advance industries [Snoeys et al. (1986)]. Today’s advance die sinking EDM systems

are much more capable than their manual predecessors were, and effectively imple-

mented to manufacture die casting moulds, plastics moulding and forging dies. EDM

is a thermal process of eroding electrically conductive materials with a series of suc-

cessive electric sparks and the complex phenomenon involving several disciplines of

science and branches of engineering. The theories revolving around the formation of

plasma channel between the tool and the workpiece, thermodynamics of the repetitive

spark causing melting and evaporating the electrodes, micro-structural changes, and

metallurgical transformations of material, are still not clearly understood. However,

it is widely accepted that the mechanism of material erosion is due to intense local

heating of the workpiece causing melting and evaporation of workpiece.

EDM is one of the most important manufacturing processes extensively useful in

the die and mould making industry to generate intricate shape, mould cavity, complex

shapes. Its distinctive attribute of using thermal energy to machine electrically con-

ductive materials, regardless of hardness, has been an advantage in the manufacturing

of mould, die, surgical, automotive and aeronautic components.

1.2 Background of Research

EDM is the most vital manufacturing processes extensively useful in the die and mold

making industry to generate intricate shape, mould cavity, complex shapes. There are

no physical cutting forces between the tool and the workpiece. This process is finding

an increasing demand owing to its ability to produce geometrical complex shapes as

well as its ability to machine hard materials that are extremely difficult to machine

when using conventional process. It is essential especially in the machining of super

tough, hard and electrically conductive materials such as the new space age alloys

[Lee and Li (2001)]. It is better than other machining processes in terms of precision,

SQ and the fact that hardness and stiffness of a workpiece material is not important

for the material removal. Though EDM has become an established technology, and

commonly used in manufacturing of mechanical works, yet its low efficiency and poor

SQ have been the vital matter of concern. Hence, the investigations and improvements

of the process are still going on, since no such process exists, which could successfully
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replace the EDM.

EDM was originally observed by Joseph Priestly by an English Scientist in 1770,

but it was not fully taken advantage of until 1943 when Russian scientists learned

how the erosive effects of the technique could be controlled and used for machining

purposes. During the 1930s, attempts were made for the first time to machine metals

and diamonds with electrical discharges. Erosion was caused by intermittent arc

discharges occurring in air between the tool electrode and workpiece connected to a

DC power supply. These processes were not very precise due to overheating of the

machining area and may be defined as ‘arc machining’ rather than ‘spark machining’

[Ho and Newman (2003)].

During 1980s, with the arrival of Computer Numerical Control (CNC) in EDM

that brought about an extraordinary progresses in improving the efficiency of the

machining operation. CNC has made possible total EDM, which indirect an auto-

matic and unattended machining from inserting the electrodes in the tool changer

to a finished polished cavity or cavities. These emergent virtues of EDM have since

then been intensely sought after by the manufacturing industries yielding enormous

economic benefits and generating keen research interests.

1.2.1 Types of Electric Discharge Machines

EDM facilitates the machining in a number of ways, a lot of these operations are

similar to conventional machining operation, for instance milling and die sinking.

A variety of classifications are possible and recent developments in its technology

append new operations owing to increase in various requirements. A simple and

general classification can be given in view of standard applications such as,

1. Wire EDM

2. Micro-EDM

3. Electric Discharge Grinding (EDG)

4. Die Sinking EDM
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Wire-EDM: In this process, a very thin wire serves as an electrode which is con-

tinuously fed by a series of motors and pulleys through the material. The travelling

wire, size ranging from 0.02 to 0.40 mm in diameter, usually made of brass or strat-

ified copper and the sparking takes place between the wire and the workpiece that

actually cut the later. The wire is continuously moving and new wire is constantly

being fed during the machining process. Extrusion dies and blanking punches and

several other forms of jigs and fixtures are frequently machined by this process. It is

a very accurate process and machining can accomplish with an accuracy of ±0.0025

mm.

Micro-EDM: The recent trend of miniaturization of mechanical parts has given

µ-EDM a considerable research attention. Using this process, it is possible to pro-

duce not only micro holes and shafts as small as 5 µm in diameter, but also complex

three-dimensional shapes [Rajurkar and Yu (2000)]. It is extensively used for man-

ufacture of micro structures, tooling inserts for micro-injection moulding and hot

embossing. In the beginning, µEDM was applied mostly for fabricating small holes

in metal foils. Owing to the versatility of the EDM process, currently it is used in

a lot of applications. For instance, it is employed for manufacturing micro parts for

accelerometer, micro mould and dies, keyhole surgery, housings for micro-engines and

also tooling inserts for fabrication of micro-filters, housings and packaging solutions

for micro-optical, and micro fluidics devices, fiber optics light detector fixtureing. Mi-

cro EDM is used to produce parts like, super fine nozzles (such as the fuel injection

nozzles for diesel engines), and to make high-precision masks used in microelectronic

manufacturing processes.

Wire Electric Discharge Grinding: A major improvement of micro-EDM process

was the advent of wire-electro discharge grinding (WEDG) [Masuzawa et al. (1985)].

When a small hole is desired, an electrode with comparatively larger diameter may be

in situ eroded against a sacrificial workpiece. The polarity is reversed in this case and

so the material removal takes place mostly on the electrode. The EDMed electrode

(with smaller diameter) serves as an electrode in µEDM process.

Die Sinking/Ram EDM: The Sinker EDM, consists of an electrode and workpiece

submerged in an insulating dielectric fluid. A schematic diagram of such a machine
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tool is shown in Fig. 1.1. The tool and the workpiece form the two conductive

electrodes in the electric circuit. Pulsed power is supplied to the electrodes from a

separate power supply unit. The RC circuit was widely used in the 1950s and later

MOSFET technology has replaced it. The proper feed motion of the tool towards

the workpiece is usually given for maintaining a constant gap distance between the

tool and the workpiece during machining. This is executed by a servo motor control

of the tool holder. When material gets eroded from the workpiece, the tool is fed

downward towards the workpiece to maintain a constant inter-electrode gap. The

flushing arrangements are made for the proper flow of dielectric into the inter-electrode

gap. The tool electrode has the complementary shape of finished component and

accurately sinks into the workpiece, by which intricate shapes are achievable.

Fig. 1.1: Schematic of an electric discharge machining machine tool

1.2.2 Mechanism of Material Removal in Electrical Discharge Machining

Electric discharge machining is the most widely-used non-conventional machining pro-

cess. Despite the fact that the mechanism of material removal of EDM process is not

yet completely understood and is still debatable, the most widely established prin-

ciple is the conversion of electrical energy it into thermal energy through a series of

discrete electrical discharges occurring between the electrode and workpiece immersed

inside a dielectric medium and separated by a small gap. Material is removed from
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the workpiece by localized melting and even vaporization of material. The sparks are

created in between two electrodes in presence of dielectric liquid. A simple expla-

nation of the erosion process due to the discharge is presented in Fig. 1.2. There is

no mechanical contact between the electrodes (held at a small distance) and a high

potential difference is applied across them (Fig. 1.2(b)). The breakdown of the dielec-

tric is originated by moving the electrode towards the workpiece, which will enhance

the electric field in the gap, until it arrives at the required value for breakdown. The

spot of breakdown is normally between the closest points of the electrode and of the

workpiece, but it is also depend on particles or debris present in the gap. When the

breakdown takes place, the voltage falls and the current rises abruptly. The flow of a

current is possible at this point, because the dielectric has been ionized and a plasma

channel has been created between the electrodes (Fig. 1.2(c)).

The flow of discharge current is then continuing and there will be a constant

attack of ions and electrons on the electrodes leads to strong heating of the workpiece

material, leading to temperature rise between 8, 000◦C and 12, 000◦C [Boothroyd and

Winston (1989)]. This results in quick formation of a small molten metal pool at both

the electrode surfaces, out of which some fraction of metals are directly vaporized due

to the heating. During this discharge, the plasma channel expands and therefore, the

radius of the molten metal pool increases with time (Fig 1.2(d)).

Towards the end of the discharge, current and voltage are cut off and thus the

plasma implodes under the pressure imposed by the surrounding dielectric, as a result,

the molten metal pool is strongly sucked up into the dielectric, producing a tiny crater

at the workpiece surface (Fig 1.2(e)). The machining process successively removes

small volumes of workpiece material, molten or vaporized during a discharge and is

carried away from the inter-electrode gap by the dielectric flow in the form of debris.

Sparking occurs where the gap between the tool and the workpiece surface is smallest.

The gap increases after material removal at the point of spark, and the position of the

next spark shifts to a different place, where gap is smallest on the workpiece surface.

In this manner thousands of sparks occur at different locality over the whole surface

of the workpiece corresponding to the workpiece-tool gap. As a consequence, a replica

of the tool surface shape is produced in the workpiece.
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Fig. 1.2: The plasma channel

It is well-known and elucidated by many EDM researchers that Material Removal

Mechanism (MRM) is the process of migration of material from the work-piece and

electrode to dielectric medium in solid, liquid or gaseous state. The appreciable

amount of material is transformed between workpiece and electrode undergo alloy-

ing with the contacting surface by means of a solid, liquid or gaseous phase reac-

tion [Roethel et al., 1976; Soni and Chakraverti, 1996]. Phases of sparking of MRM

(breakdown, discharge and erosion) is highly influenced by the types of eroded elec-

trode and work-piece elements together with disintegrated products of dielectric fluid

[Erden (1983)]. Additionally, reversing the polarity of sparking alters the material

removal phenomenon with an significant amount of electrode material set down on

the workpiece surface [Gangadhar et al. (1992)]. The MRM are also been reported

differently by many authors. Singh and Ghosh (1999) showed that the electrostatic

forces and stress distribution acting on the cathode electrode were the major causes

of metal removal for short pulses. Gadalla and Tsai (1989) elucidated the material
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removal of WC-Co composite to the melting and evaporation of disintegrated Co fol-

lowed by the dislodging of WC gains, which have a lower electrical conductivity on

the other hand, Lee and Lau (1991) argued that thermal spalling as well contributes

to the mechanism of material removal during the sparking of composite ceramics due

to the physical and mechanical properties promotes abrupt temperature gradients

from normal melting and evaporation.

1.2.3 EDM process parameters

As per the discharge phenomena explained earlier, some of the important process

parameters which influence the responses are.

Discharge voltage(V ): It is the open circuit voltage which is applied between the

electrodes. The discharge voltage de-ionizes the dielectric medium, which depends

upon the electrode gap and the strength of the dielectric, prior to the flow of current.

Once the current flow starts, the open circuit voltage drops and stabilizes the electrode

gap. It is a vital factor that influences the spark energy, which is responsible for the

higher MRR, higher Tool wear rate and rough surfaces.

Discharge current or Pulse current (Ip): It is the most important machining pa-

rameter in EDM because it relates to power consumption of power while machining.

The current increases until it reaches a preset level which is expressed as discharge

current. The maximum amount of amperage that can be used is governed by the sur-

face area of the cut for a workpiece tool combination. Higher currents will improve

MRR, but at the cost of surface finish and tool wear. This is all more important

consideration in EDM because the accuracy of machined cavity, which is a replica of

tool electrode, will be effected due to excessive wear.

Pulse-on time (Ton): It is the time during which actual machining takes place and

it is measured in µs. In each discharge cycle, there is a pulse on time and pause time,

and the voltage between the electrode is applied during Ton duration. The longer the

pulse duration higher will be the spark energy that creates wider and deeper crated.

it is because the material removal is directly proportional to the amount of energy

applied during this on-time. Though with higher Ton, the MRR will be more, but

rough surfaces are produced by the higher spark energy.
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Pulse-off time or pause time (Toff ): In a cycle, there is a pulse off time or pause

time during which the supply voltage is cut off as a concequence the Ip diminisisses

to zero. It is also the duration of time after which the next spark is generated and is

exprssed in µs analogous to Ton. Since, the dielectric must de-ionized after sparking

and regain its strength, it required some time and moreover the flushing of debris

also takes place during the Toff time. The cycle is completed when sufficient Toff is

allowed before the start of the next cycle. Since, Pulse-off time is a non productive

time, but it should not be too small because too small Toff makes the next spark to

be unstable. The sum of pulse on time and pulse off time in a cycle is called pulse

period or Total cycle time. Duty cycle (Tau): It is the ratio of pulse on-time and the

pulse period. Duty cycle is defined in the equation below.

Tau =
Ton

Ton+ Toff
× 100 (1.1)

At higher Tau, the spark energy is supplied for longer duration of the pulse period

resulting in higher machining effeciency.

Polarity: Polarity refers to the potential of the workpice with respect to tool i.e.

in straight or positive polarity the workpiece is positive, whereas in reverse polarity

workpiece is negative. Varying the polarity can have dramatic effect, normally elec-

trode with positive polarity wear less, whereas with negative polarity cut faster. On

the other hand, some of the metals do not respond this way. Carbide, Titanium and

copper are generally cut with negative polarity.

Dielectric Fluid: The dielectric fluid carry out three most important purposes in

the EDM. The first function of the dielectric fluid is to insulate the inter electrode gap

and after breaking down at the appropriate applied voltages conducting the flow of

current. The second function is to flush away the debris from the machined area, and

lastly, the dielectric act as coolant to assists in heat transfer from the electrodes. Most

commonly used dielectric fluids are hydrocarbon compounds, like light transformer

oil and kerosene.

Inter electrode gap: The inter electrode gap is a vital factor for spark stability

and proper flushing. The most important requirements for good performance are gap
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stability and the reaction speed of the system; the presence of backlash is particularly

undesirable. The reaction speed must be high in order to respond to short circuits or

open gap conditions. Gap width is not measurable directly, but can be inferred from

the average gap voltage. The tool servo mechanism is responsible for maintaining

working gap at a set value. Mostly electro mechanical (DC or stepper motors) and

electro hydraulic systems are used, and are normally designed to respond to average

gap voltage.

Flushing Pressure and Type of flushing: Flushing is an important factor in EDM

because debris must be removed for efficient cutting, moreover it brings fresh dielectric

in the inter electrode gap. Flushing is difficult if the cavity is deeper, inefficient

flushing may initiate arcing and may create unwanted cavities which can destroys the

workpiece. There are several methods generally used to flush the EDM gap: jet or

side flushing, pressure flushing, vacuum flushing and pulse flushing. In jet flushing,

hoses or fixtures are used and directed at the inter electrode gap to wash away the

debris, in pressure and vacuum flushing dielectric flow through the drilled holes in

the electrode, workpiece or fixtures. In pulse flushing the movement of electrode in

up and down, orbital or rotary motion creates a pumping action to draw the fresh

dielectric. The usual range of pressure used is between 0.1 to 0.4 kgf/cm2.

1.3 Key areas of research in Die Sinking EDM

The common assessment about the direction of study is relates to machining per-

formance evaluation for instance material removal, tool wear and surface integrity

achieved after machining. However, the majority of the investigations are inclined

towards monitoring and control of the process parameters. A vivid literature review

of the development of EDM technology between 1993 to 2003 has been reported by

Ho and Newman (2003) and the research trends in EDM on ultrasonic vibration, dry

EDM machining, EDM with powder additives, EDM in water and modelling tech-

nique in predicting EDM performances by Mohd Abbas et al. (2007). In this section,

the contribution by various researchers in the area of die sinking and related EDM

and their development is discussed.
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1.3.1 EDM performance measures

A considerable number of papers have been paying attention on approach of yielding

optimal EDM performance measures of high MRR, low TWR and acceptable OC.

This section provides a study into each of the performance measures and the scheme

for their enhancement. In past, significant improvement has been carried out to

enhance productivity, accuracy, and the versatility of EDM process. The key issue is

to pick the process parameters such as Ip, Ton, Tau and V, flushing pressure, dielectric

fluid, polarity in such a way that MRR and accuracy increases; and concurrently

overcut or gap, tool wear and surface roughness should diminish.

Wang and Tsai (2001) presented semi-empirical models of MRR for various work-

piece (EK2, D2 and H13) and tool electrode combinations (Copper, graphite and

silver-tungsten alloy). To achieve higher MRR in EDM, a stable machining process

is required, which is partly influenced by the contamination of the gap between the

workpiece and the electrode, and it also depends on the size of the eroding surface

at the given machining regime [Valentincic and Junkar (2004)]. Jaharah et al. (2008)

investigated MRR, TWR on AISI H13 tool steel. Ip was found to be the major factor

which influence MRR. Higher MRR was obtained with high Ip, medium Ton, and

low Toff. However, smaller TWR was obtained at high Ip, high Ton, and lower value

of Toff. Kanagarajan et al. (2008) used electrode rotation, Ton, Ip, and FP to study

MRR on Tungsten carbide/cobalt cemented carbide and shown experimentally that

Ip and Ton are the most significant factors. Kuppan et al. (2007) derived mathe-

matical model for MRR of deep hole drilling of Inconel 718. The experiments were

planned using Central Composite Design (CCD) and Response Surface Methodology

(RSM) was used to model the same. It revealed that MRR is more influenced by peak

current and duty factor, and the parameters were optimised for maximum MRR with

the desired Ra value using desirability function approach. Puertas et al. (2004) anal-

ysed the impact of EDM parameters on MRR and electrode wear in cobalt-bonded

tungsten carbide workpiece. A quadratic model was developed for each of the re-

sponses, and it was reported that for MRR, the current intensity factor was the most

influential, followed by Tau, Ton and the interaction effect of the first two. The value
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of MRR increased, when current intensity and Tau were increased, and decreased

with Ton.

Khan et al. (2009) discuss the performance (MRR and TWR) of EDMed mild

steel due to the shape configuration of the electrode. The maximum MRR was found

for round electrodes followed by square, triangular and diamond shaped electrodes.

However, the highest EWR were found for the diamond shaped electrodes. It is also

considered as an off-line process planning technique as the simulation algorithm is

largely based on MRR, TWR and spark gap. However, the simulation of discharge

location and spark gap, which are dependent on the distribution of debris concentra-

tion, was reported to yield a more realistic representation of the sparking phenomenon.

Subsequently, Khan (2008) reported overall performance comparison of copper and

brass electrodes and observed that the highest MRR was observed during machin-

ing of aluminium using brass electrodes. Comparatively low thermal conductivity of

brass as an electrode material does not allow the absorption of much heat energy, and

most of the heat is utilized in the removal of material from aluminium workpiece at

a low melting point.

Dhar et al. (2007) estimated the effect of Ip, Ton, and V on MRR, TWR and G on

EDM of Al-4Cu-6Si alloy-10 wt.% SiCP composites. Using three factors, three level

full factorial designs, a second order non-linear mathematical model has been devel-

oped for establishing the relationship among machining parameters. It was revealed

that the MRR, TWR and G increase with increase in Ip and Ton. Salonitis et al.

(2009) developed a simple thermal based model to determine the MRR and asserts

that the increase of Ip, V or Ton results in higher MRR. Besides, reducing Toff MRR

increases. They reported that model predictions and experimental results are in good

agreement. El-Taweel (2008) investigated the correlation of process parameters in

EDM of CK45 steel with Al-Cu-Si-TiC composite produced using powder metallurgy

technique and evaluated MRR and TWR. It is found that such electrodes are more

sensitive to Ip and Ton than conventional electrodes. To achieve maximum MRR and

minimum TWR, the process parameters are optimised and on experimental verifica-

tion the results are found to be in good agreement. Chiang (2008) had explained the

influences of Ip, Ton, Tau and voltage on the responses; MRR and electrodes wear ra-
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tio. The experiments were planned according to a CCD on Al2O3+TiC workpiece and

the influence of parameters and their interactions were investigated using ANOVA. A

mathematical model was developed and claimed to fit and predict MRR accurately

with a 95% confidence. The main two significant factors affecting the response were

Ip and Tau. Dvivedi et al. (2008) identified the machining performance in terms of

MRR and TWR by obtaining an optimal setting of process parameters (Ton, Toff, Ip,

and FP) during EDM of Al 6063 SiCp metal matrix composite. It was revealed that

Ip is predominant on MRR than other significant parameters. MRR increases with

increasing Ip and Ton up to an optimal point and then dropped. Karthikeyan et al.

(1999) develop mathematical models for optimizing EDM characteristics such as the

MRR, TWR and the surface roughness on aluminium silicon carbide particulate com-

posites, using full factorial design. The process parameters taken in to consideration

were Ip, Ton and the percent volume fraction of SiC (V ) present in LM25 aluminium

matrix. Wang (2009) investigated the feasibility and optimization of EDM for in-

specting the machinability of W/Cu composites using the Taguchi method utilizing

L18 orthogonal table to obtain the polarity, Ip, Ton, Tau, rotary electrode rotational

speed, and V in order to explore the MRR and TWR.

The tool wear is moderately analogous to the MRM in EDM. Mohri et al. (1995)

ascertained that tool wear is affected by the precipitation of turbostratic carbon

from the hydrocarbon dielectric on the electrode surface during sparking. Also the

rapid wear on the electrode edge was because of the failure of carbon to precipitate

at difficult-to-reach regions of the electrode. From this easy understanding of tool

wear, some useful applications exploiting both the advantages and disadvantages

of electrode wear have been developed. Marafona and Wykes (2000) used energy

dispersive X-ray analysis of tool surfaces measuring their compositions and established

a wear inhibitor carbon layer on the electrode surface by adjusting the settings of

the machining parameters prior to normal EDM conditions. Although the thickness

of the carbon inhibitor layer made a significant improvement on the TWR, it has

little effect on the MRR. Conversely, for applications requiring higher MRR, a large

pulse current is encouraged to increase electrode wear implanting electrode material

onto the workpiece [Mohri et al. (2000)]. Bleys et al. (2002) devised an online tool
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wear compensation method based on the pulse analysis and controlled the tool feed

movement in real time. Kunieda and Kobayashi (2004) clarifies the mechanism of

determining tool electrode wear ratio in EDM by spectroscopic measurement of the

vapour density of the tool electrode material. Longer Ton is known to result in

lower TWR and deposition of a thicker carbon layer on the tool electrode surface.

Conversely, the density of copper vapour evaporated from the tool electrode surface

was found to be lower when the carbon layer was thicker, indicating that tool electrode

wear is prevented by the protective effects of the carbon layer. The well-known

machining strategy of recompense the tool wear is the orbiting of the electrode relative

to the workpiece, where a planetary motion creating an effective flushing action, get

better part accuracy and process efficiency [Snoeys et al. (1986)]. This technique

also trims down the number of different electrodes necessary for initial roughing and

final finishing operations [Staelens and Kruth (1989)]. Yu et al. (1998) established

a uniform tool wear machining method to compensate the longitudinal tool wear by

applying an overlapping backward and forward machining motion. Dauw and Snoeys

(1986) derived the measurement of tool wear from the study of pulse characteristics

based on discharge voltage fall time.

The analogous tool wear compensation approach have also been applied to µEDM,

which is usually implemented in thin layers using simple cylindrical or tubular elec-

trodes. On the other hand, Kunieda and Yoshida (1997) reduced the tool wear ratio

by performing µEDM using high velocity gas as the dielectric medium. The different

methods of simulating the EDM process also offer a tremendous prospect of consider-

ate and compensate the tool wear. Dauw (1988) developed a geometrical simulation

of EDM demonstrating the development of tool wear and part geometry. Caydas and

Hascalik (2007) made an attempt to analyse the electrode wear in EDM of Ti alloy

using statistical analysis technique. ANOVA and regression analysis were done, the

proposed mathematical models obtained can adequately describe the performances

within the limits of factors being studied. The experimental and predicted values

were in a good agreement.

The EDMed cavity produced are always larger than the electrode this difference

(size of the electrode and the size of the cavity) is referred as Overcut (OC). It
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becomes important when close tolerance components are required to be produced for

space application and also in tools, dies and moulds for press work. The dimensional

accuracy of EDM is greatly influenced by the OC resulting from the discharge gap and

electrode wear. The parameters such as Ip, Ton, voltage applied and the workpiece

material are significantly influence OC. It increases with the increase of Ip but up to

a certain limit besides it depends upon the gap voltage and chip size, which vary with

the amperage used [Singh et al. (2004)]. When low diameteral OC is the requirement

En-31 may be preferred over copper and aluminium electrodes.

CNC EDM commonly makes use of 3D profile electrodes that are expensive and

time consuming to manufacture for EDM process. Further for producing complex

3D shaped parts, the capacity of CNC in providing multi-axis movements for simple

electrodes in EDM. Wong and Noble (1986) experiment and investigated the ma-

chining with cylindrical electrodes with microcomputer controllers. In recent times

MRR improvement technique has been developed by modifying the basic principle

of EDM, which delivers single discharge for each electrical pulse. Kunieda and Ma-

suzawa (1988) investigated a multi-electrode discharging system delivering additional

discharge simultaneously from a corresponding electrode connected serially. An oxy-

gen assisted EDM system, which greatly improves the MRR was tested by supplying

oxygen into the discharge gap [Kunieda et al. (1999)], besides MRR can be substan-

tially improved with reduced TWR using a multi-electrode discharging system using

without any improvement in surface roughness.

1.3.2 Surface integrity of EDMed surface

The term surface integrity is used to describe the quality and condition of the surface

region of a machine component. It includes the topological, mechanical, metallurgical

and chemical conditions of the surface region as well as surface and sub-surface struc-

ture. It is well established that EDMed surfaces usually experiences a transformed or

altered layer having different characteristics from those of the parent metal. A com-

prehensive description of surface integrity of EDMed components necessitates the

measures of Surface Roughness (SR), White Layer Thickness (WLT), Heat-Affected

Zones (HAZ), micro-cracks, and Residual Stresses (RS), diffusion of tool material and
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carbon, and endurance limit [Rajurkar and Pandit (1988)]. It has been ascertained

that the surface integrity is significantly distorted by EDM and thus efforts are be-

ing made to negate the transformations in surface integrity of machined components.

EDM surfaces are quite intricate and investigation on the effects of EDM machining

on surface integrity have been reported by many researchers. The thermal changes

may cause cracks in the top layer and residual stresses in the underlying base layers

[Cogun and Savsar (1990)]. Although EDM has many advantages but, the recast

layer with cracks, caused by rapid cooling results in poor surface accuracy [Kruth

et al., 1995; Schumacher, 2004].

Surface texture, surface topography or surface finish are the terms, which are used

to express the machined surface relate to the geometric irregularities and to quality

the surface. An ideal surface roughness are commonly specified by the peak to valley

height or the center line average, Ra (µm). The EDMed surfaces consist of plenty of

craters formed by the discharge energy. If the energy content is high, deeper craters

will be accomplished, leading to poor surface. The surface roughness has also been

found to be inversely proportional to the frequency of discharge [Pandey and Shan

(1980)]. A spark-eroded surface is a surface with a matt appearance and random

distribution of overlapping craters and is often covered with a network of micro-

cracks [Pandey and Jilani (1986)]. The molten metal were expelled randomly during

the discharge and later solidified on the electrode surfaces. The crack formation is

associated with the development of high thermal stresses of the material, as well as

with plastic deformation.

Many attempts had been made for modelling of EDM process and investigation of

the process performance to improve the surface quality. For the prediction of surface

roughness empirical models as well as multi-regression analysis are usually applied. It

has been observed that there are many process variables that affect the surface finish

such as Ip, Ton, open circuit voltage, electrode polarity, thermal properties of the

tool, work, and dielectric liquid and debris concentration. Kiyak and Cakir (2007)

investigated the influences of EDM parameters on Ra for machining of AISI P20

tool steel and emphasized that the choice of the machining parameters to achieve

good surface quality of EDMed component should be smaller pulsed current and
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shorter pulse time. This is because, small particle size and crater depths created

by discharge and consequently, the smooth surface will be produced. Jaharah et al.

(2008) investigated SR with copper electrode and AISI H3 tool steel workpiece and

the input parameters taken are Ip, Ton, and Toff. The optimum condition for Ra was

obtained at low Ip, low Ton, and Toff and concluded that the Ip was the major factor

effecting Ra. Keskin et al. (2006) in their experimental study obtained a regression

equation and asserted that the results will help to manufacture steel parts with definite

surface roughness requirements instead of trial and error. In addition, it is revealed

that Ra has an increasing trend with an increase in the Ton, which is probably due to

more discharge energy released during this time and expanding the discharge channel.

Khan et al. (2009) discuss the SR performance of EDMed mild steel for different

shape configuration of the electrode. The minimum surface roughness was found for

the round electrodes followed by square, triangular and diamond shaped electrodes.

Jaharah et al. (2008) investigated SR on AISI H13 tool steel. However, the optimum

condition for Ra was obtained at low Ip, low Ton, and Toff. Ip was the major factor

affecting the response. Tsai and Wang (2001c) reported several surface finish models

by taking the effects of electrode polarity into account. They subsequently reported

a semi-empirical model dependent on the thermal, physical and electrical properties

of the workpiece and electrode together with relevant process parameters such as

Ton, Ip, polarity, input power, material density, conductivity, specific heat capacity,

heat conductivity, melting point, and boiling point. The later model was found to

be a more trustworthy surface finish prediction for various workpiece material (EK2

and H13) under various process conditions [Tsai and Wang (2001a)]. Salonitis et al.

(2009) in their study developed a model for SR and started that with the increasing in

process parameters, Ip, Ton and V, coarser workpiece surfaces are achieved. Latter,

it is verified experimentally and found to be in good agreement with predicted results.

The surface characteristics of the machined surface were explored extensively by

Kanagarajan et al. (2008). They had chosen Ip, Ton, electrode rotation, and flush-

ing pressure as design factor to study the EDM process performance such as SR on

Tungsten carbide/cobalt cemented carbide. The most influential parameters for min-

imising the SR have been identified using the RSM and experimentally verified by
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conducting confirmation experiments.

Chiang (2008) proposed a mathematical model and investigated the influence of

Ip, Ton, Tau, voltage and their interactions on SR. The experiments are conducted

on Al2O3+TiC workpiece and found that Ip and Ton have statistical significance on

SR. It is claimed to fit and predict SR narrowly with a 95% confidence interval.

In the EDMed component, a unique structure on the surfaces of the machined

parts has been observed. The microscopic observations showed that unusual phase

changes occur due to high local temperature attained during the machining. The top

layer is a recast layer formed by resolidification of the molten metal and this layer

is found to be heavily alloyed with the pyrolysis products of the cracked dielectric.

The material surface is found to be fairly resistant to etching by conventional met-

allographic reagents. Therefore, the recast layer on ferrous alloys is often referred

to as an unetchable ’white’ layer. Micro-hardness measurements have shown that

for ferrous alloys, the recast layer generally has a hardness value much higher than

that of the underlying matrix and may exceed that attainable by normal quenching

techniques [Ekmekci, 2007; Mamalis et al., 1988].

Heat Effected Zone (HAZ) lies beneath the white layer structure, which generally

has a tempered microstructure and has a hardness value fairly less than that of

the underlying hardened metal. An intermediate layer between the recast and the

tempered layers was also observed and reported. This layer was found to exhibit a

carbon gradient and contamination of materials from the tool electrode. It is possible

that this layer includes part of the melted layer plus a region beyond which diffusion

has occurred in solid state. The hardness of this layer is found to be comparable to

or, sometimes, a little higher than that of the recast layer [Lim et al. (1991)]. Under

optical microscope, it generally has a darker appearance than the parent material.

The bulk of the material beyond the tempered zone remains unaffected by machining.

In the past a number of attempts have been made to study the relationship of white

layer thickness with the machining parameters. The structural change of EDMed

surface have been studied extensively by

Lee et al. (2004) revealed experimentally that the influence of the EDM param-

eters on the surface integrity of AISI 1045 carbon steel and furnished that average
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WLT and induced residual stress tend to increase at higher values of Ip and Ton.

However, for an extended Ton, it is noted that the surface crack density decrease.

Besides, obvious cracks are always apparent in thicker white layers. A smaller Ip

(i.e. 1 A) tends to increase the surface crack density, while a prolonged Ton amplifies

the opening degree of the surface crack, thereby reducing the surface crack density.

Correlation between EDM parameters and surface crack formation for D2 and H13

tool steels was studied by Lee and Tai (2003). It was shown that crack formation

and white layer thickness is correlated to the machining parameters. High Ton will

increase both the WLT and the induced stress and both of them tend to support

the formation crack. Bhattacharyya et al. (2007) developed mathematical models

based on RSM for correlating Ip and Ton different aspects of surface integrity of

M2 Die Steel machined through EDM at the transverse section of the EDMed M2

Die Steel and experimentally validated using the SEM micrographs and the graphs

plotted and reveal the correctness of the developed models. Optimal combination of

parameters has been estimated, which can be used to minimize surface integrity. Re-

belo et al. (1998) have reported quantitatively and qualitatively that the formation of

plasma channel between tool (steel) and workpiece, resulting in metallurgical trans-

formations, residual tensile stresses and surface cracking. The dimension of random

overlapping surface craters increases with machining pulse energy. The cracks radiate

from, and circumvent, the craters. The density and penetration depth of the cracks

in the re-cast layer increases with the machining pulse energy. Ramasawmy et al.

(2005) experimentally investigated the effect of the EDM process parameters Ip and

Ton on the thickness of the white layer. Stainless martensitic chromium tool steel was

used for the EDM test. Relation of WLT with 3D surface texture amplitude, spatial

and volume parameters are discussed and shown that the Ip has comparatively more

significant effect on the dimension of the crater as compared to Ton. It is said that

the dimension characteristics of the molten metal pool define the magnitude of the

surface tension, and eventually the thickness of the white layer. Mamalis et al. (1987)

in their experimental study revealed that the physico-chemical changes occur during

EDM of steel and a correlation among surface morphology and overall process pa-

rameters have been noticed. “White layer” and crack formation are related with the
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development of high thermal stresses exceeding the fracture strength of the material

in addition to plastic deformation and are determined quantitatively by the use of

regression equations; it is clearly shown that their dimensional dependence on pulse

energy. Lim et al. (1991) provided a review on the metallurgy of EDMed surface,

which is dependent on the solidification behaviour of the molten metal after the dis-

charge cessation and subsequent phase transformation. Solidification of the molten

metal takes place simultaneously from the top interface with the dielectric and the

bottom interface with the underlying metal into the melt, as well as from within the

melt towards both interfaces. This leads to the formation of three distinctive sub

layers within each recast layer resolidified from a given pool of molten metal. Wang

et al. (2009) studied the feasibility of removing the recast layer from molds and dies

using etching and mechanical grinding for Ni-based super alloy materials by means

of EDM. The analysis has been carried out in three stages. The first stage is to ob-

tain a thick recast layer by using EDM with a larger discharging energy applying the

Taguchi L18 analytical method. Furthermore in the second stage optimizes the recast

layer removal technique using Taguchi’s L9 orthogonal for the etching and mechanical

grinding parameters and observe the recast layer removal quantity analysis.

Crack development can be attributed to the existence of thermal and tensile

stresses within the EDMed component. Tensile stresses are generated since the melted

material contracts more than the unaffected parent material. Diffusion of carbon from

dielectric liquid and possibly alloying materials from tool electrode can also affect the

material contraction rate. When the stress in the surface exceeds the material’s ul-

timate tensile strength, cracks are formed [Thomson, 1989]. Results from previous

studies [Lee et al., 1990, 1992] have indicated that cracking increases as the pulse

energy increases. But, it was stated that maximum crack density actually occurs

under the minimum Ip and maximum Ton [Lee and Tai (2003)].

Cracks are initiating from the surface and travelling down perpendicularly toward

the parent material. In most cases the cracks terminate within the white layer or

just on the interface zone between the white layer and heat affected zone. However,

under some critical machining settings, cracks can penetrate to the parent material.

Grain boundary cracking is evident under such circumvents. Surface cracks that are
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initiated at the surface, travel down perpendicularly toward the interferential zone,

and terminate at this interference, are primarily produced due to an increase in non-

homogeneities of metallurgical phases within the white layer [Ekmekci (2009)]. Lee

et al. (2004) presented EDM of H13 and D2 tool steels and analysed the concept of

a Crack Critical Line (CCL) is introduced to explore the influence of electrode size,

EDM parameters and material thermal conductivity on surface cracking. It is noted

that cracks tend not to appear when the machining is performed with a decreased Ip

and an increased Ton. The fatigue strength of mechanical components is dependent

on the properties of the surface and near surface regions [Abu Zeid, 1996; Zeid, 1997].

Among the surface defects, cracking was found the most significant since it leads to

a reduction in the material resistance to fatigue and corrosion [Lim et al. (1991)],

especially under tensile loading conditions.

Due to the non- homogeneity of heat flow and metallurgical alteration or to lo-

calised inhomogeneous plastic deformation in EDMed surfaces, residual stresses are

produced. Sharp temperature rise causes stresses even more than the yielding point

of the material and severe slip, twining and cleavage depending upon the crystal

structure. The degree and nature of residual stresses considerably influence, as they

concern with the main material properties. In the past many attempts have been

made to measure residual stresses due to EDM, the stresses were deemed to arise

mainly as a result of the thermal contraction of the resolidified metal, which was

not expelled from the craters, onto the relatively unaffected parent metal, induc-

ing plastic deformation and biaxial tensile stress. Mamalis et al. (1988) used X-ray

diffraction (XRD) method in parallel beam modification to determine the residual

stress profile of EDMed micro alloyed steel. They detected considerable amount of

residual stresses at the sub-surface layer and found that the peak stresses were almost

independent of the discharge energy and approaches the ultimate tensile strength of

the material. Rebelo et al. (1998) also measured residual stress with XRD technique

and found similar stress pattern for martensitic steels. The residual stress increases

from the bulk material to a maximum and then decreases again near to the surface.

Ghanem et al. (2003) have analysed on martensitic hardenable and non-hardenable

steels and reported a high tensile stress level and a wide profile associated with sur-
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face stress relaxation for hardenable steels. Simulation of the mechanical effect due to

the heat gradient induced by the electric discharge (thermal and residual stresses) is

the objective of even fewer numerical recent studies [Youshen and Yoshitsugu (1992)],

where generally commercial codes are used. Salah et al. (2008) presents numerical

results concerning the temperature distribution, the thermal and residual stresses also

compared with experimental data and found to be in good agreement.

Although a number of experimental effort have been made to make better un-

derstanding of the EDM process, but modelling efforts of the process are really few

in comparison. There are may be number of explanation for this, the complex and

stochastic nature of the EDM process, the understanding of the complex phenomena

inside a plasma channel is deficient and the duration of single discharges are tiny.

Every single discharge in EDM process is accompanying with extreme thermal effect

and pressure pulse effects. Besides the pulse pressure created by discharge causes a

violent erosion effect, and thus a part of the molten material is get rid of to from a

crater. Ekmekci et al. (2006) suggested a semi-empirical equation for scaling residual

stresses in EDMed surfaces and reported that the stress increases from the surface

and attains to a maximum value, which is approximately equals the ultimate tensile

strength of the material, and then it falls gradually to zero or even to a small com-

pressive residual stress at greater depths. Residual tensile stress increases with the

increase in pulse current and pulse-on duration. Investigation of the residual stresses

of EDMed components revealed their tensile nature, the extremely narrow superfi-

cial zone where they appear, their high magnitude at the surface layers, and their

increase with increasing pulse energy. The formation of surface cracks has attributed

to the differentials of high contraction stresses exceeding the material’s ultimate ten-

sile stress within the white layer [Lee et al. (2004)]. A qualitative relationship with

the operating parameters was presented by Ekmekci et al. (2005) using AISI P20

workpiece material. Mamalis et al. (1988) experimentally investigated on low-carbon

steel St37, medium carbon steel C45 and alloyed steel 100Cr6 workpiece and found

that the peak stresses are almost independent of the discharge energy and approach

the ultimate tensile strength of the material. Rebelo et al. (1998) in his investigation

using XRD methodology found that the residual stress of steel workpiece increases
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from the bulk material to a maximum and decreases again approaching the surface.

Also the peak stresses are almost independent of the discharge energy and the greater

the discharge energy, the greater the depth at which the maximum value of residual

stress occurs.

1.3.3 EDM Modelling

Several modelling attempts have been made to characterize the EDM process based

on electro-thermal theory since 1971. Many researchers has analysed in terms of the

temperature distribution, crater geometry, and material removal at the cathode. Yeo

et al. (2008) showed that the disk heat source models can be enhanced by improving

the approximation of the heat flux and energy fraction, however, a simple cathode

erosion model using a point heat-source model was presented by Dibitono et al. (1989).

The original energy balance for gas discharges was modified and the model uses the

photo electric effect as the principal source of energy supplied to the cathode surface.

Later, Patel et al. (1989) developed the anode erosion model which accepts power as

boundary condition at anode interface and the power supplied is assumed to produce

the Gaussian-distributed heat flux on the surface of the anode material. A variable

mass, cylindrical plasma model was developed for sparks by Eubank et al. (1989)

which consists of three differential equations, one each from fluid dynamics, an energy

balance, and the radiation equation, combined with a plasma equation of state.

Soft computing modelling

The use of the artificial neural network (ANN), Fuzzy logic and hybrid intelligent

method in modelling using responses obtained from experiments connecting differ-

ent materials and machining conditions is gaining popularity. There are numerous

ANN applications in EDM, as it is an effective method to solve non-linear problem.

Mandal et al. (2007) attempted to model the EDM process using ANN with back

propagation as the learning algorithm. They modelled surface roughness, MRR and

tool wear, with various input parameters and found suitable for predicting the re-

sponses. Panda and Bhoi (2005) developed an artificial feed forward neural network

based on the Levenberg-Marquardt back propagation technique of logistic sigmoid
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activation function to predict MRR of AISI D2 steel. This model performs well un-

der the stochastic environment of actual machining conditions without understanding

the complex physical phenomena exhibited in EDM, and provides faster and more

accurate results. They found that the 3-4-3-1 neural architecture has the highest

correlation coefficient and used it for the analysis. Wang et al. (2003) combined the

capabilities of ANN and genetic algorithm to find an integrated solution to the ex-

isting problem of modelling and optimisation of EDM processes. Gao et al. (2008)

established machining process models based on different training algorithms of ANN,

namely Levenberg-Marquardt algorithm, Resilient algorithm, Scaled Conjugate Gra-

dient algorithm and Quasi-Newton algorithm. All models have been trained by same

experimental data, checked by another group data, their generalization performance

are compared. Levenberg-Marquardt algorithm found to be the better generaliza-

tion performance and convergence speed is faster. Pradhan (2009) offered a RSM

and ANN predictive modelling using Ip, Ton, and dielectric flushing pressure (FP)

to predict OC, MRR and TWR. A close agreement was observed among the actual

experimental, RSM, and ANN predictive results.

In recent times, a new trend has been introduced to hybridize the features of two

or more than two techniques to take advantage of the potential of each technique

and shrink their disadvantages. Such technique with combined features is called as

hybrid modelling technique. Neuro-fuzzy (NF) systems are synergistic fusion of fuzzy

logic and neural networks, hence it can learn from data and retain the inherent inter-

pretability of fuzzy logic. Adaptive Network Based Fuzzy Interface System (ANFIS)

was first established by Jyh-Shing and Jang (1993). ANFIS is a network structure

consisting of a number of nodes connected through directional links. Each node has

a node function with adjustable or fixed parameters. Learning or training phase of

network is a process to determine parameter values to sufficiently fit the training

data. Tsai and Wang (2001a) in their study, compared six different ANN models and

an ANFIS model on MRR in EDM. ANFIS shown to be more accurate and in their

further investigations, [Tsai and Wang (2001b)] have applied the same method to

predict the Ra. Results show that tangent sigmoid multi layered perceptron (TAN-

MLP), radial basis function network (RBFN), Adaptive RBFN and ANFIS models
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have shown consistent results. The NF approach is becoming one of the major areas

of interest because it gets the benefits of neural networks as well as of fuzzy logic sys-

tems, and it removes the individual disadvantages by combining them on the common

features. Tsai and Wang (2001a) in their study, compared six different ANN models

and an ANFIS model on MRR in EDM. Results show that ANFIS is more accurate

and the prediction error is 16.33%.

Numerical modelling

Several approach for solving the thermal problem are enumerated and comprehensive

review of mathematical models for EDM has been given in Erden et al. (1995), but

at the present time the majority of research work is passionate to numerical models

based either on the finite element method or in the finite differences method.

A FEM model has been developed by Yadav et al. (2002) to approximate the

temperature field and thermal stresses due to Gaussian heat flux distribution of a

spark during EDM of HSS material. The effects of process variables such as (Ip

and Tau) on these responses have been reported. A single spark produces significant

compressive and tensile stresses beneath of the spark location and mostly the thermal

stresses exceed the yield strength of the workpiece in an extremely thin zone near the

spark.

Salah and Ghanem (2006) presented numerical results relating to the temperature

distribution in EDM process and from these thermal results, MRR and roughness are

inferred and compared with experimental explanation. It is revealed that temperature

variation of conductivity is of vital significance and provides the better correlations

with experimental data. Subsequently, analysed numerical results concerning the

temperature distribution, the thermal and residual stresses of EDMed stainless steel

AISI 316L workpiece with experimental data, which was in good agreement [Salah

et al. (2008)]. Marafona and Chousal (2006) developed a thermal-electrical model

using copper and iron as anode and cathode, sparks generated by electrical discharge

in a liquid media and the obtained FEM results were compared with the experimental

values of the table of AGIE SIT used by other researchers. The TWR and MRR as

well as surface roughness results agree reasonably well with them. Allen and Chen
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(2007) reported a thermo-numerical model for material removal on molybdenum by

a single spark, the effects of EDM parameters on the crater dimension and the tool

wear percentage are studied. FEM results are also presented to show how the thermal

action of the micro-EDM process affected the surface integrity of machined workpiece.

A FEM base model was reported by Das et al. (2003) using process parameters such

as power input, pulse duration, etc., to predict the transient temperature distribu-

tion, liquid and solid state material transformation, and residual stresses induced in

L6 steel. An attractive feature of the model is its ability to predict. The shape of

the crater formed during the material removal is also predicted and validated exper-

imentally.

1.3.4 EDM on AISI D2 steel

The latest research represented here is related to EDMachining of AISI D2 steel, which

has a very widely growing range of application in dies and mould making industries.

Lee et al. (1988) investigated the surface transformation and damage in EDMed AISI

D2 tool and other tool steels and reported that the recast layer is composed of two

layers and the depth of surface cracks is found to correlate well with the WLT. They

attempted were made to quantify the depth of white (or damaged) layer with respect

to the process parameters and surface roughness after EDM. It was found that with

a fixed dielectric and flushing condition, for a range of Ip levels varying from 5 to 25

A, the damaged layer correlates well with the pulse energy irrespective of the tool

steel material, however the magnitude of the white layer depends only on the area or

size of the current pulse-form but not its shape. Guu and Hocheng (2001a) studied

the effects of machining parameters of a rotary EDM such as Ip, Ton, and workpiece

rotation on MRR and surface roughness, and found to be increase with the increase

of rotation speed. Also, the results were compared with the conventional EDM and

found to more MRR, improved SR and reduced recast layer. Guu et al. (2003)

studied experimentally the surface characteristics and machining damage caused by

EDM on AISI D2 steel. The recast layer were measured using SEM, residual stresses

using XRD machine and surface roughness were measured using surface profilometer

and the empirical relations were proposed. It reported that a HAZ is formed just
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beneath the recast layer and introduces tensile residual stress on the surface due to

the non-homogeneity of heat flow (heated and cooled at a high rate) and metallurgical

transformations or to localized inhomogeneous plastic deformation. This tensile stress

is the main cause of surface degradation. Subsequently, with experimental analysis.

Guu (2005), investigated the surface morphology, surface roughness and micro crack

of EDMed AISI D2 tool steel using Atomic Force Microscope (AFM) and assets that

the discharge energy is the factor which determines the surface texture. The range

of Ip were taken in the range of 0.5 A to 1.5 A and Ton of 3.2 and 6.4 µs. To

avoid excessive machined damage and to get good machined surface with low crack

depth can be attained by setting low pulse energy. Marafona and Araujo (2009)

have reported their research on effect of the workpiece hardness but, they did not

provide conclusive result that hardness significantly effect MRR. They suggested that

the interaction of workpiece hardness with various factors may be responsible for

variation in MRR. Whereas, the surface roughness obtained is marginally influenced

by workpiece hardness. The workpiece hardness does effects MMR and Ra of AISI

D2 material, but the effect is negligible in comparison to other factors.

Pradhan et al. (2009a) have presented a radial basis function and a back propaga-

tion neural network model for the prediction of surface roughness. The input param-

eters used for this investigation were Ip, Ton and duty fraction and both the models

could predict surface roughness with reasonable accuracy. However, radial basis func-

tion was faster and the back propagation is reasonably more accurate model. Further,

Pradhan et al. (2009b) presented a second order regression model and ANOVA is used

to check the sufficiency of the model and compared with the radial basis function and

a back propagation models. The model predictions were compared with experimental

data and prediction errors have been calculated for a different set of testing data and

were found to be successful, for reliable prediction of Ra and it is found that the ANN

models are comparatively more accurate. Pradhan and Biswas (2009) A neuro-fuzzy

model and a regression model was developed to predict MRR, experiments were con-

ducted with various levels of Ip, Ton and duty fraction. The models predictions were

compared and found that the neuro fuzzy model has better predictive capability than

the regression model.



1. Introduction 29

Available literature on die sinking and related electro discharge machining of D2

steel is summarised in Table 1.1. The table shows that machining of D2 steel has

been reported by Lee et al. (1988), whereas, Guu and Hocheng, 2001b; Guu et al.,

2003 has reported their works on EDM Turning of the same tool steel. They also

reported an AFM study of D2 with die sinking EDM.
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Table 1.1: Comparative analysis on research on AISI D2 steel and copper

tool

Author Dielectric Ip Ton Tau V Other Responses studied Major finding

Lee Paraffin 5, 7.5, 50, 100, 33, 50, WLT WLT ∝ Pulse energy

1988 (Somentor31) 15, 25 220, 68,80 30 WLT no effect material type

400, 85,88 SR WLT ∝ Ra but scatted

600, Empirical modelling

800 of WLT & Ra

Guu Kerosene 1,5 20, 50,83, RMP=0, MRR MRR ∝ Ip,Ton&speed

2001 10 100, 90,93 1200, SR SR ∝ 1/Ip, ∝ 1/Ton

180, 2200 ∝ & 1/ Rotational speed

260 5000 EDM Turning

Guu Kerosene 1, 5 20, 50, 83 WLT WLT ∝Ip and Ton

2003 10 100 90,93 SR Good SR ∝ 1/ Pulse energy.

180 RS ∝ 1/ Pulse energy.

EDM Turning

Guu Kerosene 0.5, 1 3.2, SR and SR ∝ Pulse energy

2005 1.5 6.4 µ cracks AFM for µ cracks

(continued on next page)
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Table 1.1: Comparative analysis on research on AISI D2 steel and copper

tool.(Contd.)

Author Dielectric Ip Ton Tau V Other Responses studied Major finding

EDM die sinking

EDM Turning

Marafona 10, 16 50 2 Ram MRR MRR ∝ Ip, Tau,

2009** 11, 18 65 4 Speed and Ram speed,

and 19 80 6 350 SR Ra ∝ Ip, Ton,

12 525 Tau, Comp, ram

700 speed, hardness

Pradhan EDM 1,5 5, 10, 20 50 50 SR BPN is Accurate

2009* Oil 10,20 30, 50 93 RBFN is faster

30,50 100, 200

Pradhan EDM 1,5 5, 10, 20 50 50 SR SR ∝ Ip and Ton

2009a Oil 10,20 30, 50 93 ANN models are

30,50 100, 150 comparatively more

200, 500 accurate than

750 Regression model

(continued on next page)
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Table 1.1: Comparative analysis on research on AISI D2 steel and copper

tool.(Contd.)

Author Dielectric Ip Ton Tau V Other Responses studied Major finding

Pradhan EDM 10 50 50 50 MRR MRR∝ Ip and Ton

2009b* Oil 20 100 85 Neuro fuzzy predicts

30 150 93 more accurately than

regression model

** 1 quenched and tempered specimen and 1 Normalised specimen.* These papers are Outside the scope of present work.
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1.4 Research scope and Problem statement

Surface integrity and surface finish are two facets affecting quality of an EDMed com-

ponent. Further, productivity is constantly a matter of concern with a high level

of accuracy for any process, rather it is the driver of economic growth of industry.

Therefore, it is always desirable to have machining with maximum MRR, minimal

TWR and minimum radial OC, along with better surface integrity. Various research

works carried out with workpiece materials like tool steels, ceramics, composites and

titanium alloys. Among the tool steels, AISI D2 is treated as a material that is

difficult to machine, which has a wide range of application in die and mould mak-

ing and often machined by EDM. From the available literature, it can be seen that

a comprehensive knowledge of electro discharge machining with a wide parametric

range is lacking, especially the modelling of MRR, TWR and OC with Neuro-fuzzy

technique. Also, FEM modelling of residual stresses on EDMed D2 steel is not been

attempted. Experimental work and RSM modelling of WLT, SCD and SR has not

been reported yet. Modelling of the process is required for its better understanding of

the influence of the machining parameters on the responses. An exact model will help

the experimenter to trim down the experimental cost associated with it and optimise

the process by setting the required objective.

Thus, the objectives of proposed investigation are as follows,

1. Experimental study of the machining parameters influencing WLT, SCD using

RSM model and determining the optimum setting to minimise WLT.

2. To determine the optimal setting of parameters for minimal Surface Roughness

applying RSM.

3. Finite element simulations of residual stresses in EDMed components and its

parametric study with partial experimental validation.

4. Experimental study of the parameters influencing MRR, TWR and OC and

development of soft computing based predictive models and analysis of influence

of machining parameters.
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Title of the thesis is “Experimental investigation and modelling of surface integrity,

accuracy and productivity of AISI D2 steel in EDM”.

1.4.1 Research Design

Appropriate experimental plan is considered necessary to realize the high-quality

results in carrying out research. In this thesis, the equipments used in this research

are explained in Appendix A.

Research Design Variables: The design variables are expressed into two most

important category, namely response parameters and machining parameters.

The response parameters include:

1. Material removal rate (MRR)

2. Tool wear rate (EWR)

3. Overcut (OC)

4. Surface Roughness (SR)

5. White layer thickness (WLT)

6. Surface Crack Density (SCD)

7. Residual Stress (RS)

Machining Parameters:

1. Pulse Current (Ip)

2. Pulse duration (Ton)

3. Duty Cycle (Tau)

4. Discharge Voltage (V )
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A summary of the research flowchart is shown in Fig. 1.3.
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Fig. 1.3: Research Design Flow Chart
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1.5 Summary of chapters

The present work is an effort to develop various prediction models from the experiment

trials. Analysis and discussion are made on the quality, productivity and accuracy

of EDM process. The quality is analysed in terms of surface integrity of the EDMed

product. Surface integrity includes analysis of WLT, SCD, SR and Residual stresses

in the surfaces and sub-surface layers. Productivity relates to maximise MRR and

accuracy related to minimise TWR and OC. The thesis is divided into six chapters. In

the first chapter, an introduction and reviews of the literatures related to die sinking

EDM are discussed.

Chapter 2: In this chapter, RSM models are used to investigate the effects of

process parameters on the WLT and SCD. Important machining parameters like Ip,

Ton, Tau and V are considered for investigation. The measurements of WLT and

SCD are performed on SEM micrograph. Optimal parameter setting for minimum

WLT was obtained and the confirmatory tests were conducted and compared using

the prediction errors.

Chapter 3: In this chapter, a RSM model to predict the surface roughness is

described, and the influences of the process parameters on Ra values are studied.

Qualitative assessment of the surface characteristic is attempted with the help of

SEM micrographs.

Chapter 4: The finite element modelling of residual stress using the commercial

package ANSYS is presented in this chapter. Hence, a simplified 2D axisymmetric

FEM model is developed to assess the temperature distribution, thermal stresses and

residual stress created by a single spark during EDM.

Chapter 5: Soft computing approaches have recently emerged as a highly promis-

ing alternative to physically based models. The current trend in soft computing

research is concerned with the integration of artificial intelligent tools (neural net-

works, fuzzy technology, and evolutionary algorithms.) in a complementary hybrid

framework for solving complex problems. The present work is concerned with the

modelling of EDM process by the pioneering Neuro-Fuzzy models (Mamdani and

Sugeno types) and ANN (back propagation) for the prediction of MRR. TWR and
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Radial OC. The influence of the process parameters is analysed and the predictive

capability of these models is compared for all the responses.

Conclusively, the intention of this thesis is to develop predictive process models

of EDM of AISI D2 tool steel that is capable of predicting the responses such as

WLT, SCD, SR, RS, MRR, TWR and Radial OC. In addition, this thesis makes an

attempt to explain the effect of various machining factors on these responses using

three different approaches. The major achievements and contributions of the present

thesis have been summarised in Chapter 6 and scope for further research has been

enumerated.
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2. RESPONSE SURFACE MODEL FOR PREDICTION OF
WHITE LAYER THICKNESS AND SURFACE CRACK DENSITY

2.1 Introduction

With the development of workpiece material of better hardness, strength and higher

temperature resistance, it has become difficult to process them by conventional ma-

chining methods. Extensive research and development in the field has finally shown

the way to a number of modern machining methods to machine such “difficult to ma-

chine” materials. Electro-Discharge Machining (EDM) is one of such modern machin-

ing process, which has been used extensively primarily in automobile, aircraft, tool,

die, and mould making industries. The EDMed surface is created by a sequence of

distinct precisely controlled spark produced between electrodes, which create craters

in the exposed surface. This process is suitable for machining any conducting ma-

terials regardless of its hardness, brittleness, strength, or toughness of the workpiece

and the tool doesn’t have to be harder than the workpiece as there is no mechanical

contact during machining. The electrical discharges generate impulsive pressure by

dielectric explosion to remove the melted material. Due to rapid local heating and

quenching and random attack of the spark, a multi layered surface is created on the

workpiece. This consists of three layers namely: recast or white layer on the top of

the work surface, the Heat Affected Zone (HAZ), and the transformed layer, where

a change in grain structure from the base structure is apparent [Kruth et al., 1995]

as shown (Fig. 2.1). The formation of these layers depends on the process condi-

tions and workpiece properties like chemical composition and thermal conductivity

[Ramasawmy et al., 2005]. The molten material produced during the spark is partly

flushed away by the dielectric, and the rest re-solidifies that forms the white layer

at the top. It has altered metallurgical structure after going through the extremely

high energy thermal process accompanied by dielectric cooling process. This layer
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usually differs significantly from the base material and it is typically very fine grained

and hard. It may be alloyed with carbon released from the cracked dielectric or with

material transferred from the tool. It is observed that the white layer contains pock

marks, pores, micro-cracks (Fig: 2.2) and also the residual stress are developed (see

Chapter 4), which are unfavourable for the functional behaviour of the components.
 

      } White Layer Thickness 

      } Heat Affected Zone 

 Transformed Layer 

Parent Material 

Fig. 2.1: Surface layers in EDMed workpiece

The next layer, the HAZ is the base material that has been structurally altered

by the heat produced during EDM, due to elevation to the austenitising temperature

range. This zone may contain reharden or hard, brittle, untempered martensite that

formed during the rapid cooling from this temperature. This can be expected to

increase crack susceptibility, because this microstructure stores considerable strain

energy that decomposes with heat. Below this layer usually a transformed layer

exists where the temperature attained is not as high, and the hardness is therefore,

less than the original material. The relative depth of these layers, and even their

presence, depends on what type of EDM method used.

The quick heating and cooling effect in EDM persuade a high-temperature gradi-

ent within the heat affected area and therefore cause a significant stress within the

machined surface. The formation of crack is due to the differential of high contrac-

tion stresses induced during the EDM process. When the induced stress exceeds the

material’s ultimate tensile strength there is formation of crack in the EDMed surface

[Lee et al., 1992].

To enhance the life of the EDMed product, the recast layer is normally removed

as this layer plays a critical role particularly for applications in which the part is
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Fig. 2.2: SEM Micrograph (at 1000x) of an EDM surface showing globules and micro-cracks
and pores.

subjected to cyclical stress or fluctuating loads. It is usually observed that the cracks

are initiated from the top surface and propagate in the white layer and terminate

at the white layer and HAZ interface, and rarely do they cross the HAZ. It is well

known fact that for characterisation of quality of EDMed component surface plays a

vital role. The component having a good surface improves the fatigue strength, wear

resistance and corrosion resistance of the surface [Tai and Lu (2009)]. Consequently,

the white layer must be removed either by hand polishing, etching or heat treatment,

to improve the properties and make the component functional. Instead, burnishing

or shot peening is also employed in order to impose a compressive residual stress

regime. Usually with abrasive grains such as silicon carbide, alumina, or diamond,

are used to polish the surface in the presence of a lubricant, to achieve the mirror-like

finish. The polishing must be done appropriately just to remove the white layer,

which causes damage to the component, but excessive polishing may lead to removal

of excess material and loose precision. However, such processes are supplementary

and may increase cost and time. Therefore, it is necessary to determine/predict the
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WLT appropriately, which is produced by a given set of machining condition and

ultimately, by removing that exact thickness the required tolerance and dimension

can be achieved, else the component may be rejected as defective item.

Even though several illustration of surface cracking, surface damage in EDM of

AISI D2 steel were presented and the formation of cracks are elucidated in terms

of white layer composition, and the process parameters, such as Ip and Ton, the

studies are limited in the higher range of these parameters, also parameters such as

Duty Cycle (Tau) and discharge Voltage (V ) are rarely included. Thus, in this study

attempt have been made to visualise the effect of lower range of Ip, Ton along with the

process parameter Tau and V. In addition, the modelling of WLT and Surface Crack

Density (SCD) of D2 steel in EDM using Response Surface Methodology (RSM) with

the above machining parameters is carried out.

2.2 Experimentation

2.2.1 Equipment and workpiece material

Experiments were conducted to study the effects of four machining parameters; Ip,

Ton, Tau and V on WLT and intensity of cracking of AISI D2 tool steel on die

sinking EDM (Appendix A). An electrolytic pure copper with a diameter of 30

mm was used as a tool electrode (reverse polarity). Appendix A shows the detail

of workpiece materials. The workpiece was of size 35 × 35 mm square and 4 mm

thick. Commercial grade EDM oil was used as dielectric fluid. Lateral flushing with

a pressure of 0.4 kgf/cm2 was used.

2.2.2 Experimental Procedure

CCD was used to conduct the experiments with four variables, having sixteen cube,

eight axial and six central points, in total of 30 runs in three blocks [Minitab14 (2003)].

The different levels of factors considered for this study are illustrated in Table 2.1.

Machining was carried out to remove approximately 1 mm from the top surface.

Table 2.2 presents run order, point type (Pt Type), block, the various combination

of input parameters and the responses (Crack length and WLT) obtained from these

experimentations.



RSM modelling of white layer thickness and surface crack density 43

Table 2.1: Input variables used in the experiment and their levels.

Variable Unit levels
1 2 3

Discharge current(Ip) A 1 5 9
Pulse on time(Ton) µs 50 75 100
Duty Cycle(Tau) % 80 85 90
Voltage(V ) volt 40 50 60

2.3 Measurement of Responses

2.3.1 Measurements of White Layer Thickness

In order to compute the thickness of the white layer, after EDM operations, the cross-

section (Fig. 2.3) of each specimen was cut off and polished successively with silicon

carbide papers of grit sizes 120, 220, 320, 400, and 800. Finally, the surface was

subsequently electro polished with a slurry of Trinity diamond compound and HIFIN

Fluid “OS” Type. This was necessary in order to expose the white layer structure and

the boundary line. The micrograph of white layer was then seen at magnification of

500× under Scanning Electron Microscopy (SEM) (Model; Jeol JSM-6480LV, Japan)

for the analysis. The area of white layer was measured on each SEM micrograph and

the mean deposition of white layer was obtain on division of the measured area by

the length of the micrograph (i.e. 258µm). The observations are tabulated in Table

2.2 as column ‘WLT’.

2.3.2 Measurements of Surface crack density

The EDMed surfaces were viewed from top under the SEM at 1000× magnification.

The measurement of surface cracks was carried out by measuring the length of cracks

on randomly selected six sample areas on each specimen, which are tabulated in

Table 2.2. The average crack length on each specimen is divided by the micrograph

area (12400 µm2) to obtain the SCD and these are tabulated in Table 2.3 as column

‘Average SCD expt’.
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Fig. 2.3: Cut section of workpiece

2.4 Planning based on RSM

RSM is a collection of mathematical and statistical techniques that are useful for

modelling and analysis of problems in which output or response is influenced by several

input variables and the objective is to find the correlation between the response and

the variables investigated (Appendix B). The second-order model is normally used

when the response function is not known or non-linear and the same is adopted. The

experimental values are analysed and the mathematical model is then developed that

illustrate the relationship between the process variable and response. The following

second-order model explains the behaviour of the system.

Y = β0 +
k
∑

i=1

βiXi +
k
∑

i=1

βiiX
2
i +

k
∑

i,j=1,i 6=j

βijXiXj + ǫ (2.1)

where Y is the corresponding response, Xi is the input variables, X2
ii and XiXj

are the squares and interaction terms, respectively, of these input variables. The

unknown regression coefficients are βo, βi, βii and βij and the error in the model is

depicted as ǫ.

Minitab14 (2003)(a statistical software package) was used to estimate the coeffi-

cient of regression Equation 2.1 from the data obtained from the experiments. The

response surface models are developed, which are used to predict the results by iso-
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response contour plot and 3D response surface plots to study the main effect of the

variables and the mutual interactions between the variables of the responses.

2.5 Elucidation of response model for WLT

The effect of the machining parameters (Ip, Ton, Tau and V ) on the response variable

WLT was evaluated by conducting experiments as described in Section 2.2. Minitab

software was used to find out the relationship between the input factors and the re-

sponse WLT. To decide the degree of the regression model, the values of the coefficient

of determination (R2) and adjusted R2-statistic (R2
adj) are compared and summarised

in Table 2.4 for various models. The full quadratic model is the best among all the

models, listed in the table, where R2 = 95.8% indicates that 95.8% of total variation

in the response is explained by predictors or factors in the model. However, R2
adj is

90.7%, which accounts for the number of predictors in the model describe the signifi-

cance of the relationship. Therefore, the full quadratic model is considered for further

analysis in this study.

Table 2.5 represents the regression coefficients in coded units and its significance

in the model. The columns in the table correspond to the terms, the value of the

coefficients (Coef.), and the standard error of the coefficient (SE Coef), t-statistic

and p-value to decide whether to reject or fail to reject the null hypothesis. To

test the adequacy of the model, with a confidence level of 95%, the p-value of the

statistically significant term should be less than 0.05. The terms marked “*” in the

last column of the table are exceeding 0.05 value. Thus, these terms are insignificant

and therefore eliminated for the further analysis. The blocking does not have any

significant effect on the response, which reveals that the uncontrollable factors of the

experiment conducted were held constant. The backward elimination process discards

the insignificant terms to adjust the fitted quadratic model. The model, with rest of

the terms after elimination, is presented in Table 2.6. After elimination, the values

of R2 and R2
adj are 91.6% and 90.3%, respectively. The truncated model has lower

R2 than that of full quadratic model (95.8%), and R2
adj value is 90.3%, exhibiting

significance of relationship between the response and the variables and the terms of

the adequate model after the elimination are Ip, Ton, Tau, and Ton2.
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ANOVA is used to check the sufficiency of the second-order model, which includes

test for significance of the regression model, model coefficients and test for lack-of-

fit. Table 2.7 summaries the ANOVA of the model that comprises of two sources

of variation, namely, regression and residual error. The variation due to the terms

in the model is the sum of linear and square terms whereas the lack of fit and pure

error contribute to residual error. The table depicts the sources of variation, degree of

freedom (DF), sequential sum square eror (Seq SS), adjusted sum square error (Adj

SS), adjusted mean square error (Adj MS), F statistic and the p-values in columns.

The p-value of lack of fit is 0.74, which is ≥ 0.05, and certainly indicate that there is

statistically insignificant “lack of fit” at 95% confidence level. However, the p-value of

regression model and its all linear and square terms have p-value 0.000, hence they are

statistically significant at 95% confidence and thus the model adequately represent

the experimental data (see Appendix B).

Multi-regression analysis was performed to the data to obtain a quadratic response

surface model and the equation thus obtained in uncoded unit is,

WLT = −105.0236 + 2.006 Ip+ 1.156 Ton+ 0.869 Tau− 0.0065 Ton2 (2.2)

To investigate the influence of the machining parameters on the response WLT

on EDMed AISI D2 steel components, this mathematical model can be used. Es-

timated responses are calculated from the fitted model and the residuals from the

differences between the fitted and observed responses. Table 2.3 presents the ma-

chining parameters for each run order, along with the experimental results (expt.),

the predicted response (Pred.) and the residues (Resi.). Where the residues are the

difference between the experimentally observed data and the model predictions. The

predicted values of WLT achieved using Equation 2.2 are close to the experimental

values confirming the sufficiency of the model (Table 2.3) and the residues are further

analysed in the following section.

The normal probability plot is a graphical technique for evaluating whether a data

set is approximately normally distributed. The standardised residuals are plotted on a

normal probability plot (Fig. 2.4) to check the departure of the data from normality. It
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can be seen that the residuals are almost falling on a straight line, which indicates that

the residues are normally distributed and the normality assumption is valid. Fig. 2.5

depicts the histogram plot of standardised residue for all the observations. The figure

shows the symmetry of the residues. It is in the form of Gaussian distribution (bell

shape), and the residues are distributed with mean zero. In addition, the plot of

the residues verse run order illustrates that there is no noticeable pattern or unusual

structure present in the data as depicted in Fig. 2.6. The residues, which lies in

the range of -4.72 to 4.58 are scattered randomly about zero, i.e., the errors have a

constant variance (Table 2.3). Residual plots are an important accompaniment to

the model calculations and may be plotted against the fitted values to offer a visual

check on the model assumptions. Experimental observations are compared with the

predicted values in Fig. 2.7. It can be examined that the regression model is fairly

well fitted with the experimental values.

Fig. 2.4: Normal plot of residuals for WLT ( The dotted lines show 95% confidance interval).
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Table 2.2: Observation for Crack Length and WLT.

Run Pt Ip Ton Tau V Crack Length in µm WLT

sample no.

Order Type Blocks A µs % volt 1 2 3 4 5 6 µm

1 1 1 9 100 90 40 224.36 192.02 222.02 201.53 219.19 251.09 39.21

2 1 1 9 50 90 60 235.56 265.49 169.27 128.21 253.94 151.91 31.23

3 1 1 1 100 90 60 776.05 678.56 813.95 698.64 807.38 781.48 25.68

4 1 1 1 100 80 40 664.28 702.68 596.09 766.68 664.62 677.34 16.81

5 0 1 5 75 85 50 308.14 245.64 170.43 308.27 239.75 288.28 26.00

6 1 1 9 100 80 60 188.62 217.01 210.97 240.38 254.60 201.86 37.02

7 1 1 9 50 80 40 210.83 215.56 159.64 157.94 224.92 120.25 19.43

8 0 1 5 75 85 50 361.90 237.03 281.96 190.45 248.21 301.67 25.51

9 1 1 1 50 80 60 688.63 709.18 644.43 551.58 683.11 563.03 9.43

10 1 1 1 50 90 40 579.10 518.88 677.52 550.65 606.27 551.97 19.50

11 1 2 9 50 90 40 140.25 273.25 107.08 209.89 205.70 198.32 32.85

12 1 2 9 100 80 40 195.62 261.58 302.80 175.86 130.97 223.21 31.59

13 1 2 1 50 90 60 679.45 684.27 643.42 732.56 724.74 628.61 18.89

(continued on next page)
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Table 2.2: Observation for Crack Length and WLT.(Contd.)

Run Pt Ip Ton Tau V Crack Length in µm WLT

sample no.

Order Type Blocks A µs % volt 1 2 3 4 5 6 µm

14 1 2 1 100 90 40 724.80 773.73 611.01 638.29 833.49 720.48 23.18

15 1 2 9 100 90 60 265.25 227.61 210.29 227.98 205.62 215.18 46.60

16 0 2 5 75 85 50 255.88 197.5 349.18 233.41 258.62 282.76 31.59

17 1 2 9 50 80 60 273.12 132.64 181.17 144.00 246.36 155.52 25.64

18 1 2 1 100 80 60 832.15 715.05 721.46 809.69 772.66 802.15 17.18

19 0 2 5 75 85 50 315.56 249.99 169.59 217.03 302.64 305.56 27.65

20 1 2 1 50 80 40 618.45 541.23 636.28 644.47 552.55 590.55 6.19

21 -1 3 5 75 85 40 393.01 206.37 323.57 208.64 239.76 256.23 30.07

22 -1 3 5 50 85 50 242.83 166.38 253.26 274.38 203.77 259.95 21.04

23 -1 3 5 100 85 50 362.85 253.49 339.30 257.07 247.35 283.52 29.60

24 -1 3 9 75 85 50 149.34 220.33 192.36 282.47 139.52 242.02 40.59

25 -1 3 5 75 80 50 281.27 240.58 259.63 219.16 222.84 276.49 27.30

26 0 3 5 75 85 50 148.18 235.56 249.8 194.97 490.15 304.88 32.87

27 -1 3 1 75 85 50 711.73 668.24 677.76 578.40 767.48 669.28 22.87

(continued on next page)
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Table 2.2: Observation for Crack Length and WLT.(Contd.)

Run Pt Ip Ton Tau V Crack Length in µm WLT

sample no.

Order Type Blocks A µs % volt 1 2 3 4 5 6 µm

28 -1 3 5 75 90 50 331.61 332.90 335.58 189.08 160.96 148.87 31.66

29 -1 3 5 75 85 60 269.98 279.94 226.56 198.42 318.58 296.52 27.49

30 0 3 5 75 85 50 321.24 262.84 320.31 179.98 218.06 257.55 25.74

PtType 1 indicates a cube point of the design;

PtType 0 indicates a center point;

PtType -1 indicates an axial point;
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Table 2.3: Comparison of experimental and model prediction results for WLT

and SCD.

Run Ip Ton Tau V Average SCD µm/µm2 Average WLT µm

Order A µs % Volt expt Pred. Resi expt Pred. Resi

1 9 100 90 40 0.0176 0.0175 0.0001 39.21 42.02 -2.81

2 9 50 90 60 0.0162 0.0155 0.0007 31.23 32.84 -1.61

3 1 100 90 60 0.0612 0.0616 -0.0004 25.68 25.97 -0.29

4 1 100 80 40 0.0547 0.0564 -0.0016 16.81 17.28 -0.47

5 5 75 85 50 0.0210 0.0211 -0.0001 26.00 29.11 -3.11

6 9 100 80 60 0.0177 0.0178 -0.0001 37.02 33.33 3.69

7 9 50 80 40 0.0146 0.0152 -0.0006 19.43 24.15 -4.72

8 5 75 85 50 0.0218 0.0211 0.0007 25.51 29.11 -3.60

9 1 50 80 60 0.0516 0.0531 -0.0015 9.43 8.10 1.33

10 1 50 90 40 0.0468 0.0478 -0.0010 19.50 16.79 2.71

11 9 50 90 40 0.0152 0.0152 0.0000 32.85 32.84 0.01

12 9 100 80 40 0.0173 0.0175 -0.0002 31.59 33.33 -1.74

13 1 50 90 60 0.0550 0.0531 0.0019 18.89 16.79 2.10

14 1 100 90 40 0.0578 0.0564 0.0015 23.18 25.97 -2.79

(continued on next page)



R
S
M

m
o
d
ellin

g
o
f
w
h
ite

la
y
er

th
ick

n
ess

a
n
d
su
rfa

ce
cra

ck
d
en
sity

5
4

Table 2.3: Comparison of experimental and model prediction results for WLT

and SCD.(Contd.)

Run Ip Ton Tau V Average SCD µm/µm2 Average WLT µm

Order A µs % Volt expt Pred. Resi expt Pred. Resi

15 9 100 90 60 0.0182 0.0178 0.0004 46.60 42.02 4.58

16 5 75 85 50 0.0212 0.0211 0.0001 31.59 29.11 2.48

17 9 50 80 60 0.0152 0.0155 -0.0003 25.64 24.15 1.49

18 1 100 80 60 0.0625 0.0616 0.0009 17.18 17.28 -0.10

19 5 75 85 50 0.0210 0.0211 -0.0001 27.65 29.11 -1.46

20 1 50 80 40 0.0482 0.0478 0.0004 6.19 8.10 -1.91

21 5 75 85 40 0.0219 0.0198 0.0022 30.07 29.11 0.95

22 5 50 85 50 0.0188 0.0184 0.0004 21.04 20.47 0.57

23 5 100 85 50 0.0234 0.0238 -0.0004 29.60 29.65 -0.05

24 9 75 85 50 0.0165 0.0165 0.0000 40.59 37.13 3.46

25 5 75 80 50 0.0202 0.0211 -0.0009 27.30 24.77 2.53

26 5 75 85 50 0.0218 0.0211 0.0007 32.87 29.11 3.76

27 1 75 85 50 0.0547 0.0547 0.0000 22.87 21.09 1.78

(continued on next page)



R
S
M

m
o
d
ellin

g
o
f
w
h
ite

la
y
er

th
ick

n
ess

a
n
d
su
rfa

ce
cra

ck
d
en
sity

5
5

Table 2.3: Comparison of experimental and model prediction results for WLT

and SCD.(Contd.)

Run Ip Ton Tau V Average SCD µm/µm2 Average WLT µm

Order A µs % Volt expt Pred. Resi expt Pred. Resi

28 5 75 90 50 0.0201 0.0211 -0.0010 31.66 33.46 -1.80

29 5 75 85 60 0.0214 0.0225 -0.0011 27.49 29.11 -1.62

30 5 75 85 50 0.0210 0.0211 -0.0001 25.74 29.11 -3.37

Table 2.4: R2 and R2
adj test for WLT regression model.

Degree of model R2(%) R2
adj(%)

Linear 91.0 88.7
Linear + square 94.0 90.8
Linear + interaction 92.8 87.8
Full quadratic 95.8 90.7
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Table 2.5: Estimated Regression Coefficients for WLT (Before elimination).

Term Coef SE Coef t p
Constant 28.2619 0.9984 28.307 0.000
Block1 -1.1709 0.7426 -1.577 0.139*
Block2 -0.0168 0.7426 -0.023 0.982*

Ip 8.0239 0.6236 12.868 0.000
Ton 4.5928 0.6236 7.365 0.000
Tau 4.3450 0.6236 6.968 0.000
V 1.1297 0.6236 1.812 0.093*

Ip×Ip 2.2439 1.6605 1.351 0.200*
Ton×Ton -4.1661 1.6605 -2.509 0.026
Tau×Tau -0.0061 1.6605 -0.004 0.997*

V×V -0.7083 1.6605 -0.427 0.677*
Ip×Ton 1.0269 0.6614 1.553 0.145*
Ip×Tau -0.0894 0.6614 -0.135 0.895*
Ip×V 0.7444 0.6614 1.125 0.281*

Ton×Tau -0.6069 0.6614 -0.918 0.376*
Ton×V 0.5294 0.6614 0.800 0.438*
Tau×V -0.4744 0.6614 -0.717 0.486*

S = 2.646 R2 = 95.8% R2
(adj) = 90.7%

Table 2.6: Estimated Regression Coefficients for WLT (After backward elimination).

Term Coef SE Coef T P
Constant 29.111 0.7809 37.276 0.000

Ip 8.024 0.6376 12.584 0.000
Ton 4.593 0.6376 7.203 0.000
Tau 4.345 0.6376 6.814 0.000

Ton× Ton -4.051 1.0082 -4.018 0.000
S = 2.705 R2 = 91.6% R2(adj) = 90.3%

2.6 Elucidation of response model for SCD

The experiments are conducted as per the experimental plan described in Section 2.2

and estimated the influence of process parameters (Ip, Ton Tau and V ) on the re-

sponse SCD. To find out the relationship between the input factors and the response

SCD, Minitab software was used as descried in Section 2.5. In Table 2.8, R2-statistic

(R2) and adjusted R2-statistic (R2
adj) are reviewed to choose the degree of regression
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Table 2.7: The ANOVA for the fitted WLT models.

Source DF Seq SS Adj SS Adj MS F P
Regression 4 1996.57 1996.57 499.142 68.20 0.000

Linear 3 1878.40 1878.40 626.133 85.55 0.000
Square 1 118.17 118.17 118.170 16.15 0.000

Residual Error 25 182.96 182.96 7.319
Lack-of-Fit 10 56.16 56.16 5.616 0.66 0.740
Pure Error 15 126.80 126.80 8.453

Total 29 2179.53

for SCD model. It can be clearly seen that the full quadratic model has highest

value of R2 and R2
adj, where R

2 = 99.8% indicates that 99.8% of total variation in

the response is explained by predictors or factors in the model. On the other hand,

R2
adj is 99.6%, which accounts for the number of predictors in the model describes

the significance of the relationship. Thus, the full quadratic model is considered for

further analysis in this study similar to WLT.

Table 2.9 represents the regression coefficients in coded units and its significance

in the model. The columns in the table correspond to the terms, the value of the

coefficients (Coef.), and the standard error of the coefficient (SE Coef), t-statistic

and p-value to decide whether to reject or fail to reject the null hypothesis as de-

scribed earlier in Section 2.5. Thus the terms marked “*” are insignificant terms and

are discarded for further analysis. Insignificance of blocking reveals that the uncon-

trollable factors of the experiment conducted were held constant. The model, with

rest of the terms after elimination, is presented in Table 2.10. After elimination of

non-significant terms, the values of R2 and R2
adj are 99.7% and 99.7%, respectively.

The truncated model has lower R2 value than that of full quadratic model (99.8%),

and R2
adj value is 99.6%, exhibiting significance of relationship between the response

and the variables and the terms of the adequate model after the elimination are Ip,

Ton, V, Ip × Ip, Ip × Ton and Ip × V.

To check the sufficiency of the SCD model, AVOVA was used and shown in Ta-

ble 2.11. It can be observed that the p-value of lack of fit is 0.59 (≥ 0.05), and

indeed specify that there is statistically insignificant “lack of fit” at 95% confidence
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level. Nevertheless, the p-value of regression model and its all linear and square terms

have p-value 0.000, therefore they are statistically significant at 95% confidence and

consequently the model adequately represents the experimental data.

Multi-regression analysis was performed to the data to obtain a quadratic response

surface model and the equation thus obtained in un-coded unit was,

SCD = 0.0388− 0.0111 Ip+ 0.000187 Ton+ 0.000296 V

+ 0.000905 Ip2 − 0.0000156 Ip× Ton− 0.0000316 Ip× V (2.3)

To investigate the influence of the machining parameters on the response SCD

in EDMed AISI D2 steel components manufactured, this mathematical model can

be used. The predicted values of SCD achieved using Equation 2.3 were close to

the experimental values confirming the sufficiency of the model. The experimental

results of SCD along with the predicted values and residuals in the run order of design

matrix are tabulated in Table 2.3. To show the sufficiency of the model the residues

are analysed in the following section.

This mathematical model has been obtained to reflect the independent, quadratic,

and interactive effects of the various machining parameters on the EDM process.

The normal probability plot of residuals for SCD is illustrated in Fig. 2.8; this graph

plots the residuals versus their expected values when the distribution is normal. The

residuals from the analysis should be normally distributed. It can be seen that the

residuals are almost falling on a straight line, which indicates that the residues are

normally distributed and the normality of errors assumption is valid. It could be

noted that the residue is the difference of experimentally observed data and the

model predictions. The figure shows the symmetry of the residues. Few point exhibit

significantly large variation and are plotted as outliers as encircled in Fig. 2.8. The

standardised residues are within ±2 and few points are marginally outliers due to

measurement error in estimating the crack length from SEM micrograph. Fig. 2.9

depicts the histogram plot of standardised residue for all the observations. It is in the

form of Gaussian distribution (bell shape), and the residues are distributed with mean

zero. In addition, the plot of the residues verse run order illustrates that there is no

noticeable pattern or unusual structure present in the data as depicted in Fig. 2.10.
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Fig. 2.8: Normal plot of residuals for SCD.
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Fig. 2.9: Histogram plot of residuals SCD.



RSM modelling of white layer thickness and surface crack density 60

Fitted Value (µm/sq-µm)

S
ta

n
d
ar

d
iz

ed
 R

es
id

u
al

0.060.050.040.030.020.01

2

1

0

-1

-2
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Fig. 2.11: Predicted vs. experimental SCD.
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Further, the plot of the residue versus fitted value of SCD is illustrates that there is

no noticeable pattern or unusual structure present in the data as depicted in Fig. 2.10.

The residues, which lies in the range of -0.0016 to 0.0022 are scattered randomly about

zero, i.e., the errors have a constant variance. Further, each experimental observation

is compared with the predicted value in Fig. 2.11. It can be examined that the

regression model is fairly well fitted with the experimental values.

Table 2.8: R2 and R2
adj test for SCD regression model.

Degree of model R2(%) R2
adj(%)

Linear 87.1 83.7
Linear + square 99.0 98.5
Linear + interaction 87.8 79.2
Full quadratic 99.8 99.6

Table 2.9: Estimated Regression Coefficients for SCD (Before elimination).

Term Coef SE Coef T p
Constant 0.021229 0.000402 52.783 0.000
Block 1 -0.000364 0.000299 -1.216 0.246*
Block 2 0.000476 0.000299 1.592 0.135*
Ip -0.019111 0.000251 -76.081 0.000
Ton 0.002711 0.000251 10.793 0.000
Tau 0.000339 0.000251 1.349 0.200*
V 0.001383 0.000251 5.507 0.000
Ip×Ip 0.014555 0.000669 21.759 0.000
Ton×Ton 0.000055 0.000669 0.082 0.936*
Tau×Tau -0.000895 0.000669 -1.339 0.204*
V×V 0.000605 0.000669 0.904 0.383*
Ip×Ton -0.001562 0.000266 -5.865 0.000
Ip×Tau -0.000087 0.000266 -0.328 0.748*
Ip×V -0.001263 0.000266 -4.739 0.000
Ton×Tau -0.000063 0.000266 -0.235 0.818*
Ton×V -0.000062 0.000266 -0.235 0.818*
Tau×V 0.000062 0.000266 0.235 0.818*
S = 0.001066 R2 = 99.8% R2

(adj) = 99.6%
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Table 2.10: Estimated Regression Coefficients for SCD (After backward elimination).

Term Coef SE Coef T P
Constant 0.021133 0.000289 73.002 0.000
Ip -0.019111 0.000236 -80.853 0.000
Ton 0.002711 0.000236 11.470 0.000
V 0.001383 0.000236 5.852 0.000
Ip×Ip 0.014478 0.000374 38.739 0.000
Ip×Ton -0.001562 0.000251 -6.232 0.000
Ip×V -0.001263 0.000251 -5.036 0.000
S = 0.001003 R2 = 99.7% R2(adj) = 99.7%

Table 2.11: The ANOVA for the fitted SCD models.

Source DF Seq SS Adj SS Adj MS F p
Regression 6 0.008315 0.008315 0.001386 1377.99 0.000
Linear 3 0.006741 0.006741 0.002247 2234.36 0.000
Square 1 0.001509 0.001509 0.001509 1500.68 0.000

Interaction 2 0.000065 0.000065 0.000032 32.10 0.000
Residual Error 23 0.000023 0.000023 0.000001
Lack-of-Fit 8 0.000007 0.000007 0.000001 0.83 0.590
Pure Error 15 0.000016 0.000016 0.000001

Total 29 0.008338
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2.7 Result and discussion

2.7.1 Effect of machining parameters on WLT

The recast layer and HAZ thickness are dependent on heat transfer and the micro

structural change undergone by the workpiece during the EDM process. The existence

of white layer on EDMed surface is anticipated and it is governed by the efficiency of

heat transfer through the rapidly solidifying metal. The heat transfer is a function of

the amount of heat supplied by pulse energy. The pulse energy emphasised by Ma-

malis et al. (1987), usually quoted in the literature as being an important machining

parameter, is given by

Pulse energy =
∫

t
V (t)Ip(t)dt = V Ip Ton (2.4)

where V (t) and Ip(t) are discharge voltage and current as functions of time t. The

heat transfer during the process is dependent of the spark energy supplied, thus Ip

and the length of Ton as well as Toff are important factors. Pulse current and pulse

duration are important, which in turn establishes the size and depth of the craters

caused by the spark. In other words, if Ip and Ton are reduced then small spark

energy will be supplied, therefore, there will be formation of smaller craters, and less

heat will reduce thickness of the recast layer and HAZ. However, if Toff is more,

which is the time between the end of a spark to the beginning of successive spark,

will allow the workpiece to dissipate the heat and thus lower WLT. The effect of the

machining parameters on the white layer thickness are enlightened distinguishably

and demonstrated by main effect and interaction plots, three dimensional plots and

contour plots.

Fig. 2.12 depicts the plots of the main effects on WLT, those can be used to

graphically assess the effects of the factors on the response. It indicates that Ip,

Ton and Tau have significant effect on WLT, which is supported by the results in

Table 2.6. However, Ip is the most influencing parameter showing a sharp increase of

7.29 µm and 5.75 µm in the mean of WLT when Ip increases from 1A to 5 A and 5A

to 9A, respectively. In addition, the mean of WLT is directly proportional to Ton,

but its main effect is sharply increasing by 8.65 µm when Ton increases from 50 to
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75 µs and then by 0.531 µm when Ton increases for a 75 to 100µs. While, Tau is

also directly proportional to the mean WLT and its effect increases by 7.24 µm in the

range of Tau 80% to 85% whereas it is 1.45 µm in the range of 85% to 90 %.
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Fig. 2.12: Effect of factors on WLT.

The empirical model reported by previous investigators Guu et al. (2003) and Lee

et al. (1988) are compared with the present RSM model for the average thickness of

white layer. It is found that the WLT increases with an increase in Ip and Ton in

all the three cases. The values of WLT reported by Lee et al. (1988) were minimum

as the experiments were conducted with discharge voltage of 30 volt and Toff was

taken as 100 µs therefore, (Tau = 33, 43 and 50 %) and the dielectric used was

Paraffin (Somentor 31). In the present study, though Tau is found to be insignificant

parameter, but its influence cannot be ignored here for comparison, and the graphs

are plotted for the same values (80 % to 90 %) of Tau in Fig. 2.13. The discharge

voltage set in the present study was 50 v, which was higher than that used by Lee

et al. (1988). They have reported that the WLT increases with the pulse energy,

however, referring to Equation 2.4, it can be seen that V is an important factor

which is responsible for pulse energy, thus with lower pulse energy the WLT will

be lower. Moreover, the dielectric (EDM oil) used in the current investigation was

different from that used by Lee et al. (1988) might have caused more deposition of



RSM modelling of white layer thickness and surface crack density 65

white layer. Similarly, in the study by Guu et al. (2003), they also found similar

trend in their study while conducting experiments on EDM turning with kerosene as

dielctric. They have not reported the voltage considered in their study, and probably

this parameter was set beyond the range of the present study, which may be the

reason for variations in the results. Moreover, Guu et al. (2003) has reported that in

EDM turning WLT will be less due to better flushing than die sinking EDM hence, a

subtle comparison may not be possible with the experimental conditions considered

in this study.

Fig. 2.14 contain six interaction plots for various two-factor interactions between

Ip, Ton and Tau. Each pair of the factor is plotted keeping the other factors constant

at the mean level. In each plot, the factors of interest are varied from its low level to

its medium and medium to high level. If the lines in the interaction plot are parallel,

there is no interaction between the process parameters. This implies that the change

in the mean response from low to medium and medium to high level of a factor

does not depend on the level of the other factor. On the other hand, if the lines

are non-parallel, an interaction exists between the factors. The greater the degree

of departure from parallelism, the stronger is the interaction effect. It can be seen

in the figure that none of them are intersecting each other significantly and hence

showing no significant interaction at a confidence level of 95%, which is also evident

from Table 2.6.

Fig. 2.15 (a) and (b) represents contour plot and response surface, respectively, for

WLT in relation to the machining parameters of Ip and Ton. It is seen from the figure

that, the WLT tends to increase significantly with the increase in Ip for any value of

Ton. This can be attributed to the increase in Ip generates stronger sparks causing a

higher temperature and there is a formation of more molten material. The dielectric

used for flushing is unable to flush away progressively the molten metal, and hence

it gets deposited in the parent material. Subsequently, the unflushed molten metal

is quenched, and re-solidifies and thus thicker WLT is formed. However, it can also

be seen with the increase in Ton, the WLT also increases sharply to an extend and

then the increase is comparatively slow, which appears to be vital controlling variable.

With the longer Ton, the produced heat, which is generally very high, conducted deep
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Fig. 2.13: Comparison results for WLT obtained by Guu et al. (2003) and Lee et al. (1988) with different Ip and Ton
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Fig. 2.14: Interaction effect of factors on WLT.

into the material, melts more material, and thus after subsequent quenching, deeper

white layer is formed. However, beyond a certain value of Ton the heat supplied is

distributed to the surrounding and the temperature rise is comparatively less, this

leads to produce comparatively slight increase in the amount of molten material.

Therefore, the initial gradient is sharper than that of later. Hence, the maximum

WLT is obtained at the high peak current (9 A) and the high pulse on time (80 to

100µs) and to minimise WLT, Ip and Ton should be shorten and lengthen the pulse

off time (Toff ), which will allow the heat to dissipate.

The effect of Ip and Tau on the estimated contour and response surface of WLT

is depicted in Fig. 2.16 (a) and (b), respectively, where Ton remains constant at its

mean level of 75µs. It can be noted that, when Ip increases WLT also increases, the

explanation is same, as stated earlier, nevertheless, with the increase in Tau, WLT

also increases. Since, duty cycle (Tau) is the ratio of Ton to pulse period (sum of

Ton and Toff ), for a constant Ton, higher the duty cycle, lower will be Toff and vice

versa. So to achieve lower WLT, the Toff should be high i.e. Tau should be as low

as possible as depicted in the figure.

Finally, Fig. 2.17 (a) and (b) represents WLT as a function of Ton and Tau,
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whereas the Ip remains constant at 5 A. The lowest possible WLT value occurred at

smaller Ton and at smaller Tau as evident from the figure. From these observations,

it can be concluded that Ip, Ton and Tau are directly proportional to the WLT for

the given range of experiments conducted for this test.

2.7.2 Scanning Electron Microscopy (SEM) images for WLT

The typical morphology of an EDMed surface is produced due to the discharge energy

which generates very high temperatures (more than 10, 000◦c) at the point of spark on

the surface of the workpiece, removing the material by melting and vaporisation of the

material, subsequently the molten metal resolidifies and quenched. This material was

heated up to the molten state but neither ejected nor removed by the flushing action

of the dielectric. This resolidified/ recast layer has been called the white layer, and

it contains numerous pock marks, globules, cracks and micro-cracks, whose thickness

and density depends on the process conditions. Under the white layer, other layers

may be noticed, and the number of layers differs from sample to sample as reported

by Kruth et al. (1995).

The micrographs of EDMed surfaces, with the high magnification (500×), for

the machining parameter combination Ip/Ton/Tau/V of 1/75/85/50 is shown in

Fig. 2.18. Keeping other parameters at their mean levels, Fig. 2.18, Fig. 2.19 and

Fig. 2.20 revealed the trend of WLT with increasing Ip=1A, 5A, 9A, respectively. Av-

erage WLT of these micrographs are 22.87 µm, 27.65 µm and 40.59 µm for Ip=1A, 5A,

9A, respectively, showing the increase in WLT with the pulse current. The increase in

average WLT can also be qualitatively scrutinised by the micrographs with increasing

Ip from 1A. Higher discharge current certainly facilitate the rise in temperature of

the machined surface producing more molten metal readily. The flushing pressure of

the dielectric is increasingly inadequate to carry away the additional molten material

produced by higher pulse current. In such circumstances, the vaporisation pressure is

incapable to send out the molten metal away from the surface of the workpiece, and

during subsequent quenching causes the metal to re-solidify on the machined surface

to form the added thickness of white layer.

In the same way, the SEM micrographs for Ton at 50 µs, 75 µs and 100 µs are
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shown in Fig. 2.21, Fig. 2.19 and Fig. 2.22, respectively, maintaining Ip, Tau and

V at 5A, 85% and 50 volt (at their mean level). The respective average WLT are

21.04 µm, 27.65 µm and 29.60 µm, where the increase of WLT can be qualitatively

visualised from the SEM micrographs presented. This increase is probably due to

the reason that with the increase of Ton, the fraction of the supplied spark energy

required for vaporisation decreases and the fraction of melting increases. This will

lead to penetrate heat deep in to the material causing increase of formation of molten

material rather than vaporisation with smaller Ton. The increased molten material

is not able to increasingly flush away by the constant flushing pressure provided.

Hence, partly resolidify during subsequent quenching and forms white or recast layer,

the thickness of which is higher for higher Ton as depicted in the figures.

With increasing duty factor, Tau = 80%, 85% and 90%, the SEM micrograps are

presented in Fig. 2.23, Fig. 2.19 and Fig. 2.24, respectively, and the corrosponding

WLT are 27.3µm, 27.65µm and 31.66µm. WLT increases slightly with increase in

Tau, as compared to Ip and Ton. As revealed in Section 2.7.1, Tau increases with the

decrease in pulse off time (Toff ) and vice-versa, which is the time between the end

of a spark and the next spark. This is the time during which the molten material is

flushed away by the dielectric. With larger Tau, Toff is small, therefore there is less

time to flush the molten material, which resolidifies on the machined surface resulting

in thicker whitelayer.
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Fig. 2.18: SEM snap WLT at 1/75/85/50 Fig. 2.19: SEM snap WLT at 5/75/85/50 Fig. 2.20: SEM snap WLT at 9/75/85/50

Fig. 2.21: SEM snap WLT at 5/50/85/50 Fig. 2.22: SEM snapWLT at 5/100/85/50

Fig. 2.23: SEM snap WLT at 5/75/80/50 Fig. 2.24: SEM snap WLT at 5/75/90/50
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2.7.3 Effect of the machining parameters on SCD

EDM process is very complex due to rapid local heating, quenching and random

attack of the spark. At each discharge, the local temperature increase more than the

boiling points of the material. The thermal nature of the EDM process, which involve

melting/ vaporisation followed by rapid cooling/ quenching, results in surface damage

in the form of crack formation, coupled with the development of high thermal stresses

exceeding the fracture strength of the material, as well as with plastic deformation.

Cracks, typically refer to as micro-cracks, caused by incompatible internal permanent

strains due to quick local heating cycle. These are initiated at the machined surface

and propagate through the recast layer. The white layer is so compactly penetrated

with carbon that it has a separate and distinct structure, absolutely diverse from

that of parent material. Carbon enhancement of the white layer takes place when

the hydrocarbon dielectric breaks down and enters into the workpiece surface while

it is molten and hot. Due to increased carbon content and alloying effects from the

tool electrode, the brittleness of the ‘white layer’ increases, which is favourable for

crack generation. However, the length and density of cracks depend on the pulse

energy and also on the thermal properties of the workpiece material [Mamalis et al.,

1987]. The pulse energy is the function of pulse current, pulse duration and discharge

voltage and the effect of theses machining parameters are illustrated by main effect

and interaction plots, contour plot and three dimensional response surface plots as

well as SEM micrograph.

In Fig. 2.25, the mean response curves are showing the influence on the SCD by

various process parameters Ip, Ton, Tau and voltage are presented. It is an estimate

of the effect of an input parameter that independently expresses the alteration in

response due to an alteration in that parameter, regardless of other parameters that

may be present in the system. In this case, Ip, Ton and voltage have significant effect

on SCD and it is also supported by Table 2.9. Also it can be observed that the Ip is

the most influencing factor followed by Ton and V, however, Tau does not have any

impact on SCD. The results of which show that SCD decreases with the increasing of

Ip, although SCD decreases by 0.033588 µm/µm2 with the increase in Ip from 1A to
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5 A and then by 0.004633 µm/µm2 for the increase of Ip from 5A to 9A. SCD increase

by 0.0054 µm/µm2 when Ton increase from 50 µs to 100µs with min SCD of 0.02355

µm/µm2 occurring at 75 µs. It increases by 0.0028 µm/µm2 with the increase of V

from 40 to 60 volt and the optimal value (0.02345 µm/µm2) occurring at V=50.

Fig. 2.26 contain six interaction plots for various two-factor interactions between

Ip, Ton Tau and V. Interaction plots are created by plotting both variables jointly

on the same graph, and the distinguishing feature of strong interactions is the degree

of non-parallelism between the lines. On this basis, it is obvious that there is a

interaction exists between Ip × Ton and Ip × V for the SCD for a confidence level

of 95%, which is also evident in Table 2.10. These interacting factors contribute to

higher pulse energy and also increase the white layer thickness.

Fig. 2.27 (a) and (b) represents contour plot and response surface, respectively,

for SCD in relation to the machining parameters of Ip and Ton. It is seen from

the figure that, the SCD tends to decrease significantly with the increase in Ip for

any value of Ton. When Ip increases, due to the production of higher spark energy,

there is increase in white layer thickness, because the constant rate of flushing is

unable to increasingly flush away the additional molten material produced, which

gets deposited and overlays on the crack surface and try to fill it. It is also evident

from Fig. 2.28 that the visible cracks are partially hidden under the overlayed layers.

However, it can also be seen with the increase Ton the SCD also increases sharply to

certain extend and then the increase is comparatively slow, which appears to be vital

controlling variable. The most effective erosion of the material takes place during the

EDM is the initial moment during which the when pulse energy released vapourises

the workpiece. If the heat, which is generally very high, is supplied for a shorter

duration, the high heat vaporises the material and is eroded away by flushing. With

better flushing efficiency, the WLT is less as well as reducing cracking phenomena is

observed. However, when the heat is supplied for a longer Ton, the produced heat

is deeply conducted to the material, melts the workpiece, and thus after subsequent

quenching there will be development of more induced thermal stress and thicker white

layer formation. Both of them tends to support the formation of crack. Therefore,

the initial gradient is competitively sharper than that of the ending (Fig. 2.27 (b)).
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Hence, minimum crack density is obtained at a high peak current (9 A) and low pulse

on time (50 µs) and the results confirm that SCD can be reduced by increasing the

pulse current and reducing the pulse-on duration.

The effect of Ip and V on the estimated contour and response surface of SCD are

depicted in Fig. 2.29 (a) and (b), respectively, where Ton remains constant at its mean

level of 75 µs. It can be noted that with the increase in V, SCD also increases. Since,

the pulse energy is directly proportional to voltage and with the increase of pulse

energy cracks increase and so is for the voltage. The crater sizes increase with pulse

energy, as does the length of surface cracks. Furthermore, the cracks can penetrate

into the heat-affected zone depending on pulse energy. The outcome of the study is

similar to the observation of Hascalyk and Caydas (2004). Overall, the results suggest

that surface cracking can be suppressed by increasing the pulse current reducing the

pulse-on duration and keeping the discharge voltage at their lowest level.
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Fig. 2.25: Effect of factors on SCD.

2.7.4 Scanning Electron Microscopy (SEM) images for SCD

Minutely inspecting of the machined surfaces surface under SEM revealed that the sur-

face cracks are frequently micro-cracks. With the high magnification (500×) graphs,

it can be seen clearly that the existence of cracks are limited to the white layer thick-
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Fig. 2.28: SEM micrograph for 9/100/90/60 (SCD=0.01761µm/µm2)
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ness only. Though a lot of cracks exist in the top surface, the transverse sections

portrays a few cracks, which initiated at the top surface, propagates towards the par-

ent material and diminishes on the interface. Hardly ever the cracks go through the

whole thickness of the white layer to extend into the parent material. This advocates

that the mechanism of crack formation is due to solidification shrinkage during the

rapid quenching at the end of discharge and not from the mechanical action of spark.

Machining damage limits the strength to a large extent and establishes the strength

distribution of component since it influences crack growth under stress. Surface cracks

upshot from machining are a common source of failure in EDMed components. The

morphological characteristics of the EDMed surfaces are directly associated to the

input variables. The surface topography observed from the SEM photographs at var-

ious levels of Ip, Ton, Tau and V, as mentioned along with the figures, reveals the

effect of pulse current, pulse duration and voltage on the surface quality of D2 alloy

steel.

The SEM micrographs of the EDM machined surfaces for various Ip keeping other

parameters at their mean level are shown in Fig. 2.30, Fig. 2.31 and Fig. 2.32. On

assessment of the micrographs shown, the associated crack length measured on these

figures are 0.05389 µm/µm2, 0.02086 µm/µm2 and 0.01777µm/µm2, signifies the

diminishing trend of SCD with the increase in pulse current.

Correspondingly, the SEMmicrographs for Ton at 50 µs, 75 µs and 100 µs, keeping

other parameters at their mean level are shown in Fig. 2.33, Fig. 2.31 and Fig. 2.34, re-

spectively. The SCD of the corresponding Ton are 0.02042 µm/µm2, 0.02086 µm/µm2

and 0.02494 µm/µm2. Qualitatively, it is clear from the micrograph that SCD is di-

rectly proportional to Ton. Similar observation has been reported by Lee and Tai

(2003).

The SEM micrograph for discharge voltage at 40, 50 and 60 volt are also depicted

in Fig. 2.35, Fig. 2.31 and Fig. 2.36, respectively, keeping the other parameters at

their mean level. The SCD for these micrographs are 0.02066 µm/µm2, 0.02086

µm/µm2, and 0.02177 µm/µm2. It can be clearly seen that the increase of SCD with

the increase in voltage, though it is very small when compared to the change with

Ip, it is still a significant term in the model. It can be attributed to the fact that as
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the pulse energy increases with voltage (Equation 2.4), it leads to form comparatively

more WLT and induced stress, consequently increasing the tendency of cracking.

The graphs of WLT and SCD against average pulse power (Ip×V×Tau) are shown

in Fig. 2.37. The data points represent the average WLT and SCD obtained from the

parameter combination as per the design matrix (Table 2.3). The figure illustrates

that WLT and SCD are function of power. It can be clearly seen that the WLT

increase along a parabolic curve with an increase in the magnitude of power. Similar

conclusions were drawn by Lee et al. (1988) that increasing pulse energy in machining

will result in an increase in the dimension of the WLT though they have reported

for higher pulse energy. The magnitude of SCD decreases drastically with power and

such findings are substantiated by Lee and Tai (2003). The SCD values observed in

the present work are trivially less that that by Lee and Tai (2003), however, they

have experimented with higher Ip and lower Ton at 120 volts for which the results

cannot be directly comparable.

2.8 Confirmation Test

In majority of the industrial applications of EDMed components, the formation of a

white/recast layers are believed to be undesirable, rather can be extremely detrimental

especially where fluctuating or cyclic stress are applied in these components. Thus

efforts are made to trim down its formation. In this research, it is tried out to find

the factors and its level to perform the operation such that the formation of WLT will

be minimal. If the pulse current and voltage are short, small discharge energy will be

released and narrow spark duration will lead to complete the spark cycle during the

build-up period of the discharge channel, in that case the temperature in the channel

may remain so high that material removal takes place only by vaporisation and thus

very negligible white layer will form. Although with these setting, there exists a few

micro cracks due to low pulse current, but these cracks are limited to the white layer

only and can be got rid off during polishing. Therefore, the minimisation of WLT is

the prime concern and it can be concluded from Fig. 2.37, that this can be achieved

with minimal power in the experimental domain. The SCD is measured and reported

for checking the consistency of prediction.
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Fig. 2.30: SEM snap SCD at 1/75/85/50 Fig. 2.31: SEM snap SCD at 5/75/85/50 Fig. 2.32: SEM snap SCD at 9/75/85/50

Fig. 2.33: SEM snap SCD at 5/50/85/50 Fig. 2.34: SEM snap SCD at 5/100/85/50

Fig. 2.35: SEM snap SCD at 5/75/85/40 Fig. 2.36: SEM snap SCD at 5/75/85/60
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Fig. 2.37: WLT and SCD as a function of power for AISI D2 tool steels.

To validate the findings and conclusions drawn during the analysis phase, it is

customary to conduct the confirmation experiments. These experiments serve the

purpose of testing the specific combination of factors and their level to demonstrate

the validity of the model derived from the designed experiments. In order to sub-

stantiate the precision of the model developed, a new confirmation experiment was

design and conducted. The test condition for the confirmation test was so selected

that the desired response (WLT here) should be at its lowest level and the level of the

factors should be in the range of the levels defined earlier. So the response equations

(Equation 2.2 and 2.3) for the WLT and SCD developed through RSM can be used

to successfully predict the responses for any combination of the Ip, Ton, Tau and V

within the range of the experiment conducted. In order to assess the accuracy of the

models, Prediction error is used and defined as follows

Prediction Error(PE) =
|Experimental value− Predicted value|

Experimental V alue
× 100 (2.5)
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From the predicted value and the associated experimental value the percentage

prediction error was calculated and are found to be within permissible limits as de-

picted in Table 2.12. The average prediction errors are 5.76% and 5.79% for WLT

and SCD, respectively.

Table 2.12: Sample predicted data from the RSM model.

Run Ip Ton Tau V Optimal WLT µm Average SCD µm/µm2

Order A µs % Volt expt Pred. PE % expt Pred. PE %
1 1 50 80 40 7.74 8.10 4.43 0.0499 0.0478 4.34
2 1 50 80 40 7.72 8.10 7.36 0.0507 0.0478 5.76
3 1 50 80 40 7.51 8.10 7.23 0.0515 0.0478 7.26

Average prediction error 5.76 % 5.79%

2.9 Conclusion

In this chapter, the study is connected with describing the average white layer thick-

ness and surface crack density of EDMed AISI D2 steel surfaces, machined with

different machining conditions using SEM micrograph. It is found that the pulse

current is the most dominating parameter followed by pulse duration for both the

responses. However, the recast layer thickness increase with increasing discharge cur-

rent, pulse duration and duty cycle. But the surface crack density decreases with

increase in discharge current, pulse duration. As a consequence the surface crack

density is related to white layer thickness and the thicker the white layer the lower

the surface crack density was obtained. The average SCD is inversely proportional to

the average pulse power and the WLT increases monotonically with power. The result

reveals that in order to minimise the white layer the factors should be kept at their

low levels, however this parameter setting tends to increase the surface crack density.

A RSM model can effectively relate the machining parameters with the responses,

WLT and SCD. The optimal parameter setting for WLT was found to be Ip =1, Ton

= 50, Tau = 80, V = 40. The verifying experiment has shown that the predicted

value agrees with the experimental evidence. These findings will be ready to lend

a hand to the EDM users and manufacturing engineers in selecting the appropriate

parametric combinations for EDM processes to accomplish desired levels of WLT.



Chapter III

Response surface model for
prediction of Surface Roughness



3. RESPONSE SURFACE MODEL FOR PREDICTION OF
SURFACE ROUGHNESS

3.1 Introduction

Electrical discharge machining is a non-conventional manufacturing process, based

on removing material from a component by a series of repetitive electrical spark

between electrode, and the workpiece being machined in the existence of a dielectric

fluid [Pandey and Shan (1980)]. Due to the rapid thermal cycle of the process, some

undesirable transformation of the material is ought to be. It produces a layer of recast

material and weakens the region below the surface which is known as the heat affected

zone (HAZ). EDMed surface exhibits overlapping spherical craters with resolidified

protrusions and cracks produced during quenching. The recast layer degrades surface

integrity and affects the geometry of the component at the micro scale. Craters

and cracks are observable on the surface of the tool shown in Fig. 3.1. The surface

topography is complex and consists of an uneven cusp surface form caused by the

crater left by each spark discharge. The cusps are randomly distributed, overlap and

contain cracks which can be clearly seen in Fig. 3.1. Globules are scattered over the

surface and blow-holes also exist within the surface caused by blistering. The surface

chemistry and metallurgy are also too complex. Each spark discharge causes a small

area of the workpiece to be heated to an extremely high temperature to vaporise or

melt and is erode away by the dielectric. However, not all is eroding away; some

portion of it is recast onto the surface in the form of carbon rich layers and globules.

Majority of the mechanical component failure in practice are surface instigated,

through mechanisms such as fatigue cracking, stress corrosion cracking, fretting wear,

excessive abrasive or adhesive wear, corrosion, erosion etc. Therefore it is important

to understand the properties of the surface and sub-surface zones of a component. The

ideal surface of the components should be perfectly smooth, straight, clean and free
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Fig. 3.1: SEM micrograph of a EDMed AISI D2 tool steel surface

from defects which is expected to be manufacture, but the processing method leave

a micro-scale “fingerprint” on the surface which vary from process to process. The

nature of the surface is referred as the surface texture or surface topography of the

component and this consists of a series of peaks and valleys that have characteristic

shape size and spacing.

Importance of Surface:- Surface technology is at present receiving attention in the

engineering industry, since it is well established that there exists some correlation

between the surface properties and reasons of failure modes of the components and

service performance. The fatigue strength of the components is seriously affected by

the surface roughness, i.e., as the roughness increases the fatigue life decreases. In

addition, it is now understood that damage caused to the surface and sub-surface leads

to catastrophic failures of the components. Moreover, to face the global competition

it desired in the industry to reduce the cost and improve the quality. Better surface

morphology helps to improve the precision and quality of conformance of the product.

Therefore, it is important to concentrate on measuring the surface roughness as both

a means of quality assurance and as a means of inferring functional performance.
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EDM process is very demanding but the mechanism of process is complex and

far from completely understood. Therefore, it is hard to establish a model that can

accurately predict the performance by correlating the process parameter. The optimal

processing parameters are very essential to be established to enhance the production

rate largely and shrink the machining time, since the materials, which are processed

by EDM, are generally costly and even the processing cost is very high [Mandal et al.

(2007)].

The aim of this study is to investigate the surface roughness of EDMed parts and

explores possible ways to adjust its parameters to achieve better SR by statistical

methods. A RSM is used for development of a second-order polynomial model and

analysis of Ra with Ip, Ton, Tau and V as input parameters. In this chapter, the

experiments were conducted on AISI D2 tool steel with copper electrode using a face-

centered CCD (for details see Section 2.2.2). Surface integrity was also studied by

SEM micrography and the shape and the size of the crater of the machined parts

under specific process parameters are presented.

3.2 Experimentation

Experiments were conducted to study the effects of various machining parameters;

Ip, Ton Tau and V on SR of workpiece material AISI D2 tool steel on die sinking

electro discharge machine. The detail of the experimental conditions are mentioned

in Section 2.2. The different factors and their levels considered for this study are

illustrated in Table 3.1.

3.3 Surface roughness measurements

Surface roughness is a measure of the technological quality of a product, which mostly

influence the manufacturing cost of the product. The term surface texture refers to

the fine irregularities (peaks and valleys) produced on a surface by the machining pro-

cess. The texture comprises two components namely roughness (characteristics of the

process) and waviness (characteristics of the machine). Usually, however the texture

and roughness are used interchangeably, because roughness is measured more often
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than waviness. There are many types of statistical descriptors to characterise such

surfaces, among these centreline average (Ra) is most commonly used. The centre-

line average Ra, is the universally recognised and most used international parameter

for roughness. Roughness average is used in the automotive and other metalworking

industries to specify the surface finish of many types of components, ranging from

cylinder bores to brake drums. It is the arithmetic mean of the departures of the

profile from the mean line (Fig. 3.2) and expressed as

Ra =
1

L

∫ L

0
|y(x)| dx =

Total shaded area

L
(3.1)

where y(x) is the profile curve sampled by the set of N points and x is the profile

direction. The average ‘Ra’ is measured within the sampling length L as shown in

Fig. 3.2. Centre-line average ’Ra’ surface roughness measurements of electro-discharge

machined surfaces were taken to provide quantitative evaluation of EDMed compo-

nent.

Fig. 3.2: Idealised stylus profile showing the mean line

Roughness measurement was carried out using a portable stylus type profilometer,

Talysurf as shown in Fig. A.6. The profilometer was set to a cut-off or sample length

of 0.8 mm and evaluation length of 4 mm with traverse speed 1 mm/s and filter

2CR (ISO). The measured profile was digitised and processed through the dedicated

advanced surface finish analysis software, Talyprofile for evaluation of the roughness

parameters. Roughness measurements, in the transverse direction, on the workpieces
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were repeated four times and shown in the observation table (Table 3.2). Table

presents run order, point type (Pt Type), block, the different combination of input

parameters and the measurements of response Ra. Table 3.3 shows the machining

parameters for each run order, along with the experimental Ra values (average of

four measurements), the predicted value and the residues. Where the residues are

the difference between the experimentally observed data and the model predictions.

3.4 Planning based on Response Surface Methodology

RSM is a collection of mathematical and statistical techniques that are useful for

modelling and analysis of problems in which output or response is influenced by several

input variables and the objective is to find the correlation between the response and

the variables investigated [Montgomery, 2001]. The second-order model is normally

used when the response function is not known or non-linear and the same is adopted.

The experimental values are analysed and the mathematical model is then developed

that illustrate the relationship between the process variable and response as shown

in Equation 2.1.

Table 3.1: Input variables used in the experiment and their levels.

variable Unit levels
1 2 3

Discharge current (Ip) A 1 5 9
Pulse on time (Ton) µs 50 75 100
Duty Cycle (Tau) % 80 85 90
Voltage (V ) volt 40 50 60
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Table 3.2: Observation for Surface Roughness.

Run Pt Ip Ton Tau V Surface roughness µm

sample no.

Order Type Blocks A µs % volt 1 2 3 4

1 1 1 9 100 90 40 7.68 8.02 7.34 9.08

2 1 1 9 50 90 60 7.56 5.12 6.04 6.24

3 1 1 1 100 90 60 2.08 1.90 2.52 2.08

4 1 1 1 100 80 40 1.25 1.45 2.20 1.71

5 0 1 5 75 85 50 5.48 5.42 5.40 5.34

6 1 1 9 100 80 60 7.74 8.52 7.60 6.70

7 1 1 9 50 80 40 6.22 7.16 5.04 6.04

8 0 1 5 75 85 50 5.46 4.90 5.64 4.88

9 1 1 1 50 80 60 1.98 2.06 2.34 2.06

10 1 1 1 50 90 40 2.34 2.32 2.56 2.36

11 1 2 9 50 90 40 5.86 5.34 6.04 6.80

12 1 2 9 100 80 40 8.08 6.82 6.62 8.18

13 1 2 1 50 90 60 2.68 2.44 2.46 2.20

14 1 2 1 100 90 40 2.00 2.08 2.18 2.08

15 1 2 9 100 90 60 7.22 7.38 8.16 7.58

16 0 2 5 75 85 50 4.94 5.76 5.02 5.44

17 1 2 9 50 80 60 5.44 5.88 6.26 5.76

18 1 2 1 100 80 60 1.94 1.66 1.74 1.62

19 0 2 5 75 85 50 5.66 4.69 5.88 5.22

20 1 2 1 50 80 40 2.12 2.38 1.92 2.18

21 -1 3 5 75 85 40 5.14 5.38 5.44 6.34

22 -1 3 5 50 85 50 4.92 4.58 4.88 4.70

23 -1 3 5 100 85 50 5.58 6.42 5.46 5.76

24 -1 3 9 75 85 50 6.58 7.20 5.98 6.16

(continued on next page)
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Table 3.2: Observation for Surface Roughness.(Contd.)

Run Pt Ip Ton Tau V Surface roughness µm

sample no.

Order Type Blocks A µs % volt 1 2 3 4

25 -1 3 5 75 80 50 6.14 5.98 4.96 5.06

26 0 3 5 75 85 50 6.54 5.16 5.54 5.14

27 -1 3 1 75 85 50 1.80 1.96 2.44 1.72

28 -1 3 5 75 90 50 6.30 5.48 5.74 5.56

29 -1 3 5 75 85 60 5.48 5.12 6.14 5.32

30 0 3 5 75 85 50 5.32 5.44 5.50 5.86

PtType 1 indicates a cube point of the design;

PtType 0 indicates a center points;

PtType -1 indicates an axial points;

Table 3.3: Comparison of experimental and model prediction results for sur-

face roughness.

Run Ip Ton Tau V Expt. Predicted Residuals

A µs % volt Ra µm Ra µm µm

1 9 100 90 40 8.03 7.818 0.212

2 9 50 90 60 6.24 6.149 0.091

3 1 100 90 60 2.15 2.085 0.065

4 1 100 80 40 1.65 1.806 -0.156

5 5 75 85 50 5.41 5.408 0.002

6 9 100 80 60 7.64 7.539 0.101

7 9 50 80 40 6.11 5.870 0.240

8 5 75 85 50 5.22 5.408 -0.188

9 1 50 80 60 2.11 2.128 -0.018

(continued on next page)
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Table 3.3: Comparison of experimental and model prediction results for sur-

face roughness.(Contd.)

Run Ip Ton Tau V Expt. Predicted Residuals

A µs % volt Ra µm Ra µm µm

10 1 50 90 40 2.39 2.406 -0.016

11 9 50 90 40 6.01 6.149 -0.139

12 9 100 80 40 7.43 7.539 -0.109

13 1 50 90 60 2.45 2.406 0.044

14 1 100 90 40 2.09 2.085 0.005

15 9 100 90 60 7.58 7.818 -0.238

16 5 75 85 50 5.29 5.408 -0.118

17 9 50 80 60 5.83 5.870 -0.040

18 1 100 80 60 1.74 1.806 -0.066

19 5 75 85 50 5.36 5.408 -0.048

20 1 50 80 40 2.15 2.128 0.022

21 5 75 85 40 5.57 5.408 0.162

22 5 50 85 50 4.77 5.072 -0.302

23 5 100 85 50 5.81 5.745 0.065

24 9 75 85 50 6.48 6.598 -0.118

25 5 75 80 50 5.54 5.515 0.025

26 5 75 85 50 5.60 5.408 0.192

27 1 75 85 50 1.98 1.860 0.120

28 5 75 90 50 5.77 5.794 -0.024

29 5 75 85 60 5.52 5.408 0.112

30 5 75 85 50 5.53 5.408 0.122

3.4.1 RSM model development and Residual Analysis.

The effect of the machining parameters (Ip, Ton Tau and V ) on the response variable

Ra was evaluated by conducting experiments as described in Section 3.2. Minitab14
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Table 3.4: R2 and R2
adj test for SR regression model.

Degree R2(%) R2
adj(%)

Linear 91.9 89.8
Linear + square 96.3 94.3
Linear + interaction 95.4 92.1
Full quadratic 99.7 99.4

Table 3.5: Estimated Regression Coefficients for Surface roughness (Before elimination).

Term Coef SE Coef t p

Constant 5.36797 0.05827 92.120 0.000
Block1 0.01988 0.04334 0.459 0.654*
Block2 -0.08212 0.04334 -1.895 0.081*

Ip 2.36889 0.03639 65.090 0.000
Ton 0.33667 0.03639 9.251 0.000
Tau 0.13944 0.03639 3.832 0.002
V -0.00944 0.03639 -0.260 0.799*

Ip×Ip -1.16652 0.09691 -12.037 0.000
Ton×Ton -0.10652 0.09691 -1.099 0.292*
Tau×Tau 0.25848 0.09691 2.667 0.019

V×V 0.14848 0.09691 1.532 0.149*
Ip×Ton 0.49750 0.03860 12.888 0.000
Ip×Tau -0.03625 0.03860 -0.939 0.365*
Ip×V -0.02875 0.03860 -0.745 0.470*

Ton×Tau 0.03125 0.03860 0.810 0.433*
Ton×V -0.00375 0.03860 -0.097 0.924*
Tau×V -0.00500 0.03860 -0.130 0.899*

S = 0.1544 R2 = 99.7% R2
(adj) = 99.4%
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(2003) software was used to find out the relationship between the input factors and

the response Ra. The value of the coefficient of determination (R2) and adjusted R2-

statistic (R2
adj) are compared and summarised in Table 3.4 for various models. The

full quadratic model is the best among all the models, listed in Table 3.4, where R2

= 99.7% indicates that nearly 99.7% of the total variability in the response variable

is accounted for by the predictor variable or factors in the model. However, R2
adj

is 99.4%, which accounts for the number of predictors in the model describes the

significance of the relationship. Therefore, the full quadratic model is considered for

further analysis in this study.

Table 3.5 shown presents the estimated regression coefficients (coef) in coded

units and other valuable informations for each term in the model in coded units. The

column “SE Coef” lists the standard error for each term, and t-statistic is obtained

by dividing the Coef with “SE Coef” listed in the t column. t-statistic and p-value to

decide whether to reject or fail to reject the null hypothesis. If the t-statistic value is

high then it indicates that the effect is statistically significant. When p-value ≤ 0.05,

it is concluded that H0 is true and the treatments have a statistically significant

effect. The terms marked “*” in the last column of the table are exceeding 0.05,

thus, these terms are insignificant and therefore eliminated for the further analysis.

The blocking does not have any significant effect on the response, which reveals that

the uncontrollable factors of the experiment conducted were held constant. The

backward elimination process discards the insignificant terms to adjust the fitted

quadratic model. The model, with rest of the terms after elimination, is presented in

Table 3.6 in coded units. After elimination, the values of R2 and R2
adj are 99.6% and

99.4%, respectively. A higher value of R2 indicates a better model. When comparing

different models, compare the adjusted R2 value, labeled R2
adj. Using the labeled R2

adj

to compare models leads to selecting the simplest model that adequately explains

the data. In this experiment, the labeled R2
adj of the reduced model is 99.4%. The

adequate model after the elimination are Ip, Ton, Tau, Ip2, Tau2and Ip× Ton.

ANOVA is used to check the sufficiency of the second-order model, which includes

test for significance of the regression model, model coefficients and test for lack-of-

fit. Table 3.7 summaries the ANOVA of the model that comprises of two sources of
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variation, namely, regression and residual error. The variation due to the terms in

the model is the sum of linear and square terms where as the lack of fit and pure

error contribute to residual error. The table depicts the sources of variation, degree of

freedom (DF), sequential sum square error (Seq SS), adjusted sum square error (Adj

SS), adjusted mean square error (Adj MS), F statistic and the p-values in columns.

The p-value of lack of fit is 0.464, which is ≥ 0.05, and certainly indicate that there is

statistically insignificant lack of fit at 95% confidence level. However, the p-value of

regression model and its all linear and square terms have p-value 0.000, hence they are

statistically significant at 95% confidence and thus the model adequately represent

the experimental data.

Multi-regression analysis was performed to the data to obtain a quadratic response

surface model and the equation thus obtained in uncoded units is,

Ra = 70.1746 + 0.956 Ip− 0.0114 Ton− 1.6447 Tau

−0.0737Ip2 + 0.0098Tau2 − 0.005IpTon (3.2)

Table 3.6: Estimated Regression Coefficients for Surface roughness(After backward elimi-
nation).

Term Coef SE Coef t p

Constant 5.4082 0.04515 119.794 0.000
Ip 2.3689 0.03520 67.303 0.000

Ton 0.3367 0.03520 9.565 0.000
Tau 0.1394 0.03520 3.962 0.001

Ip×Ip -1.1790 0.08046 -14.653 0.000
Tau×Tau 0.2460 0.08046 3.057 0.006
Ip×Ton 0.4975 0.03733 13.326 0.000

S = 0.1493 R2 = 99.6% R2
(adj) = 99.4%

To explore the effect of the machining parameters on the surface roughness, this

mathematical model can be used. Estimated responses are calculated from the fit-

ted model and the residuals from the differences between the fitted and observed

responses. Table 3.3 presents the machining parameters for each run order, along

with the experimental results, the predicted response and the residues. Where the
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Table 3.7: The ANOVA table for the fitted Surface roughness models.

Source DF Seq SS Adj SS Adj MS F p

Regression 6 114.788 114.788 19.1314 857.93 0.000

Linear 3 103.400 103.400 34.4665 1545.63 0.000
Square 2 7.428 7.428 3.7142 166.56 0.000

Interaction 1 3.960 3.960 3.9601 177.59 0.000

Residual Error 23 0.513 0.513 0.0223

Lack-of-Fit 8 0.180 0.180 0.0225 1.02 0.464
Pure Error 15 0.333 0.333 0.0222

Total 29 115.301

residues are the difference between the experimentally observed data and the model

predictions. The predicted values of Ra achieved using Equation 3.2 are close to

the experimental values confirming the sufficiency of the model (Table 3.3) and the

residues are further analysed in the following section.

Fig. 3.3 exhibit the normal probability plot of the residuals, which is used to test

the normal distribution of the errors. It can be seen that the residuals are almost

falling on a straight line, which indicates that the errors are normally distributed and

the normality assumption is valid. One outlier (encircled in Fig. 3.3) point is observed

from the graph for run number 22 with standard residual of -2.186, which may be

due to the measurement error.

Fig. 3.4 depicts the histogram plot of standardised residue for all the observations.

It is in the form of Gaussian distribution (bell shape), and the residues are distributed

symmetrically with mean zero. In addition, the plot of the residues verse run order

illustrates that there is no noticeable pattern or unusual structure present in the data

as depicted in Fig. 3.5. The residues calculated as the difference between the predicted

and observed value lies in the range of −0.302 to 0.240. Further, each experimental

observation is compared with the predicted value in Fig. 3.6. It can be inspect that

the regression model is fairly well fitted with the experimental values.
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Fig. 3.3: Normal plot of residuals for Ra.
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3.5 Result and discussion

Fig. 3.7 depicts the plots of main effects on Ra, those can be used to graphically

assess the effects of the factors on the response. It indicates that Ip, Ton and Tau

have significant effect on Ra, which is supported by results in Table 3.6. However,

Ip is the most influencing parameter showing a sharp increase in Ra of 3.403 µm

when Ip increases from 1 to 5 A and then the increases in Ra by 1.362 µm, when

Ip increases from 5 to 9A. This implies that Ip has a more dominant effect on the

surface roughness. In addition, Ra increases by 1.063 µm, and then slightly decreases

by 0.389 µm with Ton increases from 50 µs to 75 µs, and 75 µs to 100 µs respectively.

Furthermore, for Tau the trend is analogous, Ra increases by 0.765 and then decrease

by 0.485 with increases of Tau from 80 % to 85 % and 85% to 90%, respecively.

Nevertheless, Ton is also an important factor which influences the Ra after Ip. This

can be evident from Table 3.6 and from Lee et al., 1988, where they also found Ip

has a more dominant effect on Ra than that of Ton.
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Fig. 3.7: Effect of factors on Ra.

Similar model for surface roughness has been suggested by Guu et al. (2003) and

Lee et al. (1988) relating the Ip and Ton and their results, supported by experimental

findings, are shown in Fig. 3.8 along with the present model. It can be seen that the Ra

values obtained by Lee et al. (1988) using paraffin (Somentor 31) dielectric is slightly
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higher than the present study. This is because Ra values are inversely proportional

to pulse energy and for the same range of Ip and Ton if V decreases pulse energy

decreases and Lee et al. (1988) uses voltage of 30 volt which is lower than the present

study. Guu et al. (2003) reported his work on EDM turning and though, D2 tool steel

was machined by them in the presence of kerosene, the Ra values are comparable to

those obtained in the present study (EDM Oil) within the range of experimental

domain.
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Fig. 3.8: Comparison results for Surface roughness obtained by Guu et al. (2003) and Lee
et al. (1988) with different Ip and Ton

Fig. 3.9 contains twelve interaction plots for various two-factor interactions be-

tween Ip, Ton, Tau and V. Each pair of the factor is plotted keeping the other factors

constant at the mean level. In each plot, the factors of interest are varied in three

levels, low, medium and high levels. If the lines in the interaction plot are parallel,

there is no interaction between the process parameters. This implies that the change

in the mean response from low to medium and medium to high level of a factor does
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Fig. 3.9: Interaction effect of factors on Ra.

not depend on the level of the other factor. On the other hand, if the lines are non-

parallel, an interaction exists between the factors. The greater the degree of departure

from parallelism, the stronger is the interaction effect. It can be seen in the figure

that the most important interaction effect is produced between Ip and Ton, because

in the matrix second row, first column and first row, second column are the places

where the lines are intersecting each other. Although in the third row and second

column, fourth row second and third column, at the middle level, some interaction

exist, but at the lower and higher level, the lines are parallel to each other, hence

there is no much interaction exists between the parameters. They are not significant

for a confidence level of 95%, which is also evident in Table 3.6. Thus, these terms

are not the part of the model.

Fig. 3.10 (a) represents contour plot and Fig. 3.10 (b) response surface for Ra in

relation to the machining parameters of Ip and Ton. From the figure, it is unam-

biguous that Ra value is more with higher Ip and longer Ton, the value Ra tends to

increase significantly with the increase in Ip for any value of Ton. This can be at-

tributed to their dominant control over the input energy. A higher Ip and longer Ton

may cause more frequent breakdown of the dielectric medium, and hence repeated

melt expulsion with stronger spark. Thus, due to a higher temperature larger craters

are formed on the machined surface. Hence, minimum Ra is obtained at low peak
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current (1A) and pulse on time (50 µs). The same trend was reported by the previous

researchers [Lee et al., 1988; Guu, 2005; Guu et al., 2003]. From these observations,

it can be concluded that Ip and Ton are directly proportional to the Ra and for Tau

the effect is very less as compared to the other parameters, for the given range of

experiments conducted for this test.

Ip (A)

T
on

 (µ
s)

951

100

75

50

Hold Values

Tau 85

Ra

3 -  4
4 -  5
5 -  6
6 -  7

>  7

<  2
2 -  3

2

100

4

75

Ton (µs)
75

50

6

8

5

1

9

5

Ip (A)

Hold Values

Tau 85

Ra (µm)

(a) (b)

Fig. 3.10: (a) Contour & (b) Response surface plot depicting the effect of Ip & Ton on Ra

3.6 Scanning Electron Microscopy (SEM) results

A thermally affected layer will form due to melting and resolidification on the surface

of an EDMed workpiece without being ejected nor removed by flushing. The structure

of this layer is quite different from the parent material and it is typically very fined

grained and hard. The top surface contains globules, cracks, and micro cracks, whose

density depends on the process conditions. This structure of the surface gives rise

to higher roughness and highly dependent of Ip. The effect of EDM parameters on

crater and rough surface formed during EDM can clearly be observed from the SEM

micrographs under different parametric combinations. To study the surfaces and sub

surfaces, the samples are electro polished, and examined using a Scanning Electron

Microscope.

Investigation of SEM revealed that the surfaces have complex appearance with

shallow craters, spherical particles, melted drops, globules of debris, pockmarks and

voids due to the high heat energy released by discharges and subsequently quenching.

The spherical particles are molten metals that are expelled randomly during the
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discharge and then solidified and attached to the surface. SEM photograph of D2

steel at various levels of Ip, Ton, Tau and V, as mentioned along with the figures are

presented to qualitatively access the surface topography.

The variation of the shape of crater rims and globular attachments can be observed

in the figures for various machining parameters. There is a noticeable increase in the

size of the crater in the specimens for 1A and 9A as shown in Fig. 3.11 and Fig. 3.11

respectively. This is because spark energy increases with pulse currents cause deeper

and wider craters on surface. However, the crater diameter is also influenced by Ton

and increases with it. Accordingly and based on the presented figures in Fig. 3.13

and Fig. 3.14, the heat is supplied for more duration when Ton increases, so more

molten material is produced with larger globules and craters.

Fig. 3.11: SEM of EDMed surfaces of D2 Steel Ip=1A; Ton=75 µs; Tau=85% & V=50V
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Fig. 3.12: SEM of EDMed surfaces of D2 Steel Ip=9A; Ton=75 µs;Tau=85% & V=50V

Fig. 3.13: SEM of EDMed surfaces of D2 Steel Ip=5A;Ton=50 µs, Tau=85% & V=50V
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Fig. 3.14: SEM of EDMed surfaces of D2 Steel Ip=5A;Ton=100 µs, Tau=85% & V=50V.

3.7 Conclusion

In this study, the influence of the most significant factors on surface roughness has

been studied for AISI D2 tool steel. A face centred central composite design was used

to conduct the experiment with discharge current, pulse on time, duty factor, time

and gape voltage as input parameters. The ranges of these parameters were chosen

which are widely used by machinists to control EDM machine. The input factors that

significantly influenced the output responses were discharge current, pulse duration,

square of pulse current and interaction between discharge current and pulse duration

with a confidence level of 95%. The result reveals that in order to obtain a low value

of Ra within the work interval of this study, discharge current, pulse on time and duty

cycle should be fixed as low as possible. However, the developed mathematical model

for the Ra can be effectively employed for the optimal selection of the EDM process

parameters to achieve good surface of D2 workpieces. The surface craters, recast

layers, and heat affected zones were observed. The size of the crater increases with

the increase in current intensity and pulse on time, since these factors are responsible

for producing stronger spark energy, bigger crater and thus rough surface.



Chapter IV

Finite-Element Modelling of
Residual Stress



4. FINITE-ELEMENT MODELLING OF RESIDUAL STRESS

4.1 Introduction

In this chapter, a finite element modelling of the EDM process using ANSYS software

is presented. The high-density thermal energy discharge produces during machining

causes the local temperature in the workpiece gets close to the vaporization temper-

ature of the workpiece, leading to the thermal erosion and also produces recast layer

with micro-cracks on machined surface. A non-uniform heating of the workpiece ma-

terial favours formation a multi-layered Heat Affected Zone (HAZ) in the sub surface

inducing thermal stresses. If these stresses overpass the yield stress of the material,

they will remain as residual stress in the workpiece during subsequent cooling, which

plays a key role in fatigue crack growth, crack closure, and fracture. The residual

stresses are self equilibrating internal stresses existing within a component when no

external tractions are applied to it. The state of the residual stress typically comes up

as a cumulative effect of the processes it has undergone, and the material properties.

The residual stresses are particularly detrimental when they are tensile in nature, as

it instigates the crack and become critical if subjected to fatigue load. Prediction

and measurement of residual stress in engineering components have been a pursuit of

researchers as residual stresses not only have an effect on the initiation and onset of

the propagation of surface crack but also change the path/growth of the crack as it

grows below the surface.

In this research, an attempt is made to investigate the effects of the machining

parameters (pulse current and pulse duration) on the residual stresses developed

beneath the spark by a single spark FEA model. The major aim of developing this

model is to predict the nature of residual and thermal stresses occurring during EDM.

The FEA model is also used to study the relation between these parameters and

temperature variation with depth at the end of heating cycle. The temperature
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distribution in the workpiece at the end of pulse duration was modelled.

4.2 Model detail

An EDM model involves electrical field, temperature field, and stress and strain field

equations. In this process, two electrodes, namely workpiece and tool, are submerged

in dielectric and they are physically separated by a gap, called inter-electrode gap.

The discharge phenomenon in EDM can be modelled as the heating of the work-

electrode by the incident plasma channel. Fig. 4.1 shows the idealised case where

workpiece is being heated by a heat source with Gaussian distribution [Madhu et al.

(1991), Bhattacharya et al. (1996), Yadav et al. (2002)]. Due to axisymmetric nature

of the heat transfer in the electrode and the workpiece, a two-dimensional physical

model is assumed and shown in Fig. 4.1.

4.2.1 Assumptions

Due to random and complex nature of EDM, the following assumptions are made for

the finite element model:

1. The analysis is done for one spark only.

2. The domain is considered as axisymmetric about r-z plane.

3. The workpiece material is homogeneous and isotropic.

4. The thermal properties of workpiece material are considered as a function of

temperature. It is assumed that due to thermal expansion, density and element

shape are not affected.

5. The heat transfer to the workpiece is by convection.

6. Gaussian heat flux distribution is considered on spark incident surface of the

workpiece material during pulse on time period.

7. Inertia and body force effects are negligible during stress development.

8. The workpiece material is elastic-perfectly plastic and yield stress in tension is

same as that in compression.
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9. The workpiece is assumed as stress-free before EDM.

10. Thermal stresses are evaluated only up to the time for which the transient

temperature distribution is known above dielectric temperature.

11. The latent heat of the material during phase change is not considered.

4.2.2 Thermal model

The domain is treated as a semi-infinite object in considering the microcosmic char-

acteristics of the single discharge. The upper surface of the cylinder is the machining

surface and its centre is the focus of the ionized channel. When a single spark is

incident in to the workpiece, the heat propagates symmetrically in all direction, so

taking advantage of its symmetry a small cylindrical portion of the workpiece around

the spark is used as the domain as shown in Fig. 4.1. A convective heat transfer

boundary conditions are applied on the surface that is exposed to the dielectric. All

of the equations in this study are based on the cylindrical coordinate system, as shown

in Fig. 4.2.

Heating of workpiece due to a single spark is assumed to be axisymmetric and

governed by the following thermal diffusion differential equation below

ρCp
∂T

∂t
=

1

r

∂

∂r

(

k
∂T

∂r

)

+
∂

∂z

(

k
∂T

∂z

)

(4.1)

where T is temperature, t is time, ρ is density, k is thermal conductivity, Cp is

specific heat capacity of workpiece material in solid state and r and z are coordinate

axes as shown in Fig. 4.2.

4.2.3 Equilibrium Equations

In elasticity theory, neglecting the initial and body forces, the stresses in the structure

must satisfy the following equilibrium equations,

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σθθ

r
= 0 (4.2)

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r

= 0 (4.3)
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Fig. 4.1: Schematic sketch of the physical model.

Fig. 4.2: An axisymmetric model for the EDM process simulation.
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where σrr, σθθ, σzz are normal stresses and σrz is shear stress.

4.2.4 Stress-Strain-Temperature Relations

The constitutive relation of linearly elastic material is

σ = E ǫ+ σ0 (4.4)

where σ is normal stress, ǫ is normal strains, E is elastic modulus, and σ0 is initial

stress.

For a isotropic material, with initial stress σ0 =0, the stresses produced by tem-

perature change ∆T , symbolise the relation by the equation below:
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(4.5)

where ν is Poisson’s ratio and αt is the coefficient of thermal expansion of work-

piece material. ǫrr, ǫθθ and ǫzz are normal strain, γrz shear strain.

Equation 4.5 can be written as

{σ} = [D] {ǫ} − {m} (4.6)

where [D] is the elasticity matrix, {σ} is the stress matrix and {ǫ} is the strain

matrix.

The strain-displacement relations for axisymmetric model, for small strains and

small rotations, are

ǫrr =
∂u

∂r
, ǫθθ =

u

r
, ǫzz =

∂w

∂z
and γrz =

∂u

∂z
+
∂w

∂r
(4.7)

where u and w are the displacement in r and z direction, respectively.



Modelling of Residual Stress 110

4.2.5 Spark radius/Plasma radius

It is well recognized that the size of plasma channel is an expanding quantity and its

radius changes with time [Dibitono et al. (1989)]. Its expansion depends on many

factors such as electrode material, electrode arrangement and polarity. Many at-

tempts have been made to determine the spark radius theoretically and experimen-

tally. Dibitono et al. (1989) experimentally showed that the radius of the channel

changes proportional to the 3/4 power of time. Further, Erden (1983) integrated this

equation Rp(t), which is dependant on the discharge power and time as follows:

Rp(t) = ZPmtn (4.8)

where, P is the discharge power, t is time and Z, m and n are empirical constants,

with Z being a function of the discharge length. Further, these constants have been

defined in terms of experimental coefficients L, M and N as:

Z =
L

lm+ 0.5N
; m =M + 0.5N and n = N (4.9)

where, l is the discharge length.

Shankar et al. (1997) have found that the spark shape is non-cylindrical when they

used the integrated approach model to analyse the electrodes and dielectric together.

Pandey and Jilani (1986) have proposed the following model for calculation of spark

radius:

Tb =
E0Rp

Kπ0.5
tan− 1

[

4αt

R2
p

]0.5

(4.10)

where Tb is boiling temperature, E0 is energy density and α is thermal diffusivity.

The above expression has limited application as they are applicable merely for few

cases of particular electrode pairs and dielectric. There are many research attempts

made to evaluate the spark radius, and though the significance of spark radius is

well accepted, but to evaluate the shape and size of the radius, extensive work is

still lacking. Hence, in most of the cases, particularly in a theoretical analysis, a

typical value of spark radius is generally assumed. For the present workpiece material

and dielectric combination under consideration, it is suggested that, since power is

function of Ip, by modifying Equation 4.8, the radius of spark is
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Rp(t) = ZIpmTonn (4.11)

where, Ip is the discharge current, Ton is pulse on time, the value of Z = 325, m

= 0.55 and n = 0.247 are used as empirical constants, and the spark radius can be

expressed as:

Rp(t) = 325 Ip0.55 Ton0.247 (4.12)

And the calculated value of Rp for various Ip-Ton combination used in this study

are presented in Table 4.1.

Table 4.1: Spark Radius obtain from Equation 4.12

Pulse current (A) Pulse duration (µ s) Spark radius, R (µm)
9 100 112
9 20 75
1 100 33
1 20 22

4.2.6 Heat Flux and Energy Portion

Many researchers [Jilani and Pandey (1982), Pandey and Jilani (1986), Dibitono

et al. (1989)] have considered a uniformly distributed heat source of a spark impinges

into the workpiece, which is far from reality. However, some researchers Patel et al.

(1989), Madhu et al. (1991) and Yadav et al. (2002) have considered a Gaussian

heat flux distribution and the same is assumed in the present work. If the maximum

intensity at the axis of the spark qo and its radius (Rp) are known, then the heat flux

qw(r) at radius r is given by

qw(r) = q0 exp

{

−4.5
(

r

R p

)2
}

(4.13)

Yadav et al. (2002) presented this model to analyse the thermal stress due to

EDM. They assumed that for each pulse,

q0 =
4.45PfUbIp

πR2
p

(4.14)
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If the total power which is used only by one single spark then Equation 4.13

becomes

qw(r) =
4.45PfUbIp

πR2
p

exp

{

−4.5
(

r

R p

)2
}

(4.15)

where Pf is the percentage of heat input distributed to the workpiece, Ub the

breakdown discharge voltage (different from the applied voltage), Rp the spark radius

and Ip is the current.

One more vital factor requisite for analysis of EDM is the percentage of heat

input distributed among cathode, anode, and dielectric. But, it seems that there is

no comprehensive method available to calculate the value of energy sharing. It is a

common agreement that the amount of energy shared is dependent largely on electrode

material and dielectric. Previously, in the modelling of EDM, it was assumed that

the total heat supplied on the surface is transferred to the workpiece and there is no

heat sharing with the dielectric and tool electrode. Later on, Dibitono et al. (1989)

and Patel et al. (1989) have assumed that a constant fraction Pf as 8% of total power

is transferred to the electrodes, about 18% is absorbed by cathode and the rest is

rejected to the dielectric. Yadav et al. (2002) also adopted the same, however, Kansal

et al. (2007) considered Pf as 9%. Shankar et al. (1997) has calculated that 40%-45%

of the heat input is absorbed by the workpiece. Panda and Bhoi (2005), for machining

of D2 steel by copper as tool-electrode with kerosene as dielectric, assumed that the

energy received by work-electrode varies from 17% to 20%. In the present model, it

has been assumed that 8% of the total heat is used by the workpiece which is the

lower bound of the Pf values considered by other reserchers.

4.2.7 Boundary condition

Fig. 4.2 demonstrates a schematic diagram of the thermal model with the applied

boundary conditions during heating cycle. During the spark on-time (heating cycle)

on the top surface Γ1, the energy transfer to the workpiece is represented by a Gaus-

sian heat flux distribution upto spark radius Rp. Beyond Rp, the heat loss to the

coolant is modelled using convective boundary conditions. However, during cooling

cycle, on the entire top surface Γ1, the convection heat transfer takes place due to the
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cooling effect caused by the dielectric fluid. No heat transfer occurs across surfaces on

Γ2 and Γ3, because they are assumed to be sufficiently far away for any heat transfer

to take place as the duration of spark is very small. The boundary Γ4 is the axis of

symmetry, hence the heat flux has been taken as zero as there is no net heat gain or

loss across this boundary.

The initial and boundary conditions are listed below.

• At boundary Γ1,

when 0 > t ≥ Ton

qw(r) =











4.45PfUbI

πR2
p

exp
{

−4.5
(

r
Rp

)2
}

for r ≤ Rp

hf (T − T0) for r > Rp.
(4.16)

when t > Ton,

qw(r) = hf (T − T0) for 0 < r <∞. (4.17)

• At boundaries Γ2, Γ3 and Γ4,
∂T
∂n

= 0

where, n is normal direction on surface, hf is coefficient of convective heat transfer

at the work-dielectric fluid interface and T0 is ambient temperature.

4.2.8 Numerical Model

Model of thermo-analysis for single discharge

The EDM process involves a complex coupling among thermal, electrical, physical,

and chemical processes, which makes it difficult to be modelled. A thermo-structural

finite element model based on heat transfer principles has been developed for the

simulation of single-spark machining of AISI D2 tool steel. For simplicity, a 2-D

plane stress analysis with ANSYS software is performed [Kohnke (2004)]. ‘PLANE 13’

coupled field quadrilateral element with capabilities of handling the thermo-structural

properties are used to model the specimen. The domain is treated as a semi-infinite

object in which the model dimensions are eight times the dimension (radius and
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thickness) of plasma radius, Rp. There is no significant change found in the FEM

results with larger semi infinite boundary conditions of the domain.

Mapped meshing is carried out using the quadrilateral-shaped elements with a

non-uniformly spread mesh, with more elements intended in the heat-affected regions

where the high temperature gradient and stress concentration exists (Fig. 4.3). In

addition, the area away from the sparking point is meshed with coarse mesh as there is

less variation of temperature and stress. The FEA mesh had a total of 2640 elements

and 2734 nodes. The size of the smallest element is of the order of 1.28 × 1.28 µm.

The dimensions shown in Fig. 4.3 are in µm so it is clear that a very small area is

considered around the vicinity of the point where the spark strikes. In ANSYS, the

radial coordinate (r) is depicted as x axis and axial coordinate (z) is y-axis as shown

in the figure.

Fig. 4.3: Mesh generation for FEM full model.

When the arc strikes the workpiece the temperature rises tremendously from the
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ambient temperature to the boiling point (even more) of the martial and comes back

to the ambient temperature before the subsequent arc strikes within a few micro

seconds. Due to this rapid temperature gradient the workpiece material melts and

even vaporises. The whole vaporised metal and a fraction of molten metal is ejected,

however, residual fraction of the molten metal gets re-solidified and deposited in the

workpiece as white layer. Thus it is very important to use temperature-dependent

thermo-physical properties for the simulation of the EDM process. The Young’s

modulus for D2 material used are as reported in the literature [Kansal et al. (2007)].

Since residual stress is caused by heterogeneous plastic deformation of the material,

temperature dependent material properties are used. Plastic deformation of material

is modelled using bilinear kinematic hardening (BKIN) option in ANSYS program as

presented in Fig.4.4, where ‘SIG’ and ‘EPS’ mean σ and ǫ, respectively [Ansys-12.0

(2010)].

The approximate temperature-dependent material properties (Thermal conductiv-

ity, Coefficient of thermal expansion and Specific heat) of AISI D2 tool steel, which

are given to ANSYS modeller, are summarised in Table A.3. The melting tempera-

ture, Tm and boiling temperature, Tb of the workpiece material are 1984 K and 2590

K, respectively. Since the temperature dependent modulus of elasticity and Poisson’s

ratio of workpiece material is not available in the referenced papers, the data that

has been used here are very close to the material properties of common tool steel

[Table A.4]. Analyses are performed to study the effect of Ip and Ton on the temper-

ature, thermal stress and residual stress distributions with various levels as shown in

Table 4.1. The spark radius upto which the heat flux imposed is tabulated in the same

table. The heating period considered for this analysis is Ton and the cooling period

is 39×Ton. The heat energy supplied is modelled using function utility in ANSYS

in accordance to Equation 4.16 and Equation 4.17. The coefficient of convection hf

is 10 kW/mK. The reference temperature, To is 298 K for the solutions procedure.

In the model, the left edge is the centreline of the 2D axisymmetric section is made

adiabatic along with the bottom and right hand edges [Fig. 4.2]. The bottom surface

is free to move horizontally, but its vertical movement is restricted.

The solution procedure adopted was implemented in three load steps as shown in
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Fig. 4.5. The first load step consists of heating cycle for Ton duration and solution

was obtained with a time step of 1
40

th
Ton. The cooling process was carried out

in the second and the third solution steps with durations of 4×Ton and 35×Ton,

respectively. The time steps adopted were 1
40

th
Ton and Ton for the last two steps,

respectively, to ensure faster convergence. The flow chart of the finite element analysis

procedure is shown in Fig. 4.6.

Fig. 4.4: Temperature dependent bilinear kinematic isotropic hardening.

.

Owing to the workpiece material’s temperature dependent thermo-physical prop-

erties, this type of problem is of non-linear characteristic. To solve the non-linear

equations, the Newton-Raphson method was used, which is an iterative method to

solve above equations with line search option. Typical number of cumulative itera-

tions required for convergence were found to be 1137 for Ip=9 A and Ton=100 µs,

and the error convergence plot is shown in Fig. 4.7.

First, the whole domain is considered to obtain the temperature profile during

the heating cycle. The temperature profile just after the heating period is shown

in Fig. 4.8, which depicts four distinct regions signifying the state of the workpiece

material. Those elements attain the boiling temperature (2590 K) are shown as ‘D’
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Fig. 4.5: Heating and cooling cycle

region, which are completely removed by vaporisation, are killed. Only, Lim et al.

(1991) stated that 15% of the molten material is flushed away from the workpiece.

Since, there are few references quantifying the amount of molten metal ejected during

heating cycle, it is assumed that 50% of the total molten metal is ejected out. ‘C’ and

‘B’ regions are molten zones, of which the molten metal in ‘C’ region is ejected and

flushed away as debris. Thus, these elements were eradicated/killed from the domain

at the end of pulse duration. However, the molten metal in ‘B’ region is quenched

and resolidifies as recast layer. The zone depicted by ‘A’ is HAZ which is susceptible

to residual stresses. In the second and third load steps, the model without the killed

elements was solved. The stress obtain at the end of the cooling cycle is entrapped

in the workpiece and it is known as residual stress.

4.3 Experimentation

This research is focused on measuring the residual stresses in EDMed component

using X-ray diffraction (XRD) technique for the experimental validation of the FEM

results. The workpiece preparation and its machining procedure is explained in this

section along with the XRD measurement and its data analysis.
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Fig. 4.6: Flow chart for ANSYS solution procedure
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Fig. 4.7: Convergence graph

Fig. 4.8: Isothermal lines at the end of pulse on time for Ip=9A & Ton=100µs.
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4.3.1 Experimental procedure

Workpiece was initially circular bar of diameter 100 mm and was cut into specimens

of size 15 × 15 mm square and thickness of 10 mm by a power hacksaw. The top

and bottom faces of the workpiece were ground to make it flat and good quality

surface finish prior to the heat treatment. The specimens were stress relieved prior

to electric discharge machining to ensure stress free condition. After grinding, the

specimens were heated up to 700◦ C, holding them for 2 hours at that temperature

and then was cooled slowly to room temperature in a furnace (see Appendix A.4).

The top surface was machined by a CNC electrical discharge die sinking machine

(see Appendix A.1). In this work, a cylindrical pure copper (99.9% Cu) was used

as a tool electrode with a diameter of 30 mm (Fig. A.3). Commercial grade EDM

oil was used as dielectric fluid, the power supply was linked with the tool electrode

(tool: positive polarity, workpiece: negative polarity). A lateral flushing system was

employed for effective flushing of machining debris from the working gap region with

a pressure of 0.4 kgf/cm2. The experimental conditions are summerised in Table 4.2.

The bottom of the cylindrical electrode was polished by a very fine grade emery sheet

prior to every experimental run. Experiments were conducted to study the effects of

Ip and Ton on the temperature profile, thermal stress and residual stress induced in

the EDMed components. The arrangement to conduct the experiments using a full

factorial design in four experimental runs is illustrated in Table 4.3. Machining was

carried out to remove approximately 1 mm of material from the top surface.

In this work, the variation of residual stress with depth is studied. Therefore, after

measuring the residual stress on the top surface, a layer was removed to measure the

residual stress in subsequent surface. Thus, it is necessary to remove layers of material

in succession without further changing the residual stress state of the material by

electro polishing. The specimens were successively polished with 1000 grit silicon

carbide emery paper and then with fine diamond paste (size 1µm). For subsequent

characterizations by X-ray diffraction, the samples were electro polished by using an

electrolyte of 80:20 methyl alcohol and perchloric acid under 21 V.
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Table 4.2: Input variables used in the experiment and their levels.

Variable Unit levels
1 2

Discharge current (Ip) A 1 9

Pulse on time (Ton) µs 20 100
Voltage of discharge (V ) volt 50
Dielectric used Commercial grade EDM oil
Dielectric flushing Side flushing with pressure 0.4 kgf/cm2

Work material AISI D2 steel
Electrode material Electrolytic Copper (99.9% pure)
Electrode polarity Positive
Work material polarity Negative

Table 4.3: Experimental design matrix for RS

Expt Ip Ton
No (A) (µs)
1 9 100
2 9 20
3 1 100
4 1 20

Table 4.4: X-ray diffraction conditions.

Target Cu
Wavelength (Å) 1.54188
Current (mA) 40
Voltage (kV) 40
Method Unidirectional stress analysis
Material AISI D2 (Fe-Cr)
s1 -1.31 1/TPa
1/2s2 5.96 1/TPa
Wavelength for calc. Kα1+2

Strain-free sin2Ψ 0.500
Shear stress Yes



Modelling of Residual Stress 122

4.3.2 X-ray diffraction measurements and data analysis

X-ray diffraction measurements were carried out in a Philips X’Pert MRD horizontal

goniometer (see Appendix A), operating at 40 kV and 40 mA, equipped with a Cu

radiation source, λCuKα = 1.54188 Å. The goniometer was used with Bragg-Brentano

configuration and ψ-geometry. The plane chosen for strain analysis was (0 2 2) and

side angle ψ range was from ± 40o. The diffraction conditions are reported in Table

4.4. Macroscopic residual stresses were measured only in the martensite phase, which

is the majority phase. The stresses in carbides, bainite and retained austenite were

not measured because the volume fraction of these phases were very small and because

there were no suitable diffraction peaks for the measurement of residual stresses in

these phases.

The measurement of residual stresses is based in the determination of the varia-

tions in peak positions due to distortions of the crystalline lattice. If the specimen

is stressed, lattice spacing varies according to the orientation of planes relatively to

stress direction (see Appendix C). The refractometer was equipped with a wide range

goniometer and a scintillation counter. All the specimen were first scan through

2θ value ranging from 70o to 165o and the result obtained on the topmost layer is

presented in Fig. 4.9 for Ip = 9A and Ton = 100µs. All figures presented in this

section are meant for said specimen only, unless otherwise stated. The figure revels

that although there are many peaks present, but the first peak was observed at an

angle 2θ ≈ 73.81◦. Hence, for further scanning the range of 2θ was set from 72o to

75o and the obtained peaks on the topmost layer (layer 1) with eleven ψ tilts. The

Lorentz-polarization, back-ground and Kα1+2 splitting corrections were applied to the

measured intensities. The diffraction spectrum are shown in Fig. 4.10.

Residual stress depth profiles are conventionally analysed using sin2ψ method.

The lattice spacing was measured with eleven ψ tilts and the graph between d-spacing

and sin2ψ was plotted (Fig. 4.11). Peak positions were calculated using the conven-

tional Gaussian curve fitting and the slope of the line represents the mean d-spacing

for a given sin2ψ. In the plot the normal stress, σφ is 812 MPa with SD of 11.6

MPa and shear stress is 61.7 MPa (SD 1.9 MPa). Assuming a biaxial stress state
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exists in the layer and the elastic properties of the films are isotropic, the residual

stress obtained are tabulated in Table 4.5. This calculation was performed using

the commercial software PC-Stress 2.61 by Philips. The XRD patterns and d versus

sin2ψ plots for layer 2, layer 3 and layer 4 are shown in Fig. 4.12, Fig. 4.13, Fig. 4.14,

Fig. 4.15, Fig. 4.16 and Fig. 4.17, respectively. Similar procedure was adopted to

measure the residual stresses for other specimens at various depths.

It is understandable that compressive residual stresses can be correlated to sample

thickness, since residual stresses within plastically deformed layers are equilibrated

with elastic stresses in the core of the material. Though, by removing the top layer

produces a slit stress relaxation, but there will be a negligible alteration in the stress

state [Garcia Navas et al. (2008)]. To obtain a noticeable correction, it is required to

remove layers in millimetres, however in this case the maximum depth reached after

removal of several layers was around 200µm so the stress relaxation is practically zero.

Table 4.5: Experimental result of residual stress for all specimens

Expt. Ip Ton depth σφ SDσφ τφ SDτφ σ11 + σ22 SDσ11 + σ22
No. (A) (µs) (µm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

1 9 100

0 812.0 11.6 61.7 1.9 1840.7 13.7
24.6 792 12.8 62.3 2.1 1259.6 15.2
54.7 -113.0 10.8 38.3 1.8 -389.0 12.8
128 105.0 13.1 -10.7 2.2 196.0 15.6

2 9 20

0 797.9 12.6 43 2.1 1782.9 14.9
20 732.0 14.1 23 2.4 1681.0 16.7
44 -95.0 7.4 -4 1.2 -249.0 8.8
117 136.0 10.4 7.1 1.7 193.0 12.4

3 1 100

0 167.0 5.3 34 0.9 610.0 6.3
11 588.0 2.7 20.5 0.5 1268.0 3.3
35 -47.9 2.8 -3.5 0.5 -174.9 3.3
125 7.0 6.6 3.4 1.1 64.0 7.8

4 1 20

0 106.0 20.2 41.3 3.4 589.0 23.9
8 470.0 6.1 31 1 1007.0 7.3
34 -37.0 32.9 13.6 5.5 -146.0 39
121 8.9 5 -15.3 0.8 155.9 6
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Fig. 4.9: Diffraction patterns obtained by scanning the topmost layer for 2θ=70o to 165o
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Fig. 4.10: X-ray diffraction peak in layer 1 for 2θ=70o to 75o

Fig. 4.11: d versus sin2ψ plot of layer 1 for 2θ=70o to 75o
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Fig. 4.12: X-ray diffraction peak in layer 2 for 2θ=70o to 75o

Fig. 4.13: d versus sin2ψ plot of layer 2 for 2θ=70o to 75o
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Fig. 4.14: X-ray diffraction peak in layer 3 for 2θ=70o to 75o

Fig. 4.15: d versus sin2ψ plot of layer 3 for 2θ=70o to 75o



Modelling of Residual Stress 128

72.6 72.8 73.0 73.2 73.4 73.6 73.8 74.0 74.2 74.4 74.6 74.8 75.0
0

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 

 

25 

2 Theta (0) 

Int
en

sit
y (

co
un

t) 

 72.6  72.8  73.0  73.2  73.4  73.6  73.8 74.0  74.2 74.4  74.6  74.8 75 

Fig. 4.16: X-ray diffraction peak in layer 4 for 2θ=70o to 75o

Fig. 4.17: d versus sin2ψ plot of layer 4 for 2θ=70o to 75o
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4.4 Discussion of the Results

Ansys-12.0 (2010) software was used to model the electrical discharge process with

various Ip-Ton combinations. It is known that temperature pattern at the end of pulse

duration is a key point to estimate phase transformation of the material. The phase

changes from solid to liquid and to gas at regions that have temperatures higher than

the melting point. While the fusion zone experiences solid-liquid transformation, the

heat-affected zone experiences solid-solid phase transformation. This transformation

is initiated at approximately 1000K. Once this temperature is exceeded the parent

material transforms to austenite. Subsequently, as the austenite cools several daugh-

ter phases, such as ferrite, pearlite or bainite could be created. The cooling rate is an

important factor to estimate such changes. In EDM process cooling rate is extremely

high and thus expected that most of the HAZ will have transformed to martensite.

In this section, the results obtained using the FEM analysis and experimentations

described in Section 4.3, the temperature profiles, and the thermal and the residual

stresses are discussed. The effect of process parameters such as Ip and Ton on these

responses are also evaluated. In addition, the developed FEM model is partially

validated by comparing the predicted residual stress results with the experimental

data.

4.4.1 Temperature distribution

To know the thermal effects on the electro-discharged machined surface, there is

the need to analyse temperature profiles at the end of the pulse. The temperature

distribution during single discharge is calculated with the energy input for Ip= 9

A and Ton = 100µs. The temperature isotherms of single discharge at the end of

pulse (before ejection) is shown in Fig. 4.18. Nine isotherms representing the nodal

average temperature with the corresponding values are depicted in colour code in the

figure. The maximum temperature attained in the workpiece under this heat flux is

found to be 3679 K at the centre of the discharge and it gradually decreases away

from upper-left corner of the model. It is expected because the intensity of the heat

flux is highest at this point and as the distribution is Gaussian, the temperature is
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gradually diminishing away from the centre. Out of these nine isotherms the top

three isotherms are in the boiling region, next three isotherms are in molten region,

and last two isotherms are in HAZ.

The jagged periphery in the close-up image demonstrates how those elements,

which are in elevated temperature, are eroded/killed from the workpiece. In actual

practice, the face after erosion of material is expected to be much smoother, however,

it is jagged here in the modelling because partial removal of element is not possible

in modelling, only whole element could be removed which attains the requisite tem-

perature. The molten material portion recast on the parent material is called recast

layer. The portion above the melting point (top two isotherms in Fig. 4.19) is recast

layer and subsequent four layer (above 1000k and melting temperature) are HAZ.

Fig. 4.18: Temperature distribution at the end of Ton just before material ejection.

A shallow shape crater has been formed due to single spark, which is a cavity

with a concave shape on the workpiece surface. The volume of the crater equals that

of the removed material by the spark depicted in Fig. 4.20. The craters determine

the surface topography of the machined workpiece. The height and radius of a crater

created by a single spark are 13.4 µm and 45 µm, respectively. It could be observed

that the radius of the crater hemisphere formed in the radial direction is more than

that of depth resulting in elliptical shape shallow craters.
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Fig. 4.19: Temperature distribution at the end of pulse on time subsequent to material
removal.

Fig. 4.20: Detached/killed elements from the spark vicinity at the end of pulse.
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Fig. 4.21: Temperature distribution at the end of pulse off time.(Ip=9A,Ton=100µs)

Fig. 4.21 shows the temperature profile of the domain at end of cooling cycle when

the workpiece cools down. The shapes of the isotherms in Fig. 4.21 are different from

that of Fig. 4.19 as during cooling convective heat transfer takes place in top surface.

The surface, diagonal and symmetry paths (depicted in Fig. 4.22) are defined to

emphasis the variation of responses along those path. The time history of temperature

of a few specific points depicted in Fig. 4.22, over entire the heating and cooling cycle is

presented in Fig. 4.23. It can be observe that, there is a sharp temperature rise during

the heating cycle and then rapid quenching. The temperature variation with respect

to time of various points on diagonal path reveals solid-solid phase transformation

just after removal of pulse within heat-affected zone. Besides this, in this figure, it is

observed that the peak of the time history temperature profile shift rightwards as the

depth increases. This is possibly due to the fact that as the distance of the point from

the interface increases, the effectiveness of the cooling process is delayed. Since, after

the heating cycle, the molten metal starts solidifying, the top surface is quenched and

solidifies rapidly due to rapid heat transfer from the surface to the dielectric. Thus

forming a sub-layer and the solidification is delayed for the inner points.
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Fig. 4.22: Paths on working domain.

Fig. 4.23: Variation of temperature with respect to time on diagonal path.
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4.4.2 Thermal stress distribution

The distinctive stress developed at the end of the heating cycle is known as thermal

stress and its distribution in the workpiece for various parametric combinations are

discussed. Later on, by varying the two parameters i.e. pulse duration and current,

a parametric study of thermal stress is presented in the subsequent section.

Fig. 4.24, Fig. 4.25 and Fig. 4.26 gives a qualitative assessment of the radial

component (σrr), axial component (σzz) and shear component (σrz) of the thermal

iso-stresses attained, respectively, for Ip = 9A and Ton = 100µs. The maximum com-

pressive stresses are located on the surface of the newly created crater and decreases

away from the crater radially as well as axially.

The nature of the maximum stress is compressive and it is due to the fact that

during the pulse duration, the heat flux supplied to the workpiece for a very short

duration (in µs). Thus, the area nearer to the spark expands significantly, however

the surrounding materials which are not able to expand instantaneously, will restraint

them, causing compressive thermal stresses. The radial component is found to be

highest amongst them closely followed by axial component and shear component. The

radial component of maximum compressive thermal stress obtained is approximately

355 MPa (Fig. 4.24), while the axial component and shear component of the same are

approximately 98.3 MPa (Fig. 4.25) and 85.9 MPa (Fig. 4.26), respectively. Yadava

et al. (2002) and Salah et al. (2008) had published similar results. In addition,

the radial component of maximum tensile thermal stress attain is 46 MPa, axial

component is 63.1 MPa and shear component is 52.6 MPa. The maximum tensile

stresses attained in the workpiece material are much below the yield strength of the

material, thus inhibiting development of cracks in the sub-layers.

The Von Mises thermal stress distribution at the end of heating cycle is shown in

Fig.4.27, it can be seen that the stress varies from 0.7 MPa to 316 MPa.

4.4.3 Residual stress distribution

Sharp temperature gradient caused by the rapid thermal cycle at the surface and

thermal contraction of re-solidified material on the base material, in conjunction with

plastic deformation, results of the formation of tensile residual stress. Residual stress
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Fig. 4.24: Radial component of thermal stress (σrr) at the end of pulse.

Fig. 4.25: Axial component of thermal stress (σzz) at the end of pulse.
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Fig. 4.26: Shear component of thermal stress (σrz) at the end of pulse.

Fig. 4.27: Von Misses thermal stress at the end of pulse.
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trend perhaps changed by the metallurgical alteration relating volumetric changes, as

it is well known that the martensitic transformation from austenite with a concurrent

increase in specific volume of about 3% [Mamalis et al. (1987)]

To understand the nature of residual stress entrapped in the workpiece after ma-

chining, the stresses developed at the end of cooling cycle are plotted. Fig. 4.28,

Fig. 4.29 and Fig. 4.30 represents the radial, axial and shear components of the resid-

ual stress, respectively for Ip= 9A and Ton =100 µs. It can be noted that the plots

represented the state of the workpiece after crater formation, so the graphs profiles

are initiated beyond the crater volume.

In Fig. 4.28, the residual stress in the radial direction are illustrated. The com-

pressive stress induced, just beneath the crater, during pulse on time is converted to

tensile stress at the end of cooling cycle. With the increasing distance from the crater,

the stress decreases and changes to compressive in nature. The maximum radial ten-

sile stress is observed just beneath the crater, attains a maximum value of 670 MPa.

However, the minimum value attained is -215 MPa, and both the extreme values are

observed along the line of symmetry. Axial and shear component of residual stresses

are found to be comparatively small, although the stress patterns are found to be

quite analogous to radial component. The maximum value of 236 MPa and 171 MPa,

and minimum value of -122 MPa and -129 MPa are observed, for the axial and shear

components of residual stress, respectively .

For clear visualisation of these stress variation at different section along the three

paths are plotted (Fig. 4.22). Finite element analysis of EDM machining results

of the radial, axial and shear components of residual stresses on these paths are

depicted in Fig. 4.32, Fig. 4.33 and Fig. 4.34, respectively. It is clear from theses

figures that the radial component of residual stresses are dominant. As the surface

path rotates towards the axis of symmetry, the axial component of residual stress

gradually increases. The shear component increases to maximum along diagonal path

and diminishes as is reaches the symmetry path. However, the radial component does

not change much for these three paths.

The Von Mises residual stress distribution at the end of cooling cycle is illustrated

in Fig.4.31, it can be seen that the stress increases from 1 MPa to 549 MPa, when
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Fig. 4.28: Radial component of residual stress (σrr) at the end of pulse period.

Fig. 4.29: Axial component of residual stress (σzz) at the end of pulse period.
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Fig. 4.30: Shear component of residual stress (σrz) at the end of pulse period.

Fig. 4.31: Von Misses residual stress at the end of pulse period.
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moved towards the crater. The iso stress lines are almost parallel and having the

shape of the crater. At room temperature (300 K) the yield stress is 450 MPa, and

hence the region at about 42.2 µm depth yields, which is shown in Fig. 4.31 for Ip=9

A and Ton=100 µs. These stresses are predominately tensile and on yielding sub

surface cracks are developed. Similar, obeservations are made for various Ip/Ton

parameter combinations 1/20, 1/100 and 9/20 and are found to be 11.5, 16.6, and

23.06 µm, respectively.

Fig. 4.32: Residual stresses on surface path.

4.4.4 Effect of machining parameters on Temperature profile

The variation of temperature along the line of symmetry with respect to the depth of

the workpiece has been presented before material ejection in this section for different

pulse current and pulse duration. The peak temperature and its distribution depends

upon the amount of spark energy supplied to workpiece and hence the pulse current

and pulse duration has an significant impact on the temperature profile which are

explained in the subsequent section.

Effect of current: The variation of temperature at the end of spark with depth of
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Fig. 4.33: Residual stresses on diagonal path.

Fig. 4.34: Residual stresses on symmetry path.
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the workpiece has been plotted for two different Ip and presented in Fig. 4.35. From

these plots, it can be observed that with the increase in Ip the peak temperature goes

on increasing. This is due to the fact that, with the increase in Ip the magnitude of

the heat energy transferred to the workpiece increases. From the figure, it is observed

that temperature shows inverse exponential relation with respect to the axial distance.

Effect of pulse duration: In Fig. 4.36, the effect of pulse duration is presented

along the depth for Ip = 9A for Ton = 20 µs and 100 µs. It could be noted that if

Ton is higher, the spark radius R will also be larger and the heat will be distributed

to a larger area, (as the plasma channel becomes wider with increase of Ton, the

heat flux distribution becomes less steep), which may not produce the higher peak

temperature, but will remove more material. In Fig. 4.36 presented, it can be clearly

seen that the profile of Ton =100 µs, though more heat is produced, but the peak

temperature approaches 4000K. However, the profile of Ton=20 µs with lower heat

supplied to a radius of 75 µm for a very short time, thus produces a peak temperature

of slightly higher than 4000K. This may be attributed to, though less amount of heat

is produced for Ton =20 µs, it is concentrated to a smaller area that produces slightly

higher peak temperature than that for larger Ton.

4.4.5 Effect of machining parameters on thermal stress

It is believed that the Gaussian heat distribution is closest to the real life situation

and FEM results show steep temperature gradient within the spark radius. These

steep gradients are considered to be the main source of induced thermal stresses in

the workpiece that are developed just after the material ejection.

Fig.4.37 corresponds to the nature of the thermal stress variation in radial direc-

tion along the centreline of workpiece. The machining conditions are stated in the

plot. It can is noted that the thermal stresses obtained near the crater are com-

pressive in nature for all cases with the maximum value -348 MPa for Ip=1A and

Ton=20µs. This stress gradually becomes tensile and then asymptotically become

stress free with increasing depth. The trend of thermal stresses with other machining

parameter setting are similar in nature and are tabulated in Table 4.6.

It can be clearly noticed that the profile is shifting outwards, i.e., depth where
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Fig. 4.36: The effect of Ton on the temperature distribution for Ip=9A
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the maximum compressive stress occur varies from 7.59 µm to 16.05 µm for 20 µs

and from 10.95 µm to 40.78 µm for 100 µs. It can be inferred that as the spark

energy increases with the increase in Ip, a higher temperature gradient is produced,

so the heat flux can penetrate to more depth causing more HAZ. Similar trend is

also observed for Ton (corresponding depth varies from 7.59 µm to 10.95 µm for 1

A and 16.04 µm to 40.78 µm for 9A) where with the increase of pulse on time, the

stresses are induced deeper into the workpiece. Fig.4.38 represents the thermal stress

directly following the heat flux in axial direction. Similar trend has been obsorbed

for the thermal stress distributions in radial direction. The maximum compressive

stresses are located on the surface of the newly created crater and the magnitude is

comparatively low. Also, with the increase in Ip from 1A to 9A the depth at which

maximum thermal stress occurs increases from 30.33 to 48.11 µm and 43.79 to 122.92

µm for 20 µs and 100 µs, respectively. Similarly, with the increase of Ton from 20 µs

to 100 µs the depth of maximum thermal stress increases from 30.33 to 43.79 µm and

48.11 to 122.92 µm for 1A and 9A, respectively, confirming the claim that with the

increase in both Ip and Ton, the depth of maximum thermal stress increases. The

shear stress σrz in the line of symmetry is found to be zero.

4.4.6 Effect of machining parameters on residual stress

Investigating the plot in Fig. 4.39 minutely, it is found that radial components of

the residual stresses in EDM are predominantly tensile in nature. The magnitude

increases from the top surface to its maximum value which is approximately equal to

600 MPa. It is very interesting to observe that the magnitudes of the residual stress

for all four cases are found to be almost equal. Thus, it can be concluded from this

observation that the intensity of the peak stresses are found to be unaffected with

respect to the magnitude of the spark energy produced. This peak intensity of the

stress indicates the hot strength of the material machined. However, it is observed

that as the spark energy increases, the depth at which the residual stress reaches its

maximum, is found to be increase. Subsequently, the residual stress falls rapidly to

fairly low value of compressive stress (Table 4.6).

Fig. 4.40 illustrates the residual stress in the axial direction. Around the crater,



Modelling of Residual Stress 145

0 20 40 60 80 100 120 140 160 180
-400

-300

-200

-100

0

Ip= 9 A, Ton = 100
Ip= 9 A, Ton = 20
Ip= 1 A, Ton = 100
Ip= 1 A, Ton = 20

T
he

rm
al

 s
tr

es
s 

(M
P

a)

Depth ( µ m) from crater surface

µs
µs

µs
µs

Fig. 4.37: Effect of Ip and Ton on thermal stress in radial direction along the centreline of
workpiece.

Depth ( µ m)  from crater surface

0 30 60 90 120 150 180 210 240 270
-400

-300

-200

-100

0

T
he

rm
al

 s
tr

es
s 

(M
P

a)

Ip= 9 A, Ton = 100
Ip= 9 A, Ton = 20
Ip= 1 A, Ton = 100
Ip= 1 A, Ton = 20

µs
µs

µs
µs

Fig. 4.38: Effect of Ip and Ton on thermal stress in axial direction along the centreline of
workpiece.



Modelling of Residual Stress 146

tensile stresses are present, but they are not as large as those beneath the adjacent

surface. There stresses reaches a maximum value and then gradually decreases as

the depth increases and become compressive in nature. On further increase of depth,

these stresses asymptotically diminishes to a zero value. Similar trend is obtained in

Fig. 4.41 for shear stress. The magnitudes of shear residual stress are found to be in

the range of approximately 10 MPa.
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Fig. 4.39: FEA residual stress in radial direction (σrr) along symmetric path

4.4.7 Experimental Validation of residual stress

In Fig. 4.42, the graph shows the experimental results on residual stress (σφ in Ta-

ble 4.5) plotted along the depth of the workpiece. The 95% confidence interval is

shown by the error bar on the experimental value. The effect of Ip and Ton are

clearly indicated. The magnitude of peak of the residual stresses increases with in-

crease both Ip and Ton. The experimental results show that there is a considerable

rise in the residual stress as Ip or Ton increases resulting in a greater peak. With

an increase of Ip from 1 A to 9 A at Ton = 100 µs the maximum residual stress

increases from 588 MPa to 812 MPa, however, when Ton increases from 20 to 100
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Fig. 4.40: FEA residual stress in axial direction (σzz) along symmetric path.
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Fig. 4.41: FEA residual shear stress (σrz) along symmetric path.



Modelling of Residual Stress 148

Fig. 4.42: Experimental residual stress in radial direction(σrr) along symmetric path.

Fig. 4.43: Experimental residual shear stress (σrz) along symmetric path.
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at 1A it increases from 478 to 588 MPa and at 9 A it increases from 797.9 to 812

MPa (Table 4.5). Hence it can be seen that though residual stress increase by both

of the factors but the effect of Ip is more prominent than Ton. The residual stresses

entrapped on the surface are well agreeing with those results of Guu et al. (2003),

however, for Ip=1 A the values are slightly less while that of Ip= 9A are higher.

Consequently, the degree of the stimulated residual stress can be restricted efficiently

by identifying a proper Ip and Ton value.

The experimental results show that the stress levels reaches its maximum values

close to the surface, but diminish very rapidly in the sub-surface area, which is analo-

gous with the FEM simulation results. Even though the magnitude of stresses do not

match exactly with FEM results the nature of the stress variation along the depth

is similar. This discrepancy is obvious because the simulation results are obtained

for a single spark model, whereas, the experimental observations are for an EDMed

surface which has been expose to multiple sparking. Once cracks occur, they reduce

the stress level in the neighbourhood and work as stress relieving mechanism. Hence,

the actual stress level of recast portion of the material differs from FEM analysis.

Fig 4.43 presents the residual shear stress (σrz) along the symmetry path, ob-

tained experimentally. It can be seen that these stresses are small when compared

with the radial stresses component. The error in the estimation of these stresses are

exceptionally large to make any inference on the impact of machining parameters.

Fig. 4.44 shows the graphical plot of the effects of the factors Ip and Ton on the

peak residual stress measured experimentally and the depth where it occurs. As it

can be noticeably distinguished in the graph that as Ip and Ton increase from the

lower to higher level, there is a significant increase in peak tensile residual stress and

the corresponding depth where it occurs.

4.5 Conclusion

In the present study, a two-dimensional axisymmetric model was developed to predict

the EDM characteristics such as temperature, thermal and residual stresses. For the

development of the model, AISI D2 steel was chosen and well-known finite element

commercial software ANSYS 12.0 was used to simulate the effects of a single spark.
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(a)

(b)

Fig. 4.44: Effect of Ip and Ton on (a) peak Tensile residual stress (b) Depth at which it
occurs (µm).
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Table 4.6: Peak thermal and residual stress from FEM

Stresses Ip Ton Radial Axial
(A) (µs) depth(µm) Stress (MPa) depth(µm) Stress(MPa)

Thermal
9

100 40.78 -309.34 122.32 -92.87
20 16.04 -277.48 48.11 -56.91

1
100 10.95 -354.52 43.79 -160.84
20 7.59 -384.62 30.33 -141.62

Residual
9

100 24.47 670.17 26.5 202.63
20 14.48 608.00 17.68 161.00

Tensile
1

100 2.19 590.71 4.38 96.90
20 6.06 682.89 6.06 198.42

Residual
9

100 61.16 -210.30 99.09 -100.84
20 33.68 -203.00 63.10 -86.00

Compressive
1

100 26.27 -183.13 30.65 -131.13
20 18.20 -210.30 24.26 -118.66

The important features of the process such as temperature-dependent material prop-

erties, shape and size of heat source (Gaussian heat distribution), percentage fraction

of heat contribution to the workpiece, pulse on/off time, material ejection fraction

are taken into account in the development of the model. The temperature profiles

and material transformations that occur in the workpiece material due to high tem-

perature, deformations and transient operation are analysed. In this analysis it is

assumed that 50% of the molten material is ejected from the material and rest is

recast on the workpiece. There is a sharp temperature rise during the heating cy-

cle and then it falls rapidly during quenching. It is observed that the compressive

thermal stresses are developed beneath the crater and the tensile stresses occur away

from the axis of symmetry. FEM results show that the peak temperature on the

surface sharply increases with pulse current, whereas it is slightly more with lower

pulse on time than that with higher pulse on time. The workpiece is severely affected

by the thermal stresses to a larger depth with increasing pulse energy. The nature

of residual stresses is predominantly tensile. It is very interesting to observe that

the magnitudes of the radial component of the residual stresses acquired from FEM

are dominant than other components for all the machining parameter combinations.

The axial component of residual stress is minimum on the surface path and increases
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as the path rotates towards the axis of symmetry. Von Mises residual stress show

that the workpiece yields upto a depth of 11.5, 16.6, 23.06 and 42.2 µm for 1/20,

1/100, 9/20 and 9/100 discharge current/ pulse on time parameter combinations, re-

spectively. The experimental results shows that the stress levels reach its maximum

values close to the surface, but diminish very rapidly to comparatively low values of

compressive residual stresses in the sub-surface area. The trend of these stresses with

depth has an excellent agreement with theoretical results. The magnitudes of the

maximum tensile and compressive residual stresses are not effected by pulse energy,

but the depth at which they occur, increases with the pulse energy. However, the

shape of the graph of residual stress versus depth does not change with the machining

parameters, in general.
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5. SOFT COMPUTING MODELS BASED PREDICTION OF
MRR, TWR AND OVERCUT

5.1 Introduction

For last six decades, electrical discharge machining has been providing inimitable

capabilities to machine “difficult to machine” materials with desire shape, size, and

required dimensional accuracy. It has been successfully applied for machining in

the advance industries like automotive, medical, aerospace, consumer electronics and

optoelectronic industries development. In the past, there has been considerable im-

provement in EDM technology to enhance productivity, accuracy, and the versatility

of the process. The major concern in the active research is to decide the optimal

setting of the process parameters in such a way that material removal rate (MRR)

and accuracy increases; and concurrently overcut (OC) or gap (G), tool wear and

surface roughness should diminish.

A process can be understood better when a model reflects its behavior by its

essential parameters. The factors that are important for the system are to be identified

and different aspects of the process to be related while building the model. It is

expensive, impractical or impossible to experiment directly with the process so a

good model can be cost effective to predict the actual process very closely.

In this chapter, the focus is on the development of two neuro fuzzy models; Mam-

dani and Sugeno systems along with an ANN model for prediction of MRR, TWR and

G in EDM process. There are a large number of factors to be considered for EDM

process, so based on experience and literatures on EDM research and the working

characteristics of the machine, the prime parameters chosen, in the present chapter,

are discharge current, spark on-time, duty cycle (as given in Equation 1.1) and dis-

charge voltage. The motivation, why these factors have been select is that these are

often used among EDM researchers Dhar et al. (2007), Kung et al. (2009), Doniavi
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et al. (2008) and Sohani et al. (2009) for the said responses and are found signifi-

cantly influencing them. Extensive experiments were conducted by the author, and

the proposed models used the experimental data on EDMed AISI D2 tool steel. The

performances of the developed models are compared. Such a study would help in

developing an appropriate model for simulation of the EDM process.

5.2 Description of the experiments

5.2.1 Equipment and workpiece material

A series of experiments were performed on a CNC electrical discharge die sinking

machine using a cylindrical pure copper (99.9% Cu) as a tool electrode with a diameter

of 30 mm and AISI D2 workpiece of diameter 100 mm and 10 mm thick (Fig. A.3).

Commercial grade EDM oil was used as dielectric fluid, the power supply was linked

with the tool electrode (tool: positive polarity, workpiece: negative polarity). A

lateral flushing system was employed for effective flushing of machining debris from

the working gap region with a pressure of 0.4 kgf/cm2.

5.2.2 Experimental procedure

The workpiece was initially circular bar of diameter 100 mm and were cut into spec-

imens of thickness 10 mm by a silicon carbide disc. The top and bottom faces of

the workpiece were ground to make it flat and good quality surface finish prior to

experimentation. The bottom of the cylindrical electrode was polished by a very fine

grade emery sheet prior to every experimental run. Each treatment of the experi-

ment was run for 15 minutes and the time was measured with a stopwatch of with an

accuracy 0.1 s. The workpiece as well as the tool were detached from the machine,

cleaned and dried up, to make it free from the dirt, debris and dielectric. They were

weighed, before and after machining, on a precision electronics balance (Fig. A.5).

The diameter of the cavity machined on workpiece was measured by a tool maker

microscope (Fig. A.8) with an accuracy of 1 µm.

5.2.3 Machining performance evaluations

• Material Removal Rate
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MRR is calculated by using the volume loss from the workpiece divided by the

time of machining. The calculated weight loss is converted to volumetric loss in

mm3/min as per Equation 5.1.

MRR =
∆Vw
t

=
∆Ww

ρwt
(5.1)

where ∆Vw is the volume loss from the workpiece, ∆Ww is the weight loss from

the workpiece, t is the duration of the machining process, and ρw= 7700 kg/m3 the

density of the workpiece.

• Tool Wear Rate

TWR is expressed as the volumetric loss of tool per unit time, expressed as

TWR =
∆Vt
t

=
∆Wt

ρtt
(5.2)

where ∆Vt is the volume loss from the electrode, ∆Wt is the weight loss from the

electrode, t is the duration of the machining process, and ρt=8960 kg/m3 the density

of the electrode.

• Radial Overcut or Gap (G)

G (µm) is expressed as half the difference of diameter of the hole produced to the

tool diameter, that is

G =
(di − dt)

2
(5.3)

where dt is the diameter of the tool and di is the diameter of the impression or cavity

produce by the tool on the workpiece.
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5.2.4 Experimental design and parameter selection

Full factorial design is the usually adopted for designing an experiment in which

all possible combinations of factors and their levels are considered. However, if the

levels are different, a mixed level factorial designs are generally implemented. In

this work, the process parameters, Ip and Ton are assigned with five levels, where

as Tau and V are with three and two levels, respectively, yielding a total of 150

(= 52×31×21) experiments (see Appendix B). The experimental condition are shown

in Table 5.1. To eliminate the consequence of unaccounted factors on the responses

the experiments were carried out in random order. The responses MRR, TWR and

G has been observed for each experiments and the results obtained through a series

of experiments for various sets of parametric combinations as planned have been

exhibited in Table 5.2. The outcome of this factorial design facilitate to approximate

all the main effects and their second order interactions in this research.

Table 5.1: Experimental conditions

Parameters Units Notations Levels
1 2 3 4 5

Discharge Current A Ip 4 7 10 13 16
Pulse on Time µs Ton 100 200 300 400 500
Duty Cycle % - Tau 80 85 90
Discharge Voltage volt V 40 60
Dielectric used Commercial grade EDM oil
Dielectric flushing Side flushing with pressure
Work material AISI D2 steel
Electrode material Electrolytic pure Copper
Electrode polarity Positive
Work material polarity Negative
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Table 5.2: Observations for MRR, TWR and G.

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

1 10 400 85 40 25.545 0.030 0.210 Te

2 13 400 90 60 40.260 0.032 0.310 Te

3 16 400 85 60 40.494 -0.011 0.260 V

4 16 500 80 60 31.130 0.011 0.290 Tr

5 16 300 80 60 32.660 0.089 0.260 Te

6 13 200 80 60 27.234 0.301 0.210 Tr

7 7 100 80 40 14.500 0.190 0.100 Tr

8 10 400 90 40 29.065 0.011 0.220 Tr

9 4 100 90 60 6.870 0.089 0.005 Te

10 10 500 80 60 15.597 0.002 0.190 Te

11 16 200 90 60 48.290 0.491 0.280 Tr

12 4 100 90 40 8.221 0.045 0.010 Te

13 7 400 80 60 7.230 0.011 0.132 Te

14 16 200 80 40 39.560 0.636 0.270 Te

15 7 400 90 40 13.701 0.011 0.130 Tr

16 7 200 85 60 13.078 0.080 0.120 Tr

17 4 500 85 40 2.156 0.000 0.120 Te

18 10 100 85 40 28.080 0.569 0.150 Te

19 10 100 90 60 26.662 0.647 0.160 Tr

20 13 300 90 60 41.110 0.112 0.300 V

21 10 300 90 60 24.896 0.056 0.230 Tr

22 16 500 90 60 46.494 0.040 0.350 Te

23 13 100 85 40 40.920 0.982 0.190 Tr

24 10 200 80 40 22.520 0.190 0.180 Te

* Tr=Training set, Te=Testing set, V=Validation set.

(continued on next page)
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Table 5.2: Observation for MRR, TWR and G.(Contd.)

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

25 4 100 80 60 5.532 0.100 0.038 Te

26 4 400 90 60 1.909 0.019 0.080 Te

27 10 400 80 40 20.961 0.040 0.212 Tr

28 13 200 90 40 49.052 0.424 0.240 Tr

29 4 300 80 60 3.320 0.022 0.080 Tr

30 10 400 80 60 16.429 0.016 0.180 Tr

31 10 500 80 40 19.039 0.012 0.220 Tr

32 7 500 85 40 8.430 -0.010 0.190 Te

33 13 500 80 60 26.558 0.009 0.236 V

34 16 300 80 40 38.540 0.212 0.280 Te

35 13 100 80 40 32.960 1.023 0.190 Tr

36 16 200 80 60 32.910 0.547 0.245 Tr

37 7 100 85 40 16.340 0.156 0.110 Tr

38 7 300 80 60 9.078 0.036 0.125 Tr

39 7 200 90 60 14.727 0.065 0.100 Tr

40 13 200 90 60 41.620 0.257 0.240 Te

41 16 500 85 40 49.403 -0.067 0.340 Te

42 13 500 85 60 31.974 -0.090 0.250 Te

43 4 500 80 60 1.700 0.000 0.100 Tr

44 10 300 80 40 21.970 0.060 0.190 Te

45 16 100 90 40 59.980 1.888 0.230 V

46 7 500 85 60 6.590 0.011 0.160 Te

47 10 100 80 60 19.360 0.424 0.150 Tr

48 7 200 80 40 13.571 0.077 0.140 Tr

* Tr=Training set, Te=Testing set, V=Validation set.

(continued on next page)



Prediction of MRR, TWR and Overcut 160

Table 5.2: Observation for MRR, TWR and G.(Contd.)

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

49 16 100 85 40 54.150 1.783 0.224 Tr

50 16 400 80 60 32.390 0.053 0.283 Tr

51 13 500 90 60 38.026 0.020 0.320 Te

52 13 100 90 40 49.270 1.038 0.200 Tr

53 13 200 80 40 32.790 0.310 0.220 Te

54 4 200 80 40 4.909 0.045 0.070 Te

55 13 300 85 60 34.660 0.055 0.210 V

56 16 200 90 40 59.790 0.563 0.260 Te

57 16 500 85 60 39.360 -0.112 0.297 Tr

58 7 400 85 40 11.351 0.010 0.160 V

59 13 400 85 40 39.688 0.011 0.250 Tr

60 10 300 80 60 17.960 0.052 0.170 Te

61 13 300 90 40 48.330 0.167 0.250 Te

62 10 400 85 60 20.364 0.022 0.198 Te

63 10 200 80 60 19.090 0.151 0.160 Tr

64 16 300 85 40 53.060 0.201 0.250 Tr

65 7 200 80 60 10.753 0.089 0.110 Te

66 7 500 80 60 5.930 0.001 0.150 Te

67 4 100 85 60 5.610 0.100 0.040 Tr

68 7 400 85 60 8.792 0.030 0.150 Tr

69 13 200 85 40 40.620 0.391 0.230 V

70 4 300 90 60 3.130 0.011 0.060 Tr

71 13 100 90 60 42.090 1.083 0.200 Te

72 10 500 85 60 17.500 -0.011 0.220 Tr

* Tr=Training set, Te=Testing set, V=Validation set.

(continued on next page)
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Table 5.2: Observation for MRR, TWR and G.(Contd.)

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

73 16 100 80 60 33.560 1.584 0.220 V

74 4 400 85 60 1.990 0.011 0.110 Te

75 13 400 85 60 34.364 0.000 0.230 Te

76 13 500 90 40 43.039 0.000 0.270 Te

77 13 300 80 40 31.820 0.123 0.240 Te

78 4 400 80 60 2.380 0.009 0.091 Tr

79 16 500 90 40 56.570 0.063 0.310 Tr

80 7 100 90 60 16.286 0.313 0.050 Tr

81 4 100 85 40 8.240 0.078 0.065 Te

82 4 400 80 40 2.830 0.015 0.100 Te

83 13 500 85 40 38.065 -0.100 0.290 Tr

84 7 300 85 40 15.200 0.040 0.130 Te

85 7 500 90 60 7.000 0.011 0.150 Te

86 10 300 85 40 26.810 0.060 0.170 Te

87 16 100 85 60 41.580 1.507 0.219 Te

88 4 200 90 60 5.805 0.022 0.039 Tr

89 16 500 80 40 37.520 0.025 0.320 Tr

90 4 200 90 40 6.740 0.011 0.040 Te

91 4 200 85 40 7.930 0.011 0.090 Tr

92 10 200 85 60 22.740 0.190 0.150 Tr

93 13 200 85 60 35.230 0.301 0.198 Te

94 13 400 90 40 45.640 0.022 0.260 V

95 10 500 90 40 28.273 -0.019 0.240 Tr

96 16 100 90 60 48.540 1.696 0.220 Te

* Tr=Training set, Te=Testing set, V=Validation set.

(continued on next page)
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Table 5.2: Observation for MRR, TWR and G.(Contd.)

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

97 4 300 85 60 4.230 0.022 0.090 Tr

98 4 500 90 60 1.455 0.000 0.086 Tr

99 7 300 85 60 12.310 0.060 0.130 Tr

100 16 300 90 40 59.120 0.252 0.269 Te

101 10 200 90 60 25.494 0.150 0.210 Tr

102 10 300 85 60 22.160 0.067 0.170 Tr

103 4 300 90 40 5.750 0.000 0.065 Tr

104 4 400 85 40 4.740 0.022 0.110 Tr

105 13 500 80 40 30.290 0.022 0.280 Tr

106 10 500 85 40 23.948 -0.056 0.240 Tr

107 16 200 85 40 53.930 0.714 0.274 Te

108 16 200 85 60 41.260 0.520 0.240 Tr

109 7 300 80 40 12.810 0.038 0.150 Tr

110 13 100 80 60 27.490 0.904 0.190 V

111 7 200 90 40 17.740 0.067 0.110 Te

112 10 200 85 40 27.780 0.268 0.189 Te

113 13 400 80 60 26.896 0.020 0.230 Tr

114 16 300 90 60 47.960 0.165 0.330 Tr

115 4 500 85 60 1.338 0.011 0.120 Tr

116 13 100 85 60 36.090 0.792 0.180 Tr

117 16 400 90 60 47.380 0.078 0.340 Tr

118 10 300 90 40 31.250 0.033 0.210 Te

119 13 400 80 40 30.831 0.063 0.270 Te

120 16 300 85 60 40.900 0.078 0.250 Tr

* Tr=Training set, Te=Testing set, V=Validation set.

(continued on next page)
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Table 5.2: Observation for MRR, TWR and G.(Contd.)

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

121 7 300 90 40 15.860 0.023 0.120 V

122 7 300 90 60 12.750 0.030 0.120 Tr

123 4 500 90 40 2.013 0.000 0.100 Tr

124 10 100 90 40 33.780 0.547 0.160 Te

125 13 300 80 60 27.110 0.078 0.220 Te

126 7 500 90 40 10.140 -0.022 0.150 Te

127 10 200 90 40 33.052 0.145 0.200 Tr

128 7 100 80 60 11.990 0.190 0.088 Tr

129 10 400 90 60 22.250 0.022 0.240 Tr

130 10 100 80 40 23.480 0.625 0.160 Tr

131 7 400 80 40 11.030 0.018 0.170 Tr

132 16 400 80 40 38.377 0.089 0.300 V

133 4 500 80 40 2.117 0.006 0.110 Tr

134 16 100 80 40 39.810 1.800 0.230 Tr

135 4 300 80 40 3.532 0.022 0.090 Te

136 7 500 80 40 9.030 0.008 0.180 Te

137 7 100 90 40 19.010 0.257 0.060 Te

138 16 400 85 40 51.013 0.020 0.290 Tr

139 4 100 80 40 5.766 0.075 0.050 Tr

140 7 100 85 60 13.195 0.179 0.080 Te

141 7 400 90 60 9.780 0.022 0.140 Te

142 13 300 85 40 40.420 0.089 0.210 V

143 4 300 85 40 7.420 0.022 0.079 V

144 4 200 85 60 5.039 0.045 0.070 Tr

* Tr=Training set, Te=Testing set, V=Validation set.

(continued on next page)
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Table 5.2: Observation for MRR, TWR and G.(Contd.)

Run Ip Ton Tau V MRR TWR G Data

Order A µs % volt mm3

min
mm3

min
µm Type*

145 4 200 80 60 4.597 0.067 0.056 Te

146 4 400 90 40 4.430 0.011 0.080 Tr

147 10 500 90 60 19.920 0.000 0.250 Tr

148 10 100 85 60 23.050 0.435 0.121 Te

149 16 400 90 40 57.680 0.089 0.280 Tr

150 7 200 85 40 16.169 0.070 0.142 V

Table 5.3 illustrates the ANOVA of MRR, TWR and G, the columns of the table

describing the degrees of freedom (DF), the F-statistic, and its p-value. It can be

noted that ANOVA is used for testing the null hypothesis (H0) of the experimental

data with a confidence level of 95%. The p-value for the F statistic is expressing the

probability of observing a value of F at least as large, if H0 is true then treatments has

no effect. If p-value ≥ 0.05, it is concluded that Hα is true and the treatments have a

statistically significant effect. Ip, Ton, Tau and V are siginificant for all the responses,

where as some of the interactions exihibit siginificant impact. The R2 value indicates

that the predictors explain 99.86%, 99.4% and 98.91% of the variance in MRR, TWR

and G, respectively. The corresponding R2
adj values are 99.78%, 99.08% and 98.31%,

for MRR, TWR and G, respectively. R2
adj, accounts for the number of predictors in

the model. Both values indicate that the second order model fits the data well for all

the responses.

The experimental investigation and analysis were carried out in different para-

metric combinations, for deriving an effective representation of the models, keeping

in view of the present research objectives. It is very difficult to predict the output

characteristics accurately by mathematical equation as EDM process is stochastic

and random in nature. So the proposed algorithms, discussed in the next section,

have been implemented here to model die-sinking EDM process. These techniques

are especially worthwhile in processes where a dynamic non-linear relationship exists
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Table 5.3: ANOVA for MRR,TWR and G

Source DF MRR TWR G
F P DoC F P DoC F P DoC

Ip 4 14755.92 0.000 87.61 781.42 0.000 19.38 1803.94 0.000 81.90
Ton 4 191.88 0.000 1.14 1857.15 0.000 46.05 268.13 0.000 12.17
Tau 2 1684.83 0.000 5.00 7.86 0.001 0.10 6.73 0.002 0.15
V 1 1634.56 0.000 2.43 22.14 0.000 0.14 23.17 0.000 0.26
Ip*Ton 16 5.84 0.000 331.54 0.000 32.88 0.69 0.793*
Ip*Tau 8 223.85 0.000 2.66 2.82 0.007 27.76 0.000 2.52
Ip*V 4 123.1 0.000 12.34 0.000 1.82 0.131*
Ton*Tau 8 4.55 0.000 5.55 0.000 6.23 0.000
Ton*V 4 0.75 0.560* 4.20 0.004 3.69 0.008
Tau*V 2 30.2 0.000 3.03 0.053* 42.39 0.000
Error 96
Total 149

S = 0.759310 0.0372374 0.0103811
R2= 99.86 % 99.40 % 98.91 %

R2
Adj= 99.78 % 99.08 % 98.31 %

*Non-Significant at 95%
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and a complete understanding of the physical mechanisms is very difficult, as in the

case of EDM process. One of the advantages of using these approaches is that a

model can be constructed very easily based on the given inputs and outputs and can

be trained to accurately predict process responses.

5.3 Proposed models

Artificial intelligence (AI) predictions have been getting interest to a large extent in

order to solve problems that are scarcely solved by the use of conventional methods.

They have been refers to have the ability to be trained like humans, by accumulating

knowledge through recurring learning activities. For that reason the intention of this

research is to propose multiple input single output models using the AI approaches to

predict the responses such as MRR, TWR and G. A comparative analysis based on

an ANN and two neuro-fuzzy techniques are presented and are explained as follows.

5.3.1 Artificial neural network (ANN)

A feed-forward neural network with four input neurons, one hidden layer and one

output neuron is used and the architecture of the model is depicted in Fig. 5.1. The

activation function in the hidden layer is the hyperbolic tangent sigmoid transfer

function, which standardizes or normalizes the data and hence the transformed data

lie between -1 and 1. In the output layer, a the linear transfer function is used. The

training algorithm selected is the Levenberg-Marquardt back-propagation because the

algorithm yields fastest training (see D). Weights are randomly initialised, and the

learning rate and momentum parameter were set at 0.05 and 1.05, respectively. The

data set obtain from experiments are divide randomly in to three subsets namely;

training, testing and validation sets, in 50%, 40% and 10% of the total data, respec-

tively shown by the column ’Data Type’ in Table 5.2. The training set is used to

calculate the gradient and to form the weight factors and bias. The testing data is

used to minimse the MSE while training and stop the training after appropiate epoch.

The remaining 10% validation data set is used to calculate the prediction error to

estimate the accuracy of the models on the unseen data set, which is elucidated in

Section 5.4.2.
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Fig. 5.1: Neural network architecture
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An ANN has one input layer and one output layer with one or added hidden layers

in between, whose computation nodes are respectively called hidden neurons of hidden

units. The hidden neurons interfere between the external input and the network

output, in some constructive mode. The numbers of hidden neurons are varied and

the generalization performance is evaluated. The number of hidden neurons affects

how well the network is able to separate the data. A large number of hidden neurons

will make sure accurate learning, and the network is able to precisely predict the data

it has been trained on, but its performance on new data, its capability to generalize,

is compromised. With less hidden neurons, the network may not be able to learn the

pattern of the data and the error may not be under an acceptable level. Thus, selection

of the number of hidden neurons is a crucial decision. However, the numbers of hidden

layer neurons are establish using a simple trial-error method in all applications on

the basis of least MSE in the testing data set. During the training, the MSE of the

testing data is recorded after maximum epoch of 1000 and these are plotted against

the number of nodes in the hidden layer for MRR, TWR and G in Fig. 5.2. The plot

illustrates that there is an optimal number of nodes where the MSE, for each of these

responses, exhibit a minimum value as explained by Tsai and Wang (2001c). The

number of nodes in the hidden layer are found to be 110, 6 and 25 for MRR, TWR

and G, respectively. Therefore, these ANN architectures are considered for modelling

of the said responses and adequately trained. Now, the models are ready to predict

the data for the validation data set and for the purpose of comparison.

5.3.2 Neuro-fuzzy (NF) models

Recently, researchers are working on hybrid models of ANN and fuzzy logic called

neuro-fuzzy system or Fuzzy Inference System (FIS). The motivation for hybridization

is the technique enhancement factor, multiplicity of application tasks and realizing

multi functionality. The need for replacing these primary functions is to increase

the execution speed and enhance reliability. A highly complex and ill-defined math-

ematical system can be modelled with a neuro-fuzzy system. It contains four major

components: fuzzifier, inference engine, rule base, and defuzzifier. The system can

extract knowledge in form of interpretable fuzzy linguistic rules. The system identifies
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the membership level of an input pattern to the different available membership classes

and estimate the output associated with the physical phenomena. Depending on the

types of inference operations upon ”if-then rules”, most fuzzy inference systems can

be classified into two types; Mamdani system and Sugeno system.

Mamdani system

Mamdani system is the most commonly used and this work proposed a neuro-fuzzy

inference system with four input variables and are responses such as MRR, TWR, and

G. It is shown is Fig. 5.3, where layer 1 consists of fuzzification of input parameters.

Each variable is fuzzified with Gaussian membership classes, since it is associated with

product composition for ease in calculation, the same is used. The inference engine

and rule base are depicted as layer 2. The rules are framed that can be expressed

as: If x is A and y is B then output belongs to class C. Lastly, in the third layer,

the inference mechanism weights each rule consequent values and a possible output

is found using the centroid of area technique.

The same training, testing and validation sets are used as mentioned in Sec-

tion 5.3.1. C++ codes were developed to simulate the model and extract the rule

base from the training data. The input-output training data is clustered using the

Mountain clustering technique Yager and Filev (1994) that yield 113, 112 and 118

rules to predict the responses MRR, TWR and G, respectively. The parameters used

for clustering are stopping constant =0.0001, mountain building constant =1 and de-

struction constant of 4. The error signals between the inferred output value and the

respective desired value are fine tuned by the Back-propagation technique Yager and

Filev (1995). The gradient-descent method is applied to adjust each rule antecedents

and consequent with a learning rate of 0.001 and a maximum epoch of 1000.

To find out the suitable architecture of the network for the above problem various

architectures have been studied. Though, the choice for the number of membership

classes for each of the variables can be numerous, an equal number of fuzzy classes

are considered for all the variables. To establish the best number of such membership

function, a simple trial-error method is used in all the applications on the basis of

least MSE in the testing data set. MSE against the number of membership classes are
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depicted in Fig. 5.4. It can be inferred from the plot that the number of membership

classes are 3, 2 and 4 for MRR, TWR and G, respectively, which yields minimum

MSE. These Mamdani architectures are considered for modelling of the said responses.

It can be noted that the MSE’s of the testing set are greater than that of the training

set.

Sugeno system

Sugeno method follow the same input fuzzification and rule base formulation pro-

cesses, but the output representation are signified in a different way. The main

difference between Mamdani and Sugeno type fuzzy interface is the manner the crisp

output is calculated from the fuzzy inputs. While Mamdani uses the technique of

defuzzification of a fuzzy output, Sugeno method map the output to a linear equation

of inputs or a constant, thus eliminating computationally expensive defuzzification

process. The output can be calculated with a similar weighted average formula as the

Mamdani approach (Centroid of area technique see Appendix E).

The modelling was carried out with the standard software [Matlab (2005)] with a

hybrid optimisation method used in membership function parameter training, which

is a combination of least-squares estimation with backpropagation technique. Since,

the software was unable to converge with higher number of membership functions and

resulted in large MSE, only two triangular membership functions are used to fuzzify

the variables. These networks for various responses are trained as long as the MSE

on testing data set is found to decrease, which resulted in 16 rules base for each of

the networks.

Learning behaviour

The MSE for testing data set are calculated for each epoch and the learning continued

until MSE is found to decrease. This inhibited the rule base to be over trained,

otherwise it will increase the MSE in the training and validation data sets. While

predicting MRR, the ANN model is the best in terms of accuracy with a MSE of

0.015, and the training took almost 662 epoch. The next accurate model is Sugeno

type with MSE 17 times more than that of ANN model and followed by Mamdani
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model with the MSE of about 19 times more. When the models are evaluated in

terms of speediness, Sugeno model is the best that converged with 6 epochs and then

ANN and Mamdani model, which took almost 662 epochs and 925 epochs for training,

respectively (Table 5.4).

Table 5.4: Learning behavior

Parameters ANN Sugeno Mamdani
epoch MSE epoch MSE epoch MSE

MRR 662 0.015 6 0.248 925 0.279
TWR 17 197.0× 10−5 110 12.0× 10−5 220 4.80× 10−5

G 19 9.16× 10−6 21 20.8× 10−6 653 4.16× 10−6

Nevertheless, in the case of TWR, when the models are compared in terms of

accuracy the Mamdani model is found to be best with the smallest possible MSE of

4.80 × 10−5 and Sugeno and ANN models converged with MSE of 2.5 times and 41

times more than that of Mamdani model, respectively. Whereas, if the models are

compared in terms of speed then the order is reversed. Finally, while predicting G,

again Mamdani model predicts is superior in accuracy with MSE value of 4.16×10−6,

conversely ANN and Sugeno models predict with MSE 2.2 times and 5 times more,

respectively. Nevertheless, when sequenced in terms of speed it is found that the

order is ANN, Sugeno and Mamdani.

Therefore, it could be concluded from the study that Mamdani model is reasonably

accurate in predicting the responses although it is comparatively slow in convergence.

However, the MSE of the other two models are also comparable with this model and

have good prediction capability.

5.4 Result and Discussion

In this research, an ANN and two neuro-fuzzy models, Sugeno and Mamdani models,

has been developed to predict MRR, TWR and G in EDM process. Four machining

parameters namely pulse current, pulse duration, duty cycle and open circuit voltage

are taken as input features. Full factorial design was used to conduct the experiments
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for the said predictive models. The predicted dimensions from the three models are

compared with the actual experimental data in terms of residuals and the average

prediction error for all the responses.

5.4.1 Analysis on responses

Effect of machining parameters on MRR

The main effect and the interaction effect of each factor can be graphically assessed

by plotting the mean response versus factor levels. Fig. 5.5 shows that Ip, Ton, Tau

and voltage have significant effects on MRR (see Table 5.3). In the table, the degree

of contribution (DoC) of Ip is 87.61% and is the most significant factor among all

the machining parameters. Furthermore, Ip is directly proportional to the MRR,

i.e., by increasing Ip from 4 to 16 A, MRR increases significantly. This is expected

because an increase in pulse current produces strong spark, which produces the higher

temperature, causing more material to melt and erode from the workpiece. Besides,

it is signify from this figure that the other factor does not influence much as compared

with Ip. It is expected that when the Ton increases, the MRR usually increases up

to a maximum value after which it starts to decrease. It is well known fact that the

spark energy increases with the increase in Ton, and then it start to fall. The plot is

probably beyond the peak, therefore, the MRR is decreasing with the increase of Ton.

The plot for MRR with Ton for various Ip for Tau=85% and V=40 volt is shown in

Fig. 5.6 that establishes similar conclusion shown by previous researchers Lee and Li

(2001), Ghoreishi and Tabari (2007). In addition, for a larger Tau, the spark energy

supply across the gap is for a greater duration comparatively than that of small Tau,

and therefore there will be an increase in temperature and so will be MRR. Within

the scope of this experiment, V is showing a downward trend, however, its influence

on MRR is very less when compared with Ip (Table 5.3) and DoC is about 2.43%.

Fig. 5.7 portrays the interaction plot of MRR of EDM process, with each plot

exhibit the interaction between two different machining parameters. An interaction

between factors takes place when the variation in response from a level of a factor to

another level varies from the change in response at the same two levels of a another

factor, this implies that the effect of one factor is dependent upon another factor.
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Assessment of the interaction plot reported in Fig. 5.7, shows that there exist some

interaction among the parameters, except interaction between Ton and V, which is

also confirmed by the ANOVA (Table 5.3). The most important interactions is Ip*Tau

with DoC=2.66%. The DoC of the factors less than 1.00% are not presented.

Fig. 5.8 and Fig. 5.9 depict the scanning electron micrographs (SEM, Jeol, JSM-

6480 LV, Japan) taken with the parametric combinations of 4 A/100µs/90%/40 V and

10A/100 µs /90%/40V, respectively. From these figures it is observed that the size of

the crater and the amount of molten material produced during the sparking is heavily

dependent of the Ip. The main factor plot for MRR conforms, these observations

based on SEM micro graphs.

Effect of machining parameters on TWR

The plot of main effects (Fig. 5.10) for TWR depicts that Ip and Ton have significant

impact. TWR is increasing non-linearly with the current from 4 to 16 A. This is

obvious, as the Ip increases the pulse energy increases and thus more heat energy is

produced in the tool workpiece interface, leads to increase the melting and evaporation

of the electrode. One can interpret that Ip has a significant direct impact on TWR.

This figure shows that Ton is reciprocally proportional to TWR. The decrease of

TWR is more rapid (0.4633 mm3/min) when Ton increases from 100 µs to 200 µs
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Fig. 5.8: SEM Micrograph at 4A/100µs/90%/40 V

Fig. 5.9: SEM Micrograph at 10A/100µs/90%/40 V
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Fig. 5.10: Main effect plot of the factors on TWR

as compared to 0.018699 mm3/min when Ton increases from 400 to 500 µs. This is

probably, when the Ton is high, the spark energy is also high at the tool workpiece

interface, and due to this the plasma channel expands. This leads to results in growth

of heat source radius at the surface of the tool, consequently reduces the electrode

wear. As pure copper is reasonably more conductive than that of AISI D2 steel,

therefore the release of heat is quick at the time of machining, the longer time for

heat transfer from the molten crater to the body of tool, which results in a lesser

amount of material removal from the crater, this in turn declines TWR at higher Ton

[Dhar et al. (2007), Sohani et al. (2009)].

Fig. 5.10 suggests that Tau and voltage has a subtle effect on TWR. It is obvious

from this figure that by changing Tau from 80% to 90% and voltage from 40 to

60 during this process, TWR fluctuates very less as compared to Ip and Ton and

hence the effect of Tau and voltage on electrode wear is almost negligible [Dhar

et al. (2007)]. Consequently, it could be noted that the effect of Tau and V is very

less as compared to Ip and Ton, which can also be conformed from the ANOVA

(Table 5.3). Interaction plot for TWR in Fig. 5.11 demonstrates interactions among

experimental factors. However, a certain interaction can be observed between the

factors except between Tau and V. The most influencing interactions is Ip*Ton. The

factors Ton, Ip*Ton and Ip has DoC of 46.05%, 32.88% and 19.38%, respectively,

and are contributing almost 98.31% of the variation of the response.
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Effect of machining parameters on G

Overcut G is the deviation between the dimension of the electrode and the size of

the cavity, it is inherent to the EDM process which is unavoidable though adequate

compensation are provided at the tool design. To achieve the accuracy, minimisation

of G is essential. Therefore factors affecting G is essential to recognize. Fig. 5.12 and

Fig. 5.13 represents the plot of main effects and interaction effect for G, respectively.

It is observed that the Ip and Ton are significant factors varying linearly with the

response. Overcut increases with the pulse energy [Jeswani (1981)], and as Ip and

Ton increases the pulse energy increases, which is responsible for production of spark

at the tool workpiece interface. However, the impact of Ip is more compared to Ton

as DoC’s are 81.9% and 12.17%, respectively. The other two factors Tau and voltage

has very little effect on G as compared to Ip. Although, they are significant and with

the increase of Tau from 80% to 90%, the value of G increases. In addition, G in

inversely proportional to V. The influence of Tau and V can be noted from ANOVA

Table 5.3 and Fig. 5.10.

The interaction plots are presented in Fig. 5.13 portrays the interactions among all

the parameters are significant, except at two subplot, i.e., the interaction of Ip*Ton,

and Ip*V. These results are in good concurrence with the values of contribution
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percentages summarised in ANOVA Table 5.3. The interaction Ip*Tau has maximum

DoC of 2.52%.
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5.4.2 Model validation

The generalization capability of any model can be well judged only with completely

unused dataset. Hence, it is decided to test all the models using totally unseen data,
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not previously used for training as well as testing purpose. If these developed models

succeed the validation process, it connote that the model can be useful not only to

the parameter range of experimental conditions used in model building, but also to

the range of experimental conditions used in the model validation.

Fig. 5.14 demonstrates that the residuals obtained from the difference between the

experimental and the predicted values of MRR for ANN, Sugeno system and Mamdani

system model of the validation set. The residuals ranges from -4.69 to 5.808 for ANN,

-6.71 to 5.5 for the Sugeno system model and -2.25 to 3.21 for the Mamdani system

model, which shows that Mamdani model is much more accurate in prediction of

MRR than other two models. Fig. 5.15 reveals the residuals value of the TWR for

ANN, Sugeno and Mamdani systems of the validation set. The residuals of TWR

of ANN, Sugenos system and Mamdani system model ranges from -0.0295 to 0.0701,

-0.1282 to 0.432 and -0.024 to 0.7 mm3/min, respectively. However, as depicted in

Fig. 5.15, the ANN model approximate better than the other two in predicting TWR.

The difference of the predicted and measured overcut ’G’ is depicted in Fig. 5.16 which

is evident that the Mamdani system model approximates the overcut better than the

other two models. The residuals are ranger from -0.0245 to 0.0233, -0.0432 to 0.0201

and -0.023 to 0.0152 mm for ANN, Sugeno and Mamdani models, respectively.

To illustrate the highest accuracy of the predictive model, the parity graphs are

plotted between predicted values of MRR versus experimental values in Fig. 5.17 for

the proposed models. The represented data refer to all training, testing and validation

data sets. These plots also present straight lines to make them easier to interpret.

It may be seen that there is an excellent fit between the predicted values and the

experimental data without any bias. All three models could predict the MRR very

accurately and except for one or two outliers in the Sugeno model, almost all the

values are very close to the line. It could be noted that closer the value to the line,

more is the accuracy. Conclusively, it can be said that the ANN and Mamdani model

are comparatively more accurate than the Sugeno system in predicting MRR. The

co-efficient of determination (R2) of Sugeno system, ANN and Mamdani models are

99.05%, 99.36% and 99.6%, respectively, showing the accuracy of the prediction and

conforms to the effectiveness of the models in predicting MRR. Therefore, the models
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can be sequenced as Mamdani, ANN and Sugeno models, in terms of accuracy in

predicting MRR.

Similar, the parity plots for showing accuracy of the model in predicting TWR

also illustrated in Fig. 5.18, it may be seen that there is an excellent fit between the

predicted and the experimental data without any bias. Almost all the values are very

close to the line, consequently the ANN model is more accurate in predicting TWR

as compare to other two neuro-fuzzy models with co-efficient of determination (R2)

98.6%. However, few outliers exists in neuro-fuzzy models. Eventualy, the Sugeno

system is comparatively more accurate than Mamdani system model in predicting

TWR, with co-efficient of determination (R2) 94.43% and 92.12%, respectively. Hence

the model can be sequenced as ANN, Sugeno and Mamdani models, in terms of

accuracy in predicting TWR.

Fig. 5.19 render the corresponding plot for the prediction of G in which it is clear

that the ANN model is more accurate than the Mamdani and Sugeno models. The

coefficients of determination (R2) for ANN, Mamdani and Sugeno systems are 97.8%,

97.45% and 96.86%, respectively, conforms the model sequence for the prediction of

overcut.
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Prediction error

Prediction error is a powerful tool that assesses the performance of a proposed model,

in which the prediction model is validated with a new set of data that was not earlier

used to develop or test the model. Prediction error has been defined as follows

Prediction error % =
|Expt. V alue− Pred.V alue|

Expt. V alue
× 100 (5.4)

where Expt. Value = experimental value and Pred. Value = predicted value by the

model.

A comparison of predicted and experimental values are listed in Table 5.5, Ta-

ble 5.6 and Table 5.7 for MRR, TWR and G, respectively. To estimate the precision of

the prediction model, percentage prediction error and average percentage error were

used. The average prediction error is calculated by averaging the prediction error of

responses. The experimental values were evaluated with the predicted values from

the developed models and it was found that the average absolute prediction errors

of MRR model are ranging from 5.42%, 4.94% and 4.98% for ANN, Sugeno system

and Mamdani system, respectively. The average absolute prediction errors of TWR

model are ranging from 15.21 %, 14.25% and 16.22 % for ANN, Sugeno system and

Mamdani system, respectively. The percentage error seems to be more because the

values of TWR are very small and sometimes even negative. The prediction errors of
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overcut are however 6.51%, 7.19% and 4.29% for ANN, Sugeno system and Mamdani

system, respectively. Consequently, the prediction accuracy of the model emerges

agreeable.

5.5 Conclusion

This research demonstrated a comparative analysis of the modelling approaches by an

artificial neural network and two neuro-fuzzy systems (Sugeno and Mamdani type) for

the prediction of MRR, TWR and overcut of AISI D2 tool steel using EDM. A mixed-

level full factorial design of experiments was employed to generate the input-output

database necessary for the development of the models. The ANN and the neuro-

fuzzy models are developed using these experimental data and the performance of

the models are compared based on prediction accuracy.

• The analysis of variance reveals that the discharge current is the most dominant

factor, followed by Ton, Tau and V, for the responses MRR and G. Whereas,

the same for TWR is Ton, Ip, V and Tau. The responses MRR, TWR and G

are directly proportional to the discharge current in the EDM process.

• The performance of ANN, Sugeno and Mamdani system models for predicting

MRR, TWR and G are found to be comparable in terms of the prediction

accuracy and speed. However, the Mamdani model is converging with a lower

MSE than the Sugeno system, and the ANN network is in general converging

much faster than the other two.

• The average prediction errors in MRR are below 6% and below 7.2% for overcut

prediction for all the proposed models. Eventually, the average prediction errors

for TWR of all the models are comparatively high and are in the range of 14-

16%.

• Satisfactory agreement between the experimental and proposed model results

were obtained from using this type of network. Hence, it can be said that ANN,

Sugeno system, Mamdani system model can be used successfully model EDM



Prediction of MRR, TWR and Overcut 188

process, resulting in reliable predictions, and providing a possible way to avoid

time and money-consuming experiments.
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Table 5.5: Testing the capability of all the models for prediction of MRR

Run Experimental Parameters Expt Model Prediction Prediction Error
Order Ip Ton Tau V value ANN SUG MAM ANN SUG MAM
3 16 400 85 60 40.490 40.352 40.035 40.406 0.34 1.12 0.21
20 13 300 90 60 41.110 38.468 35.554 37.893 6.43 13.51 7.82
33 13 500 80 60 26.560 24.991 25.014 24.513 5.91 5.82 7.71
45 16 100 90 40 59.980 54.172 66.699 60.444 9.68 11.20 0.77
55 13 300 85 60 34.660 33.636 31.815 33.120 2.96 8.21 4.44
58 7 400 85 40 11.350 11.228 12.459 13.598 1.07 9.77 19.80
69 13 200 85 40 40.620 41.111 41.500 42.555 1.21 2.17 4.76
73 16 100 80 60 33.560 35.388 33.413 32.133 5.45 0.44 4.25
94 13 400 90 40 45.640 50.333 44.793 46.665 10.28 1.86 2.25
110 13 100 80 60 27.490 28.618 27.070 27.224 4.10 1.53 0.97
121 7 300 90 40 15.860 15.213 15.432 16.281 4.08 2.70 2.65
132 16 400 80 40 38.380 37.919 39.630 39.342 1.20 3.26 2.51
142 13 300 85 40 40.420 40.954 40.830 41.605 1.32 1.01 2.93
143 4 300 85 40 7.420 5.885 6.596 6.487 20.69 11.10 12.57
150 7 200 85 40 16.170 15.101 16.116 16.330 6.61 0.34 0.99

Average prediction error(%) 5.42 4.94 4.98
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Table 5.6: Testing the capability of all the models for prediction of TWR

Run Experimental Parameters Expt Model Prediction Prediction Error
Order Ip Ton Tau V value ANN SUG MAM ANN SUG MAM
3 16 400 85 60 -0.120 -0.090 -0.096 -0.100 25.00 20.00 16.67
20 13 300 90 60 0.110 0.081 0.107 0.080 26.36 2.73 23.49
33 13 500 80 60 0.010 0.008 0.013 0.010 19.00 25.00 18.50
45 16 100 90 40 1.890 1.863 1.537 1.580 1.46 18.66 16.50
55 13 300 85 60 0.060 0.078 0.058 0.060 30.17 3.17 6.27
58 7 400 85 40 0.010 0.009 0.009 0.010 13.00 12.00 21.50
69 13 200 85 40 0.390 0.338 0.387 0.370 13.26 0.69 5.70
73 16 100 80 60 1.580 1.510 1.148 0.980 4.44 27.36 37.96
94 13 400 90 40 0.020 0.024 0.023 0.020 18.00 13.20 13.51
110 13 100 80 60 0.900 0.896 0.717 0.760 0.43 20.34 15.06
121 7 300 90 40 0.023 0.025 0.019 0.020 8.70 16.96 4.35
132 16 400 80 40 0.090 0.078 0.072 0.070 13.78 19.80 18.14
142 13 300 85 40 0.090 0.091 0.086 0.110 1.11 4.23 26.80
143 4 300 85 40 0.020 0.013 0.024 0.020 34.00 19.50 7.01
150 7 200 85 40 0.070 0.084 0.081 0.060 19.43 16.14 11.82

Average prediction error(%) 15.21 14.25 16.22



P
red

ictio
n
o
f
M
R
R
,
T
W

R
a
n
d
O
v
ercu

t
1
9
1

Table 5.7: Testing the capability of all the models for prediction of G

Run Experimental Parameters Expt Model Prediction Prediction Error
Order Ip Ton Tau V value ANN SUG MAM ANN SUG MAM
3 16 400 85 60 0.260 0.268 0.276 0.283 3.04 6.31 8.87
20 13 300 90 60 0.300 0.306 0.290 0.295 1.97 3.27 1.72
33 13 500 80 60 0.240 0.249 0.241 0.241 3.88 0.46 0.51
45 16 100 90 40 0.200 0.177 0.231 0.213 11.65 15.45 6.70
55 13 300 85 60 0.210 0.216 0.225 0.211 2.62 7.14 0.58
58 7 400 85 40 0.160 0.185 0.156 0.158 15.31 2.81 1.48
69 13 200 85 40 0.230 0.209 0.216 0.215 8.96 6.09 6.51
73 16 100 80 60 0.220 0.243 0.273 0.239 10.64 24.14 8.56
94 13 400 90 40 0.260 0.274 0.266 0.265 5.35 2.38 1.87
110 13 100 80 60 0.190 0.193 0.208 0.203 1.53 9.63 7.03
121 7 300 90 40 0.120 0.126 0.133 0.119 5.33 10.42 0.91
132 16 400 80 40 0.300 0.285 0.280 0.304 5.03 6.70 1.48
142 13 300 85 40 0.210 0.215 0.233 0.216 2.38 11.10 2.77
143 4 300 85 40 0.100 0.111 0.100 0.095 11.20 0.30 4.50
150 7 200 85 40 0.140 0.128 0.142 0.125 8.71 1.64 10.84

Average prediction error(%) 6.51 7.19 4.29
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6. CONCLUSION

In this research, the surface integrity, productivity and accuracy of AISI D2 tool steel

components using copper electrode have been investigated for EDM process. The

experiments were conducted under various parameter settings of Discharge Current

(Ip), Pulse On-Time (Ton), Duty Factor (Tau) and Discharge Voltage (V ). RSM

modelling was performed for WLT, SCD and Surface roughness. ANSYS software

was used for FEM modelling of residual stress on EDMed surface and sub-surfaces.

Finally, the soft computing techniques were employed for modelling of MRR, TWR

and Radial overcut. These responses were validated experimentally.

RSM modelling for WLT and SCD

1. It is found that Ip is the most dominating parameter followed by Ton for WLT

and SCD. WLT is directly proportional to Ip, Ton and Tau. But, SCD is

inversely proportional to Ip and Ton and varies directly with V.

2. The average SCD is inversely proportional to the average pulse power and its

value decreases from 0.0547 µ/mm2 to 0.0146 µ/mm2, when power level change

from 36w to 486 w. However, the WLT increases monotonically with power

from 17.25 µ to 35.72 µ for the same change in power level.

3. The prime aim should be to select factors such that formation of the white layer

is minimum, though it tends to increase the SCD, but as the cracks are limited

to the white layers only, which is generally removed by polishing.

4. The optimal parameter settings for WLT were found to be Ip=1 A, Ton=50 µs,

Tau=80 % and V= 40 volt, within the parameter range of this study. According

to the confirmatory test results, the RSM model could predict WLT with an
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average prediction error of 5.76%. The prediction error for the proposed RSM

model for SCD was found to be 5.79 % for the same parameter setting.

RSM modelling for SR

5. Ip is the most dominating parameter influencing the SR. Ton and Tau are other

two parameters that significantly influence the SR.

6. The results reveal that, within the parameter range of this study, Ip, Ton and

Tau should be at their low levels (Ip=1A, Ton= 50 µs and Tau 80%) for better

surface finish.

7. The size of the crater increases with an increase in Ip and Ton, since these

factors are responsible for producing stronger spark energy,so bigger crater and

rough surface are produced.

FEM modelling for RS

8. It is observed that the compressive thermal stresses are developed beneath the

crater and the tensile stresses are occur away from the axis of symmetry.

9. FEM results show the peak temperature on the crater surface sharply increases

with Ip and slightly decreases with Ton. The peak temperature of 3800 K was

attained on the crater surface with Ip= 9A, whereas the same for Ip= 1A, it is

2300 K.

10. The workpiece is severely affected by the thermal stresses to a larger depth with

increasing pulse energy. The nature of residual stresses is predominantly tensile.

11. FEM results show that the magnitudes of the radial component of the residual

stress on the surface are predominant than the other components for all the

machining parameter combinations. The maximum value of this stress is 529.2

MPa for Ip= 9 A and Ton = 100 µs, which occurs at a distance of 71.7 µ. The

axial component of residual stress is minimum on the surface and increases as

the path rotating towards the symmetry path.



Conclusion 195

12. The experimental results indicate that the radial component of residual stress

reaches its maximum value close to the surface, but diminishes very rapidly

to comparatively low value of compressive residual stress in the sub-surface

area. The trend of this stress with depth has an excellent agreement with FEM

results.

13. FEM result shows that radial components of the residual stress, predominantly

tensile in nature. The magnitude increases from the top surface to its maximum

value of approximately 600 MPa for all combinations of machining parameter

setting. But, the depth at which this stress occurs, increases with the pulse

energy. However, the shape of the graph of residual stress versus depth does

not change with the machining parameters, in general.

Soft computing modelling for MRR, TWR and G

14. The analysis of variance reveals that the Ip is the most dominant factor, followed

by Ton, Tau and V, for the responses MRR and G. Whereas, the same for TWR

is Ton, Ip, V and Tau.

15. The performance of ANN, Sugeno and Mamdani system models for predicting

MRR, TWR and G are found to be comparable in terms of the prediction

accuracy. The average absolute prediction errors of MRR model are ranging

from 5.42%, 4.94% and 4.98% for ANN, Sugeno system and Mamdani system,

respectively.

16. For TWR model average absolute prediction errors are ranging from 15.21 %,

14.25% and 16.22 % for ANN, Sugeno system and Mamdani system, respec-

tively.

17. The average absolute prediction errors of overcut are 6.51%, 7.19% and 4.29%

for ANN, Sugeno system and Mamdani system, respectively.

18. However, the Mamdani model is converging with a lower MSE than the Sugeno

system and the ANN network is in general converging much faster than the
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other two.

This research study portrays the surface integrity phenomena, productivity and

accuracy with statistical, finite element modelling and soft computing modelling in

EDMed surfaces in detail. These findings will be ready to lend a hand to the EDM

researchers and manufacturing engineers in selecting the appropriate parametric com-

binations for EDMing AISI D2 tool steel. It is expected these models and experi-

mental data in this work to become a powerful tool and data in the hands of EDM

researchers to not only extend the understanding of the process but also for better

process and product design.

6.1 Major Contribution

1. The performance of ANN, Sugeno and Mamdani system models for predicting

MRR, TWR and G are found to be comparable in terms of the prediction

accuracy and speed.

2. The trend of the radial component of the residual stress with depth obtained

from XRD results and FEM predictions have an excellent agreement.

3. FEM results show that the workpiece yields upto depth of 11.5, 16.6, 23.06

and 42.2 µm for 1/20, 1/100, 9/20 and 9/100 discharge current/ pulse on time

parameter combinations, respectively.
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6.2 Recommendations for Future Research

Analysis of the results acquired from the current work advocates quite a few possible

extensions to the research. A few of them are listed

1. Very little work has been reported yet to explore the effect of non-electrical

parameters like workpiece rotation and electrode rotation.

2. Apart from the existing modelling in FEM of single discharge, there are ample

scope for modelling for the multi-spark modelling and process simulation.

3. Soft computing modelling of other hybridization technique and optimization of

these are still not employed extensively, hence, in future it will be an emerging

area.

4. The multi objective optimisation of all these responses can be performed.

5. Soft computing model can be attempted for WLT, SCD and SR.

6. The experiments can be performed using with different dielectrics like deionised

water and other environment friendly dielectric fluid.
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A. EQUIPMENTS USED

Machine and Equipment

This machine was used to machine on the AISI D2 tool steel for conducting the

Experiments

Fig. A.1: Die Sinker EDM, Brand : Electronica Elektra Plus; Model : PS 50ZNC
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Table A.1: Technical Specifications of electro discharge machine

Machine Tool PS50 ZNC
Work tank internal dimensions (W x D x H) 800 x500 x 350 mm
Work table dimensions 550 x 350 mm
Transverse(X,Y,Z) 300, 200, 250 mm
Maximum job weight 300 kg
Maximum electrode weight 100 kg
Maximum job height above the table 250 mm
Feed motor / servo system for Z axis DC Servo
Position measuring system (X, Y, Z) Incremental linear scale
Dielectric system Integral with the machine tool
Dielectric capacity 400 Litres
Filter element 10 µ paper cartridge 2 nos.
Pulse Generator S 50 ZNC
Pulse generator type MOSFET
Current range, Ip 0-50 A
Pulse on time range Ton 0.5-4000 µs
Duty factor range, Tau 50-93%
open circuit voltage, V 40-60 v
Power supply 3 phase, AC 415 V*, 50 Hz
Connected load 6KVA includes PF unit
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Workpiece Material and Electrode Material

Fig. A.2: Copper Electrode and AISI D2 workpiece for MRR, TWR and OC

Fig. A.3: AISI D2 workpiece for WLT, SCD, SR and RS
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Table A.2: Chemical composition of AISI D2 (wt %)

Cr Mo V C Mn Si Ni Fe
12 0.80 0.10 1.52 0.30 0.3 0.3 Balance

Table A.3: Thermal properties of workpiece material (Kansal et al., 2007)

Temperature Thermal conductivity Coefficient of thermal Specific heat
(K) (W/m◦C) expansion (/◦C) (J/kg/K)
298 29.0 5.71 × 10-6 412.21
673 29.5 6.90 × 10-6 418.36
1100 30.7 10.20 × 10-6 421.83
1990 32.3 12.00 × 10-6 431.00

Table A.4: Temperature dependent modulus of elasticity, Poisson’s ratio and density of Tool
steel (Bhadeshia, 2002)

Temperature (K) E (GPA) ν Density (kg/m3)
300 210 0.28
600 193 0.3 7700
900 165 0.31
1200 120 0.33

Table A.5: Temperature dependent yield stress of steel (Barsoum, 2008; Jonsson et al.,
1985)

Temperature (K) Yield stress (MPa) Tangent modulus (GPa)
300 450 0.99526
600 230 14.77512
900 140 9.42857
1200 30 0.49793
Tangent modulus is defined as the slope of a stress-strain
curve at a specified point on that curve;
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Induction furnace

The workpieces are heat treated in this furnace to remove the residual stress.

Fig. A.4: Induction furnace

Brand : BYSAKH and Co. Calcutta, INDIA
Model : OKAY Electric Muff Furnace
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Weighing machine

Precision balance was used to measure the weigh of the workpiece and tool.

Fig. A.5: Electronic Balance

Brand:SHINKO DENSHI Co. LTD, JAPAN, Model: DJ 300S
Capacity: 300 gram
Accuracy: 0.001 gram

Surface Roughness Analyser

Surface roughness of the EDMed component was measured using this machine.

Fig. A.6: Talysurf Surface Roughness Analyser

Brand : Taylor Hobson, Model : Surtronic 3+
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Grinder and polisher

This polisher and grinder was used to remove the layers while measuring the residual

stress. Polished consecutively on silicone carbide paper with grit sizes 120, 220, 320,

400, and 800. Polishing process was done by using Mecaprex polishing cloth. Finally,

the specimen was polished with diamond paste of 1 µm. The surface was subsequently

electro polished with a slurry of Trinity diamond compound and HIFIN Fluid-“OS”

Type.

Fig. A.7: Electro Polishing
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Tool maker microscope

This machine was used to measure the radial overcut which was occurs during EDM

Fig. A.8: Tool maker microscope

Make : Carl Zeiss, Germany
Accuracy : 0.001 mm
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Scanning electron microscopy (SEM)

This equipment was used to analyse and measure the thickness of white layer, surface

crack analysis and qualitative analysis of the surface.

Fig. A.9: Scanning electron microscopy

Brand:Jeol, Japan
Model:Jeol JSM-6480LV,
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X-Ray Diffraction

Fig. A.10: Panalytical MRD System for Bulk Texture and Residual Stress Measurement

Brand : Philips X’Pert MRD horizontal goniometer
Model :PW3050/65 HR

Courtesy: National Facility of Texture & OIM
Department of Metallurgical Engg and Materials Science,
Indian Institute of Technology - Bombay, Mumbai, India



A. Equipments used 209

Fig. A.11: X-ray texture and/or residual stress measurements

Courtesy: National Facility of Texture & OIM
Department of Metallurgical Engg and Materials Science,
Indian Institute of Technology - Bombay, Mumbai, India



B. DESIGN OF EXPERIMENTS

With the advance of modern technology, the products and processes are becoming

extremely complicated. In engineering and scientific decision-making, experiments

are an essential part and quite often they have to dealing with such processes where

no scientific theory or principles are available. In such circumstances, to develop new

products and processes, Design of Experiments (DOE) techniques become extremely

essential to explain the statistical significance of an effect that a particular factor

exerts on the dependent quality parameter of interest in a cost-effective and confi-

dent manner. Since the expense of experimentation climbing quickly, it is becoming

difficult for the analyst, who is already constrained by resources and time, to investi-

gate the various factors that are affecting these complex processes by trial and error

methods. Thus, the analyst will be interested for a technique which will identify

“vital few” factors in the most efficient manner then directs the process to its best

setting to meet the growing demand for enhanced quality and better productivity.

However, in case of industrial goal, it is usually to extract the maximum amount of

unbiased information about the factors which affecting a production process from as

few observations as possible. It has been used around since the 1920’s and has been

used fruitfully in industry since the 1950’s.

DOE is a tool to develop an experimentation strategy. It is extensively used in

the improvement of manufacturing processes to maximize yield and reduce variability.

To achieve these objectives, properlly designed experiments are much more efficient

than that of one-factor-at-a-time experiments, which involve changing a single factor

at a time to study the effect of the factor on the response. When the effect that

a factor has on the response is changed due to the presence of one or more other

factors, that relationship is called an ‘interaction’. Sometimes the interaction effects

are more significant than the individual factor effect. This is because the application
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environment of the response comprises the presence of many of the factors together

instead of isolated occurrences of single factors at different times.

Some of the most popular experimental strategies are Factorial design, Taguchi’s

design, and RSM. ‘Factorial’ or ‘Classical DOE’ was the first technique used with

DOE, which allows to distinguish which factors are most significant and helps in

identifying important interactions among the factors. It doesn’t predict the best factor

levels to meet the goals. The main aim of Taguchi’s design is to find a ‘robust’ answer

that is insensitive to factor variations and noise. RSM consists of an experimental

strategy for exploring the settings of input variables and to develop a quadratic model

suitably approximating relationship between the response and the input parameters.

Subsequently, optimizing the levels or values of the input variables that produce

desirable response value. this method is described in details in the next section.

Response surface methodology

RSM is a specific DOE for developing, improving, and optimizing products and pro-

cesses. It is a combination of statistical and optimization methods that can be used

to model and optimize designs. It has many applications in design, analysis and en-

hancement of products and processes. As a collection of statistical and mathematical

methods, using these one can essentially predict the best combination of factors to

meet the goals.

Since, the relation is either too complex or unknown, therefore an empirical ap-

proach is essential. Frequently, for a system with non-linear behabiour, a second-order

model is suitable in a comparatively small region of the variable space. The method of

least squares estimation is used to estimate the coefficients in the polynomials (Mont-

gomery, 2003).

Procedure of RSM

RSM is sequential in nature and at the outset, screening experiments are conducted to

reduce the list of contestant variables to a comparatively few. The techniques for the

analysis of the second-order model are presented by Myers and Montgomery (1995).

The steps shown below are typical of a response surface experiment. Depending on
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the experiment, one may carry out some of the steps in a different order, perform a

given step more than once, or eliminate a step.

• Choose the response for an experimental investigation. Determine what the

influencing factors are, that is, what the process conditions are those influence

the values of the response variable.

• Create the response surface experiment design according to a central composite

design.

• Set the factor levels and replicate the design.

• Randomize the design to change the order of the runs.

• Perform the experiment and collect the response data.

• Analyze the response surface design to fit a model to the experimental data.

• Optimize the response to obtain a numerical and graphical analysis.

Formulas used

A second-order model is given as below:

y = β0 +
m
∑

i=1

βixi +
m
∑

i=1

βiix
2
i +

m
∑

i,j=1,i 6=j

βijxixj + e (B.1)

Where y = response, xi = m independent variables

βi, βii = unknown coefficients are the estimates of the population regression coeffi-

cients and e = random error term.

In Equation B.1, let the square terms of the variables x2ii = xj for (i = 1, 2, . . . ,m)

and j = m + 1,m + 2, . . . , 2m. Similarly, let the interaction terms x2ij = xj for

(i = 1, 2, . . . ,m) and j = 2m+ 1, 2m+ 2, . . . , 2m+ 1 + k(k+1)
2

.

Equation B.1 can be written as a multiple linear regression model as follows:

y =
p
∑

i=0

βixi + e (B.2)

where p = 2m+ 1 + m(m+1)
2

. In matrix notation, the above equation (Equation B.2)

can be represented as:
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Y = Xb+ e (B.3)

where Y = an (n× 1) vector of the observations, where n=number of obeservations

(n > p),

X = a design matrix (n× p) in canonical form of the variables,

b = an (p× 1) vector of the regression coefficients, and

e = an (n× 1) vector of random errors.

Design matrix X: The design matrix has n rows and several blocks of columns,

corresponding to the terms in the model.

Coefficients, βi: Coefficients are the estimates of the population regression coef-

ficients, bi. In matrix terms, the vector of coefficients b is calculated by the formula:

b = (X
′

X)−1(X
′

Y).

The b, Y, e and X vectors or matrix for response WLT from Table 2.2 are as

shown below.

b =
[

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

]′
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Y =
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25.51
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19.50
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18.89

23.18

46.60

31.59
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X =

















































































































































































































1 1 1 1 −1 1 1 1 1 1 1 −1 1 −1 −1

1 1 −1 1 1 1 1 1 1 −1 1 1 −1 −1 1

1 −1 1 1 1 1 1 1 1 −1 −1 −1 1 1 1

1 −1 1 −1 −1 1 1 1 1 −1 1 1 −1 −1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 −1 1 1 1 1 1 1 −1 1 −1 1 −1

1 1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 −1 1 1 1 1 1 1 1 −1 1 −1 −1

1 −1 −1 1 −1 1 1 1 1 1 −1 1 −1 1 −1

1 1 −1 1 −1 1 1 1 1 −1 1 −1 −1 1 −1

1 1 1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 1

1 −1 −1 1 1 1 1 1 1 1 −1 −1 −1 −1 1

1 −1 1 1 −1 1 1 1 1 −1 −1 1 1 −1 −1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 1 1 1 1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 1 1 1 1 −1 1 −1 −1 1 −1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0

1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fitted values or predicted values, ŷ: The fitted values are point estimates of

the mean response for the given values of the predictors.

Residuals, ei: Residuals are the difference between the observed values and pre-

dicted or fitted values. For the ith observation it is expressed as:

ei = (yi − ŷi)

Standardized or studentized residuals, zi: The residual ei scaled by its stan-

dard deviation. The obeservations having more than ±2 standardized residual are

identified as outliers with 95% confidance. The formula is:

zi =
ei

sqrt[MSE(1− hi)]

where MSE = mean square error and hi = leverage. The denominator is an estimator

of the standard deviation of ei.

Standard error of fitted value (SE fit): The estimated standard deviation of

the fitted value at a given predictor point X
′

0
= [1,x1,0, . . . ,xm,0] is given formula as

√

(s2[X
′

0(X
′X)−1X0]

where s2 = MS Error.

Confidence interval: The range in which the estimated mean response for a

given set of predictor values is expected to fall. The interval is defined by lower and

upper limits, which is calculated from the confidence level and the standard error of

the fits. The formula is:

ŷ0 ± t(1− α/2;n− p) ∗ s(ŷ0)

where α = chosen risk value, n = number of observations, p = number of predic-

tors, and

s(ŷ0) =
√

[s2(X
′

0(X
′X)−1X0)]

where s2 = mean square error.

Leverages: This statistic indicate whether an observation has unusual predictor

values compared to the rest of the data. An observation with large leverage value

will exert significant influence on the fitted value as well as on the regression model.
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The leverage of the ith observation, hi is the ith diagonal element of the hat matrix

H, which is a (n× n) projection matrix specified as:

H = X(X
′

X)−1X
′

Its value falls between 0 and 1 and the obeservations with considereable large leverage

should be examined.

Central composite design

The Central Composite Design (CCD) is a design extensively used for approximating

second order response surfaces. It is possibly the most widely accepted set of second

order designs. It was presented initially by Box and Wilson (1951), the CCD has been

popular among the researchers. There are 2m numbers of cube points, axial points

and centre points (at least 3-5 points). If the design is blocked the center points are

divided equally among the blocks. A face centered design α = 1 is choosen so that the

axial points lie on the face of the cube as shown in Fig. B.1 for two variables. The two

important properties of CCD are orthogonality and rotatablity. An orthogonal block

design allows for model terms and block effects to be estimated independently and

minimize the variation in the regression coefficients. A rotatable design provides the

desirable property of constant prediction variance at all points that are equidistant

from the design center, thus improving the quality of the prediction.

Fig. B.1: Two-Variable Face Centered CCD
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Analysis of Variance (ANOVA)

Experimental factors will influence the response and so will be due to unknown causes

or measurement errors in experiments, there exists some variability. Every experi-

mental data set is most likely to shown certain variability, but wheather such change

is due to inputs factors or dur to random factors is to be answered by ANOVA. The

method tries to carry out the following.

• Decomposes the deviation of the experimental data in relation to possible

sources; the source may be from the main effect, from the interaction, or may

be from experimental error.

• Measures the magnitude of variation due to all sources.

• Recognize the main and interactions effects which have significant effects on

variation of data.

Sum of Squares (SS)

The distance between any point in a set of data and the mean of the data is the

deviation. Sum of Squares is the sum of all such squared deviations. SSTotal is the

total variation in the data. SSRegression is the portion of the variation explained by

the model, while SSError is the portion not explained by the model and is attributed

to error. The calculations are:

SSTotal =
n
∑

i

r
∑

j

(yij − ȳ..)
2 (B.4)

SSError =
n
∑

i

r
∑

j

(yij − ŷi)
2 (B.5)

SSRegression = SSTotal − SSError (B.6)

where yij = ith observed response of jth replicate, ŷi = ith fitted response, and ȳ.. =

mean of all (n× r) obeservations.

The sum of squares for r set of replicates are calculated and added together to

create the pure error sum of squares (SSPE). Sum of square error SSError is the sum

of pure error sum of squares SSPE and sum of squares lack of fit SSLOF .
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SSPE =
n
∑

i

[
r
∑

j

(yij − ȳi.)
2] (B.7)

SSLOF = SSE − SSPE (B.8)

where ȳi. = mean of r replicates of ith observed response.

Degree of Freedom

It depicts the number of independent variables needed to calculate the sum of squares

the response data. The degrees of freedom for each component of the model are:

DFRegression = t− 1

DFError = n− t

DFTotal = n− 1

DFA = a− 1

DFB = b− 1

DFAB = (a− 1)(b− 1) (B.9)

DFPE = n−m

where n = number of observations, t = number of terms in the model, a, b = number

of levels of factors A and B, respectively. DOF of pure error DFPE is n - m, where n

= number of observations and m = the number of distinct x-values.

Mean Square

In an ANOVA, the term Mean Square refers to an estimate of the population variance

based on the variability among a given set of measures. The calculation for the mean

square for the model terms is:

MSTerm =
AdjSSTerm
DFTerm

(B.10)

F-value: F-value is the measurement of distance between individual distributions.

More the F-value, less is the P-value. F is a test to determine whether the interaction
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and main effects are significant. The formula for the model terms is:

F =
MSTerm
MSError

(B.11)

Larger values of F support rejecting the null hypothesis that there is not a significant

effect

P-value: P-value is used in hypothesis tests helps to decide whether to reject

or fail to reject a null hypothesis. The p-value is the probability of obtaining a test

statistic that is at least as extreme as the actual calculated value, if the null hypothesis

is true. A commonly used cut-off value for the p-value is 0.10.

Model Adequacy Check

The adequacy of the underlying model can be checked from ANOVA as follows: It is

always necessary to examine the fitted model to ensure that it provides an adequate

approximation to the true system.

R2 (R-sq): Coefficient of determination; indicates how much variation in the re-

sponse is explained by the model. The higher the R2, the better the model fits your

data. The formula is:

R2 = 1−
SSError
SSTotal

(B.12)

Another presentation of the formula is:

R2 =
SSRegression
SStotal

(B.13)

Adjusted R2 (R-sq adj): Adjusted R2 accounts for the number of factors in your

model. The formula is:

R2 = 1−
MS(Error)

SSTotal/DFTotal
(B.14)

Lack-of-fit test: This test checks the straight line fit of the model. To calculate

the pure error lack-of-fit test:

1. Calculate the pure error mean square:

MSPE =
SSPE
DFPE
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2. Calculate the lack-of-fit mean square:

MSLOF =
SSLOF

DFSSE −DFPE

3. Calculate the F-statistic = MSLOF/MSPE and corresponding p-value.

Large F-values and small p-values suggest that the model is inadequate.



C. X-RAY DIFFRACTION TECHNIQUE

Residual stresses in a workpiece are a function of its material processing and machin-

ing history. The influence of which can be found by considering the material behaviour

under real loading conditions. The main result of residual stresses on a mechanical

component is the deformation due to the new state of equilibrium. There are sev-

eral techniques using which residual stress can be measured. Hole drilling method,

curvature method, Cutting method, X-Ray Diffraction (XRD), Neutron diffraction,

electron diffraction method Electrical Resistance Method, are some of the examples.

Among these, X-Ray Diffraction technique is most widely used Non Destructive tech-

nique for residual stress measurement. When a metal is under stress (residual), the

elastic strains developed can alter spacing of the atomic planes in the metallic crystal

structure. XRD technique makes use of the fact and can measure these inter atomic

spacing, which is indicative of the elastic strain in the specimen and hence, to the

stress.

XRD technique uses scanning of a selected peak with the specimen orientated

at an increasing angle to the incident beam. The x-ray beam is directed onto the

sample surface at the required location. The diffracted beam is detected by a position-

sensitive proportional counter. The angular position (2θ) of the diffracted beam is

used to determine the distance (d-spacing) between parallel planes of atoms using

Bragg’s law.

Diffraction occurs at an angle 2θ, defined by Bragg’s Law:

nλ = 2dsinθ (C.1)

where n is an integer value, λ is the wavelength of the X-ray beam (typically of

the range 0.7 to 2
o

A) and θ is the angle between the atomic planes and the incident

(and diffracted) X-ray beam.
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A change in the plane spacing (d), causes a shift in the diffraction angle (2θ). In

the figure a specimen is shown and surface set at two angles to the impinging X-ray,

ψ = 0 and ψ = ψ respectively. At = 0, tensile stresses which may be present, result in

a Poisson’s ratio contraction and therefore a reduction the lattice spacing and slight

increase in diffraction angle 2θ (Zwilsky, 1990). If the sample is then tilted through

some known angle ψ (Fig. C.1 (b)), the tensile stress present in the surface increases

the lattice spacing (dψ) over the stress free state, and decreases 2θ. By measuring the

alteration in an angular position of the diffraction peak for at least two orientations

(such as ψ = 0 and ψ = ψ ) of the sample, facilitates the measurement of the residual

stress present in the surface lying in the plane of diffraction.

(a)ψ = 0

(b)ψ = ψ(sample rotated through some known angle ψ)

Fig. C.1: Schematic diagram of x-ray diffraction stress measurement of the orientation of
the measured lattice planes related specimen structure. D:x-ray detector; S: X-ray
source; N: normal to the surface.

In the surface a plane stress condition is assumed, i.e., a stress distribution de-
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Fig. C.2: Plane stress elastic model of a flat specimen

scribed by principal stresses σ11 and σ22 exist in the plane of the surface with no

stress in the perpendicular of the surface (σ33 = 0) (Fig. C.2). The surface stress

component, σφ is

σφ = σ11cos
2φ+ σ22sin

2φ (C.2)

The strain component (σ3) perpendicular to the surface exists as a result of Pois-

sons ratio contraction, caused by the two principal stresses. In general the strain is

given as :

ǫ33 =
σ3
E

−
ν

E
(σ11 + σ22) (C.3)

In the situation described by Fig. C.1(b), the strain is as follows:

ǫφψ =
1 + ν

E
(σ11cos

2φ+ σ22sin
2φ)sin2ψ −

ν

E
(σ11 + σ22) (C.4)

Substituting Equation C.3 into Equation C.5, yields the strain (ǫφψ) in the sample

surface at an angle φ from the principal stress σ11:

ǫφψ =
dψ − d0
d0

=
[

1 + ν

E
σφsin

2ψ
]

−
[

(
ν

E
)(σ11 + σ22)

]

(C.5)

where σφ is the stress component along the φ direction When the ψ angle is set to

90 degrees, then the strain vector lies in the plane of the surface. Generally the

XRD machine is set up according to the parameters detailed with the equipment and
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initially a broad scan is carried out to find a chosen peak with the highest intensity.

The specimen is then tilted at many ψ angles to obtain the data and a straight line is

fitted by least square regression and plotted as a line graph (as shown in Fig. 4.11).

The slope of the line which best fits the measured points is calculated as shown in

Fig. 4.11. Equation C.5 shows that the slope of this graph is given as:

Slope of Graph =
1 + ν

E
σφ (C.6)

Stress is measured from the slop of the fitted line

σφ =
E

1 + ν
(Slope of Graph) (C.7)



D. ARTIFICIAL NEURAL NETWORK

A neural network is designed from the inspiration of human brains to perform a partic-

ular task of interest; the network is usually implemented using electronic components

or simulated in software on a digital computer. To achieve good performance, neural

networks employ a massive interconnection of simple computing cells referred to as

“neurons” or “processing units”.

Aleksander and Morton (1990) defined ANN as “A neural network is a massively

parallel distributed processor that has a natural propensity for storing experimental

knowledge and making it available for use”. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store

the knowledge.

Model of a neuron

How the brain trains itself to process information is not understood completely yet,

so theories are abound. In the human brain, a typical neuron gather signals from

others through a host of fine structures called dendrites. The neuron sends out spikes

of electrical activity through axon that is generally a long and thin stand. Generally

the axon is splits into thousands of branches. Towards the end of every branch, a

synapse exists which exchange the activity from the axon into electrical effects that

excite activity from the axon into electrical effects, which inhibit or excite activity in

the associated neurons. A neuron collects excitatory input that is adequately big as

compared to the inhibitory input and it sends a spike of electrical activity down its

axon. Learning of the network takes place by altering the effectiveness of the synapses

so that the influence of one neuron on another alters.
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Fig. D.1: A Biological Neuron

In simulating biological neurons, first the essential features of neurons and their

interconnections are deduced. To simulate these features a computer program is

usually used. Nevertheless, since the knowledge of neurons is deficient and computing

power is limited, the models are essentially gross idealizations of real networks of

neurons. A neuron is an information-processing unit that is essential to the operation

of a neural network. Fig. D.2 shows the model for a neuron having three basic

elements of the neuron as:

1. A set of synapses or connecting links, each of which is characterized by a weight

or strengths of its own.

2. An adder for summing the input signals, weighted by the respective synapses

of the neuron; the operation described here a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron. the

activation function is also referred to in the literature as a squashing function

in that it squashes (limits) the permissible amplitude range of the output signal

to some finite value.

A detailed mathematical model of a neuron is shown in Fig. D.2. Models may

include an externally applied threshold that has the effect of lowering the net input of

the activation function. On the other hand, the net input of the activation function

may be increased by employing a bias term rather than a threshold. In mathematical

terms, it can be described as a neuron m by writing the following pair of equations:
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rm =
N
∑

n=1

w1mnxn + b1m (D.1)

ym = f(rm) (D.2)

Where x1, x2,,xN are the inputs; wm1, wm2, ,wmN are the synaptic weights of

neuron m; rm is the linear combiner output; bm is the bias term; f is the activation

function; and ym is the output signal of the neuron.

Fig. D.2: Mathematical model of a neuron

The scalar input x is transmitted through a connection that multiplies its strength

by the scalar weight w, to form the product wx, again a scalar. The neuron shown

in Fig. D.2 has a bias bm but bias term may not be used depending on the situation.

You may view the bias as simply being added to the product wx as shown by the

summing junction or as shifting the function f to the left by an amount bm. The bias

is much like a weight, except that it has a constant input of 1. The transfer function

net input rm, again a scalar, is the sum of the weighted input wx and the bias bm.

This sum is the argument of the transfer function f which takes the argument rm and

produces the output ym. Note that w and b are both adjustable scalar parameters of

the neuron.

Network topologies

The topology of a network is defined by the number of layers, the number of units

per layer, and the interconnection patterns between layers. They are divided based

on the pattern of connections: Feed-forward networks : In this network the data flow

from input units to output units is strictly feed-forward. Processing of the data can
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extend to several layers of units, but there is no feedback connections i.e., network

connections extending from outputs of units to inputs in the same layer or preceding

layers are not allowed. A feed-forward network is used in this thesis.

Feed-forward networks of layered neurons

The manner in which the neurons of a neural network are structured is intimately

linked with the learning algorithm (rule) used to train the network. supervised learn-

ing algorithms is used in this modelling.

The power of single neuron can be greatly amplified by using multiple neurons in

a network of layered connectionist architecture. Neurons layered in such a way that

it is also called feed-forward artificial neural network and abbreviated to FANN.

Fig. D.3: A representation of a simple 3-layer feed-forward ANN

The network shown in Fig. D.3 is the most popular network architecture in use for

many problems. The network has a simple interpretation as a form of input-output

model, with the weights and thresholds (biases) the free parameters of the model.

Such networks can model functions of almost arbitrary complexity, with the number

of layers, and the number of units in each layer, determining the function complexity.

Important issues in MLP design include specification of the number of hidden layers
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and the number of units in these layers.

On the left is the layer of inputs, or branching, nodes, which are not artificial

neurons. A feature vector x = (x1,..., xN) that represents a pattern enter the input

layer on the left with each component xn entering one and one input node. From

each nth input (branching) node, the nth component xn fans out to each of the M

neurons in the middle layer. Thus each mth hidden (middle) neurons has a fan-in of

all N input components. As each xn enters the mth neuron of the hidden layer, it is

modified via multiplication by the synaptic weight wnm for that connection line. All

resulting products wnmxn at the mth hidden neuron are summed over n to yield

rm =
∑

n

wnmxn (D.3)

ym = h(rm) (D.4)

is the activation output. Doing the same for the output layer it is obtained

rm =
∑

m

umjym (D.5)

and

zj = g(Sj) (D.6)

Activation functions

Activation functions for the hidden units are needed to introduce non-linearity into

the network that makes multilayer networks powerful. Without non-linearity, hidden

units would not make nets more powerful than just plain perceptrons (which do not

have any hidden units, just input and output units). Almost any non-linear function

does the job, except for polynomials. For back propagation learning, the activation

function must be differentiable, and it helps if the function is bounded; the sigmoidal

functions such as logistic and tanh and the Gaussian function are the most common

choices.

The threshold transfer function gives a perceptron the ability to classify input

vectors by dividing the input space into two regions. Specifically, outputs will be 0 if
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the net input n is less than 0, or 1 if the net input n is 0 or greater.

A sigmoidal activation function is used in this study shown in Fig. D.4.

Fig. D.4: Hyperbolic tangent sigmoid transfer function

A sigmoid function: y = 1
[1+exp(−net)]

, where exp(x) means ex.

Network Learning

The functionality of a neural network is determined by the combination of the topol-

ogy (number of layers, number of units per layer, and the interconnection pattern

between the layers) and the weights of the connections within the network. The

topology is usually held fixed, and the weights are determined by a certain training

algorithm. The process of adjusting the weights to make the network learn the rela-

tionship between the inputs and targets is called learning, or training. Many learning

algorithms have been invented to help find an optimum set of weights that results in

the solution of the problems. They can roughly be divided into two main groups:

Supervised Learning

The network is trained by providing it with inputs and desired outputs (target val-

ues). These input-output pairs are provided by an external teacher, or by the system

containing the network. The difference between the real outputs and the desired out-

puts is used by the algorithm to adapt the weights in the network (Fig. D.5). It is

often thought as a function approximation problem which for a given training data

consisting of pairs of input patterns x, and corresponding target t, the goal is to find

a function f(x) that closely matches the desired output for each training input.
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Fig. D.5: Supervised learning model

An objective function (or cost function) has to be defined for trainning a network

and to provide an unambiguous numerical rating of system performance. Selection of

an objective function is very important because the function represents the objective

and decides what will be the training algorithm. One of the most commonly used

objective function is the sum of squares error function,

E =
1

NP

p
∑

p=1

N
∑

i=1

(tpi − ypi)
2 (D.7)

where p indexes the patterns in the training set, i indexes the output nodes, and tpi

and ypi are, respectively, the target and actual network output for the ith output unit

on the pth pattern. In real world applications, it may be necessary to complicate the

function with additional terms to control the complexity of the model.

Learning Algorithm

The Levenberg-Marquardt (LM) algorithm is uses in this study due to its capability to

converges in less number of iterations and also it is not been affected by overleaning.

It is an iterative procedure, which establishes the least number of a function and it is

express as the sum of squares of nonlinear functions. This algorithm was designed to

approach second-order training speed without computing the Hessian matrix. Just

similar to training feedforward networks, the performance function has the structure

of a sum of squares and thus the Hessian matrix can be estimated as

H = J
′

J (D.8)

and the gradient can be computed as
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g = J
′

e (D.9)

where, J is the Jacobian matrix, which is the first derivatives of the network errors

relating to the weights and biases, and e is a vector of network errors. The Jacobian

matrix can be calculated through a standard backpropagation technique that is much

less complex than computing the Hessian matrix (Matlab, 2005). The LM algorithm

uses this approximation to the Hessian matrix in the subsequent Newton-like update:

Xk+1 = Xk − [J
′

J+ µI]−1J
′

e (D.10)

When the scalar µ is zero, this is just Newton’s method, using the approximate

Hessian matrix. When µ is large, this becomes gradient descent with a small step

size. Newton’s method is faster and more accurate near an error minimum, so the aim

is to shift toward Newton’s method as quickly as possible. Thus, µ is decreased after

each successful step (reduction in performance function) and is increased only when a

tentative step would increase the performance function. In this way, the performance

function is always reduced at each iteration of the algorithm.



E. NEURO-FUZZY

Introduction

System modelling: is the process of constructing a model to predict the behaviour

of a target system. Conventional modelling techniques are mostly based on linear

models with fast computation and rigorous mathematical support. System modelling

based on conventional mathematical tools (e.g., differential equations) is not well

suited for dealing with ill-defined and uncertain systems. On the other hand, neuro-

fuzzy modelling represents non-linear identification techniques that require massive

computation but without mathematical proofs of convergence to global minima or

the like. By contrast, a fuzzy inference system employing fuzzy if then rules can

model the qualitative aspects of human knowledge and reasoning processes without

employing precise quantitative analyses.

In this perspective, an Adaptive-Network-based Fuzzy Inference System (ANFIS),

which can serve as a basis for constructing a set of fuzzy if-then rules with appropriate

membership functions to generate the stipulated input-output pairs is discussed. The

next section introduces the basics of fuzzy if-then rules and fuzzy inference systems.

Fuzzy set

Fuzzy systems offers a mathematic calculus to translate the subjective human knowl-

edge of the real processes. A fuzzy set is a generalization of an ordinary set by allowing

a degree (or grade) of membership for each element. Fuzzy Logic (FL) is a superset of

conventional (Boolean) logic that has been extended to handle the concept of partial

truth - truth values between “completely true” and “completely false”. This is a way

to manipulate practical knowledge with some level of uncertainty. Fuzzy systems

are suitable for uncertain or approximate reasoning, especially for the system whose

mathematical model is hard to derive. The fuzzy sets theory was initiated by Zadeh
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(1965). It is based on FL reasoning which employs linguistic rules in the form of

if-then statements.

Fig. E.1 shows the traditional crisp and fuzzy version of the sets “Short” and

“Tall”. The variable “HEIGHT” in this system can be divided into a range of “states”,

such as: ‘SHORT”, “MEDIUM” and “TALL”. Defining the bounds of these states

is a bit tricky. Is a man 5’10” is MEDIUM or TALL ? It’s ambiguous. The fuzzy

set will allow partial membership to deal with ambiguity by classifying the man as

particularly SHORT, MEDIUM OR TALL at the same time.

Fig. E.1: Crisp and Fuzzy sets for SHORT, MEDIUM and TALL

Fuzzy Inference Systems

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy models,

fuzzy associative memories (FAM), or fuzzy controllers when used as controllers.

Basically a fuzzy inference system is composed of five functional blocks

• A rule base containing a number of fuzzy if-then rules;

• A database which defines the membership functions of the fuzzy sets used in

the fuzzy rules;
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• A decision-making unit which performs the inference operations on the rules;

• A fuzzification interface which transforms the crisp inputs into degrees of match

with linguistic values;

• A defuzzification interface which transform the fuzzy results of the inference

into a crisp output.

Usually, the rule base and the database are jointly referred to as the knowledge

base.

The steps of fuzzy reasoning (inference operations upon fuzzy if-then rules) per-

formed by fuzzy inference systems are:

Fig. E.2: Fuzzy inference system

Several types of fuzzy reasoning have been proposed in the literature by Sivanan-

dam et al. (2007). Depending on the types of fuzzy reasoning and fuzzy if-then rules

employed, most fuzzy inference systems can be classified into three types (Fig. E.3):

Type 1: The output membership function has to be monotonically non-decreasing.

Then, the overall output is the weighted average of each rules crisp output induced

by the rule strength and output membership functions.

Type 2: Mamdani type: The operation applied to the qualified fuzzy outputs is

max, and the crisp value of output is, most usually, the center of gravity of resulting

fuzzy set. There are, also, the other methods to find the crisp output like: bisector

of area, maximum criterion, mean of maxima, etc

Type 3: Sugeno’s type: Each rules output is a linear combination of input vari-

ables. The crisp output is the weighted average of each rules output



E. Neuro-Fuzzy 237

Fig. E.3: Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms

Fig. E.3 utilizes a two-rule two-input fuzzy inference system to show different types

of fuzzy rules and fuzzy reasoning mentioned above. Be aware that most of the dif-

ferences lie in the specification of the consequent part (monotonically non-decreasing

or bell-shaped membership functions, or crisp function) and thus the defuzzification

schemes (weighted average, centroid of area, etc) are also different.

Mamdanis Fuzzy Inference Method

Mamdani and Assilian (1975) fuzzy inference method is the most commonly seen

fuzzy methodology. Mamdani’s effort was based on Zadeh (1973) paper on fuzzy

algorithms for complex systems and decision processes. Mamdani type inference, as

defined it for the Fuzzy Logic Toolbox, expects the output membership functions to

be fuzzy sets. After the aggregation process, there is a fuzzy set for each output

variable that needs defuzzification. It is possible, and in many cases much more

efficient, to use a single spike as the output membership functions rather than a

distributed fuzzy set. This is sometimes known as a singleton output membership

function, and it can be thought of as a pre-defuzzified fuzzy set. It enhances the

efficiency of the defuzzification process because it greatly simplifies the computation

required by the more general Mamdani method, which finds the centroid of a two-
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dimensional function. Rather than integrating across the two-dimensional function

to find the centroid, the weighted average of a few data points.

An example of a Mamdani inference system is shown in Fig. E.3. To compute the

output of this FIS given the inputs, six steps has to be followed:

1. Determining a set of fuzzy rules

2. Fuzzifying the inputs using the input membership functions

3. Combining the fuzzified inputs according to the fuzzy rules to establish a rule

strength

4. Finding the consequence of the rule by combining the rule strength and the

output membership function

5. Combining the consequences to get an output distribution

6. Defuzzifying the output distribution (this step is only if a crisp output (class)

is needed).

The following is a more detailed description of this process

Creating Fuzzy Rules

Fuzzy rules are a collection of linguistic statements that describe how the FIS should

make a decision regarding classifying an input or controlling an output. Suppose that

the fuzzy inference system has two inputs and one output. If two rules are combined

then:

R1: If x is A1 and y is B1 then z is C1

R2: If x is A2 and y is B2 then z is C2

Fuzzification

The purpose of fuzzification is to map the inputs from a set of sensors (or features

of those sensors such as amplitude or spectrum) to values from 0 to 1 using a set

of input membership functions. In the example shown in Fig.E.3, there are two
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inputs, x and y shown at the lower left corner. These inputs are mapped into fuzzy

numbers by drawing a line up from the inputs to the input membership functions

above and marking the intersection point. These input membership functions, as

discussed previously, can represent fuzzy concepts such as “large” or “small,” “old”

or “young,” “hot” or “cold,” etc.

Consequence

The consequence of a fuzzy rule is computed by the rule strength by combining the

fuzzified inputs using the fuzzy “AND” process as shown in Fig.E.3. In this example,

the fuzzy “min” is used to combine the membership functions to compute the rule

strength.

Combining Outputs into an Output Distribution

The outputs of all of the fuzzy rules must now be combined to obtain one fuzzy

output distribution. This is usually, but not always, done by using the fuzzy “OR”.

The output membership functions on the right-hand side of the figure are combined

using the fuzzy OR to obtain the output distribution shown on the lower right corner

of Fig. E.3.

Defuzzification of Output Distribution

In many occasion, it is desired to come up with a single crisp output from an FIS.

This crisp number is obtained in a process known as defuzzification. There are two

common techniques for defuzzifying:

• Center of mass. This technique takes the output distribution and finds its center

of mass to come up with one crisp number. This is computed as follows:

z =

∑q
j=1 zjuc(Zj)
∑q
j=1 uc(Zj)

, (E.1)

where z is the center of mass and uc is the membership in class c at value zj.

An example outcome of this computation is shown in Fig. E.4(a).
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Output
Distribution

Z*

Fig. E.4: Defuzzification using the centre of mass

where z is the mean of maximum, zj is the point at which the membership func-

tion is maximum, and l is the number of times the output distribution reaches the

maximum level. An example outcome of this computation is shown in Fig. E.4(b).

Learning fuzzy model parameters via Back-propagation

The final estimates of the parameters of the fuzzy model are obtained by tuning

the crude (approximate) values obtained from the Mountain-clustering method, see

Section E. The successful coupling of fuzzy logic with neural networks has supplied a

new and powerful tool for parameter identification of fuzzy models with the use of the

back-propagation method. This algorithm works on a gradient descent method. For

each training pattern presented to the input layer of the network, error at the nodes

in the output layer of the network is calculated. The propagation of error of the nodes

from the output layer to the nodes in the hidden layers takes place. These errors are

used to update the weights of the network. The amount of weights to be added or

subtracted to the previous weight is governed by the delta rule. By tuning the initial

model parameters via back-propagation learning algorithm the final model parameters

are obtained (Fig. E.5). This learning algorithm minimizes the instantaneous errors;

it is a local minimizer. In some special cases it can be trapped at a local minimum.

The problem of initial parameter estimates is of crucial importance in this method of

learning.

Another important issue is the correct determination of the number of rules, that

is the problem of structure identification, which can be solved by mountain-clustering
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Fig. E.5: Block-diagram of the back-propagation learning algorithm

method by generating the cluster centers. These cluster centers can act as nuclei (or)

focal points for rules in the initial rule base. Therefore, an initial structure of the

model is obtained.

Sugeno Fuzzy Method

In this section, the basics of Sugeno fuzzy model, which is implemented into the

neural-fuzzy system is explained. The Sugeno fuzzy model was proposed by Takagi

and Sugeno (1985) in an effort to formalize a system approach to generating fuzzy

rules from an input-output data set. It is also known as Sugeno-Takagi model. A

typical fuzzy rule in this model has the format

R 1: IF x is A1 and y is B1 THEN z1 = ax+by+c

R 2: IF x is A2 and y is B2 THEN z2 = px+qy+r

where A1, B1, A2 and B2 are fuzzy sets in the antecedent; z’s = f(x, y) are crisp

functions in the consequent. Usually f(x, y) is a polynomial in the input variables x

and y, but it can be any other functions that can appropriately describe the output

of the output of the system within the fuzzy region specified by the antecedent of the

rule. When f(x, y) is a first-order polynomial, then it is called the first-order Sugeno

fuzzy model.

The first two parts of the fuzzy inference process, fuzzifying the inputs and apply-

ing the fuzzy operator, are exactly the same. The main difference between Mamdani
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and Sugeno is that the Sugeno output membership functions are either linear or con-

stant. The output level zi’s of each rule is weighted by the firing strength wi of the

rule. For example, for an AND rule with X = x and Y = y, the firing strength is

w1 = µA1(x)× µB1(y)w2 = µA2(x)× µB2(y) (E.2)

where µA1(x) and µB1(y) are the membership functions for X and Y for rule 1.

The final output of the system is the weighted average of all rule outputs, computed

as

z =
w1 × z1 + w2 × z2

w1 + w2

(E.3)

Comparison Between Sugeno and Mamdani Method

The major difference of Mamdani and Sugeno is that the Sugeno out put membership

functions are either linear or constant. As the difference lies in the consequents of

their fuzzy rules, thus their aggregation and defuzzifcation procedures differ suitably.

The number of the input fuzzy sets and fuzzy rules needed by the Sugeno fuzzy

systems depend on the number and locations of the extrema of the function to be

approximated. In Sugeno method a large number of fuzzy rules must be employed to

approximate periodic or highly oscillatory functions. The minimal configuration of the

Sugeno fuzzy systems can be reduced and becomes smaller than that of the Mamdani

fuzzy systems if non-trapezoidal or non-triangular input fuzzy sets are used. Sugeno

controllers usually have far more adjustable parameters in the rule consequent and

the number of the parameters grows exponentially with the increase of the number

of input variables. Less mathematical results exist for Sugeno fuzzy controllers than

do for Mamdani fuzzy controllers, particularly those on Sugeno fuzzy control system

stability. Mamdani is easy to form compared to Sugeno method.

Because of the linear dependence of each rule on the input variables of a system,

the Sugeno method is ideal for acting as an interpolating supervisor of multiple linear

controllers that are to be applied, respectively, to different operating conditions of

a dynamic non-linear system. A Sugeno FIS is extremely well suited to the task

of smoothly interpolating the linear gains that would be applied across the input
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space; it is a natural and efficient gain scheduler. Similarly, a Sugeno system is suited

for modelling non-linear systems by interpolating between multiple linear models.

Because it is a more compact and computationally efficient representation than a

Mamdani system, the Sugeno system lends itself to the use of adaptive techniques for

constructing fuzzy models. These adaptive techniques can be used to customize the

membership functions so that the fuzzy system best models the data.

Advantages of Sugeno and Mamdani Method

Advantages of the Sugeno Method

• It is computationally efficient.

• It works well with linear techniques (e.g., PID control).

• It works well with optimization and adaptive techniques.

• It has guaranteed continuity of the output surface.

• It is well suited to mathematical analysis.

Advantages of the Mamdani Method

• It is intuitive.

• It has widespread acceptance.

• It is well suited to human input.

Fuzzy inference system is the most important modelling tool based on fuzzy set

theory. The FISs are built by domain experts and are used in automatic control,

decision analysis, and various other expert systems.

Mountain-Clustering Method

The mountain clustering method is a grid-based three-step process for identifying

the approximate locations of cluster centers in data sets with clustering tendencies

(Yager and Filev, 1994). Assume the data consists of a set of k points (xk,yk) in

the input-output space (or) object space (or) X Y space containing the data points.
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The first step in the mountain method is to generate the potential cluster centrers.

For this discretize the object space by griding x and y with equidistant lines. The

intersection of these grid lines, called nodes form a set of potential cluster centres,

which are represented by N. An element of each potential cluster centre, N can be

represented as Nij(xi, yj).

The second step is the construction of mountain function, M, which is defined on

the set of potential cluster centres. Mathematically for each point Nij(xi, yj) in N is

as shown below:

M(Nij) =
m
∑

k=1

e−αd(Nij ,Ok) (E.4)

Where Ok is the kth data point (xk,yk),

α is mountain building parameter, a positive constant, and

d(Nij, Ok) is a measure of distance between Nij and Ok given by

d(Nij, Ok) =
√

(Xi − xk)2 + (Yj − yk)2 (E.5)

The third step is to use the mountain function to generate the cluster centers.

The node with the highest value of mountain function is selected as a cluster center.

In order to get the next cluster center; the effect of the cluster centre just identified

is removed by a destruction of the mountain function given by

M̂k+1(Nij) = M̂k(Nij)−M∗
ke

−βd(N∗

ij
,Nij) (E.6)

Where Mk is the original mountain function, β is mountain revising constant (a

positive constant) N∗
k and M∗

k are the location of and score at the just identified

cluster center, and d(N∗
k , Nij) is a distance measure. This process is repeated until

all nodes are exhausted or the mountain function reaches a limiting value.

Starting with the observed data pairs (xk, yk), the mountain clustering method

provides a collection of cluster centers (x∗i , y
∗
i ). The estimates of the parameters of

the antecedent and consequent fuzzy sets are obtained from the data. Therefore,

using this method an initial estimation of the antecedent and consequent fuzzy sets

of the rules of the linguistic model can be obtained.
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