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ABSTRACT

           Electrical power systems are experiencing significant changes at the worldwide scale 

both in size and in complexities. The generating capacities of power plants and application of 

high voltage  has  intensively  increased  due  to  their  inherent  advantages,  such  as,  greater 

efficiency and cost  effectiveness.  It  is,  thus essential  to  know the property of the  insulating 

materials for  optimum solution in terms of  cost and insulating capability.   Out of  so many 

properties of insulation materials, determination of the breakdown voltage continues to evoke 

a lot of interest to the Electrical Engineers in general and High Voltage Engineers in particular. 

Hence, it is possible to develop solid insulating materials with excellent breakdown strength 

and any attempt at modeling the phenomenon with the presence of void would go a long way 

in assessing the insulation quality. Some of the few important topics reviewed at the beginning 

of the thesis are the factors affecting the breakdown voltage in general,  breakdown voltage 

study  of  different  composite  insulating  materials  and  the  factors  affecting  the  breakdown 

voltage due to Partial Discharges (PD) in voids.

            The merits of using a Soft Computing (SC) model over that of a Conventional model in 

order to predict the breakdown voltage of solid insulating materials due to PD in voids has 

been identified as one of the main objectives of the thesis. This is because the SC models are 

highly flexible and a model can be improved simply by providing additional training data. In 

addition,  this  kind  of  model  can be  developed  more  accurately  in  a  shorter  time.  The  SC 

approach consists of several computing paradigms, such as, Artificial Neural Network (ANN), 

Fuzzy Logic (FL), approximate reasoning, and derivative-free optimization methods, such as, 

Genetic Algorithms (GA) and Simulated Annealing (SA). The seamless integration of all these 

paradigms  forms  the  core  of  SC,  which  is  aimed  at  solving  real-world  decision-making, 

modeling problems. In addition to the prediction issue, the other main objective of the thesis is 

to visualize the state of the insulation with the application of voltage stress at different levels 

till breakdown. In order to carry out this objective, that is, to know the state of the insulation a 

Scanning Electron Microscope (SEM) is utilized here.

           In order to predict the breakdown voltage using the SC models, the data is generated 

experimentally on the application of  DC and AC power frequency voltages and the relative 

permittivity is measured for the solid insulating materials used. In addition, the generated data 

are statistically analyzed before being utilized for modeling.  Also the breakdown voltage of 
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solid insulating materials under DC and AC has been studied as a function of the thickness of 

the material,  the void depth, the void diameter. After the breakdown voltage data has been 

statistically  analyzed,  four  SC techniques,  such as,  Multilayer  Feedforward Neural  Network 

(MFNN), Radial Basis Function Network (RBFN), Mamdani Fuzzy Logic (MFL) and Adaptive 

Sugeno Fuzzy Logic (ASFL) have been used to propose twenty four models for prediction based 

on  their  respective  theories.  The  input  and  the  output  parameters  are  assumed  to  have 

triangular and trapezoidal shape in the two FL schemes. The evaluation criteria for the MFNN, 

RBFN and the ASFL are the Mean Square Error (MSE) for training patterns Etr and the Mean 

Absolute  Error  (MAE)  for  testing  patterns  Ets.   Whereas  for  the  MFL,  the  MAE for  testing 

patterns is the main evaluation criteria.

         Finally, the MAE for testing patterns has been compared with the experimental data for all 

the twenty four models based on the four SC techniques. A low value of MAE in each of the four 

cases indicates the effectiveness of such models. One of the important inferences that can be 

drawn is that for the four models (having four input parameters) corresponding to each of the 

four  SC  techniques,  the  two  ANN  structures  perform  better  than  the  two  FL  inferencing 

schemes. The scope for future work is also outlined at the end of the thesis.
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1.1 Introduction

           With ever-increasing demand of electrical energy, the power system is growing both in 

size  and  in  complexity.  The  generating  capacities  of  power  plants  and  application  of 

high voltage  has  intensively  increased  due  to  it’s  inherent  advantages,  such  as,  greater 

efficiency and cost  effectiveness.  It  is,  thus essential  to  know the property of the  insulating 

materials  for  optimum  solution  in  terms  of  cost  and  insulating  capability.  Moreover,  the 

reliability of power supply is ensured by having a reliable insulation system. 

             Under normal working conditions, insulation gradually loses its dielectric strength and 

overvoltage capacity because of general aging as well as due to local defects appearing in the 

form of  voids in the  insulation during manufacture,  particularly  in extruded and cast  type 

insulation. The quality of a solid insulation is judged in several ways, such as, hydrophobicity, 

electroluminescence,  crystallization  kinetics,  hygrothermal,  chemiluminescence  and 

breakdown voltage.  Out of these, the breakdown voltage continues to evoke a lot of interest to 

the Electrical Engineers in general and High Voltage Engineers in particular. There are several 

potential applications of solid insulating materials such as, the underground cables, rotating 

machines,  transformers  and  overhead  transmission  lines.  Moreover,  as  the  demand  for 

electrical power is growing in the 21st century, better quality insulating materials starting from 

the generation to the distribution is a bare essential necessity. Hence, it is extremely important 

to develop solid insulating materials with excellent breakdown strength and any attempt at 

modeling the phenomenon with the presence of void would go a long way in assessing the 

insulation quality.  

1.2 Breakdown of solid insulating materials     

             Fothergill [1]  very clearly differentiates between the breakdown and degradation of a 

solid  insulating material.  According to him,  the breakdown is an event  that  is  sudden and 
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catastrophic and the insulation cannot withstand the service voltage following the breakdown. 

The degradation, on the other hand takes place over a period. It increases the probability of 

breakdown and decreases the breakdown voltage, erosion and pit formation are important in 

the degradation process and are followed by tree formation and/or final dielectric failure. The 

degradation  process  after  a  period  of  hours  to  weeks,  leads  to  breakdown.  Well-designed 

insulation systems, operated within the scope of design parameters, do not break or degrade. 

Both  these  processes  are  irreversible.  Table  1.1  shows  some  of  the  differences  between 

degradation and breakdown for a solid insulating material.

Table 1.1: Differences between Degradation and Breakdown for a solid insulating 

material [1]

Features Breakdown Degradation 

Effect Catastrophic insulation cannot be 
used  afterwards 

Leads to breakdown, reduces 
breakdown voltage

Speed Fast occurs in << 1s Hours, years

Evidence Direct observation normally 

by eye

Observation would require 
microscope

Examples Intrinsic, Thermal, Electromechanical, 
Electrochemical, Partial Discharge in 

cavities

Electrical Trees, Water trees

Figure 1.1 shows the variation of breakdown strength on application of voltage with time.
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Fig.1.1: Variation of breakdown strength on application of voltage [2]

1.3 Factors affecting breakdown of solid insulating materials      

          The breakdown of solid insulating materials depends on the following factors:

• Nature of Waveform

             The breakdown voltage of solid insulating material depends on the nature of the voltage  

waveform applied to ,  i.e.,  DC, AC & impulse [3-10].  Some important observations from the 

literatures are presented below:

  i) The breakdown voltage of Cross-Linked Polyethylene (XLPE) [5] in the quasi-homogenous 

field strongly depends on the polarity and level of  pre-applied DC voltage (impulse voltage 

superimposed on DC voltage). The insulation thickness in the range of 50 µm to 200 µm does 

not have a significant influence on breakdown behavior.

  ii)  The DC and AC breakdown voltage of  Electro-active Paper [6] varies with the relative 

humidity levels. The shape parameter represents the slope of the Weibull plot. It is descriptive 

of spread of results of breakdown data. The smaller the value of shape parameter, the larger is 

the  spread  of  results.  The  scale  parameter  represents  the  characteristic  value,  which 
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represents a cumulative probability of 63.2%. The larger value of scale parameter represents 

that average breakdown strength is higher.

  iii) The breakdown voltage of Polyethylene Terephthalate Thermoplastics under DC and AC 

conditions  has been studied by Grzybowski  et.  al  [7].  It  is  found that the  DC breakdown 

voltage  of  dry  samples  is  much  higher  than  that  of  AC  voltage.  This  is  due  to  increased 

dielectric losses occurring at high frequencies, which results in earlier failure of the insulation 

at low AC voltage. The DC breakdown voltage degraded significantly as a result of the water 

absorption. On the other hand, the reduction of AC breakdown voltage exposed to the water 

absorption was less significant in comparison to DC voltage. Table 1.2 shows the test results at 

different types of voltage and test conditions.

Table 1.2: Test results of PET Thermoplastics [7]

Breakdown 
Voltage Test

Maximum 
Breakdown 

Voltage

(kV)

Average 
Breakdown 

Voltage

(kV)

DC-Dry 97.2 80.7

DC-Wet 22.1 18.5

AC-Dry 37.9 34.7

AC-Wet 29.1 24.1

iv)  The V-t Characteristics of polyurethane sample has been studied under AC conditions in 

[8]. The V-t characteristics of the polymer comprises of three zones. The first zone signifies the 

defects of the youth and is characterized by very fast discharges occurring in the cavities. The 

size of  these defects of  extrinsic  type plays an important  role in this zone.  The size of  the 

defects is  big . A term known as voltage endurance constant is defined. This constant depends 

on the type of material and is an indication of the insulation quality. The value of the voltage 

endurance constant is closely related to the type of polymer decomposition. In the first zone, 

this value has been found out to be 15.96. The second zone represents the statistical dispersion 

of the intrinsic defects of the material. An intrinsic defect could be a microcavity due to lack of 

control during the polymerization. The discharge mechanism in the second zone changes with 

respect to the first zone. Thin layer of oxidation products is the main cause for changing the 

mechanism  of  discharges.  These  products  are  formed  by  the  attack  of  the  discharge  at 
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dielectric surface. The discharge mechanism changes into a slower type of discharge and hence 

the voltage endurance constant revealed a relatively small value that is 1.66. The third zone is 

the  real  aging  of  the  polymer,  which  is  characterized  by  the  formation  of  crystals.  The 

discharges in the cavity now concentrate on some of these crystals. At the spots, where these 

discharges concentrate, a severe deterioration of dielectric takes place. The dielectric material 

is lost and this zone is the destructive zone. Hence, the voltage endurance constant value again 

picks up and becomes 7.34.  The polyurethane is used as an insulating material  in rotating 

machines.

v)   The DC  breakdown strength  of  Low Density  Polyethylene  (LDPE)  is  influenced by  the 

microstructure of the polymer (crystallinity, crystal grain size) and the test conditions, such as, 

electrode material, temperature and humidity [9]. Due to the large surface rate and the surface 

energy  of  nano-SiOx,  there  is  a  strong  interaction  between  nano-SiOx and  Polyethylene 

resulting  in  physical  cross-linking  in  the  polyethylene  matrix.  Hence,  the  DC  breakdown 

strength of the mixture increases.

 vi) The impulse and the DC strength of Poly-p-xylene (PPX) film with 4 µm thicknesses are 5.9 

& 4.1 MV/cm respectively [10]. The breakdown of the PPX film is due to electronic avalanche 

mechanism. The DC prestressing for a long time of 60 s has reduced the impulse breakdown 

strength for both the same and opposite polarity. Nevertheless, the DC prestressing for a short 

time less than 1 s  increased the impulse breakdown strength for the same polarity.  These 

results were explained by the positive space charge in the PPX film. The positive space charge 

from the anode plays an important role for the impulse breakdown strength.

vii)   The  high-density  Polyethylene  (HDPE)  and  Polypropylene  random  copolymers  (PPR) 

exhibited  the  highest  breakdown  strength  among Polyolefin  [11].  The  impulse  breakdown 

strength of HDPE was 1.6 times larger than the conventional cross-linked polyethylene (XLPE). 

The  impulse  breakdown  strength  of  HDPE  improved  due  to  improved  crystallinity  of  the 

insulating  material,  brought  about  by  heat  annealing.  The  impulse  breakdown  strength  is 

related  with  the  annealing  temperature  of  the  cable.  The  breakdown  characteristics  are 

dependent  on  the  thermal  histories  given  under  the  higher  temperature  of  their  melting 

temperature.  The  reason  of  this  remarkable  improvement  is  thought  to  be  the  result  of 

crystalline change of polyethylene caused by the annealing process in the melting state and 

cooling process.   
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•  Frequency

              The variation of frequency has an important role to play in affecting the breakdown 

voltage of solid dielectrics. Some observations made in this regard are:

 i) The breakdown voltage at higher frequencies is much lower than the breakdown voltage at 

50 Hz [12-13]. This is due to increased internal heating as well as intense partial discharges 

within the material. 

 ii) Elanseralathan et. al. have studied the breakdown voltage of solid insulating materials for 

airborne  equipments  at  high  frequencies  [12].  The  solid  insulating  materials  are  used  for 

airborne equipments, such as, radar transmitters and power conditioning system for aircrafts. 

As the frequency increases, the weight of these airborne equipments reduces. Table 1.3 shows 

the variation of the breakdown voltage of some solid insulating materials at 50 Hz and higher 

frequencies.

Table 1.3: Breakdown voltage of solid dielectrics at different frequencies [12]

Material PTFE Polypropylene Paper

Thickness(µm) 12.5 12.5 10

Breakdown Voltage 
at 83 KHz (V)

551 565 380

Breakdown Voltage 
at  50 Hz (KV)

1.1-2.18 2.46 1.58

•  Ageing  

             The breakdown voltage of an insulating material, in general, decreases with the ageing 

of  the dielectric. Three popular models have been discussed in the ageing process, such as, 

inverse power model, thermodynamic model and exponential model [13]. The ageing model 

constants  for  polypropylene  film  depend  on  the  applied  voltage  and  frequency.  The 

deterioration process is due to the acceleration of the partial discharges and heat build up in 

the  voids  and  micro-cavities  of  the  insulating  material  when frequency  is  increased.  With 
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increasing frequency, constant n of the power model remains constant.   The inverse power 

model equation is given by

                                                                L= k* V –n                                                             (1.1)

Where L= time to failure

           V= Applied Voltage

       k and n are constants determined from the experimental data.

• Thickness of the Dielectric Material

              The thickness of the dielectric material affects the breakdown voltage [14-15].   The 

short time electric strength is more dependent on the thickness than the area of the samples 

[14].  Table  1.4  shows  the  effect  of  change  in  thickness  on  the  breakdown  voltage  of  the 

polyethylene.

Table 1.4: Variation of Breakdown voltage of polyethylene with thickness [14] 

Thickness

(mm)

Breakdown 
Voltage (air) 

(V/µm)

3.1 33

1.5 28

0.18 72

0.09 122

The breakdown voltage  of  the Leatherite paper  varies with the insulation thickness in the 

presence  of  artificially  created  void  [15].  Table  1.5  shows the  variation of  the  breakdown 

voltage obtained by a step-stress test with the given insulation thickness for the time step of 15 

s. The void depth and the void diameter are considered as 0.2 mm and 2 mm respectively. In 

addition,  it is observed that the breakdown voltage decreases with the increase of the step 

duration of the accelerated Step-Stress test.
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Table 1.5: Breakdown voltage of Leatherite paper as a function of insulation thickness 
[15]

Insulation thickness

(mm)

Breakdown 
Voltage

(kV)

0.175 3.8

0.225 4.1

0.3 4.1

• Lamellar Growth

             The oriented lamellar growth at the interface and the local lamellar texture affects the 

breakdown  voltage  of  XLPE cables  insulation [16-17].  An interfacial  diffusion method was 

devised to reduce the insulation thickness by improving  the interfacial  properties  of  XLPE 

cable  [16].  This  method is  based on a  proposed concept  of  the  facilitation of  the  oriented 

lamellar growth at the interface by the addition of special ingredients to the semi-conducting 

layer. The oriented lamellar growth increases the breakdown strength of the XLPE insulation. 

It is confirmed that there is a strong correlation between average lamellar angle and the degree 

of the vertical orientation.

•  Electrode Gap Spacing 

              The breakdown voltage of Silicon Rubber with different electrode gap spacing is 

reported in [18]. The gap spacing considered is 5, 10 and 20 mm. At each of this gap spacing, 

five values of breakdown voltage are noted and the average of these five readings is taken. It is 

found that at 5, 10, and 20 mm, the breakdown voltage strength is 30 kV/mm, 20 kV/mm and 

15 kV/mm respectively. This clearly indicates that the breakdown voltage strength decreases 

with the increase in the gap spacing.
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•  Complex Permittivity

              The complex permittivity and the loss factor, tanδ of a solid dielectric are directly  

proportional  to  each  other  and  inversely  proportional  to  the  quality  factor.  The  complex 

permittivity comprises of a real permittivity Єr and an imaginary permittivity Єi. The minimum 

of  the  breakdown voltage  for  Polyethylene Terephthalate  (PET)  film is  conditioned by  the 

decrease in the quality factor given as [19]

                                               Q = 1/tanδ = Єr / Єi                                                             (1.2) 

 The  decrease  in  the  quality  factor  is  related  with  the  complex  permittivity  dispersion  at 

different frequencies. Hence, at low frequencies where the complex permittivity dispersion is 

absent,  the breakdown voltage variation is practically negligible.  This is quiet evident from 

Table 1.6, where the values of the breakdown voltage are unchangeable for PET when the front 

duration of the voltage impulse ζf changes from 36 ms to 5000 ms.  It may be noted that the 

range 36 ms to 5000 ms corresponds to 0.2 Hz to 28 Hz (low frequencies).

Table 1.6: Breakdown voltage as a function of front duration of an impulse [19]

ζf (ms) 5000 1630 528 287 177 76 36

Breakdown 
Voltage(KV)

16.6 16.8 16.3 16.7 16.2 16.7 16.4

•  Partial Discharge in cavities  

              It has been well recognized in the past that one of the most common causes for 

insulation system failure occurs from void inclusions, which are usually introduced during the 

various  manufacturing  steps  associated  with  the  formation  of  insulating  materials.  The 

breakdown voltage  of  a  solid insulating material  depends on the Partial  Discharge (PD) in 

cavities. This will be discussed in details in a different section of this Chapter.

1.4 Breakdown voltage study of composite solid insulating materials     

              In recent times,  some interesting articles are published in the literature on the 

breakdown voltage of composite solid insulating materials, which are discussed briefly. In all 
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[20-35] cases, it is found that the breakdown strength increases, when a material is added to 

the base solid insulating material.

 

•  Solid - Solid Composite insulating material

i) The Silane Cross-linked Polyethylene (SXLPE) has higher AC breakdown voltage than DCP 

XLPE [20]. The SXLPE has hard quality due to the introduction of Silicone and can be used for 

abrasion resistant cables. 

 ii)  The  AC  electrical  breakdown  strength  of  five  aromatic  polymers  at  different  film 

thicknesses was measured in Dibutyl Phthalate [21]. The breakdown field strength for thick 

samples showed a linear decrease with increasing sample thickness for all polymers except 

Poly Ether Ether Ketone (PEEK).  The breakdown strength of thin samples is independent of 

the polymer structure. Under DC conditions, the breakdown field strength of polymers and the 

chemical structure had no correlation.

 iii) The AC breakdown strength in PE is modified by grafting and blending techniques [22]. 

The grafted PE is of two types, such as, Acrylic Acid- grafted PE (LDPE-g- AA) and N-butyl-

acrylate-grafted PE (LDPE-g-NBA). In LDPE-g- AA, heterocharge observed in PE decreases at 

low AA contents & homocharge is observed at high AA contents. In LDPE-g-NBA, heterocharge 

gets larger at all graft ratios of 0.12%. The AC breakdown voltage of grafted samples is higher 

than the controlled samples.

 iv) The breakdown strength of the PE film is induced by the electron avalanche [23]. Additives 

can reduce the conduction current through the film, in high electric field region. The reduction 

of current is due to trapping effect or the excitation effect of the additive. Table 1.7 shows the 

breakdown strength of PE and it’s additives at 10-6 mol/gm (concentration of additive).
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Table 1.7: Breakdown strength of PE and it’s derivative [23]

Polyethylene & 
it’s derivatives

Breakdown voltage 
(MV/cm)

PE 4.5

PE/ab 5

PE/nb1 6

PE/nb2 7

  

  v)  The impulse  breakdown strength  of  alumina filled epoxy resin has  been studied as  a 

function of the diameter of the filler and filler parts [24]. The peak of the treeing breakdown 

voltage of epoxy resin appeared with increasing the quantity of filler in spite of filler diameter. 

Table  1.8  shows the  value  of  the  diameter  of  the  filler  and filler  parts  where  peak of  the 

breakdown voltage occurred.

Table 1.8: Values of the filler parts and diameter where peak of the breakdown voltage 
occurred [24]

Filler 
parts

Diameter of filler

(µm)

40 5

30 250

20 500

 
 vi) Mineral oil, Synthetic oil or SF6  gas are commonly used as an insulating material in many 

pieces  of  electric  equipment  in  power  substations.  However,  considering  that  demands  of 

electricity  are  large  in  urban  areas,  use  of  oils  would  cause  a  concern  for  environmental 

protection.  Furthermore,  SF6  is  known  to  cause  a  severe  greenhouse  effect.  However,  the 

interfacial  breakdown  strength  of  a  mixture  of  Silicon  Rubber  and  Epoxy  Resin  has  been 

studied using two types of model samples. This composite dielectric can be used for future 

power substation system as it is environment friendly [25].

    vii) The biomaterials have attracted attention due to environmental problems [26]. One such 

example  is  the  bamboo  pulp-ice  composite  system,  which  is  an  alternative  to  glass  fiber 

reinforced  plastics  (GFRP).  The  bamboo  naturally  decomposes  and  is  characterized  by 
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excellent  elasticity  and  water  absorption  properties.  The  AC  breakdown  strength  of  the 

bamboo-ice composite system depends on the amount of  water absorption of  bamboo and 

increases with increasing water content.

   viii) The breakdown strength of  a three layer solid dielectric,  in which the middle layer 

(barrier) has higher permittivity, is a function of the ratio of the permittivities of the barrier 

material to the insulating material and the ratio of the thickness of the barrier material to the 

insulating material [27]. The breakdown process in this composite solid dielectric material is 

due  to  the  barrier  effect  which  is  lengthening  the  path  of  breakdown  channel  due  to  the 

increasing  tangential component of the electric field vector at the interfaces.

  ix) The breakdown voltage study of mixing a polar material, such as, Ethyl Vinyl Acetate (EVA) 

with polyethylene has been presented in [28]. EVA with polyethylene suppresses tree growth 

and enhances insulation lifetime. This type of dielectric material can be used for high voltage 

insulations. Table 1.9 shows the breakdown voltage values of Polyethylene, different varieties 

of EVA and the mixture of the two.

Table 1.9: Breakdown voltage values for Polyethylene, EVA and the mixture of  two [28]

Materials State of the material Breakdown 
Voltage

( kV/mm)

PE1 Quenched 145

EVA09 Quenched 135

EVA40 Quenched 77

Blend 1 Quenched 135

Blend 4 Quenched 93
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•  Liquid - Solid Composite insulating material

               The breakdown voltage is improved by adding a liquid material to a solid insulating 

material and some literature review on this is presented below:

  i) The dielectric breakdown strength of Polypropylene (PP) film increased from 640 V/µm to 

810 V/µm, when the oil is diffused into the amorphous regions of the PP film [29]. This oil-

impregnated propylene can be used for the high voltage capacitors. For further development of 

impregnated PP films the solubility of the oil in PP should be high enough to fill up the free 

volume of polymer completely.

 ii)  When solid cellulose fibers are mixed with insulating mineral  oil  medium, a composite 

insulating material  known as transformer board results.  This composite material  gradually 

ages as compared to the solid cellulose fiber. It has been shown in [30] that after 29 years of 

service,  the  ageing  has  reduced  the  AC  electric  strength  and  AC  withstand  strength  of 

transformer-board by 40 % and 25%. When the moisture content in the board is less than 4%, 

there  is  no  change  in  the  AC  electric  strength  and  AC  withstand  strength.  This  insulating 

material can be used for power transformer insulation.

  iii) The comparison between the breakdown strength of ester impregnated cellulose with 

mineral oil impregnated cellulose has been carried out by D. Martin et. al [31]. When the ester 

oil is impregnated with cellulose, there is a matching of the dielectric constants of the ester oil 

and cellulose and the electric field is equally shared. Hence, the ester-impregnated cellulose 

has more breakdown voltage compared to the mineral oil impregnated cellulose.  

•  Gas - Solid Composite insulating material

            Y. Kamiya et. al [32] presented an interesting article dealing with SF6 impregnated SiR . 

The effect of the Secondary Cross-linking Treatment (SCLT) and vacuum treatment on the tree 

initiation  voltage  has  been  discussed.  The  main  observations  concerning  the  breakdown 

voltage are:

i) The SCLT volatizes low molecular  weight  components  from SiR and improves  the 

physical strength. 
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ii) Without  vacuum  evacuation,  the  breakdown  strength  of  SF6 impregnated  SiR  is 

greater than the untreated specimen. This is because SF6 is an electronegative gas. SF6 

in  free  volume  captures  electrons  by  attaching  and  the  number  of  electrons 

contributing to the electrical tree initiation is decreased. The number of electrons in 

air filled SiR Specimen reaching polymer chains is higher than that in SF6 filled one. 

Hence, the electrical tree initiation voltage increase is expected in SF6 impregnated 

SiR.

iii) This kind of solid insulating material can be used particularly for cable joints in power 

transmission lines.

1.5 Breakdown voltage behaviour of Nano-insulating material

      

              The Nano materials in recent times have found lot of applications in all fields of 

Engineering and Electrical Engineering field is no exception to it. The researchers enlighten the 

breakdown voltage behaviour of Nano-insulating materials. Some of them are as follows:

i)  The Nano-composites  based on  the  clay  systems have  been widely  investigated by  T.M. 

Mathison et.  al  [33]. The  breakdown  voltage  of  organo-modified  inorganic  Nanofillers 

boehmite and montmorillonite in an epoxy matrix has been studied and it is found to decrease. 

This is because of the extent of the dispersion existing in the material on addition of the fillers. 

This material can be used in the high voltage industry.

ii)  The  effect  of  the  layered  Silicates  on  the  breakdown  voltage  of  Polyethylene  has  been 

investigated by  Green and Vaughan [34]. The layered silicates offer improvement to partial 

discharge resistance in polyamide and hence the breakdown voltage of the layered silicates 

with Polyethylene increases. Also, it is found that isothermally crystallized material had more 

breakdown strength than it’s quenched counterpart. This type of Nano-dielectric material can 

be used as insulation in the rotating machines. Table 1.10 shows the breakdown voltage of 

polyethylene and layered silicate mixed with polyethylene. 
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Table 1.10: Breakdown Voltage of Nano-Dielectrics [34]

SL No. Materials Breakdown 
Voltage 

(kV/mm)

1. U (Quench) 171.4

2. U(117 ºC) 190.6

3. UC30PE(quench) 178.6

4. UC30PE(117ºC) 180.6

5. M (Quench) 174.1

6. M2101(quench) 190.4

iii)  The  DC  breakdown  strength  of  Thermoplastic  Polyetherimide  (PEI)  film  and  various 

Nanofilled PEI films has been compared in [35].  The semiconductive and partially oxidized 

Aluminum fillers lead to lower breakdown voltage compared to the virgin PEI film. However, 

the  insulating  fillers  added  to  the  PEI  had  a  breakdown  voltage  almost  the  same  as  the 

breakdown voltage of PEI. In addition, it is found that the interfacial interaction of ceramic 

polymer plays an important role in the breakdown voltage of the Nanocomposite.  

1.6 Breakdown due to PD in cavities 

           The Partial Discharge study has been an important topic in the field of solid insulations 

over  the  past  few decades,  which  is  very  much  evident  from  the  large  number  of  papers 

associated with it [36-46]. It is well known that voids within the solid insulating materials are 

the main sources of Partial Discharge (PD). These voids or cavities are essentially gas-filled and 

can result from many causes. In  case of epoxy castings, gas-filled cavities can be caused by air 

leaking into the mould during curing. If  the voltage between the electrodes is raised to the 

point that the field within the cavity goes above the breakdown strength for the gas within the 

cavity, a PD can take place. The time taken for breakdown to occur depends on the applied 
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voltage and the size of the cavity [47-48]. If an electron is present within the critical volume of 

the cavity, the electron is accelerated in the electric field and produces electron gain during 

collisions with other molecules. The electron grows exponentially resulting in the development 

of a streamer. A resistive channel is developed across the cavity in few ns. The conductivity of 

the streamer reduces the field across the cavity. The streamer dies, once the field across the 

cavity drops below that necessary to support the streamer, leaving large quantities of positive 

and negative charges. At the end of the PD process, the field in the cavity can be reduced to 

zero. If the field in the cavity is reduced to zero, electric field in the solid insulating sample is 

the same as if the cavity is filled with a conductor. Filling the cavity with a conductor would 

cause an increase in the capacitance between electrodes, which would cause a flow of charge 

into electrodes for a constant voltage across them. The charge, which flows into the electrodes, 

is the apparent PD magnitude.

              It is found that the magnitude of the PD in insulating materials due to voids and thus 

breakdown  due  to  PD  in  cavities,  Partial  Discharge  Inception  Voltage  (PDIV)  [49-72]  and 

Partial Discharge Extinction Voltage (PDEV) is affected by several factors listed below:

• Thickness and relative permittivity of the insulating Material

             The authors [14, 49-52] have developed mathematical relationships between the 

breakdown voltage due to PD in cavities, and with the thickness and relative permittivity of the 

material.  In what follows is a brief description of those relationships:

i)  Naidu et.  al  [50] have shown that the breakdown voltage  due to PD decreases with the 

increase in thickness of the material. It depends on the dielectric strength of air, Eg, the relative 

permittivity, Єr and  the thickness, t of the material and the air gap length, g as

                                             V= A*Eg*(g+ t/ Єr)n                                                              (1.3)

Where  A= 0.9508 and n=0.3496.

ii) Mason [51] and Dakin [52] have shown that the breakdown voltage due to PD depends on 

the thickness, t and the relative permittivity, Єr of the material as 

                                           V= k*( t/ Єr)0.46                                                                        (1.4)

                                   where                k = 0.2
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The square-edged rod electrodes in air at 0.1 Mpa is taken for the purpose and the materials 

considered are Polyethylene (Єr  = 2.25), Mylar (Єr  = 3.2), Polymethyl Methacrylate (Єr  = 3.4), 

Zircon Ceramic (Єr = 5.3), Alumina Ceramic (Єr = 8.3) and Mica (Єr = 3.4). 

•  Void depth and size

              Nossier [53] has shown that the Partial Discharge Inception Voltage (PDIV) generally 

decreases with the increase in the void depth t1.  The analytical expression for the PDIV has 

been developed at atmospheric pressure for three different positions of void, that is, void at 

sheath, void at mid-dielectric and the void near the conductor surface. Figure 1.2 shows the 

geometrical configuration of the cable. The nearer the void was to the conductor, the smaller is 

the PDIV. Since PDIV decreases with the increase in void depth t1, it can be safely inferred that 

breakdown voltage due to PD in cavities would also decrease with increase in t1.

•  Void shape  

              The PDIV also depends on the void shape as can be seen from [54-57]. Crichton [55] has  

calculated this voltage for ellipsoidal and spheroidal voids. Reynolds [56] has calculated the 

PDIV of Polyethylene and Mylar with spheroidal voids of natural and artificial nature.

Insulation

Conductor

Cavity

Fig. 1.2: Geometrical configuration of the cable
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•  Nature of Voltage waveform 

              The voltage waveform can also affect the PDIV [58-61].

i) F.S.Ahmed & A.S. Ahmed [59] have determined the PDIV using an IEC electrode geometry 

with sinusoidal voltages of 1 to 60 kHz and pulse repetition rate of 15.625 kHz.

ii) Densley [60] has analysed the PD phenomena in artificial air filled cavities of Polyethylene. 

During  the  initial  test,  50%  impulse  inception  stress  was  found  to  be  much  higher  than 

discharge stress calculated from Paschen’s curve. A main discharge occurs on or near the crest 

of the surge.

•  Immersion medium 

               The breakdown voltage due to PD in cavities, PDIV and  PDEV  of insulating material is 

greatly influenced by an immersion medium such as Helium and Liquid Nitrogen [62-65] and 

some salient features of these literature are : 

i) Schwenterley [62] have evaluated a thin polymer film insulation for use in superconducting 

underground transmission cables. The PDIV of three-layer disc samples of Polyethylene and 61 

µm Polycarbonate with Helium impregnation ranging from 5.0 ok and 0.3 MPa to 11.5 ok and 

1.5 MPa have been observed. The butt gaps are simulated by punching 1 mm diameter holes in 

some of the layers. The observed voltage varies strongly with the Helium conditions, increasing 

rapidly with the increase of the density.

ii)  Densley [63] have determined the PDIV and PDEV of film-type and fibrous materials in 

Liquid Nitrogen. Generally, it is found that the PDIV and PDEV increases when these materials 

are dipped in Liquid Nitrogen. These materials can be used in electric power apparatus.

iii) A high temperature superconducting (HTS) cable has used a composite material involving 

Liquid Nitrogen / Polypropylene (PPLP) for which the PDIV is found [64]. The initial PD varies 

from 2 to 30 pC irrespective of the void condition. The PD Inception strength without the void 

was 5-10 % higher than that with the void.
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iv) The breakdown voltage due to PD in cavities of some solid insulating materials has been 

predicted by Masood et. al. [65] in a medium of Liquid Nitrogen. The breakdown voltage for 

Crepe paper, Kraft Paper, Varnished Paper, pressboard, mica, bakelite, asbestos is found to be 

depending on the volume resistivity ρv, relative permittivity, Єr  and loss tangent tanδ.

The breakdown voltage is expressed by

                            V= A+ B*log (ρv / Єr* tanδ)                                                                 (1.5)

Where A and B are constants.

•  Void diameter 

The PDIV versus void size for a sphere-shaped void has been analyzed. It is seen that the PDIV 

decreases from 300 V/mm to 100 V/mm in a hyperbolic manner when void diameter increases 

from 1 to 10 mm[66] .

•  Temperature 

         i) In [67] the PD investigations on epoxy-resin impregnated transformer coils have been 

carried out between -30oc and 180oc. The PD measurements show that the PDIV decreases with 

rising temperature.  This is explained with the superposition of two temperature-dependent 

phenomena. First of all,  the temperature dependent rising values of  relative permittivity of 

epoxy resin strengthens electric field inside the cavity and secondly, the ignition condition in 

the void changes due to diffusion.

       ii) Schifani et. al [68] has shown the effect of temperature on PD activity taking place inside 

spherical void in epoxy resin. It is also inferred that the PDIV decreases with the increase of 

temperature.
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• Void orientation  

           In addition to the void shape, size, depth and diameter, the void orientation parallel & 

perpendicular to the axis of rotation plays an important role in the PDIV [69]. It is found that 

when the applied field is parallel to the void axis of  rotation,  the magnitude of the PDIV is 

higher than that when the applied field is perpendicular to the void axis of rotation.

•  Gas and the gas pressure within the void 

           It has been shown by Boggs [47] that the PDIV in spherical voids in air is given by

                              V= (1+8.6/[√(2*a*p1)])*(24.2*p1)                                                 (1.6)

Where p1 is the gas pressure in Pascal and a is the cavity radius in meters.

Similarly, if air is replaced by SF6, the PDIV is given by

                              V= 88.6*[p1+ (2/a)]                                                                             (1.7)

Equation (1.6) indicates that the PDIV in SF6 is greater than the PDIV in air obtained from 

equation (1.5).

              From the aforesaid discussion, it is very clear that several factors can influence the 

breakdown due to PD in cavities, PDIV and PDEV. Prior to breakdown, the PD phenomena can 

subject  to  degradation  of  a  solid  insulating  material.  Due  to  degradation,  two  things  can 

happen to a solid insulating material [70-72]. First of all, activated O2 formed by the discharge 

is able to oxidize surface of the insulating material and yields H2O and CO2.  Secondly, ozone 

with long life diffuses into the material to form an ozonide by reacting with a terminal double 

bond. The degradation and breakdown of a solid insulating material due to PD phenomenon 

can be observed very easily with the help of a Scanning Electron Microscope (SEM). It will be 

discussed in more details in the next Chapter. 
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1.7 Breakdown voltage prediction due to PD in cavities 

              The breakdown voltage due to PD in cavities is a nonlinear phenomenon. This is very 

evident from equations (1.2) to (1.6) and the magnitude of this voltage is critical for judging 

the quality of the insulation for industrial purpose. However, it is extremely difficult to predict 

this voltage. Hence, it is necessary to resort to the process of modeling in order to predict the 

magnitude of this breakdown as a function of different variables. Some literature can be found 

in which this voltage is predicted as a function of the thickness of the material [14-15, 21, 73] 

or as a function of position, size and shape of the void [47]. All these models described there 

are  essentially  conventional  models,  which  are  extremely  rigid.  However   Kolev  & 

Chalashkanov [74] have proposed an ANFIS structure for the prediction of the PDIV and PDEV 

using the experimental data from CIGRE Method II Electrode System provided in [75]. Similarly 

Ghosh & Kishore [76-77] have proposed  ANN models for predicting the PDIV and PDEV of 

insulation samples.  Hence,  the rigidity in the conventional  models have been appropriately 

taken care of by utilizing an ANFIS and ANN structure respectively.  

              The conventional models, which solve any application oriented problem, either involve 

the use of classical approximation theory or the development of quasi-empirical relationship. 

The classical approximation theory is the branch of mathematical analysis, studying methods 

for approximating some mathematical objects by others and studying questions related to the 

research and estimation of errors, which arise there. It deals with the approximation of real-

valued functions on real intervals by certain basic functions,  like ordinary or trigonometric 

polynomials and the Splines [78]. The Kernel based approximation [79], linear approximation 

method  [80],  Partial  Least  Square  (PLS)  regression  [81]  also  belong  to  the  classical 

approximation  theory.  The  conventional  method  of  solving  any  particular  issue  has  it’s 

limitations, as it is only valid for the range of input variable considered. Hence, these methods 

are inherently rigid in nature and there is hardly any scope of making it flexible.

             The Soft Computing (SC) model on the other hand is highly flexible and a model can be 

improved simply by providing additional training data [82-83]. In addition, this kind of model 

can  be  developed  more  accurately  in  a  shorter  time.  The  SC  is  an  emerging  approach  to 

computing which parallels the remarkable ability of the human mind to reason and learn in an 

environment  of  uncertainty  and  imprecision  [84].  The  SC  approach  consists  of  several 

computing, paradigms such as Artificial Neural Network (ANN), Fuzzy Logic (FL), approximate 

reasoning,  derivative-free  optimization  methods,  such  as,  Genetic  Algorithms  (GA)  and 

Simulated Annealing (SA). The seamless integration of all these paradigms forms the core of 
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SC, which is aimed at solving real-world decision-making, modeling problems. These problems 

are usually imprecisely defined and require human intervention. Thus, the SC with their ability 

to incorporate human knowledge and adapt their knowledge base via optimization techniques 

play an important role in the design of intelligent systems.

   1.8 Soft Computing applications to Insulation diagnosis   

             Apart from the breakdown voltage prediction due to PD in cavities, PDIV and PDEV the 

SC techniques can also be utilized for other types of insulation diagnosis issues. These issues 

are provided in  details below:    

  

• Lifetime prediction of solid insulating materials 

             Khachan & Laghari [85] have proposed an inverse power model in order to predict the 

lifetime of three capacitor dielectrics, namely polypropylene,  polyimide and poly vinylidene 

fluoride.  This model is essentially a conventional model which had the limitation mentioned in 

Section 1.7. On the other hand M. Hammer et.al. [86-87] have proposed two SC techniques one 

based on the ANN structure and the other based on the FL structure in order to predict the 

lifetime of Relanex. This insulating material can be used for the Electrical Machine windings. 

The ANN structure could provide an adaptive system and the FL structure could deal with 

imprecision and uncertain data [88] by fuzzifying the input output patterns. 

• Detection of Electrical Trees 

              The detection of electrical trees can be considered to be the most important way of 

monitoring  the  degradation occurring  in a solid  insulating  material.  In  order  to detect  the 

electrical  trees,  A.  Samee et.  al  [89] have described an aging model  which is  based on the 

concept  of  generation  of  micro-voids  due  to  thermally  activated,  electrically-enhanced 

breakage of bond structure of polymeric insulation. Also Noskov et. al [90] and K. Wu et. al [91] 

have proposed a model of PD development for the detection of  electrical trees. This model is 

based  on  the  concepts  of  electric  field  redistribution,  charge  transport  and  channel 

conductivity during the propagation of PD along channels. Both the above mentioned models 

had an inherent drawback, as the detection of electrical trees was by trending of PD data and 

22



Chapter 1                                                                                                                                     Introduction and Literature Survey

are hence they are essentially data driven models [88]. In addition, noise and other PD sources 

(corona from nearby high voltage conductors, PD in test equipment), contribute frequently to 

PD measurements, the PD generated due to trees is obscured. But A. Cavallini et. al.[92] have 

suggested that instead of trending the PD data, it is better to study the behaviour of the times 

between PDs.  The inter-times have been analyzed by a fuzzy engine as a basis to infer the 

presence of electrical trees. 

• PD pattern classification 

           The PD pattern classification issue in solid insulating materials has also some interesting 

literature  recently  [93-102].  A  model  suggested by Kranz & Krump [93] has performed a 

statistical analysis of charge, energy and phase angle on measured PD signals. A PC aided PD 

evaluation high speed electronic device for on-line measurement and digital conversion of PD 

signals has been used for implementing this model. The demerit of this approach is that it is 

highly expensive. Also it could not handle a situation in high voltage cables, where there are 

few cavities present in the insulation very close to each other and the resultant PD pattern of 

individual  cavities  exhibit  only  small  differences  in  their  respective  discharge  pulse 

amplitudes. Hence, the need arose to identify PD pulse patterns in more vague, or at least less 

specific terms. This is only possible by using SC techniques for the purpose of classification. N. 

C. Sahoo et. al. [94] have extensively reviewed the literatures on FL for classifying PD patterns 

for insulating materials in HV power apparatus.  T.K. Abdel-Galil et. al [95] have proposed a 

fuzzy decision tree approach in order to classify  the PD patterns.   S.  Gopal  et.  al[96] have 

described the  cavity  size  in terms of  large,  small  and medium linguistic  values and in the 

process have also proposed a Fuzzified approach to PD pattern recognition. D. Dey et. al.[97] 

have suggested a novel cross-wavelet transform which is used for feature extraction from a 

raw  noisy  PD  signal.   Lalitha  &  Satish[98]   have  proposed  fractal  image  compression 

techniques  which  can classify  PD  patterns  in  a  single  step  involving  the  compression  and 

feature  extraction.   Satish  &  Zaengl[99]  have  recognized  3-d  PD  patterns  by  using  ANN 

structures for insulation in power apparatus. M. G. Danikas  et. al.[100-101] have recognized 

PD  patterns  in  gas  insulated  switchgear  and  transformers  by  using  the  ANN  structures. 

Similarly ANN structures have also been used by  T. Okamoto et. al.[102] for recognizing PD 

patterns for three different kinds of electrodes.   
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• Time to flashover characteristics  

              P.S. Ghosh et. al.[103] have used an ANN structure in order to estimate the time to 

flashover characteristics of a transmission line insulator used in the power sector. It has been 

shown that the time to flashover is a function of the length of the insulator, applied voltage and 

the resistance per unit length.   

1.9 Motivation 

               From the previous sections (especially Sections 1.6 and 1.7), it is quite evident that SC  

model is an important and a flexible model in predicting the breakdown voltage due to PD in 

voids. The use of this model in order to tackle this PD issue needs further exploration as the 

prediction  of  this  breakdown  voltage  is  so  important  industrially.  Moreover,  it  is  also  an 

interesting exercise to know the state of the solid insulating materials at different stages of the 

applied voltage ultimately leading to breakdown. This curiosity was satisfied by observing the 

samples of the solid insulating materials under a Scanning Electron Microscope (SEM).  

1.10 Organization of the thesis 

              This thesis  primarily attempts at modeling of PD initiated breakdown voltage of solid 

insulating materials by different SC techniques. The requisite experimental breakdown voltage 

data under both DC and AC conditions are generated in the laboratory with artificially created 

void  and insulation dimensions  using  Cylinder-Plane Electrode System.  Further,  attempt is 

made  to  predict  the  breakdown  voltage  using  experimental  data  taken  from  literature 

generated using CIGRE Method – II Electrode System.  This thesis contains seven chapters; out 

of which Chapter 2 to Chapter 6 are the contributory Chapters. 

              Chapter 1 has reviewed the existing literatures on the breakdown voltage of the solid 

insulating materials in general while giving more emphasis on the breakdown due to PD in 

cavities.   The  advantage  of  using  SC  models  over  the  Conventional  models  in  solving  the 

prediction of breakdown due to PD in cavities and other insulation diagnosis issues have been 

discussed thoroughly in this Chapter.

              Chapter 2  discusses the experimental set up for the Cylinder-Plane Electrode System 

used for obtaining the breakdown voltage data under DC and AC conditions. Also the statistical 
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analysis of the breakdown voltage is carried out. In addition, the SEM results for some solid 

insulating  materials  under  these  conditions  are  presented.  Also,  the  breakdown  voltage  of 

some solid insulating materials are studied as a function of the thickness of the material, void 

depth, void diameter and relative permittivity of the material.

              Chapter 3 deals with a brief theory of the Multilayer Feedforward Neural Network 

(MFNN) based on the Backpropagation Algorithm (BPA), which is subsequently used for the 

formulation of models for predicting the breakdown voltage of solid insulating materials due to 

PD in cavities  under both DC and AC conditions.  Seven models  are  proposed by using the 

experimental  data  obtained  from  the  Cylinder-Plane  and  the  CIGRE  Method  II  Electrode 

Systems.

               Chapter 4  discusses the theory of   Radial Basis Function Network (RBFN), in brief. 

Subsequently,  this  network  structure  is  utilized  for  prediction  of  breakdown  voltage.  Six 

models  proposed  using  this  structure  have  used  the  experimental  data  generated  from 

Cylinder- Plane Electrode System.

              Chapter 5  describes a brief theory of the Fuzzy Logic technique with Mamdani 

inferencing.  This  technique  is  then used  to  propose  six  breakdown  voltage  models. These 

models  have  used  the  experimental  data  generated  from  both  the  Cylinder-Plane  and  the 

CIGRE Method II Electrode Systems.

               Chapter 6  describes the theory of another FL tehnique, namely, Adaptive Sugeno 

Fuzzy Logic (ASFL) inferencing. The five models explored with this inferencing have used the 

experimental data generated from  the Cylinder Plane Electrode System.  

                Finally, Chapter 7 summarises the main findings, draws certain conclusions arising 

out of the thesis work and compares of the MAE of the test data Ets obtained from the various 

models of Chapter 3 to 6 using similar data to show the effectiveness of the SC techniques used 

here.  At the end, it outlines the scope for the future research.

                A complete list of references has been given towards the end of the thesis. Finally, a 

concise list of publications in-peer reviewed international journals and conferences related to 

present research work has been presented at the end. 
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2.1 Introduction 

             As mentioned in Chapter 1, the primary objective of this thesis work is to visualize the 

state of the insulation with the application of voltage stress at different levels till breakdown 

and to develop different soft computing models, which will be able to predict the breakdown 

voltage  of  solid  insulating  materials  due  to  PD  in  cavities.  In  order  to  carry  out  the  first 

objective, that is, to know the state of the insulating material  a Scanning Electron Microscope 

(SEM)  is  utilized  here.  For  modeling  purpose,  breakdown  voltage  data  are  generated 

experimentally on application of DC and AC power frequency voltages and relative permittivity 

are  measured  for  the  solid  insulating  materials  used.  In  addition,  the  generated  data  are 

statistically analyzed before being utilized for modeling. 

2.2 Experimental Procedure

          The procedure adopted for the generation of experimental value of the breakdown 

voltage is as follows: 

2.2.1. Sample Preparation

           The samples are prepared from five commercially available insulating sheets, namely 

White  Minilex  Paper,  Leatherite  Paper,  Glass  Cloth,  Manila  Paper  and  Lather  Minilex  of 

different thicknesses. The variation of thicknesses is as follows:

White Minilex Paper: 0.26 mm, 0.18 mm and 0.125 mm.

Leatherite Paper: 0.235 mm, 0.175 mm and 0.13 mm.

Glass Cloth: 0.195 mm and 0.155 mm.

Manila Paper: 0.06 mm and 0.035 mm.

Lather Minilex: 0.245 mm, 0.185 mm and 0.12 mm.

            Thus, the thickness range is varying from 0.035 mm to 0.26 mm. Before testing, the 

conditioning procedure was adopted to the test specimen in accordance with that laid in ASTM 

Handbook [104].  This ensures that the surfaces of  the insulating sample are clean and dry, 
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since the contamination on the insulating specimen or absorption of moisture may affect the 

breakdown voltage.

2.2.2 Creation of void

            The voids of different sizes are artificially created by means of a spacer  made up of 

Kapton film, with a circular punched hole at the centre. The diameters of the voids are 1.5 mm, 

2 mm, 3 mm, 4 mm and 5 mm. The thicknesses of the Kapton spacer used are of 0.025 mm and 

0.125 mm. Thus, the sizes of the void, that is, the volume of air space, depends on a typical 

diameter  of  the  punched hole  and thickness of  the  spacer.  Utmost  care  has been taken to 

maintain the surface smoothness of the punched holes.

2.2.3 Electrode Geometry

             The electrode system used in this work for breakdown voltage measurements is  shown 

in Figure 2.1. Figure 2.2 shows the arrangement of the complete experimental set and Figure 

2.3 shows the snapshots of the High Voltage electrode and the ground electrode. To get a high 

reproducibility of the tests and low data scatter, the cell sample was built following a standard 

assembling methodology.  It consists of  a cylinder-plane electrode configuration,  including a 

cavity in the middle. The depth of the void was fixed by the Kapton film as explained before. 

The electrodes, both high voltage and low voltage,  are made of brass. They are polished, buffed 

and cleaned with ethanol before the start of the experiment. Further, the electrodes contact 

surfaces  are  cleaned  by  ethanol  between  two  consecutive  applications  of  voltage  to  avoid 

contaminations that may arise due to application of voltage. Sufficient care is taken to keep the 

electrode  surfaces  untouched  and  free  from  scratches,  dust  and  other  impurities.  The 

insulation sample is sandwiched between the electrodes with the help of insulating supports as 

shown. The main characteristic of the employed electrode system is that discharges occur in a 

concentrated area and continue corroding  the  insulation until  breakdown takes place.  The 

breakdown was considered to be due to a real puncture of the sample.
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Figure 2.1 Cylinder-Plane Electrode System used for Breakdown Voltage Measurement 

Figure 2.2: Arrangement of the complete experimental set up
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a)

b)

Figure 2.3: Snapshot of the a) High Voltage b) Ground Electrode 
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2.2.4 Measurement of DC Breakdown Voltage

            The DC voltage applied to the set-up was obtained from a 40 kV AC/DC Series Hipot 

Tester (MODEL: HD 100, Accuracy = ± 2 %, Resolution: 500 V) manufactured by Hipotronics, 

USA. The voltage is raised in steps of 500 V and held constant for a period of 30 s at each level 

until  the  breakdown  occurs  for  materials,  such  as  Leatherite   Paper  and  Manila  Paper. 

However, for materials, such as White Minilex, Glass Cloth and Lather Minilex the voltage is 

raised in steps of 1kV and the rest of the procedure is the same. For high reproducibility, nine 

breakdown  voltage  values  are  obtained  for  a  particular  thickness  of  the  material  and  a 

particular  void  condition.   All  the  tests  are  carried  out  in  air  at  room  temperature  and 

atmospheric  pressure.  The  breakdown  voltage  data  obtained  are  then  corrected  for 

atmospheric  condition before being used for the statistical  analysis.  The experimental  data 

generated under DC conditions are presented in Table 2.1 and the values in the last column 

indicate the arithmetic mean of nine breakdown voltage values.
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Table 2.1:  Experimental Breakdown Voltages for different Insulating samples under DC 
test conditions 

SL No. Material 

Used

Thickness of 

the material 

(mm)

Void Depth 

(mm)

Void 

Diameter 

(mm)

Mean value of 

Breakdown 

Voltage 

(Experimental)

(kV)
1. White 

Minilex

0.125 0.025 1.5 23.44
2. 0.125 0.025 2.0 22.88
3. 0.125 0.025 3.0 23.22
4. 0.125 0.025 4.0 24.44
5. 0.125 0.025 5.0 22.55
6. 0.18 0.025 1.5 23.55
7. 0.18 0.025 2.0 23.22
8. 0.18 0.025 3.0 24.44
9. 0.18 0.025 4.0 23.77

10. 0.18 0.025 5.0 22.88
11. 0.26 0.025 1.5 23.33
12. 0.26 0.025 2.0 23.00
13. 0.26 0.025 3.0 24.44
14. 0.26 0.025 4.0 23.77
15. 0.26 0.025 5.0 23.22
16. 0.125 0.125 1.5 24.44
17. 0.125 0.125 2.0 23.55
18. 0.125 0.125 3.0 22.55
19. 0.125 0.125 4.0 23.22
20. 0.125 0.125 5.0 23.77
21. 0.18 0.125 1.5 23.00
22. 0.18 0.125 2.0 24.33
23. 0.18 0.125 3.0 23.77
24. 0.18 0.125 4.0 22.88
25. 0.18 0.125 5.0 24.33
26. 0.26 0.125 1.5 23.22
27. 0.26 0.125 2.0 23.55
28. 0.26 0.125 3.0 23.44
29. 0.26 0.125 4.0 23.77
30. 0.26 0.125 5.0 22.88

Continued
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SL 

No.

Material 

Used

Thickness 

of the 

material 

(mm)

Void 

Depth 

(mm)

Void 

Diameter 

(mm)

Mean value of 

Breakdown Voltage 

(Experimental)

(kV)
31. Leatherite 

Paper

0.13 0.025 1.5 1.94
32. 0.13 0.025 2.0 1.97
33. 0.13 0.025 3.0 1.91
34. 0.13 0.025 4.0 2.02
35. 0.13 0.025 5.0 1.88
36. 0.175 0.025 1.5 2.44
37. 0.175 0.025 2.0 2.36
38. 0.175 0.025 3.0 2.30
39. 0.175 0.025 4.0 2.36
40. 0.175 0.025 5.0 2.39
41. 0.235 0.025 1.5 3.19
42. 0.235 0.025 2.0 3.22
43. 0.235 0.025 3.0 3.16
44. 0.235 0.025 4.0 3.27
45. 0.235 0.025 5.0 3.13
46. 0.13 0.125 1.5 1.94
47. 0.13 0.125 2.0 1.86
48. 0.13 0.125 3.0 1.91
49. 0.13 0.125 4.0 1.97
50. 0.13 0.125 5.0 1.91
51. 0.175 0.125 1.5 2.44
52. 0.175 0.125 2.0 2.36
53. 0.175 0.125 3.0 2.41
54. 0.175 0.125 4.0 2.30
55. 0.175 0.125 5.0 2.36
56. 0.235 0.125 1.5 3.19
57. 0.235 0.125 2.0 3.11
58. 0.235 0.125 3.0 3.16
59. 0.235 0.125 4.0 3.16
60. 0.235 0.125 5.0 3.27

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown Voltage 

(Experimental)
(kV)

61. Glass
Cloth

0.155 0.025 1.5 13.00
62. 0.155 0.025 2.0 13.33
63. 0.155 0.025 3.0 13.33
64. 0.155 0.025 4.0 13.44
65. 0.155 0.025 5.0 13.33
66. 0.195 0.025 1.5 17.66
67. 0.195 0.025 2.0 17.33
68. 0.195 0.025 3.0 17.11
69. 0.195 0.025 4.0 17.44
70. 0.195 0.025 5.0 17.77
71. 0.155 0.125 1.5 13.33
72. 0.155 0.125 2.0 13.55
73. 0.155 0.125 3.0 13.55
74. 0.155 0.125 4.0 13.11
75. 0.155 0.125 5.0 13.33
76. 0.195 0.125 1.5 17.33
77. 0.195 0.125 2.0 17.22
78. 0.195 0.125 3.0 17.88
79. 0.195 0.125 4.0 17.66
80. 0.195 0.125 5.0 17.11

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown Voltage

 (Experimental)
(kV)

81. Manila
Paper

0.035 0.025 1.5 1.44
82. 0.035 0.025 2.0 1.47
83. 0.035 0.025 3.0 1.42
84. 0.035 0.025 4.0 1.53
85. 0.035 0.025 5.0 1.39
86. 0.06 0.025 1.5 1.44
87. 0.06 0.025 2.0 1.36
88. 0.06 0.025 3.0 1.42
89. 0.06 0.025 4.0 1.53
90. 0.06 0.025 5.0 1.38
91. 0.035 0.125 1.5 1.47
92. 0.035 0.125 2.0 1.42
93. 0.035 0.125 3.0 1.44
94. 0.035 0.125 4.0 1.53
95. 0.035 0.125 5.0 1.36
96. 0.06 0.125 1.5 1.42
97. 0.06 0.125 2.0 1.39
98. 0.06 0.125 3.0 1.47
99. 0.06 0.125 4.0 1.42

100. 0.06 0.125 5.0 1.44

Continued
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SL No. Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown Voltage 

(Experimental)
(kV)

101. Lather 
Minilex

0.12 0.025 1.5 10.00
102. 0.12 0.025 2.0 10.11
103. 0.12 0.025 3.0 10.33
104. 0.12 0.025 4.0 10.67
105. 0.12 0.025 5.0 10.33
106. 0.185 0.025 1.5 15.78
107. 0.185 0.025 2.0 16.22
108. 0.185 0.025 3.0 16.11
109. 0.185 0.025 4.0 16.00
110. 0.185 0.025 5.0 15.88
111. 0.245 0.025 1.5 15.88
112. 0.245 0.025 2.0 16.00
113. 0.245 0.025 3.0 15.77
114. 0.245 0.025 4.0 16.44
115. 0.245 0.025 5.0 16.00
116. 0.12 0.125 1.5 10.44
117. 0.12 0.125 2.0 10.33
118. 0.12 0.125 3.0 10.55
119. 0.12 0.125 4.0 10.55
120. 0.12 0.125 5.0 10.67
121. 0.185 0.125 1.5 15.89
122. 0.185 0.125 2.0 16.00
123. 0.185 0.125 3.0 15.77
124. 0.185 0.125 4.0 16.44
125. 0.185 0.125 5.0 15.89
126. 0.245 0.125 1.5 16.00
127. 0.245 0.125 2.0 15.88
128. 0.245 0.125 3.0 15.77
129. 0.245 0.125 4.0 16.11
130. 0.245 0.125 5.0 15.77

2.2.5 Measurement of AC Breakdown Voltage

             In this case an AC voltage of 50 Hz is applied from the same Hipot Tester (Resolution: 

200 V rms) to the insulating sample. The voltage is raised in steps of 200V (rms). Rest of the 

procedure is identical to that presented in Section 2.2.4 .  The experimental data generated 
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under AC conditions are depicted in Table 2.2 and the values in the last column indicate the 

arithmetic mean of nine breakdown voltage values.

  

Table 2.2: Experimental Breakdown Voltages for different Insulating samples under AC 

test conditions 

SL No. Material 
Used

Thickness of 
the material 

(mm)

Void Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown 

Voltage 
(Experimental)

(kV)
1. White 

Minilex
0.125 0.025 1.5 2.24

2. 0.125 0.025 2.0 2.25
3. 0.125 0.025 3.0 2.21
4. 0.125 0.025 4.0 2.27
5. 0.125 0.025 5.0 2.23
6. 0.18 0.025 1.5 2.23
7. 0.18 0.025 2.0 2.25
8. 0.18 0.025 3.0 2.21
9. 0.18 0.025 4.0 2.27

10. 0.18 0.025 5.0 2.25
11. 0.26 0.025 1.5 2.21
12. 0.26 0.025 2.0 2.27
13. 0.26 0.025 3.0 2.21
14. 0.26 0.025 4.0 2.24
15. 0.26 0.025 5.0 2.27
16. 0.125 0.125 1.5 2.24
17. 0.125 0.125 2.0 2.23
18. 0.125 0.125 3.0 2.23
19. 0.125 0.125 4.0 2.25
20. 0.125 0.125 5.0 2.27
21. 0.18 0.125 1.5 2.21
22. 0.18 0.125 2.0 2.23
23. 0.18 0.125 3.0 2.24
24. 0.18 0.125 4.0 2.25
25. 0.18 0.125 5.0 2.23
26. 0.26 0.125 1.5 2.24
27. 0.26 0.125 2.0 2.23
28. 0.26 0.125 3.0 2.24
29. 0.26 0.125 4.0 2.25
30. 0.26 0.125 5.0 2.25

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown Voltage

 (Experimental)
(kV)

31. Leatherite 
Paper

0.13 0.025 1.5 1.31
32. 0.13 0.025 2.0 1.28
33. 0.13 0.025 3.0 1.25
34. 0.13 0.025 4.0 1.27
35. 0.13 0.025 5.0 1.31
36. 0.175 0.025 1.5 1.81
37. 0.175 0.025 2.0 1.78
38. 0.175 0.025 3.0 1.75
39. 0.175 0.025 4.0 1.77
40. 0.175 0.025 5.0 1.81
41. 0.235 0.025 1.5 2.24
42. 0.235 0.025 2.0 2.23
43. 0.235 0.025 3.0 2.27
44. 0.235 0.025 4.0 2.25
45. 0.235 0.025 5.0 2.27
46. 0.13 0.125 1.5 1.28
47. 0.13 0.125 2.0 1.31
48. 0.13 0.125 3.0 1.27
49. 0.13 0.125 4.0 1.33
50. 0.13 0.125 5.0 1.25
51. 0.175 0.125 1.5 1.78
52. 0.175 0.125 2.0 1.83
53. 0.175 0.125 3.0 1.75
54. 0.175 0.125 4.0 1.81
55. 0.175 0.125 5.0 1.75
56. 0.235 0.125 1.5 2.21
57. 0.235 0.125 2.0 2.27
58. 0.235 0.125 3.0 2.24
59. 0.235 0.125 4.0 2.27
60. 0.235 0.125 5.0 2.23

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of Breakdown 
Voltage

 (Experimental)
(kV)

61. Glass
Cloth

0.155 0.025 1.5 2.21
62. 0.155 0.025 2.0 2.21
63. 0.155 0.025 3.0 2.27
64. 0.155 0.025 4.0 2.23
65. 0.155 0.025 5.0 2.27
66. 0.195 0.025 1.5 2.24
67. 0.195 0.025 2.0 2.21
68. 0.195 0.025 3.0 2.25
69. 0.195 0.025 4.0 2.21
70. 0.195 0.025 5.0 2.27
71. 0.155 0.125 1.5 2.21
72. 0.155 0.125 2.0 2.27
73. 0.155 0.125 3.0 2.24
74. 0.155 0.125 4.0 2.21
75. 0.155 0.125 5.0 2.23
76. 0.195 0.125 1.5 2.24
77. 0.195 0.125 2.0 2.27
78. 0.195 0.125 3.0 2.24
79. 0.195 0.125 4.0 2.21
80. 0.195 0.125 5.0 2.25

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown Voltage 

(Experimental)
(kV)

81. Manila
Paper

0.035 0.025 1.5 0.83
82. 0.035 0.025 2.0 0.80
83. 0.035 0.025 3.0 0.76
84. 0.035 0.025 4.0 0.86
85. 0.035 0.025 5.0 0.82
86. 0.06 0.025 1.5 0.80
87. 0.06 0.025 2.0 0.76
88. 0.06 0.025 3.0 0.83
89. 0.06 0.025 4.0 0.86
90. 0.06 0.025 5.0 0.78
91. 0.035 0.125 1.5 0.76
92. 0.035 0.125 2.0 0.83
93. 0.035 0.125 3.0 0.78
94. 0.035 0.125 4.0 0.80
95. 0.035 0.125 5.0 0.86
96. 0.06 0.125 1.5 0.83
97. 0.06 0.125 2.0 0.78
98. 0.06 0.125 3.0 0.76
99. 0.06 0.125 4.0 0.80

100. 0.06 0.125 5.0 0.78

Continued
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SL No. Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Mean value of 
Breakdown Voltage 

(Experimental)
(kV)

101. Lather 
Minilex

0.12 0.025 1.5 2.21
102. 0.12 0.025 2.0 2.25
103. 0.12 0.025 3.0 2.24
104. 0.12 0.025 4.0 2.23
105. 0.12 0.025 5.0 2.23
106. 0.185 0.025 1.5 2.24
107. 0.185 0.025 2.0 2.23
108. 0.185 0.025 3.0 2.25
109. 0.185 0.025 4.0 2.24
110. 0.185 0.025 5.0 2.25
111. 0.245 0.025 1.5 2.24
112. 0.245 0.025 2.0 2.23
113. 0.245 0.025 3.0 2.24
114. 0.245 0.025 4.0 2.23
115. 0.245 0.025 5.0 2.23
116. 0.12 0.125 1.5 2.23
117. 0.12 0.125 2.0 2.27
118. 0.12 0.125 3.0 2.24
119. 0.12 0.125 4.0 2.27
120. 0.12 0.125 5.0 2.25
121. 0.185 0.125 1.5 2.21
122. 0.185 0.125 2.0 2.27
123. 0.185 0.125 3.0 2.24
124. 0.185 0.125 4.0 2.23
125. 0.185 0.125 5.0 2.27
126. 0.245 0.125 1.5 2.24
127. 0.245 0.125 2.0 2.27
128. 0.245 0.125 3.0 2.23
129. 0.245 0.125 4.0 2.23
130. 0.245 0.125 5.0 2.27
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2.2.6 Measurement of relative permittivity of solid insulating materials 

              In order to measure the relative permittivity, insulating samples are silver coated with 

12mm in diameter at the identical zone, on both the sides. The silver-coated samples were then 

pressed  between  the  two  brass  sample  holder  electrodes  of  an  Impedance  Gain  /  Phase 

Analyzer  (Model  No:  1260,  Accuracy  =  0.1%,  Frequency  Resolution  =  1  in  65  million) 

manufactured by Solartron,  U.K.  An AC voltage of  0.1 V (rms) at 50 Hz was applied to the 

samples from the Impedance Gain / Phase Analyzer and relative permittivity values of  the 

insulating materials are recorded. Figure 2.4 shows the experimental set up for recording the 

relative permittivity values. Table 2.3 shows the measured values of the relative permittivity of 

materials at 50 Hz frequency.

Figure 2.4 Experimental set up used for recording relative permittivity values 
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  Table 2.3: Relative Permittivity of the Insulating Materials used

Materials Єr

White Minilex 4.40

Leatherite Paper 4.21

Glass Cloth 4.97

Manila Paper 4.68

Lather Minilex 5.74

2.3 Statistical Analysis of the experimental data

             The breakdown voltage of any solid insulating material for any particular thickness and 

void condition is a random process, implying that this voltage might be widely scattered for 

certain  combinations  of  thickness  and  void  condition.  Hence,  it  is  necessary  to  evolve  a 

mechanism  for  quantifying  the  degree  of  scattering.  Moreover,  from  the  point  of  view  of 

prediction using soft computing techniques, we need a single effective value. Both of the above-

mentioned objectives are appropriately taken care of by carrying out the statistical analysis of 

the experimental values of the breakdown voltage.  

             The statistical analysis has been carried out on all the 130 sets of breakdown voltage  

data presented in the last column of Tables 2.1 and 2.2. For each set, the 9 voltage values were 

assumed to  be  a  part  of  the  random  process  obeying  Weibull  [105-107]  Distribution.  The 

probability density function of this distribution is given by 

f( V) =    (β/ α β) * V β-1* exp (– (V/α)β)                                                                       (2.1)

Where β = Shape Factor of the Weibull Distribution which gives a measure of the dispersion of 

the data. The less the value of β, the more is the scattering of the data.

          α = Scale Factor of the Weibull Distribution or 63.2% probability of breakdown 

          V = Breakdown Voltage
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The maximum Likelihood estimates (MLE) of  α  and β are  denoted by  ά and ß.  These are 

obtained by finding the partial derivatives of Logarithm of Likelihood function with respect to 

α and β and equating the partial derivatives to zero. As a result of this exercise, we arrive at 

two equations as follows:

∑
=

N

i 1

ln(Vi)  =  (N*ln(ά)) +( ∑
=

N

i 1

(Vi/ ά) ß*ln (Vi/ ά)) -( N/  ß)                             (2.2)

ά ß = (1/N)* ∑
=

N

i 1

Vi ß                                                                                                        (2.3)

 Here, N = 9.

The 90% confidence limits for ά are denoted by άl and άu   and are defined as

άl = ά* exp(-0.76/ ß)                                                                                                        (2.4)

άu = ά* exp(0.76/ ß)                                                                                                         (2.5)

Figure 2.5 shows the flow chart for calculating maximum likelihood estimates ά and ß. 

Initialize β and number of samples as 9

Substitute the value of α in 
equation (2.3) in equation 

(2.2)

Alter the value of β on a trial 
and error basis in equation 

(2.2)

Y

LHS=RHS in equation (2.2)
N

Maximum Likelihood 
Estimate ά and ß 

Figure 2.5 : Flow Chart for obtaining the 
Maximum Likelihood Estimate of α and β
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2.3.1 Sample Calculation under DC test condition

            The calculation details are given for Serial No. 61 in Table 2.1, which corresponds, to 

Glass Cloth having thickness of 0.155 mm. The nine values of the breakdown voltage are 12, 12, 

12,  12,  13,  13,  14,  14  and  15  kV  respectively  and  their  arithmetic  mean  is  13  kV.  Since 

equations (2.2) and (2.3) are transcendental in nature, trial and error approach is adopted to 

calculate the MLE for these nine values. They are estimated as ά = 13.5088 and ß = 12.5. The 

lower value άl and the upper value άu of the 90% confidence limits of ά  are calculated using 

equations  (2.4)  and  (2.5)  as  12.7091  and  14.3524.  The  same  procedure  is  adopted  in 

calculating ά, ß, άl and άu for the rest 129 sets, with each set consisting of nine breakdown 

voltage values. Table 2.4 shows the values of ά, ß, άl and  άu corresponding to all the 130 sets.
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  Table 2.4: Statistical analysis of the DC breakdown voltage

SL No. Materials 
Used

ά ß άl άu

1. White 
Minilex

24.7700 8.91 22.75 26.98
2. 24.0900 9.71 22.28 26.05
3. 24.5602 8.51 22.46 26.86
4. 25.4903 12.27 23.96 27.12
5. 23.8500 8.13 21.72 26.19
6. 24.7000 11.20 23.08 26.43
7. 24.5602 8.51 22.46 26.86
8. 25.4903 12.27 23.96 27.12
9. 24.9200 11.10 23.27 26.69

10. 24.0900 9.71 22.28 26.05
11. 24.7000 8.53 22.60 27.00
12. 24.3201 8.34 22.21 26.64
13. 25.4903 12.27 23.96 27.12
14. 24.9200 11.10 23.27 26.69
15. 24.5602 8.51 22.46 26.86
16. 25.4903 12.27 23.96 27.12
17. 24.7000 11.20 23.08 26.43
18. 23.8500 8.13 21.72 26.19
19. 24.5602 8.51 22.46 26.86
20. 24.9200 11.10 23.27 26.69
21. 24.3201 8.34 22.21 26.64
22. 25.6608 9.75 23.74 27.74
23. 24.9200 11.10 23.27 26.69
24. 24.0900 9.71 22.28 26.05
25. 25.6608 9.75 23.74 27.74
26. 24.5602 8.51 22.46 26.86
27. 24.7000 11.20 23.08 26.43
28. 24.7700 8.91 22.75 26.98
29. 24.9200 11.10 23.27 26.69
30. 24.0900 9.71 22.28 26.05

Continued
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SL No. Materials 
Used

ά ß άl άu

31. Leatherite 

Paper

2.0361 10.47 1.89 2.18
32. 2.0575 11.65 1.93 2.20
33. 2.0127 9.56 1.85 2.18
34. 2.1127 12.93 1.99 2.24
35. 1.9713 10.66 1.83 2.11
36. 2.5382 13.10 2.39 2.68
37. 2.5591 14.53 2.43 2.70
38. 2.5152 11.97 2.36 2.68
39. 2.6125 16.10 2.49 2.74
40. 2.4731 13.30 2.33 2.62
41. 3.2899 17.00 3.14 3.44
42. 3.3105 18.83 3.18 3.45
43. 3.2673 15.56 3.11 3.43
44. 3.3637 20.84 3.24 3.48
45. 3.2248 17.34 3.09 3.36
46. 2.0500 9.14 1.88 2.22
47. 1.9449 9.95 1.80 2.10
48. 1.9957 11.62 1.87 2.13
49. 2.0575 11.65 1.93 2.20
50. 2.0127 9.56 1.85 2.18
51. 2.5527 11.44 2.39 2.73
52. 2.4470 12.45 2.30 2.60
53. 2.4972 14.52 2.37 2.63
54. 2.5152 11.97 2.36 2.68
55. 2.6125 16.10 2.49 2.74
56. 3.3051 14.88 3.14 3.48
57. 3.1989 16.20 3.05 3.35
58. 3.2487 18.86 3.12 3.38
59. 3.2673 15.56 3.11 3.43
60. 3.3637 20.84 3.24 3.48
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SL No. Materials 
Used

ά ß άl άu

61. Glass Cloth 13.5058 12.50 12.71 14.35
62. 13.8725 12.72 13.06 14.73
63. 13.9502 11.21 13.03 14.93
64. 13.8818 16.30 13.25 14.54
65. 13.7763 15.33 13.11 14.48
66. 17.8760 55.71 17.64 18.12
67. 17.5761 37.05 17.22 17.94
68. 17.2933 40.00 16.97 17.62
69. 17.6896 39.70 17.35 18.03
70. 17.9443 80.20 17.78 18.12
71. 13.8725 12.72 13.06 14.73
72. 14.0961 13.21 13.31 14.93
73. 14.0100 15.19 13.33 14.73
74. 13.5873 13.47 12.76 14.29
75. 13.9502 11.21 13.03 14.93
76. 17.5761 37.05 17.22 17.94
77. 17.4463 36.70 17.09 17.81
78. 17.9865 57.00 17.75 18.23
79. 17.8760 55.71 17.63 18.12
80. 17.2933 40.00 16.97 17.63
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SL No. Materials 
Used

ά ß άl άu

81. Manila 

Paper

1.5328 7.85 1.39 1.69
82. 1.5548 8.76 1.43 1.70
83. 1.5088 7.16 1.35 1.68
84. 1.6090 9.76 1.48 1.74
85. 1.4682 7.97 1.33 1.61
86. 1.5456 6.84 1.38 1.72
87. 1.4413 7.43 1.30 1.60
88. 1.4913 8.71 1.37 1.63
89. 1.6090 9.76 1.48 1.74
90. 1.4682 7.97 1.33 1.61
91. 1.5548 8.76 1.43 1.70
92. 1.5088 7.16 1.35 1.68
93. 1.5456 6.84 1.38 1.72
94. 1.6090 9.76 1.48 1.74
95. 1.4413 7.43 1.30 1.60
96. 1.4913 8.71 1.37 1.63
97. 1.4682 7.97 1.33 1.61
98. 1.5548 8.76 1.43 1.70
99. 1.5088 7.16 1.35 1.68

100. 1.5456 6.84 1.38 1.72
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SL No. Materials 
Used

ά ß άl άu

101. Lather 

Minilex

10.4930 9.72 9.71 11.35
102. 10.5760 10.48 9.84 11.37
103. 10.7673 11.95 10.10 11.47
104. 11.0973 12.86 10.05 11.72
105. 10.8598 9.91 9.84 11.37
106. 16.3897 13.16 15.47 17.37
107. 16.8256 14.30 15.96 17.75
108. 16.7663 13.20 15.82 17.76
109. 16.6824 12.34 15.68 17.74
110. 16.5625 12.02 15.54 17.64
111. 16.4542 14.17 15.60 17.36
112. 16.5388 15.18 15.73 17.38
113. 16.3228 13.99 15.46 17.23
114. 17.0022 16.21 16.23 17.80
115. 16.6824 12.34 15.69 17.74
116. 10.8742 12.72 10.24 11.54
117. 10.9330 8.71 10.01 11.93
118. 11.0012 11.90 10.32 11.72
119. 11.0839 10.31 10.32 11.72
120. 11.0973 12.86 10.30 11.93
121. 16.5625 12.02 15.55 17.65
122. 16.5388 15.18 15.74 17.39
123. 16.3228 13.99 15.46 17.24
124. 17.0022 16.21 16.23 17.80
125. 16.4542 14.17 15.60 17.36
126. 16.5388 15.18 15.74 17.39
127. 16.5625 12.02 15.55 17.65
128. 16.3228 13.99 15.46 17.23
129. 16.7663 13.20 15.82 17.76
130. 16.3897 13.16 15.47 17.37

2.3.2 Sample Calculation under AC test condition

            The calculation details are given for Serial No. 35 in Table 2.2 which corresponds to 

Leatherite Paper having thickness of 0.13 mm. The nine values of the breakdown voltages are 
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1.2, 1.2, 1.2, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4 kV respectively and their arithmetic mean is 1.31 kV. On 

using equations (2.2) and (2.3), the value of ά = 1.3513 and ß = 18.45 for these nine values. ά l 

and άu, the 90% confidence limits of ά,  are calculated from equation (2.4) and (2.5) as 1.2968 

and 1.4081 respectively. Similar procedure has been adopted in calculating ά, ß, άl and άu for 

the rest 129 sets with each set consisting of nine breakdown voltage values.  Table 2.5 shows 

the values of ά, ß, άl and  άu corresponding to all the 130 sets. 

  Table 2.5: Statistical analysis of the AC breakdown voltage

SL No. Materials 
Used

ά ß άl άu

1. White 
Minilex

2.2807 28.70 2.22 2.34
2. 2.2909 30.70 2.23 2.35
3. 2.2294 51.30 2.20 2.26
4. 2.3170 30.00 2.26 2.38
5. 2.2447 47.10 2.21 2.28
6. 2.2697 27.30 2.21 2.34
7. 2.2909 30.70 2.23 2.35
8. 2.2294 51.30 2.20 2.26
9. 2.3170 30.00 2.26 2.38

10. 2.2909 30.70 2.23 2.35
11. 2.2294 51.30 2.20 2.26
12. 2.3088 36.80 2.26 2.36
13. 2.2294 51.30 2.20 2.26
14. 2.2885 24.10 2.22 2.36
15. 2.3170 30.00 2.26 2.38
16. 2.2885 24.10 2.22 2.36
17. 2.2447 47.10 2.21 2.28
18. 2.2697 27.30 2.21 2.34
19. 2.2909 30.70 2.23 2.35
20. 2.3088 36.80 2.26 2.36
21. 2.2294 51.30 2.20 2.26
22. 2.2697 27.30 2.21 2.34
23. 2.2885 24.10 2.22 2.36
24. 2.2909 30.70 2.23 2.35
25. 2.2697 27.30 2.21 2.34
26. 2.2885 24.10 2.22 2.36
27. 2.2697 27.30 2.21 2.34
28. 2.2885 24.10 2.22 2.36
29. 2.2909 30.70 2.23 2.35
30. 2.2909 30.70 2.23 2.35
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SL No. Materials 
Used

ά ß άl άu

31. Leatherite 
Paper

1.3452 20.65 1.30 1.40
32. 1.3306 16.36 1.27 1.39
33. 1.2972 14.46 1.23 1.37
34. 1.3221 14.90 1.26 1.39
35. 1.3513 18.45 1.30 1.41
36. 1.8459 28.70 1.80 1.90
37. 1.8313 22.65 1.77 1.90
38. 1.7981 20.60 1.76 1.89
39. 1.8229 22.65 1.77 1.90
40. 1.8520 25.57 1.80 1.91
41. 2.2885 24.10 2.22 2.36
42. 2.2697 27.30 2.21 2.34
43. 2.2885 24.10 2.22 2.36
44. 2.2909 30.70 2.23 2.35
45. 2.3088 36.80 2.26 2.36
46. 1.3306 16.36 1.27 1.40
47. 1.3452 20.65 1.30 1.40
48. 1.3221 14.90 1.26 1.39
49. 1.3637 25.30 1.32 1.40
50. 1.2972 14.47 1.23 1.37
51. 1.8313 22.65 1.77 1.90
52. 1.8640 34.75 1.82 1.90
53. 1.7981 20.00 1.73 1.86
54. 1.8520 25.57 1.80 1.90
55. 1.7981 20.00 1.73 1.87
56. 2.2294 51.30 2.20 2.26
57. 2.3170 30.00 2.26 2.38
58. 2.2885 24.10 2.22 2.36
59. 2.3088 36.80 2.26 2.36
60. 2.2697 27.30 2.21 2.34
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SL No. Materials 
Used

ά ß άl άu

61. Glass Cloth 2.2294 51.30 2.20 2.26
62. 2.2294 51.30 2.20 2.26
63. 2.3088 36.80 2.26 2.36
64. 2.2697 27.30 2.21 2.34
65. 2.3170 30.00 2.26 2.38
66. 2.2885 24.10 2.22 2.36
67. 2.2294 51.30 2.20 2.26
68. 2.2909 30.70 2.23 2.35
69. 2.2294 51.30 2.20 2.26
70. 2.3088 36.80 2.26 2.36
71. 2.2294 51.30 2.20 2.26
72. 2.3170 30.00 2.26 2.38
73. 2.2885 24.10 2.22 2.36
74. 2.2294 51.30 2.20 2.26
75. 2.2697 27.30 2.21 2.34
76. 2.2885 24.10 2.22 2.36
77. 2.3170 30.00 2.26 2.38
78. 2.2885 24.10 2.22 2.36
79. 2.2294 51.30 2.20 2.26
80. 2.2909 30.70 2.23 2.35
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SL No. Materials 
Used

ά ß άl άu

81. Manila 
Paper

0.8758 9.70 0.81 0.95
82. 0.8479 7.85 0.77 0.93
83. 0.8154 6.85 0.73 0.91
84. 0.9089 10.48 0.85 0.98
85. 0.8683 8.80 0.80 0.95
86. 0.8479 7.85 0.77 0.93
87. 0.8154 6.85 0.73 0.91
88. 0.8758 9.70 0.81 0.95
89. 0.9089 10.48 0.85 0.98
90. 0.8388 7.31 0.76 0.93
91. 0.8154 6.85 0.73 0.91
92. 0.8758 9.70 0.81 0.95
93. 0.8388 7.31 0.76 0.93
94. 0.8479 7.85 0.77 0.93
95. 0.9089 10.48 0.85 0.98
96. 0.8758 9.70 0.81 0.95
97. 0.8388 7.31 0.76 0.93
98. 0.8154 6.85 0.73 0.91
99. 0.8479 7.85 0.77 0.93

100. 0.8388 7.31 0.76 0.93
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SL No. Materials 
Used

ά ß άl άu

101. Lather 
Minilex

2.2294 51.30 2.20 2.26
102. 2.2909 30.70 2.23 2.35
103. 2.2807 28.70 2.22 2.34
104. 2.2447 47.10 2.21 2.28
105. 2.2697 27.30 2.21 2.34
106. 2.2885 24.10 2.22 2.36
107. 2.2697 27.30 2.21 2.34
108. 2.2909 30.70 2.23 2.35
109. 2.2807 28.70 2.22 2.34
110. 2.2909 30.70 2.23 2.35
111. 2.2807 28.70 2.22 2.34
112. 2.2697 27.30 2.21 2.34
113. 2.2885 24.10 2.22 2.36
114. 2.2697 27.30 2.21 2.34
115. 2.2447 47.10 2.21 2.28
116. 2.2697 27.30 2.21 2.34
117. 2.3170 30.00 2.26 2.38
118. 2.2885 24.10 2.22 2.36
119. 2.3088 36.80 2.26 2.36
120. 2.2909 30.70 2.23 2.35
121. 2.2294 51.30 2.20 2.26
122. 2.3170 30.00 2.26 2.38
123. 2.2885 24.10 2.22 2.36
124. 2.2447 47.10 2.21 2.28
125. 2.3170 30.00 2.26 2.38
126. 2.2885 24.10 2.22 2.36
127. 2.3170 30.00 2.26 2.38
128. 2.2447 47.10 2.21 2.28
129. 2.2697 27.30 2.21 2.34
130. 2.3088 36.80 2.26 2.36

             The Table 2.6 shows the input and the output parameters for all the five insulating 

materials  under  DC  conditions.  The  thickness  of  the  material,  void  depth,  void  diameter 

constitute of  the input parameters and these have been taken directly from Table 2.1.  The 

breakdown voltage is the output parameter and these values are obtained from the values of  ά 

in Table 2.4. Similarly , under AC conditions the input and the output parameters have been 

taken from Table 2.2 and from the values of  ά in Table 2.5 respectively to form Table 2.7.
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Table 2.6:  Input and the Output parameters under DC test conditions 

SL No. Material 

Used

Thickness of 

the material 

(mm)

Void Depth 

(mm)

Void Diameter 

(mm)

Breakdown 

Voltage 

(kV)
1. White 

Minilex

0.125 0.025 1.5 24.7700
2. 0.125 0.025 2.0 24.0900
3. 0.125 0.025 3.0 24.5602
4. 0.125 0.025 4.0 25.4903
5. 0.125 0.025 5.0 23.8500
6. 0.18 0.025 1.5 24.7000
7. 0.18 0.025 2.0 24.5602
8. 0.18 0.025 3.0 25.4903
9. 0.18 0.025 4.0 24.9200

10. 0.18 0.025 5.0 24.0900
11. 0.26 0.025 1.5 24.7000
12. 0.26 0.025 2.0 24.3201
13. 0.26 0.025 3.0 25.4903
14. 0.26 0.025 4.0 24.9200
15. 0.26 0.025 5.0 24.5602
16. 0.125 0.125 1.5 25.4903
17. 0.125 0.125 2.0 24.7000
18. 0.125 0.125 3.0 23.8500
19. 0.125 0.125 4.0 24.5602
20. 0.125 0.125 5.0 24.9200
21. 0.18 0.125 1.5 24.3201
22. 0.18 0.125 2.0 25.6608
23. 0.18 0.125 3.0 24.9200
24. 0.18 0.125 4.0 24.0900
25. 0.18 0.125 5.0 25.6608
26. 0.26 0.125 1.5 24.5602
27. 0.26 0.125 2.0 24.7000
28. 0.26 0.125 3.0 24.7700
29. 0.26 0.125 4.0 24.9200
30. 0.26 0.125 5.0 24.0900
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SL 

No.

Material 

Used

Thickness 

of the 

material 

(mm)

Void 

Depth 

(mm)

Void 

Diameter 

(mm)

Breakdown Voltage 

(kV)

31. Leatherite 

Paper

0.13 0.025 1.5 2.0361
32. 0.13 0.025 2.0 2.0575
33. 0.13 0.025 3.0 2.0127
34. 0.13 0.025 4.0 2.1127
35. 0.13 0.025 5.0 1.9713
36. 0.175 0.025 1.5 2.5382
37. 0.175 0.025 2.0 2.5591
38. 0.175 0.025 3.0 2.5152
39. 0.175 0.025 4.0 2.6125
40. 0.175 0.025 5.0 2.4731
41. 0.235 0.025 1.5 3.2899
42. 0.235 0.025 2.0 3.3105
43. 0.235 0.025 3.0 3.2673
44. 0.235 0.025 4.0 3.3637
45. 0.235 0.025 5.0 3.2248
46. 0.13 0.125 1.5 2.0500
47. 0.13 0.125 2.0 1.9449
48. 0.13 0.125 3.0 1.9957
49. 0.13 0.125 4.0 2.0575
50. 0.13 0.125 5.0 2.0127
51. 0.175 0.125 1.5 2.5527
52. 0.175 0.125 2.0 2.4470
53. 0.175 0.125 3.0 2.4972
54. 0.175 0.125 4.0 2.5152
55. 0.175 0.125 5.0 2.6125
56. 0.235 0.125 1.5 3.3051
57. 0.235 0.125 2.0 3.1989
58. 0.235 0.125 3.0 3.2487
59. 0.235 0.125 4.0 3.2673
60. 0.235 0.125 5.0 3.3637
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Breakdown 
Voltage 

(kV)

61. Glass
Cloth

0.155 0.025 1.5 13.5058
62. 0.155 0.025 2.0 13.8725
63. 0.155 0.025 3.0 13.9502
64. 0.155 0.025 4.0 13.8818
65. 0.155 0.025 5.0 13.7763
66. 0.195 0.025 1.5 17.8760
67. 0.195 0.025 2.0 17.5761
68. 0.195 0.025 3.0 17.2933
69. 0.195 0.025 4.0 17.6896
70. 0.195 0.025 5.0 17.9443
71. 0.155 0.125 1.5 13.8725
72. 0.155 0.125 2.0 14.0961
73. 0.155 0.125 3.0 14.0100
74. 0.155 0.125 4.0 13.5873
75. 0.155 0.125 5.0 13.9502
76. 0.195 0.125 1.5 17.5761
77. 0.195 0.125 2.0 17.4463
78. 0.195 0.125 3.0 17.9865
79. 0.195 0.125 4.0 17.8760
80. 0.195 0.125 5.0 17.2933
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Breakdown 
Voltage 

(kV)

81. Manila
Paper

0.035 0.025 1.5 1.5328
82. 0.035 0.025 2.0 1.5548
83. 0.035 0.025 3.0 1.5088
84. 0.035 0.025 4.0 1.6090
85. 0.035 0.025 5.0 1.4682
86. 0.06 0.025 1.5 1.5456
87. 0.06 0.025 2.0 1.4413
88. 0.06 0.025 3.0 1.4913
89. 0.06 0.025 4.0 1.6090
90. 0.06 0.025 5.0 1.4682
91. 0.035 0.125 1.5 1.5548
92. 0.035 0.125 2.0 1.5088
93. 0.035 0.125 3.0 1.5456
94. 0.035 0.125 4.0 1.6090
95. 0.035 0.125 5.0 1.4413
96. 0.06 0.125 1.5 1.4913
97. 0.06 0.125 2.0 1.4682
98. 0.06 0.125 3.0 1.5548
99. 0.06 0.125 4.0 1.5088

100. 0.06 0.125 5.0 1.5456
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SL No. Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Breakdown 
Voltage 

(kV)

101. Lather 
Minilex

0.12 0.025 1.5 10.4930
102. 0.12 0.025 2.0 10.5760
103. 0.12 0.025 3.0 10.7673
104. 0.12 0.025 4.0 11.0973
105. 0.12 0.025 5.0 10.8598
106. 0.185 0.025 1.5 16.3897
107. 0.185 0.025 2.0 16.8256
108. 0.185 0.025 3.0 16.7663
109. 0.185 0.025 4.0 16.6824
110. 0.185 0.025 5.0 16.5625
111. 0.245 0.025 1.5 16.4542
112. 0.245 0.025 2.0 16.5388
113. 0.245 0.025 3.0 16.3228
114. 0.245 0.025 4.0 17.0022
115. 0.245 0.025 5.0 16.6824
116. 0.12 0.125 1.5 10.8742
117. 0.12 0.125 2.0 10.9330
118. 0.12 0.125 3.0 11.0012
119. 0.12 0.125 4.0 11.0839
120. 0.12 0.125 5.0 11.0973
121. 0.185 0.125 1.5 16.5625
122. 0.185 0.125 2.0 16.5388
123. 0.185 0.125 3.0 16.3228
124. 0.185 0.125 4.0 17.0022
125. 0.185 0.125 5.0 16.4542
126. 0.245 0.125 1.5 16.5388
127. 0.245 0.125 2.0 16.5625
128. 0.245 0.125 3.0 16.3228
129. 0.245 0.125 4.0 16.7663
130. 0.245 0.125 5.0 16.3897
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Table 2.7:  Input and the Output parameters under AC test conditions 

SL No. Material 

Used

Thickness of 

the material 

(mm)

Void Depth 

(mm)

Void Diameter 

(mm)

Breakdown 

Voltage 

(kV)
1. White 

Minilex

0.125 0.025 1.5 2.2807
2. 0.125 0.025 2.0 2.2909
3. 0.125 0.025 3.0 2.2294
4. 0.125 0.025 4.0 2.3170
5. 0.125 0.025 5.0 2.2447
6. 0.18 0.025 1.5 2.2697
7. 0.18 0.025 2.0 2.2909
8. 0.18 0.025 3.0 2.2294
9. 0.18 0.025 4.0 2.3170

10. 0.18 0.025 5.0 2.2909
11. 0.26 0.025 1.5 2.2294
12. 0.26 0.025 2.0 2.3088
13. 0.26 0.025 3.0 2.2294
14. 0.26 0.025 4.0 2.2885
15. 0.26 0.025 5.0 2.3170
16. 0.125 0.125 1.5 2.2885
17. 0.125 0.125 2.0 2.2447
18. 0.125 0.125 3.0 2.2697
19. 0.125 0.125 4.0 2.2909
20. 0.125 0.125 5.0 2.3088
21. 0.18 0.125 1.5 2.2294
22. 0.18 0.125 2.0 2.2697
23. 0.18 0.125 3.0 2.2885
24. 0.18 0.125 4.0 2.2909
25. 0.18 0.125 5.0 2.2697
26. 0.26 0.125 1.5 2.2885
27. 0.26 0.125 2.0 2.2697
28. 0.26 0.125 3.0 2.2885
29. 0.26 0.125 4.0 2.2909
30. 0.26 0.125 5.0 2.2909
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SL 

No.

Material 

Used

Thickness 

of the 

material 

(mm)

Void 

Depth 

(mm)

Void 

Diameter 

(mm)

Breakdown Voltage 

(kV)

31. Leatherite 

Paper

0.13 0.025 1.5 1.3452
32. 0.13 0.025 2.0 1.3306
33. 0.13 0.025 3.0 1.2972
34. 0.13 0.025 4.0 1.3221
35. 0.13 0.025 5.0 1.3513
36. 0.175 0.025 1.5 1.8459
37. 0.175 0.025 2.0 1.8313
38. 0.175 0.025 3.0 1.7981
39. 0.175 0.025 4.0 1.8229
40. 0.175 0.025 5.0 1.8520
41. 0.235 0.025 1.5 2.2885
42. 0.235 0.025 2.0 2.2697
43. 0.235 0.025 3.0 2.2885
44. 0.235 0.025 4.0 2.2909
45. 0.235 0.025 5.0 2.3088
46. 0.13 0.125 1.5 1.3306
47. 0.13 0.125 2.0 1.3452
48. 0.13 0.125 3.0 1.3221
49. 0.13 0.125 4.0 1.3637
50. 0.13 0.125 5.0 1.2972
51. 0.175 0.125 1.5 1.8313
52. 0.175 0.125 2.0 1.8640
53. 0.175 0.125 3.0 1.7981
54. 0.175 0.125 4.0 1.8520
55. 0.175 0.125 5.0 1.7981
56. 0.235 0.125 1.5 2.2294
57. 0.235 0.125 2.0 2.3170
58. 0.235 0.125 3.0 2.2885
59. 0.235 0.125 4.0 2.3088
60. 0.235 0.125 5.0 2.2697

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Breakdown 
Voltage 

(kV)

61. Glass
Cloth

0.155 0.025 1.5 2.2294
62. 0.155 0.025 2.0 2.2294
63. 0.155 0.025 3.0 2.3088
64. 0.155 0.025 4.0 2.2697
65. 0.155 0.025 5.0 2.3170
66. 0.195 0.025 1.5 2.2885
67. 0.195 0.025 2.0 2.2294
68. 0.195 0.025 3.0 2.2909
69. 0.195 0.025 4.0 2.2294
70. 0.195 0.025 5.0 2.3088
71. 0.155 0.125 1.5 2.2294
72. 0.155 0.125 2.0 2.3170
73. 0.155 0.125 3.0 2.2885
74. 0.155 0.125 4.0 2.2294
75. 0.155 0.125 5.0 2.2697
76. 0.195 0.125 1.5 2.2885
77. 0.195 0.125 2.0 2.3170
78. 0.195 0.125 3.0 2.2885
79. 0.195 0.125 4.0 2.2294
80. 0.195 0.125 5.0 2.2909

Continued
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SL 
No.

Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Breakdown 
Voltage 

(kV)

81. Manila
Paper

0.035 0.025 1.5 0.8758
82. 0.035 0.025 2.0 0.8479
83. 0.035 0.025 3.0 0.8154
84. 0.035 0.025 4.0 0.9089
85. 0.035 0.025 5.0 0.8683
86. 0.06 0.025 1.5 0.8479
87. 0.06 0.025 2.0 0.8154
88. 0.06 0.025 3.0 0.8758
89. 0.06 0.025 4.0 0.9089
90. 0.06 0.025 5.0 0.8388
91. 0.035 0.125 1.5 0.8154
92. 0.035 0.125 2.0 0.8758
93. 0.035 0.125 3.0 0.8388
94. 0.035 0.125 4.0 0.8479
95. 0.035 0.125 5.0 0.9089
96. 0.06 0.125 1.5 0.8758
97. 0.06 0.125 2.0 0.8388
98. 0.06 0.125 3.0 0.8154
99. 0.06 0.125 4.0 0.8479

100. 0.06 0.125 5.0 0.8388

Continued
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SL No. Material 
Used

Thickness 
of the 

material 
(mm)

Void 
Depth 
(mm)

Void 
Diameter 

(mm)

Breakdown 
Voltage 

(kV)

101. Lather 
Minilex

0.12 0.025 1.5 2.2294
102. 0.12 0.025 2.0 2.2909
103. 0.12 0.025 3.0 2.2807
104. 0.12 0.025 4.0 2.2447
105. 0.12 0.025 5.0 2.2697
106. 0.185 0.025 1.5 2.2885
107. 0.185 0.025 2.0 2.2697
108. 0.185 0.025 3.0 2.2909
109. 0.185 0.025 4.0 2.2807
110. 0.185 0.025 5.0 2.2909
111. 0.245 0.025 1.5 2.2807
112. 0.245 0.025 2.0 2.2697
113. 0.245 0.025 3.0 2.2885
114. 0.245 0.025 4.0 2.2697
115. 0.245 0.025 5.0 2.2447
116. 0.12 0.125 1.5 2.2697
117. 0.12 0.125 2.0 2.3170
118. 0.12 0.125 3.0 2.2885
119. 0.12 0.125 4.0 2.3088
120. 0.12 0.125 5.0 2.2909
121. 0.185 0.125 1.5 2.2294
122. 0.185 0.125 2.0 2.3170
123. 0.185 0.125 3.0 2.2885
124. 0.185 0.125 4.0 2.2447
125. 0.185 0.125 5.0 2.3170
126. 0.245 0.125 1.5 2.2885
127. 0.245 0.125 2.0 2.3170
128. 0.245 0.125 3.0 2.2447
129. 0.245 0.125 4.0 2.2697
130. 0.245 0.125 5.0 2.3088

             For the purpose of prediction by soft computing techniques, 130 values of the input and 

the output parameters each from Tables 2.6 and Table 2.7, under DC and AC test conditions are 

used separately for the proposed models, presented in the subsequent Chapters.

             It  has been already mentioned after equation (2.1) that ß give a measure of  the 

dispersion of the breakdown voltage data. The more the value of ß, the less is the dispersion of 

the  data.  Hence,  by  merely  examining  the  values  of  ß  obtained  in  Table  2.4  and  2.5,  the 

insulating materials fall under three main categories. 
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A) The degree of dispersion is greater in DC than AC, i.e., ßDC < ßAC

B) The degree of dispersion is nearly the same for both DC and AC, i.e., ßDC ≈ ßAC

C) The degree of dispersion is less in DC than AC, i.e., ßDC > ßAC

          Table 2.8 summarizes the range of ß under DC and AC for all materials with all thickness.

  Table 2.8: Summary of the range of ß under DC and AC for all materials

SL No. Insulating 
Materials

Category ßDC ßAC

1. White Minilex of 
all thickness

A 8.51 - 12.27 24.10 - 51.30

2. Glass Cloth 
(thickness 0.155 

mm)

A 11.21 - 16.42 24.10 to 51.30

3. Lather Minilex 
of all thickness

A 8.71 - 16.71 24.10 - 51.30

4. Leatherite 
Paper of all 
thickness

A 9.56 – 20..85 14.90 - 51.30

5. Glass Cloth 
(thickness 0.195 

mm)

C 36.70 - 80.20 24.10 - 51.30

6. Manila Paper of 
all thickness

B 6.84 – 9.76 6.85 - 10.49

2.4 Monitoring of the state of solid insulating materials 

             Apart from the breakdown voltage prediction due to PD in cavities, the monitoring of 

the state of the insulation and it’s  interpretation is also another important and challenging 

task. In order to monitor the state of the insulation after application of various voltages, the 

samples  of  the  solid  insulating  materials  mentioned in  Section 2.2.1  were  observed under 

Scanning Electron Microscope (SEM). Figure 2.6 shows the SEM (JEOL JSM-6480LV). The SEM 

was operated in low vacuum mode in order to observe the samples, which are difficult to view 

due to excessive surface charging.
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Figure 2.6 : SEM (JEOL JSM-6480LV)
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 Interpretation of SEM images

          The SEM images for the samples of some of the solid insulating materials are discussed 

below.

• White Minilex (DC)

a)

b)

c)

d)
Figure 2.7:  SEM observations for White Minilex Paper samples; (a) Virgin, and stressed 

at (b) 14 kV, (c) 21 kV and (d) 28 kV (Breakdown)  DC Voltages (t = 0.125mm, t1 = 

0.025mm and d =2 mm ).
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             Figure 2.7 shows the SEM observations for the (a) virgin samples of White Minilex Paper 

(thickness of 0.125 mm) and the samples stressed with a voltage of (b) 14 kV, (c) 21 kV and (d) 

28 kV (DC conditions)  respectively, while the void depth was 0.025mm and void diameter was 

2 mm. The breakdown of the sample took place at a voltage level of 28 kV. The accelerated 

voltage for the SEM was kept at 10 kV and the vacuum level was 30 Pa.  The center of the 

samples in Figure (a) to (d) was magnified  400 times.  Figure (a) is clearly a very healthy 

sample as expected. In Figures (b) and (c) some spots may be seen on the surface of the sample 

with  Figure  (c)  turning  more   whitish  compared  to  (b).  Figure  (d)  clearly  indicates  the 

increased roughness of the sample with some spots and shallow cracks. The roughness of the 

sample shows the increased SE emission. 

         

              Similarly, in Figure 2.8, the SEM observations for the (a) virgin samples of White 

Minilex Paper (thickness of 0.18 mm) and the samples stressed with a voltage of (b) 1.1 kV, (c) 

1.6 kV and (d) 2.2 kV (AC conditions) respectively , while the void depth was 0.125mm and 

void diameter was 4 mm. The breakdown of the sample took place at a voltage level of 2.2 kV. 

The accelerated voltage for the SEM was kept at 15 kV and the vacuum level was 30 Pascals. In 

the virgin sample (i.e. in Figure (a)) and the sample stressed at 50 % of the breakdown voltage 

(i.e. in Figure (b)) it is noted that the samples are reasonably healthy. But Figure (b) appears to 

be more whitish compared to Figure (a) and the deterioration of the samples at 75% of the 

breakdown voltage  is quiet conspicuous with spots becoming very prominent. Figure 2.3 (d) is 

quiet similar to Figure 2.2 (d) indicating the increased roughness of the sample with spots and 

some shallow cracks on the onset of breakdown and the reason for this being the same.
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• White Minilex (AC)

a)

b)

c)

d)

Figure 2.8:   SEM observations for White Minilex Paper samples; (a) Virgin, and stressed 

at (b) 1.1 kV, (c) 1.6 kV and (d) 2.2 kV (Breakdown)  AC Voltages (t = 0.18mm, t1 = 

0.125mm and d =4 mm ).
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• Leatherite Paper (DC)

a)

b)

c)

d)
        Figure 2.9:   SEM observations for Leatherite Paper samples; (a) Virgin, and stressed 

at (b) 1.0 kV, (c) 1.5 kV and (d) 2.0 kV (Breakdown)  DC Voltages (t = 0.13mm, t1 = 

0.025mm and d =5 mm ).
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             Figure 2.9 shows the SEM observations for the (a) virgin samples of Leatherite Paper 

(thickness of 0.13 mm) and the samples stressed with a voltage of (b) 1.0 kV, (c) 1.5 kV and (d) 

2.0 kV (DC conditions)  respectively, while the void depth was 0.025mm and void diameter was 

5 mm. The breakdown of the sample took place at a voltage level of 2.0 kV. The center of the 

samples are healthy in Figure (a) and (b) as expected. But at 75% of the breakdown voltage 

( i.e. in Figure (c)) the center of the sample appears to be more whitish, indicating excessive 

charging of the sample. It also means that the sample has started deteriorating. The Figure (d) 

clearly shows a puncture taking place right at the center along with the whitish colour of the 

sample. The puncture is having an area of approximately 50 µm  by 35 µm (1750 µm2). The 

puncture also implies that the center of the sample is highly stressed and the breakdown is due 

to PD in cavities of the sample.     

              Similarly, in Figure 2.10 shows the SEM observations for the (a) virgin samples of 

Leatherite Paper (thickness of 0.13 mm) and the samples stressed with a voltage of (b) 0.7 kV, 

(c) 1.0 kV and (d) 1.4 kV (AC conditions)  respectively, while the void depth was 0.125mm and 

void diameter was 1.5 mm. The breakdown of the sample took place at a voltage level of 1.4 kV. 

In this case also the scenario is very similar to the Leatherite Paper under DC. Figure (a) and b) 

are healthy samples. The samples starts to become whitish at 75% of the breakdown voltage 

( i.e. in Figure (c)), indicating the general roughness and deterioration of the sample. From 

Figure (d) it can be safely inferred that the PD activity is more prominent under AC rather than 

DC as the puncture area is 180 µm by 100 µm.
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• Leatherite Paper (AC)

a)

b)

c)

d)
        Figure 2.10:   SEM observations for Leatherite Paper samples; (a) Virgin, and 

stressed at (b) 0.7 kV, (c) 1.0 kV and (d) 1.4 kV (Breakdown)  AC Voltages (t = 0.13mm, t1 

= 0.125mm and d =1.5 mm ).
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• Manila Paper (DC)

a)

b)

c)

d)
              Figure 2.11:   SEM observations for Manila Paper samples; (a) Virgin, and stressed 

at (b) 0.75 kV, (c) 1.0 kV and (d) 1.5 kV (Breakdown)  DC Voltages (t = 0.06mm, t1 = 

0.025mm and d =2 mm ).
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              Figure 2.11 shows the SEM observations for the (a) virgin samples of Manila Paper 

(thickness of 0.06 mm) and the samples stressed with a voltage of (b) 0.75 kV, (c) 1.0 kV and 

(d) 1.5 kV (DC conditions)  respectively, while the void depth was 0.025mm and void diameter 

was 2 mm. The breakdown of the sample took place at a voltage level of 1.5 kV. In Figure (a) 

the sample is in it’s healthy virgin state. But at 50%, 75 % and 100% of the breakdown voltage 

the center of the sample appears whitish, implying that the weathering process deteriorates 

the samples. The whitish colour  signifies the appearance of chemical pollutants such as SO2 

and ozone which may degrade the material. Since there is no complete puncture taking place at 

the center of the sample, the sample of Manila Paper under DC is not that much overstressed 

compared to Leatherite Paper under DC (Figure 2.9 d).

            Similarly, in Figure 2.12 shows the SEM observations for the (a) virgin samples of Manila 

Paper (thickness of 0.06 mm) and the samples stressed with a voltage of (b) 0.4 kV, (c) 0.6 kV 

and (d) 0.8 kV (AC conditions)  respectively,  while the void depth was 0.025mm and void 

diameter was 3 mm. The breakdown of the sample took place at a voltage level of 0.8 kV. The 

virginity of the sample is quiet obvious in Figure  (a). The state of the insulation hardly changes 

in  Figure  (b).  But  in  Figure  (c)  the  center  of  the  sample  appears  whitish  implying  it’s 

roughness.  On the  onset  of  breakdown in Figure  (d)  the  sample  is  not  only  whitish  but  a 

conspicuous rupture appears at it’s center. The puncture may be due to bond breaking and 

chain scission. This also confirms that in paper type insulating materials such as Leatherite 

Paper and Manila Paper the PD activity is more prominent in AC than DC. The area of  the 

puncture is around 3000 µm2.       
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• Manila Paper (AC)

a)

b)

c)

d)
              Figure 2.12:   SEM observations for Manila Paper samples; (a) Virgin, and stressed 

at (b) 0.4 kV, (c) 0.6 kV and (d) 0.8 kV (Breakdown)  AC Voltages (t = 0.06mm, t1 = 

0.025mm and d =3 mm ).
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• Lather  Minilex (DC)

a)

b)

c)

d)
                     Figure 2.13:   SEM observations for Lather Minilex samples; (a) Virgin, and 

stressed at (b) 9 kV, (c) 13.5 kV and (d) 18 kV (Breakdown)  DC Voltages (t = 0.245mm, t1 

= 0.125mm and d =2 mm ).
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              Figure 2.13 shows the SEM observations for the (a) virgin samples of Lather Minilex 

(thickness of 0.245 mm) and the samples stressed with a voltage of (b) 9 kV, (c) 13.5 kV and 

(d) 18 kV (DC conditions)  respectively, while the void depth was 0.125mm and void diameter 

was 2 mm. The breakdown of the sample took place at a voltage level of 18 kV. Figure (a) is the 

virgin state of the sample. In Figure (b) some white spots may be seen on the center of the 

sample indicating that the deterioration has started taking place. The Figure  (c) is possibly the 

best  example of  chalking as the center  of  the sample  appears whitish  with  some spots.  In 

Figure (d) the complete rupture has taken place at the center of the sample. The puncture area 

is approximately 350 µm by 200 µm and it may be due to breaking of chemical bonds in the 

insulating material.

             Similarly, in Figure 2.14 shows the SEM observations for the (a) virgin samples of Lather 

Minilex (thickness of 0.245 mm) and the samples stressed with a voltage of (b) 1.1 kV, (c) 1.6 

kV and (d) 2.2 kV (AC conditions)  respectively, while the void depth was 0.025mm and void 

diameter was 3 mm. The breakdown of the sample took place at a  voltage  level of  2.2 kV. 

Figure (a) shows the healthiest sample. In Figure (b) some white spots are visible. The sample 

further deteriorates with increase in voltage  as may be seen from Figure (c)  and (d).  The 

appearance of whitish colour may indicate excessive charge accumulation on the surface of the 

sample.  Since  no puncture  takes place  on the  onset  of  breakdown,  it  would mean that  PD 

activity for Lather Minilex is less under AC than DC. This scenario is precisely opposite of the 

PD activity taking place in paper based samples, such as Leatherite Paper and Manila Paper.
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• Lather  Minilex (AC)

a)

b)

c)

d)
                     Figure 2.14:   SEM observations for Lather Minilex samples; (a) Virgin, and 

stressed at (b) 1.1 kV, (c) 1.6 kV and (d) 2.2 kV (Breakdown)  AC Voltages (t = 0.245mm, 

t1 = 0.025mm and d =3 mm ).
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2.5 Breakdown voltage variation under DC and AC test conditions 

             The experimental results under DC and AC conditions and the statistically analyzed 

breakdown voltage data are available in Table 2.1, Table 2.2, Table 2.4 and Table 2.5. These 

data can be utilized to study the variation of the breakdown voltage with each of the input 

parameters, namely the thickness of the insulating material, void depth and void diameter.

• DC condition
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     Figure 2.15: Variation of Breakdown voltage of White Minilex, Leatherite Paper and 

Manila Paper with sample thickness t under DC test condition (t1=0.125 mm, d=1.5 mm) 

              Figure 2.15 shows the breakdown voltage of the three insulating materials, namely,  

White  Minilex,  Leatherite  Paper  and  Manila  Paper  under  DC  test  conditions,  against  their 

respective thicknesses keeping  void diameter as 1.5 mm and void depth of  0.125mm. The 

figure clearly indicates that the breakdown voltage of the three insulating materials increases 
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with  increase  in  thickness  and  the  breakdown  voltage  of  White  Minilex  is  very  high  in 

comparison  to  the  breakdown  voltage  of  Leatherite  Paper  in  almost  the  same  range  of 

thickness.  Hence,  White  Minilex has  superior  insulating  properties  compared to  Leatherite 

Paper under DC conditions. 
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Figure 2.16: Variation of Breakdown voltage of White Minilex (t = 0.125mm), Leatherite 

Paper (t = 0.13mm), Manila Paper (t = 0.035mm)   with the void diameter d under DC 

test condition (t1=0.125 mm)

              Figure 2.16 shows that the breakdown voltage of three solid insulating materials 

decreases with the increase in the void diameter keeping their respective thicknesses  and void 

depth to be constant. This result is quiet expected, as the PD activity would be higher at larger 

void diameters.  Moreover,  the breakdown voltage values of  White Minilex are very high in 

comparison  to  the  breakdown  voltage  values  of  Leatherite  Paper  and  Manila  Paper.  This 

clearly confirms that White Minilex has far superior insulating properties compared not only to 

Leatherite Paper but also Manila Paper . 
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Figure 2.17: Variation of Breakdown voltage (kV)   of    White Minilex (t = 0.125mm), 

Leatherite Paper (t = 0.13mm),   Manila Paper (t = 0.035mm)   with the void depth t1 

under DC test condition (d=1.5 mm)

             Figure 2.17  shows that the breakdown voltage of  the three insulating materials 

decreases with the increase in the void depth keeping their respective thicknesses and void 

diameter to be constant. as at larger void depth PD activity would substantially increase.
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• AC condition
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Figure 2.18: Variation of Breakdown voltage of White Minilex, Leatherite Paper and 

Manila Paper with sample thickness t under AC test condition (t1=0.125 mm, d=1.5 mm) 

          

             Figure 2.18 shows the variation of the breakdown voltage of the three solid insulating 

materials  with  the  variation  of  their  thickness  keeping  void  depth  as  0.125  mm  and void 

diameter as 1.5 mm under AC conditions.  This Figure clearly indicates that the breakdown 

voltage increases with the increase in thickness for all the three insulating materials. Moreover 

from  Figure  2.15  and  Figure  2.18  it  can  be  seen  that  White  Minilex  at  DC  condition  has 

breakdown voltage values nearly 10 times that under AC conditions. Hence White Minilex is 

highly recommended for DC applications. 
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Figure 2.19: Variation of Breakdown voltage (kV)   of    White Minilex (t = 0.125mm), 

Leatherite Paper (t = 0.13mm), Manila Paper (t = 0.035mm)   with the void diameter d 

under AC test condition (t1 = 0.125 mm)

         

              Figure 2.19 shows that the breakdown voltage of all the three solid insulating materials 

decreases with the increase in the void diameter keeping their respective thickness  and void 

depth to be constant. This result is quiet obvious as the PD activity would definitely increase at 

larger values of the void diameter. Since the breakdown voltage values of White Minilex are 

greater than that  of  Leatherite Paper,  the White  Minilex is  a  better  insulator compared to 

Leatherite Paper . The Leatherite Paper in turn is a better insulator compared to Manila Paper. 
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Figure 2.20: Variation of Breakdown voltage (kV)   of    White Minilex(t=0.125mm), 

Leatherite Paper(t=0.13mm),   Manila Paper(t=0.035mm)   with the void depth t1 under 

AC test conditions (d=1.5 mm)

             Figure 2.20 similarly shows that the breakdown voltage decreases with the increase in 

the void depth for all the three solid insulating materials keeping their thicknesses  and the 

void diameter to be constant. The reason for this is the same as discussed for Figure 2.19. 

2.6 Conclusion 

            This Chapter has provided the groundwork for prediction of the breakdown voltage due 

to PD in cavities by carrying out experimental data generation and statistical analysis of the 

same. The state of  some of the solid insulating materials was exhibited at various voltages 

under both DC and AC test conditions in the form of SEM images. In addition, the variation of 

the  breakdown  voltage  of  three  insulating  materials  was  studied  under  both  DC  and  AC 

conditions as a function of the thickness of the material, void diameter and void depth.
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3.1 Introduction

              In Chapter 2, the breakdown voltage data of different sheet samples due to the void 

inclusions have been obtained using Cylinder-Plane electrode system under both DC and AC 

conditions. The statistical analysis of the experimental data has been then carried out to arrive 

at  the  63.2%  breakdown  voltage  ά.  This  Chapter  details  the  attempt  at  modeling  of  the 

breakdown voltage using Multilayer Feedforward Neural Network (MFNN).

3.2 Multilayer Feedforward Network

• MFNN Structure 

            Artificial Neural Networks (ANNs) have become the subject of widespread interest,  

largely  because  of  their  wide  range  of  applicability  and  the  ease  with  which  they  handle 

complex  and non-linear  problems.  They are  massively  parallel-interconnected  networks  of 

simple elements intended to interact with the real world in the same way as the biological 

nervous system. They offer  an unusual  scheme based programming standpoint  and exhibit 

higher computing speeds compared to other conventional methods.  ANNs are characterized 

by their topology,  that is,  the number of interconnections,  the node characteristics that are 

classified by the type of nonlinear elements used and the kind of learning rules employed. The 

ANN is composed of an organized topology of Processing Elements (PEs) called neurons. In 

Multilayer Feedforward Neural Network (MFNN) the PEs are arranged in layers and only PEs 

in adjacent layers are connected.  The MFNN structure used in this thesis consists of  three 

layers, namely, the input layer, the hidden layer and the output layer as shown in Figure 3.1.
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Figure 3.1 Multilayer Feedforward Neural Network 

             The input layer consists of N i neurons corresponding to the Ni inputs. The number of 

output neurons is decided by the number of predicted parameters. The Back Propagation[108-

110] Algorithm (BPA) is  used to train the network.  The sigmoidal function represented by 

equation (3.1) is used as the activation function for all the neurons except for those in the input 

layer.

                                                S(x) =1 / (1+e-x)                                                                (3.1)

• Choice of Hidden Neurons

           The choice of  optimal number of  hidden neurons,  Nh is  the most  interesting and 

challenging aspect in designing the MFNN. There are various schools on thought in deciding 

the value of Nh. Simon Haykin [108] has specified that Nh should lie between 2 and ∞. Hecht-

Nielsen [109] uses ANN interpretation of Kolmogorov’s theorem to arrive at the upper bound 

on  the  Nh for  a  single  hidden  layer  network  as  2(Ni+1),  where  Ni is  the  number  of  input 

neurons.  However,  this  value  should  be  decided  very  judiciously  depending  on  the 

requirement of a problem. A large value of Nh may reduce the training error associated with 

the MFNN, but at the cost of increasing the computational complexity and time. For example, if 

one gets a tolerably low value of training error with certain value of Nh, there is no point in 

further increasing the value of Nh to enhance the performance of the MFNN. 
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• Normalization of Input-Output data

             The input and the output data are normalized before being processed in the network. In 

this scheme of normalization, the maximum values of the input and output vector components 

are determined as follows:

                           ))(max(max, pnn ii =  p = 1,……., Np,  i = 1,……, Ni                        (3.2)

Where Np is the number of patterns in the training set          

                          ))(max(max, pokkO =  p = 1,…….Np,  i = 1,……Nk                             (3.3)  

Where  Nk is  the  number  of  neurons  in  the  output  layer,  that  is,  the  number  of  predicted 

parameters.

Normalized by these maximum values, the input and output variables are obtained as follows:

                         
max,

,

)(
)(

i

i
nori n

pn
pn =      p = 1,……., Np,  i = 1,……, Ni                           (3.4)

and

                        
max,

,

)(
)(

k

k
nork o

po
po =      p = 1,…….Np,  i = 1,……Nk                              (3.5)

After normalization, the input and output variables lie [77] in the range of 0 to 1. 

• Choice of ANN parameters

           The learning rate, η1 and the momentum factor, α1 have a very significant effect on the 

learning speed of the BPA. The BPA provides an approximation to the trajectory in the weight 

space  computed  by  the  method  of  steepest  descent  method  [108].  If  the  value  of    η1  is 

considered very small, this results in slow rate of learning, while if the value of η1 is too large in 

order to speed up the rate of learning, the MFNN may become unstable (oscillatory). A simple 

method of increasing the rate of learning without making the MFNN unstable is by adding the 

momentum factor α1 [110]. Preferably, the values of η1 and α1 should lie between 0 and 1 [108].

• Weight Update Equations

           The weights between the hidden layer and the output layer are updated based on the 

equation (3.6) as follows:

wb(j, k, m+1) = wb(j, k, m) + η1 *δk(m) *Sb(j) +  α1 [wb(j, k, m) - wb(j, k, m-1)] (3.6) 

Where m is the number of iterations, j varies from 1 to Nh and k varies from 1 to Nk. δk(m) is the 

error for the kth output at the mth iteration. Sb(j) is the output from the hidden layer.
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Similarly, the weights between the hidden layer and the input layer are updated as follows:

wa(i, j, m+1) = wa(i, j, m) + η1 *δj(m) *Sa(i) + α1 [(wa(i, j, m) - wa(i, j, m-1)]     (3.7)

Where i varies from 1 to Ni  as there are Ni inputs to the network, δj(m) is the error for the jth 

output after the mth iteration and Sa(i) is the output from the first layer. The δk(m) in equation 

(3.6) and δj(m) in equation ( 3.7) are related as

δj(m) = ∑
=

K

k 1

 δk(m)* wb(j, k, m)                                                                                   (3.8) 

• Evaluation Criterion

             The Mean Square Error  Etr for the training patterns after the mth iteration is defined as

Etr (m) = (1/Np) *[∑
=

Np

p 1

{V1p – V2p(m)}2]                                                                     (3.9) 

Where V1p is the experimental value of the breakdown voltage. V2p(m) is the estimated value of 

the breakdown voltage after mth iteration. The training is stopped when the least value of Etr 

has been obtained and this value does not change much with the number of iterations.  

             The Mean Absolute Error  Ets is a good performance measure for judging the accuracy of 

the MFNN System. The Etr tells how well the network has adopted to fit the training data only, 

even if  the data are contaminated.  On the other hand,  the Ets indicates how well  a trained 

network  behaves  on  a  new  data  set  not  included  in  the  training  set.  The  value  of  Ets is 

calculated based on the least value of Etr. The Ets for the test data expressed in percentage is 

given by

Ets = (1/NS)* [∑
=

Ns

s 1

| (V4s – V3s) | / V3s]*100                                                             (3.10)

  Where V3s is the experimental value of the breakdown voltage taken for testing purpose, V4s is 

the estimated value of the breakdown voltage after the test input data is passed through the 

trained network and Ns is the number of test patterns. 

3.3 Modeling of Breakdown Voltage using MFNN

    This section details the attempt at modeling of breakdown voltage due to PD in voids 

under DC / AC conditions using MFNN. These models predicts the breakdown voltages as a 

function of different void parameters,  namely, void diameter and void depth and insulation 

sheet thickness both under DC and AC conditions. The network is provided with both input 

data and desired response; and is trained in a supervised fashion using the back propagation 
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algorithm.  The  back  propagation  algorithm  performs  the  input  to  output  mapping  by 

making  weight  connection  adjustment  following  the  discrepancy  between  the  computed 

output value and the desired output response.  The training phase is completed after a series of 

iterations.  In each iteration,  output  is  compared with the desired response and a match is 

obtained. Figure 3.2 shows the flowchart for the MFNN.

             In order to predict the breakdown voltage under DC / AC conditions a software program 

has been developed in MATLAB 7.1 to solve equations (3.1) to (3.10). The program is suitably 

modified for different models based on input – output parameters.

3.3.1 Prediction of the breakdown voltage due to PD in voids under DC conditions 

              Two models are proposed as follows 

• Model 1

             In model 1, the number of  input parameters is two, that is,  the thickness of the 

insulation  sheets  t  and  the  void  diameter  d;  and  the  output  parameter  is  the  breakdown 

voltage  to  be  predicted.  The  void  depth  t1 is  kept  constant  at  0.125mm.  Since,  the  input 

parameters  are  two,  the  value  of  Ni is  two  for  this  model.  In  addition,  since  the  output 

parameter is only one, the value of Nk is one. 

             The total number of insulating materials considered for the purpose of modeling is five. 

There are three values of thickness for each of White Minilex, Leatherite and Lather Minilex 

materials and five different values of void diameter. Therefore, the number of input-output 

data sets generated is 45. On the other hand, there are two values of thickness for each of Glass 

Cloth and Manila Paper and five different values of void diameter. Therefore, number of input-

output data sets generated is 20. Thus, the total number of input-output data sets used for the 

proposed model is 45 +20 = 65. The 65 sets of input output patterns of five insulating materials 

are taken from Table 2.6. Out of the 65 sets of input-output patterns, 50 sets of input-output 

patterns are utilized to train the MFNN and the remaining 15 sets are used for the testing 

purpose.

Results and Discussions

              In this study, the optimum values of network parameters are obtained based on Mean 

Square Error Etr for  the training patterns.  The network is trained in a sequential  mode.  In 

applying the BPA for the proposed prediction work the following key issues are addressed

1. Network parameters
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2. Number of hidden neurons

3. Number of iterations 

              For BPA with fixed values of learning rate η 1 and momentum factor α1, the optimum 

values are obtained by simulation with different values of η1and α1. So, to start with a value of 

η1 =0.3and α1 = 0.1 are chosen and then varied to get an optimum value. It may be noted that 

the range of values of η1 and α1 should be between 0 and 1. Finally, a best combination is seem 

to yield with a value of η1= 0.99 and α1=0.86.  For the above combination and with three hidden 

neurons the value Etr is decreasing to a lowest value of 3.8976*10-7. The network structure is 

thus  as  shown in  Figure  3.3.  The variation of  Etr of  the  training  data  with  the  number  of 

iterations with  η1= 0.99, α1=0.86, Nh=3.0 is shown in Figure 3.4.  Tables 3.1 - 3.3 shows the 

variation of Etr as a function of η1, α1 and Nh respectively. 

Figure 3.3 MFNN (Model 1) 
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Figure 3.4  Etr of the training data as a function of Number of iterations  

Table 3.1: Variation of Etr with   η1 (Nh = 2, α1 = 0.1, Number of iterations = 400) 

η1  Etr

0.3 0.0016

0.5 5.2381*10-4

0.6 3.4372*10-4

0.7 2.3886*10-4

0.8 1.7342*10-4

0.9 1.3038*10-4

0.99 1.0337*10-4
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Table 3.2: Variation of Etr with  α1  (Nh = 2, η1 = 0.99, Number of iterations = 400) 

α1 Etr

0.1 1.0337*10-4

0.3 5.8654*10-5

0.5 2.8738*10-5

0.6 1.8622*10-5

0.65 1.4500*10-5

0.7 1.0806*10-5

0.75 7.3352*10-6

0.8 3.9604*10-6

0.85 1.1018*10-6

0.86 6.9462*10-7

0.87 8.1357*10-7

Table 3.3: Variation of Etr  with  Nh (η1 = 0.99, α1 = 0.86, Number of iterations = 400) 

Nh Etr

2 6.9462*10-7

3 3.8976*10-7

4 4.5193*10-7

              Finally, the breakdown voltage V = f (t, d) for the test data are calculated by simply  

passing the input data in the forward path of the network and using the updated weights of the 

network.  Table  3.4  shows  a  comparison  of  the  experimental  and the  modeled  breakdown 

voltage using this model after 400 iterations.
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Table 3.4: Comparison of the experimental and modeled breakdown voltage  

Insulating 
Material

t

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%) 

White 
Minilex

0.26 3 25.4903 25.4211

0.0182

0.125 2 24.7000 24.6984

0.18 1.5 24.7000 24.7007

Leatherite 
Paper

0.13 5 2.0127 2.0127

0.175 4 2.5152 2.5152

0.235 2 3.3105 3.3105

Glass Cloth 0.195 5 17.9443 17.9443

0.155 3 13.9502 13.9502

0.155 1.5 13.8725 13.8725

Manila Paper 0.035 3 1.5456 1.5456

0.06 2 1.4413 1.4412

0.06 4 1.5088 1.5088

Lather 
Minilex

0.245 5 16.6824 16.6824

0.185 1.5 16.5625 16.5625

0.125 2 10.5760 10.5760

• Model 2

              In model 2, the number of input parameters is three, that is, the thickness of the 

insulation sheets t,  void depth t1 and the void diameter d; and the output parameter is the 

breakdown voltage to be predicted. Since, the input parameters are three, the value of Ni is 

three for this model. In addition, since the output parameter is only one, the value of Nk is one. 

             The total number of insulating materials considered for the purpose of modeling is five. 

There are three values of thickness for each of White Minilex, Leatherite and Lather Minilex 

94



Chapter 3                                                   Breakdown Voltage Modeling using Mutilayer Feedforward Neural Network 

materials  ,  two  different  values  of  void  depth  and  five  different  values  of  void  diameter. 

Therefore, the number of input-output data sets generated is 90. On the other hand, there are 

two values of thickness for each of Glass Cloth and Manila Paper, two different values of void 

depth and five different values of void diameter. Therefore, number of input-output data sets 

generated is 40. Thus, the total number of input-output data sets used for the proposed model 

is 90 +40 = 130. The 130 sets of input output patterns of five insulating materials are taken 

from Table 2.6. Out of the 130 sets of input-output patterns, 115 sets of input-output patterns 

are utilized to train the MFNN and the remaining 15 sets are used for the testing purpose.

Results and Discussions

             In this model 2, η1 =0.3 and α1 =0.1 are chosen as the starting point and then they are 

varied to get an optimum value.  A best combination is obtained with a value of η1= 0.99 and 

α1=0.6.  For the above combination and with five hidden neurons, the value Etr is decreasing to 

the lowest value of 7.4093*10-6. It may be noted that the number of hidden neurons are varied 

till five, as the value of Etr corresponding to this value of hidden neuron is quiet low. There is no 

need to decrease the Etr value further by making number of hidden neurons greater than five. 

The network structure is thus as shown in Figure 3.5. The variation of Etr of the training data 

with the number of iterations with  η1= 0.99, α1=0.6, Nh=5.0 is shown in Figure 3.6.  Tables 3.5 - 

3.7 shows the variation of Etr as a function of η1, α1 and Nh respectively. 

Figure 3.5 MFNN (Model 2) 
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Figure 3.6:  Etr of the training data as a function of Number of iterations 

      Table 3.5: Variation of Etr with   η1 (Nh = 2,  α1 = 0.1, Number of iterations = 400) 

η1  Etr

0.3 9.9670*10-4

0.5 2.9965*10-4

0.6 1.9273*10-4

0.7 1.3229*10-4

0.8 9.5462*10-5

0.9 7.1701*10-5

0.99 5.7020*10-5
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Table 3.6: Variation of Etr with  α1  (Nh=2  , η1 =0.99, Number of iterations =400)

α1 Etr

0.1 5.7020*10-5

0.3 3.4121*10-5

0.5 2.3347*10-5

0.6 2.1672*10-5

0.65 4.7290*10-5

0.7 7.6003*10-4

Table 3.7: Variation of Etr  with  Nh (η1 = 0.99, α1 = 0.6, Number of iterations = 400)

Nh Etr

2 2.1672*10-5

3 1.6594*10-5

4 1.5217*10-5

5 7.4093*10-6

              Finally, the V = f (t, t1, d) for the test data are calculated by simply passing the input data 

in the forward path of the network and using the updated weights of the network. Table 3.8 

shows a comparison of the experimental and modeled breakdown voltage  after 400 iterations. 
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Table 3.8: Comparison of the experimental and modeled breakdown voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)
White 

Minilex
0.26 0.025 3 25.4903 24.9811

0.2260

0.125 0.125 2 24.7000 24.5570

0.18 0.025 1.5 24.7000 24.5520

Leatherite 
Paper

0.13 0.125 5 2.0127 2.0129

0.175 0.125 4 2.5152 2.5152

0.235 0.025 2 3.3105 3.3105

Glass Cloth 0.195 0.025 5 17.9443 17.9443

0.155 0.025 3 13.9502 13.9502

0.155 0.125 1.5 13.8725 13.8725

Manila Paper 0.035 0.125 3 1.5456 1.5558

0.06 0.025 2 1.4413 1.4624

0.06 0.125 4 1.5088 1.5156

Lather 
Minilex

0.245 0.025 5 16.6824 16.6824

0.185 0.125 1.5 16.5625 16.5625

0.125 0.025 2 10.5760 10.5760
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3.3.2 Prediction of the breakdown voltage due to PD in voids under AC conditions 

              The four models are proposed as follows 

• Model 3

              In this particular model[111] , the number of input parameters is two, that is, the 

thickness of the insulation sheets t  and the void diameter d; and the output parameter is the 

breakdown voltage to be predicted. Since, the input parameters are two, the value of Ni is two 

for this model. In addition, since the output parameter is only one, the value of Nk is one. 

            The total number of insulating materials considered for the purpose of modeling is one,  

namely Leatherite paper . There are three values of thickness for  Leatherite paper and five 

different values of void diameter. Therefore, the number of input-output data sets generated is 

15. The 15 sets of input output patterns of Leatherite paper are taken from Table 2.7. Out of the 

15 sets of input-output patterns, 8 sets of input-output patterns are utilized to train the MFNN 

and the remaining 7 sets are used for the testing purpose.

Results and Discussions

             The η1  and α1  are initialized to 0.3 and 0.1 respectively and then varied till an optimum 

value of these network parameters is reached. Finally, a best combination is seem to yield with 

a value of η1= 0.99 and α1=0.85.  For the above combination and with three hidden neurons, the 

value Etr is decreasing to a lowest value of 1.4329*10-6.  The network structure is the same as 

shown in Figure 3.3. The variation of Etr of the training data with the number of iterations with 

η1= 0.99, α1=0.85, Nh=3.0 is shown in Figure 3.7.  Tables 3.9 - 3.11 shows the variation of Etr as a 

function of η1, α1 and Nh respectively. 
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Figure 3.7:  Etr of the training data as a function of Number of iterations

Table 3.9: Variation of  Etr with   η1 (Nh = 2,  α1 = 0.1, Number of iterations = 400)

η1  Etr

0.3 0.0011

0.5 4.5131*10-4

0.6 3.3385*10-4

0.7 2.5919*10-4

0.8 2.0803*10-4

0.9 1.7182*10-4

0.99 1.4705*10-4

100



Chapter 3                                                   Breakdown Voltage Modeling using Mutilayer Feedforward Neural Network 

Table 3.10: Variation of Etr with  α1  (Nh=2  , η1 =0.99, Number of iterations=400)

α1 Etr

0.1 1.4705*10-4

0.3 1.0096*10-4

0.5 6.9818*10-5

0.6 5.8833*10-5

0.65 4.8820*10-5

0.7 3.5452*10-5

0.8 8.3101*10-6

0.85 1.2947*10-6

0.9 1.5796*10-4

Table 3.11: Variation of Etr  with  Nh (η1 = 0.99, α1= 0.85, iter = 400) 

Nh Etr

2 1.2947*10-6

3 1.4329*10-6

4 1.5463*10-6

           Finally, the V = f (t, d) for the test data are calculated by simply passing the input data in 

the forward path of the network and using the updated weights of the network. Table 3.12 

shows  a  comparison  of  the  experimental  and  the  modeled  breakdown  voltage   after  400 

iterations. 

101



Chapter 3                                                   Breakdown Voltage Modeling using Mutilayer Feedforward Neural Network 

Table 3.12: Comparison of the experimental and modeled breakdown voltage  

Insulating 
Material

t

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

Leatherite 
Paper

0.13 1.5 1.3452 1.3458

0.08

0.13 2 1.3306 1.3306

0.13 3 1.2972 1.2972

0.175 2 1.8313 1.8313

0.175 3 1.7981 1.7981

0.235 2 2.2697 2.2732

0.235 4 2.2909 2.2837

• Model 4

             In  model 4 the number of input parameters, the number of output parameters and the  

number of insulating materials is the same as model 1. But the 65 sets of input output patterns 

of five insulating materials are now taken from Table 2.7.

             Out of the 65 sets of input-output patterns, 50 sets of  input-output patterns are utilized 

to train the MFNN  and the remaining 15 sets are used for the testing purpose. 

Results and Discussions

             The η1 =0.3 and α1 = 0.1 are the initializing values in model 4 and then they are varied to 

get  an optimum value.   A  best  combination is  seem to  yield  with  a  value  of  η1= 0.99 and 

α1=0.85.  For the above combination and with three hidden neurons, the value Etr reaches the 

lowest value of 2.3152*10-5.  The network structure is the same as shown in Figure 3.3. The 

variation of Etr of the training data with the number of iterations with  η1= 0.99, α1=0.85, Nh=3.0 

is shown in Figure 3.8.  Tables 3.13 - 3.15 shows the variation of Etr as a function of η1, α1 and Nh 

respectively. 
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Figure 3.8:  Etr of the training data as a function of Number of iterations

Table 3.13: Variation of Etr with  η1 (Nh = 2,  α1 = 0.1, Number of iterations = 400)

η1  Etr

0.3 0.0039

0.5 0.0018

0.6 0.0014

0.7 0.0011

0.8 8.7714*10-4

0.9 7.3386*10-4

0.99 6.3510*10-4
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Table 3.14: Variation of Etr with  α1  (Nh=2  , η1 =0.99, Number of iterations=400)

α1 Etr

0.1 6.3510*10-4

0.3 4.4486*10-4

0.5 2.8066*10-4

0.6 2.0796*10-4

0.65 1.7289*10-4

0.7 1.3767*10-4

0.75 1.0127*10-4

0.8 6.3415*10-5

0.85 2.8717*10-5

0.9 4.4498*10-5

Table 3.15:Variation of Etr  with Nh (η1 = 0.99, α1 = 0.85, Number of iterations= 400) 

Nh Etr

2 2.8717*10-5

3 2.3152*10-5

4 2.9294*10-5

5 3.3684*10-5

             Finally, the V = f (t, d) for the test data are calculated by simply passing the input data in 

the forward path of the network and using the updated weights of the network. Table 3.16 

shows a comparison of the experimental and the modeled breakdown voltage using this  model 

after 400 iterations.
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Table 3.16: Comparison of the experimental and modeled breakdown voltage 

Insulating 
Material

t

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 3 2.2807 2.2914

0.2581

0.125 2 2.2697 2.2667

0.18 1.5 2.2885 2.2836

Leatherite 
Paper

0.13 5 1.3306 1.3306

0.175 4 1.8313 1.8313

0.235 2 2.2909 2.2917

Glass Cloth 0.195 5 2.2294 2.2294

0.155 3 2.2447 2.2447

0.155 1.5 2.3088 2.2918

Manila Paper 0.035 3 0.8154 0.8154

0.06 2 0.8388 0.8388

0.06 4 0.8758 0.8758

Lather 
Minilex

0.245 5 2.2697 2.2841

0.185 1.5 2.3088 2.2948

0.125 2 2.3170 2.2948

• Model 5

               In  model 5 the number of input parameters, the number of output parameters and the 

number of insulating materials is the same as model 2. But the 130 sets of input ouput patterns 

of five insulating materials are now taken from Table 2.7. 

             Out of the 130 sets of input-output patterns, 115 sets of  input-output patterns are 

utilized to train the MFNN  and the remaining 15 sets are used for the testing purpose. 
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Results and Discussions

             Initially,  η1  and α1 are fixed at 0.4 and 0.6 respectively in model 5. Then  η1 is varied 

keeping  α1 and Nh fixed.  After  this  is  done,  α1 is  varied  keeping  η1 and Nh fixed.    A  best 

combination is  seem to  be  obtained with  a value  of  η1= 0.99 and α1=0.65.   For  the  above 

combination and with five hidden neurons,  the value Etr is  decreasing to a lowest  value of 

5.1982*10-5. It may be noted that the number of hidden neurons is varied till five, as the value 

of Etr corresponding to this value of hidden neuron is quiet low. There is no need to decrease 

the Etr value further by making number of  hidden neurons greater than five.   The network 

structure is the same as shown in Figure 3.5. The variation of Etr of the training data with the 

number of iterations with  η1= 0.99, α1=0.65, Nh=5.0 is shown in Figure 3.9.  Tables 3.17 - 3.19 

shows the variation of Etr as a function of η1, α1 and Nh respectively. 
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Figure 3.9:  Etr of the training data as a function of Number of iterations
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Table 3.17: Variation of Etr with   η1 (Nh = 2,  α1 = 0.6, Number of iterations = 400)

η1  Etr

0.4 0.0086

0.5 0.0016

0.7 4.654*10-4

0.9 3.3098*10-4

0.99 1.8579*10-4

Table 3.18: Variation of Etr with  α1  (Nh=2  , η1 =0.99, Number of iterations =400)

α1 Etr

0.6 1.8579*10-4

0.65 1.6864*10-4

0.7 2.8756*10-4

Table 3.19:Variation of Etr  with Nh (η1 = 0.99, α1 = 0.65, Number of iterations = 400) 

Nh Etr

2 1.6864*10-4

3 1.4423*10-4

4 1.1656*10-4

5 5.1982*10-5

            Finally, the V = f (t, t1, d) for the test data are calculated by simply passing the input data 

in the forward path of the network and using the updated weights of the network. Table 3.20 

shows a comparison of the experimental and modeled breakdown voltage  after 400 iterations. 
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Table 3.20: Comparison of the experimental and modeled breakdown voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 0.025 3 2.2294 2.2224

0.7401

0.125 0.125 2 2.2447 2.2317

0.18 0.025 1.5 2.2697 2.2458

Leatherite 
Paper

0.13 0.125 5 1.2972 1.2972

0.175 0.125 4 1.8520 1.8520

0.235 0.025 2 2.2697 2.2465

Glass Cloth 0.195 0.025 5 2.3088 2.2712

0.155 0.025 3 2.3088 2.2662

0.155 0.125 1.5 2.2294 2.2205

Manila Paper 0.035 0.125 3 0.8388 0.8388

0.06 0.025 2 0.8154 0.8154

0.06 0.125 4 0.8479 0.8479

Lather 
Minilex

0.245 0.025 5 2.2447 2.2369

0.185 0.125 1.5 2.2294 2.2205

0.125 0.025 2 2.2909 2.2565

• Model 6

               In  model 6 [112] since  the  input parameters are assumed to be  the thickness of the 

paper t , the void depth t1 , the void diameter d and the relative permittivity Єr, the value of Ni is 

four . Also, since the output parameter is the breakdown voltage to be predicted as a function 

of these four parameters, the value of Nk is one. 

               The total number of insulating materials considered for the purpose of modeling is five.  

There are three values of thickness for each of White Minilex, Leatherite and Lather Minilex 

materials, two different values of void depth, one value of the relative permittivity for each 
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material and five different values of void diameter. Therefore, the number of input-output data 

sets generated is 90. On the other hand, there are two values of thickness for each of Glass 

Cloth  and  Manila  Paper,  two  different  values  of  void  depth,  one  value  of  the  relative 

permittivity for each material   and five different values of void diameter. Therefore, number of 

input-output data sets generated is 40. Thus, the total number of input-output data sets used 

for the proposed model is 90 +40 = 130. The 130 sets of input output patterns of five insulating 

materials are taken from Table 2.7. Out of the 130 sets of input-output patterns, 115 sets of 

input-output patterns are utilized to train the MFNN and the remaining 15 sets are used for the 

testing purpose.

Results and Discussions

              The network structure for the model 6 is shown in Figure 3.9. The η1 and α1 are 

initialized with 0.3 and 0.1 respectively and then varied to get an optimum value. The best 

combination  of η1 and α1 are 0.99 and 0.75 respectively, with a reasonably low value of Etr . For 

the above combination and with five hidden neurons, the value Etr is decreasing and reaches 

the lowest value of 1.2343*10-5.  The variation of Etr of the training data with the number of 

iterations with  η1= 0.99, α1=0.75, Nh=5.0 is shown in Figure 3.11.  Tables 3.21 - 3.23 shows the 

variation of Etr as a function of η1, α1 and Nh respectively. 
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Figure 3.10 MFNN (Model 6) 
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Figure 3.11:  Etr of the training data as a function of Number of iterations
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Table 3.21: Variation of Etr with  η1 (Nh = 2,  α1 = 0.7, Number of iterations = 400)

η1  Etr

0.3 2.3187*10-4

0.5 9.8411*10-5

0.7 5.6561*10-5

0.8 4.5409*10-5

0.9 3.7348*10-5

0.99 3.1949*10-5

Table 3.22 :Variation of Etr with  α1  (Nh=2  , η1 =0.99, Number of iterations=400)

α1 Etr

0.7 3.1949*10-5

0.75 1.9529*10-5

0.8 2.5081*10-5

0.85 2.9475*10-4

Table 3.23: Variation of Etr with  Nh (η1 = 0.99, α1 = 0.75, Number of iterations=400)

Nh Etr

2 1.9520*10-4

3 2.4571*10-5

4 1.5125*10-5

5 1.2343*10-5

6 1.2487*10-5

111



Chapter 3                                                   Breakdown Voltage Modeling using Mutilayer Feedforward Neural Network 

              Finally, the V = f (t, t1, d, Єr) for the test data are calculated by simply passing the input 

data in the forward path of the network and using the updated weights of the network. Table 

3.24  shows  a  comparison  of  the  experimental  and  modeled  breakdown  voltage  after  400 

iterations..

Table 3.24: Comparison of the experimental and modeled breakdown voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Єr Breakdown 
Voltage (kV)

(experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)
White 

Minilex
0.26 0.025 3 4.40 2.2294 2.2294

0.1638

0.125 0.125 2 4.40 2.2447 2.246

0.18 0.025 1.5 4.40 2.2697 2.2678

Leatherite 
Paper

0.13 0.125 5 4.21 1.2972 1.2972

0.175 0.125 4 4.21 1.8520 1.8520

0.235 0.025 2 4.21 2.2697 2.2677

Glass Cloth 0.195 0.025 5 4.97 2.3088 2.2904

0.155 0.025 3 4.97 2.3088 2.2904

0.155 0.125 1.5 4.97 2.2294 2.2294

Manila Paper 0.035 0.125 3 4.68 0.8388 0.8388

0.06 0.025 2 4.68 0.8154 0.8154

0.06 0.125 4 4.68 0.8479 0.8479

Lather 
Minilex

0.245 0.025 5 5.74 2.2447 2.2447

0.185 0.125 1.5 5.74 2.2294 2.2294

0.125 0.025 2 5.74 2.2909 2.2835

             From Table  3.24   it  may be  seen that  the  modeled  values  closely  follows  the 

experimental  breakdown  values  and  the  Ets is  found  to  be  0.1638%,  thus  shows  the 

effectiveness of the proposed  Model 6. 
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3.3.3 Extrapolation capability of the Model 6 

              The proposed model 6 was trained with three values of thickness each for  Leatherite 

paper and Lather Minilex  , two different values of void depth and five different values of void 

diameter. Therefore, the number of input-output data training sets generated for these two 

materials is 60. On the other hand, there are two values of thickness for each of Glass Cloth and 

White Minilex, two different values of void depth and five different values of void diameter for 

the training.  Therefore,  number  of  input-output  data training sets  generated for  these  two 

materials is 40. Moreover, there is only one value of thickness for Manila paper, two different 

values of void depth and five different values of void diameter for the same training purpose. 

Therefore,  number  of  input-output  data  training  sets  generated  for  this  material  is  10. 

Therefore, the number of input-output data training sets generated for these five materials is 

110. After the training is over, the MFNN  was tested for it’s extrapolation capability with the 

help of input output patterns of Manila Paper (10 sets) and White Minilex (10 sets) making a 

total of 20 sets. This is because these 20 sets for the thickness of Manila Paper (0.035mm) and 

White Minilex (0.26 mm) lies outside the range of the other thicknesses for the five insulating 

materials and the extrapolation capability in the lower and the upper range are considered. A 

Ets of 0.30% is obtained with model 6 . This clearly shows that  the proposed  model has very 

good extrapolation capability also. 
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Table 3.25 :Comparison of  the experimental and modeled breakdown voltage 

(Extrapolation Capability)

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Єr Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE 
of the 
Test 
data

Ets (%) 

Manila Paper 0.035 0.025 3 4.68 0.8154 0.8146

0.30

0.035 0.125 2 4.68 0.8758 0.8708

0.035 0.025 1.5 4.68 0.8758 0.8693

0.035 0.125 5 4.68 0.9089 0.8973

0.035 0.125 4 4.68 0.8479 0.8477

0.035 0.025 2 4.68 0.8479 0.8472

0.035 0.025 5 4.68 0.8683 0.8679

0.035 0.025 4 4.68 0.9089 0.9044

0.035 0.125 1.5 4.68 0.8154 0.8134

0.035 0.125 3 4.68 0.8388 0.8339

White 
Minilex

0.26 0.025 2 4.4 2.3088 2.3002

0.26 0.125 4 4.4 2.2909 2.2899

0.26 0.025 5 4.4 2.3170 2.3031

0.26 0.125 1.5 4.4 2.2885 2.2880

0.26 0.125 3 4.4 2.2885 2.2798

0.26 0.025 1.5 4.4 2.2294 2.2294

0.26 0.125 2 4.4 2.2697 2.2701

0.26 0.025 3 4.4 2.2294 2.2294

0.26 0.025 4 4.4 2.2885 2.2880

0.26 0.125 5 4.4 2.2909 2.2879
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3.3.4 Prediction of the breakdown voltage due to PD in voids under AC conditions 

(CIGRE Method II Electrode System)

              One model is proposed as follows 

• Model 7

              The models 1 to 6 proposed so far for the prediction of breakdown voltage had utilized 

the experimental generated data using Cylinder-Plane Electrode System, which is discussed in 

details in Chapter 2. In  model 7, prediction of breakdown voltage is proposed with the help of 

experimentally generated data using CIGRE Method II Electrode System reported in [75]. The 

thickness of the Leatherite paper used is 0.18 mm, 0.23 mm and 0.3 mm. The void depth had 

three values, 0.0625mm, 0.125 mm and 0.25 mm, while the void diameter has three values, 

namely 1mm, 2 mm and 5 mm. Hence  the proposed model [113] is carried out with the help of 

27 sets of experimental input-output patterns generated for this paper insulation. Out of this 

27 sets, the 21 sets of input-output patterns are utilized to train MFNN  and the remaining 6 

sets are used for the testing purpose. The equations 3.1) to 3.10) have been used in arriving at 

the results of this model discussed below.

Results and Discussions

              The model 7 starts with a value of η1 =0.2 and α1 = 0.8  and then these network 

parameters are varied to get an optimum value. Finally, a best combination is seem to yield 

with a value of η1= 0.3 and α1=0.9.  For the above combination of  η1 and α1 and with three 

hidden  neurons,  the  value  Etr is  decreasing  to  a  lowest  value  of  7.29*10-4.  The  network 

structure is the same as Figure 3.3. The variation of Etr of the training data with the number of 

iterations with  η1= 0.3, α1=0.9, Nh=3.0 is shown in Figure 3.12.  Tables 3.26 - 3.28 shows the 

variation of Etr as a function of Nh, η1 and α1 respectively. 
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Figure 3.12:  Etr of the training data as a function of Number of iterations  

Table 3.26: Variation of Etr with the Nh (η1 = 0.3, α1 = 0.9, Number of iterations = 400) 

Nh Etr

3 7.29*10-4

4 3.71*10-3

5 0.0111

6 0.0111

7 0.0111
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Table 3.27: Variation of Etr with  η1 (Nh = 3,  α1 = 0.9, Number of iterations = 400)

η1  Etr

0.2 7.41*10-4

0.25 7.29*10-4

0.3 7.29*10-4

0.35 7.35*10-4

0.4 7.41*10-4

Table 3.28: Variation of Etr with  α1  (Nh=3 , η1 =0.3, Number of iterations=400)

α1 Etr

0.8 7.59*10-4

0.85 7.41*10-4

0.9 7.29*10-4

0.95 7.35*10-4

               Finally, the V = f (t, t1, d) for the test data are calculated by simply passing the input 

data in the forward path of the network and using the updated weights of the network. Table 

3.29  shows a comparison of  the  experimental  and modeled breakdown voltage  after  400 

iterations...
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Table 3.29: Comparison of the experimental and modeled breakdown voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE 
of the 
Test 
data

Ets 

(%)

Leatherite 
Paper

0.3 0.0625 2 4.0 3.95

1.13

0.3 0.25 1 3.9 3.87

0.23 0.125 5 3.6 3.6

0.23 0.25 2 3.8 3.71

0.18 0.0625 5 3.7 3.62

0.18 0.125 1 3.9 3.85

3.4 Conclusion

              In this Chapter the  six proposed models based on the MFNN structure  have predicted  

the breakdown voltage of solid insulating materials from the Cylinder Plane Electrode System 

set  up  and  one  model  has  predicted  the  breakdown   voltage  from  the   CIGRE  Method  II 

Electrode System set up. All the seven models clearly indicate their effectiveness in predicting 

the breakdown voltage  as  is  evident  from the seven Mean Absolute Error  values.  Also the 

extrapolation capability of the model  No 6 has been explored . This too gives very satisfactory 

results.
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4.1 Introduction

             In Chapter 3, the modeling of the breakdown voltage using Multilayer Feedforward 

Neural  Network  (MFNN)  had  been  attempted.  The  proposed  six  models  had  used  the 

experimental data obtained by using Cylinder-Plane Electrode system and one model proposed 

based on data available in literature which are essentially generated by using CIGRE Method II 

Electrode system. In this Chapter, the same experimental data have been used and modeling of 

breakdown voltage is proposed based on the Radial Basis Function Network (RBFN) structure. 

First,  a  brief  introduction on the  theory of  the  RBFN has been presented.  Finally,  detailed 

discussions on the proposed models are made.

4.2 Radial Basis Function Network

• RBFN Structure 

            The MFNN may be viewed as the application of a recursive technique known in statistics  

as stochastic approximation. The RBFN follows a different approach with respect to MFNN. The 

RBFN attempts to design a neural network as a curve fitting approximation problem in a high-

dimension space. The learning is equivalent to finding a surface in a multidimensional space 

that provides a best fit to the training data. Corresponding, generalization is equivalent to the 

use of this multidimensional surface to interpolate the test data. The RBFN structure is shown 

in  Figure  4.1.  As  shown,  there  are  Ni input  nodes  of  this  network  in  the  input  layer 

corresponding to the Ni inputs that is quiet similar to MFNN shown in Figure 3.1. The second 

layer is the hidden layer composed of nonlinear units [100]. In the context of a neural network, 

the hidden units  provide a set of  functions that  constitute  an arbitrary basis for  the input 

patterns when they are expanded into hidden space. The number of nonlinear units is m1. The 

output layer comprises of a summer. The nonlinear units in the hidden layer and the output 

layer are connected by linear weights. 
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Figure 4.1: A typical Radial Basis Functions Network (RBFN)

             The linear weights tend to evolve on a different time scale compared to the nonlinear 

activation functions of the hidden layer. The hidden layer’s activation functions also known as 

Radial Basis Functions (RBF) evolve slowly in accordance with some nonlinear optimization 

strategy. The linear weights adjust themselves rapidly through a linear optimization strategy, 

such as, the LMS Algorithm and the RLS Algorithm.

             There are different learning strategies that may be followed in the design of the RBFN, 

depending on how the centers of the RBF of the network are specified. In the present work the 

Fixed Centers Selected at Random (FCSR) strategy are adopted to specify the centers.

• Fixed Centers Selected at Random (FCSR)

             According to this approach the location of the centers are chosen randomly from the 

input training patterns involving the thickness of insulation sample, void depth, diameter of 

void and relative permittivity of the insulating material. The RBF is assumed isotropic Gaussian 

function whose standard deviation is fixed according to the spread of the centers.
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• Fixed Radial Basis Functions 

           The Fixed   RBF are defined as follows:

G (||x1-x2||2) = exp (-(m1/ dmax
2)*||x1-x2||2)                                                                 (4.1)

        Where x1 is the input pattern, x2  is the coordinates of the center, m1 is the number of 

chosen centers or number of nonlinear radial basis functions, dmax  is the maximum distance 

between the chosen centers. ||x1-x2|| is the Euclidean distance between x1 and x2.

Suppose, x1 = [ ta , t1b , dc , Єrd] and x2 = [ te , t1f , dg , Єrf]

 Then ||x1-x2||2 = (ta- te)2 +  (t1b- t1f)2 + (dc- dg)2 +  (Єrd - Єrf )2                                  (4.2)

The RBF are multiplied by the respective weights and are summed.

The modeled value of breakdown voltage at the mth iteration is given as

V2p(m) =  ∑
=

1

1

m

j

 G(||x1-x2||2)* waj(m)                                                                            (4.3)

Where waj are the weights connected between the hidden layer and the output layer. 

The error at the mth iteration is given by

e1p (m) = V1p–  V2p(m)                                                                                                       (4.4)

• Weight Update Equation

             The weights waj are updated through a linear optimization strategy.  The linear 

optimization strategy employed in this work is the LMS algorithm.

             The weight update equation as per the LMS algorithm is given by

waj(m+1) = waj(m) + η2* G(  || x1-x2|| 2)* e1p(m)                                                       (4.5)

Where η2 is learning rate.

• Evaluation Criteria

            The stopping criteria adopted is these proposed models are same as the MFNN models. 

The training errors, Etr from the RBFN are calculated using equation (3.9). The training phase is 

completed once the training error seems to reach a desired minimum.

 Equation (3.10) is then used to calculate the Mean Absolute Error Ets of the test data, just by 

passing  the  input  data  through  the  network  and  modeled  values  of  the  output  data  are 

obtained. 
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4.3 Modeling of Breakdown Voltage using RBFN

     This section details the attempt at modeling of breakdown voltage due to PD in voids 

under DC and AC conditions separately using RBFN. These models predicts the breakdown 

voltages as a function of  different void parameters,  namely,  void diameter and void depth, 

insulation sheet thickness and relative permittivity. The network is provided with both input 

data and desired response; and is trained in a supervised fashion, similar to that of MFNN. The 

weights are updated using the LMS algorithm.  The training phase is completed after a series of 

iterations.  Output  is  compared with the desired response in each iteration,  and a match is 

obtained. 

             In order to predict the breakdown voltage a software program has been developed in 

MATLAB 7.1  to  implement  equations  (4.1)  to  (4.5).  The program  also  calculates  the  error 

values using equations (3.9) and (3.10). The program is suitably modified for different models 

based on input – output parameters. The flowchart for the RBFN is shown in Figure 4.2.

4.3.1 Prediction of the breakdown voltage due to PD in voids under DC condition

            For prediction of breakdown voltage under DC condition two models are proposed with 

different input conditions as follows 

• Model 1

            This model has used the same number of input-output parameters as in the MFNN model 

1  presented  in  Chapter  3,  that  is,  number  of  input  parameters  are  two  corresponding  to 

thickness of the insulation and void diameter, and output parameter is the breakdown voltage. 

Moreover, this model has also used the same set of input- output patterns as model 1. Hence, 

the total input-output data sets for this model are 65. The 65 sets of input output patterns of 

five  insulating materials  are  thus taken from Table  2.6.  Out  of  the  65 sets  of  input-output 

patterns, 50 sets of input-output patterns are utilized to train the RBFN and the remaining 15 

sets are used for the testing purpose.
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Figure 4.2 : Flow Chart for the RBFN
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Results and Discussions

              In this study, the optimum values of network parameters are obtained based on Mean 

Square Error Etr for the training patterns. The network is trained in a sequential mode.  In 

applying the RBF and LMS algorithm for the proposed prediction work the following key issues 

are addressed

1. Number of chosen centers m1

2. Learning rate of the LMS algorithm η2

3. Number of iterations

             To decide upon the optimum values, m1 and η2 values are varied extensively. It is found 

that the values of Etr are of the order 10-2 when 1 ≤ m1 ≤ 5 & 0 ≤ η2 ≤ 1.89 or when 1≤ m1 ≤ 5 & η2 

> 2.0. However, with the increase of m1 values and η2 in the range between 1.90 and 2.00, value 

of Etr falls sharply. Thus, m1 is increased in steps of 1 from 6 to 13.  Corresponding to each value 

of m1, the value of Etr is calculated. Tables 4.1 and 4.2 show the variation of Etr as a function of 

m1 and η2 respectively. Out of the eight values of Etr, the least value occurs at m1 = 11. 

             The value of η2 is then varied in the range of 1.90 to 2.00, with m1 fixed at 11. Out of the 

seven values of Etr,  the minimum value of Etr occurs at η2 = 1.98. Hence, after trying out 14 

combinations of m1 and η2, the least value of Etr is obtained as 9.621*10-6 when η2 =1.98 and m1 

= 11. The network structure is as shown in Figure 4.3. The variation of error Etr of the training 

data with the number of iterations with η2 = 1.98, m1 = 11 is shown in Figure 4.4.  
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Table 4.1: Variation of Training error Etr with number of centers m1 

(η2 = 1.98, Number of iterations = 400) 

m1 Etr

6 2.167*10-4

7 1.709*10-5

8 1.606*10-5

9 1.579*10-5

10 1.570*10-5

11 9.621*10-6

12 2.082*10-5

13 1.094*10-4

Table 4.2: Variation of Training error Etr with η2  

(m1 = 11, Number of iterations = 400)

η2 Etr

1.90 7.685*10-4

1.95 9.727*10-6

1.96 9.683*10-6

1.97 9.638*10-6

1.98 9.621*10-6

1.99 4.187*10-4

2.00 3.523*10-3
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Figure 4.3:  RBF Network employed in Model 1 
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Figure 4.4:  Variation of Etr of the Training data as a function of Number of iterations  
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             On completion of the training, the breakdown voltage, Vb = f (t, d) for the 15 sets of test 

input data for all the five insulating materials are calculated using the trained network.  Table 

4.3 shows a comparison of the experimental and the modeled values of the breakdown voltage. 

As may be seen from this Table that the value of MAE of the test data Ets is 1.5953 %.

Table 4.3: Comparison of the Experimental and the Modeled value of breakdown voltage

Insulating 
Material

t

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White Minilex 0.26 3 25.4903 25.5901

1.5953

0.125 2 24.7000 24.7001

0.18 1.5 24.7000 24.7000

Leatherite Paper 0.13 5 2.0127 2.0113

0.175 4 2.5152 2.8346

0.235 2 3.3105 3.2788

Glass Cloth 0.195 5 17.9443 17.9393

0.155 3 13.9502 13.9508

0.155 1.5 13.8725 13.8725

Manila Paper 0.035 3 1.5456 1.5850

0.06 2 1.4413 1.4419

0.06 4 1.5088 1.6334

Lather Minilex 0.245 5 16.6824 16.6826

0.185 1.5 16.5625 16.5625

0.12 2 10.5760 10.5760

• Model 2

              This model is proposed in line with model 2 in Chapter 3 with same number of input 

and  output  parameters,  that  is,  number  of  input  parameters  are  three  corresponding  to 

thickness  of  the  insulation,  depth  of  void  and void  diameter,  and  output  parameter  is  the 
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breakdown voltage. Total input-output data sets used for this model are 130. As mentioned in 

Chapter 3, 130 sets of input output patterns of five insulating materials are taken from Table 

2.6. Similarly, out of the 130 sets of input-output patterns, 115 sets of input-output patterns 

are utilized to train the RBFN and the remaining 15 sets are kept for the testing purpose.

Results and Discussions

             The m1  and η2  values are varied in a similar manner as in the previous model It is 

revealed that the error values of the training data Etr are of the order 10-2 when 1 ≤ m1 ≤ 6 & 0 ≤ 

η2 ≤ 1.92 or when 1≤ m1 ≤ 6 & η2 > 1.98. However, with the increase of m1 values and η2 in the 

range between 1.93 and 1.98, value of Etr falls sharply. Thus, m1 is increased in steps of 1 from 

7 to 11.  Corresponding to each value of m1, the value of Etr is calculated. Tables 4.4 and 4.5 

show the variation of Etr as a function of m1 and η2 respectively. Out of the five values of Etr, the 

least value occurs at m1 = 9.  

              Then m1 is fixed at 9, and η2 is varied in the range of 1.93 to 1.98. Out of the six values of 

the training error, the minimum value of Etr seems to occur at η2 = 1.96. Hence, after trying out 

10 combinations of m1 and η2, the least value of Etr is obtained as 5.29*10-5 when η2 =1.96 and 

m1 = 9. The network structure for this model is depicted in Figure 4.5. The variation of error Etr 

of the training data with the number of iterations with η2 = 1.96, m1 = 9 is shown in Figure 4.6.  

Table 4.4: Variation of Training error Etr with m1 

(η2 = 1.96, Number of iterations = 400) 

 

m1 Etr

7 3.90*10-3

8 1.21*10-4

9 5.29*10-5

10 1.28*10-4

11 2.95*10-4
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Table 4.5: Variation of Training error Etr with η2

 (m1 = 9, Number of iterations = 400)

η2 Etr

1.93 5.43*10-5

1.94 5.38*10-5

1.95 5.32*10-5

1.96 5.29*10-5

1.97 6.26*10-5

1.98 3.56*10-2

Figure 4.5: RBF Network used in Model 2
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Figure 4.6:  Variation of Etr of the training data as a function of Number of iterations  

             On completion of the training, the breakdown voltage, Vb = f (t, t1, d) for the 15 sets of 

test input data for all the five insulating materials are calculated using the trained network. A 

comparison of the experimental and the modeled values of the breakdown voltage is presented 

in Table 4.6. As indicated in the Table, it may be seen that the value of MAE of the test data E ts is 

0.3868 %.
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Table 4.6: Comparison of the experimental and modeled values of breakdown voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 0.025 3 25.4903 25.5317

0.3868

0.125 0.125 2 24.7000 24.7642

0.18 0.025 1.5 24.7000 24.7000

Leatherite 
Paper

0.13 0.125 5 2.0127 2.0138

0.175 0.125 4 2.5152 2.5313

0.235 0.025 2 3.3105 3.3104

Glass Cloth 0.195 0.025 5 17.9443 18.0374

0.155 0.025 3 13.9502 13.9502

0.155 0.125 1.5 13.8725 13.7376

Manila Paper 0.035 0.125 3 1.5456 1.5364

0.06 0.025 2 1.4413 1.4413

0.06 0.125 4 1.5088 1.5035

Lather 
Minilex

0.245 0.025 5 16.6824 16.8771

0.185 0.125 1.5 16.5625 16.7567

0.12 0.025 2 10.5760 10.5760
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4.3.2 Prediction of the breakdown voltage due to PD in voids under AC conditions 

             For prediction of breakdown voltages under AC conditions four models are proposed,  

details of which are as follows 

• Model 3

             This model has used the same input-output parameters to develop breakdown voltage  

model  for  Leatherite  paper,  similar  to  the  model  3  presented  in  Chapter  3,  using  MFNN. 

Further, the model has also used the identical number of input-output data sets as model 3, 

which are 15. Thus, the input output data are taken from Table 2.7. Out of the 15 sets of input-

output  patterns,  8  sets  of  input-output  patterns  are  utilized  to  train  the  RBFN  and  the 

remaining 7 sets are used for the testing purpose.

Results and Discussions

              On varying the values of m1 and η2 in order to obtain the optimum values, it is found 

that the values of training error Etr are of the order of 10-3 and above when 1 ≤ m1 ≤ 6 & 0 ≤ η2 ≤ 

1.89 or when 1≤ m1 ≤ 6 & η2 > 1.98. However, when m1 is increased from 7 to 13 in steps of 1, 

the values of Etr are in the order of 10-4 or 10-5 for a fixed value of η2 between 1.90 and 1.98. 

Hence, out of the 7 values of Etr, the least value of Etr occurs for m1 = 12. 

               Then m1 is fixed at 12 and η2 is varied in the range of 1.90 to 1.98 in steps of 0.01. It is 

found that the least value of Etr = 1.263*10-5 occurs, when η2 = 1.97 and m1 = 12. The variation of 

Etr of the training data with the number of iterations with η2 = 1.97, m1 = 12 is shown in Figure 

4.7. Hence the network structure for this model is similar to Figure 4.3. But there are 12 radial 

basis functions in the hidden layer. Tables 4.7 - 4.8 shows the variation of Etr as a function of m1 

and η2 respectively. 
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Table 4.7: Variation of Training error Etr with m1 

(η2 = 1.98, Number of iterations = 400) 

m1 Etr

7 8.246*10-4

8 2.231*10-4

9 1.044*10-4

10 3.270*10-5

11 2.333*10-5

12 1.327*10-5

13 1.627*10-5

Table 4.8: Variation of Training error Etr with η2 

(m1 = 12, Number of iterations = 400)

η2 Etr

1.90 1.521*10-4

1.91 1.313*10-5

1.92 1.305*10-5

1.93 1.297*10-5

1.94 1.289*10-5

1.95 1.280*10-5

1.96 1.273*10-5

1.97 1.263*10-5

1.98 1.327*10-5
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Figure 4.7:  Variation of Etr of the training data as a function of Number of iterations  

              On completion of the training, the breakdown voltage, Vb = f (t, d) for the 7 sets of test 

input data for Leatherite paper are calculated using the trained network.  Table 4.9 shows a 

comparison of the experimental and the modeled value of the breakdown voltage. The value of 

Ets is 0.5611 % is also indicated in the Table.

Table 4.9: Comparison of the Experimental and Modeled values of Breakdown voltage  

Insulating 
Material

t

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the Test 

data

Ets (%)

Leatherite 
Paper

0.13 1.5 1.3452 1.3452

0.5611

0.13 2 1.3306 1.3306

0.13 3 1.2972 1.2754

0.175 2 1.8313 1.8313

0.175 3 1.7981 1.7698

0.235 2 2.2697 2.2757

0.235 4 2.2909 2.3018
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• Model 4

             The model 4 has used the same number of input parameters, the same number of output 

parameters, the same number of insulating materials and the identical input output patterns as 

model 4 in Chapter 3. This implies that the number of sets of input and output patterns of the 

five insulating materials is 65. Hence these input output patterns are taken from Table 2.7.  Out 

of the 65 sets of input-output patterns, 50 sets of input-output patterns are utilized to train the 

RBFN and the remaining 15 sets are used for the testing purpose.

Results and Discussions

              Since,  the main objective is to obtain the least value of  training error Etr for  a 

combination of m1 and η2, these two parameters are varied extensively. It is revealed that when 

1 ≤ m1 ≤ 5 & 0 ≤ η2 ≤ 1.89 or when 1≤ m1 ≤ 5 & η2 > 1.99 the values of Etr are of the order of 10-3 

and above. Hence, essentially two steps are carried out. In the first step, m1 varies from 6 to 13 

in steps of 1, while keeping η2 constant at a value between 1.90 to 1.99.  The least value of Etr 

occurs at m1=11. 

             In the second step, η2 is varied from 1.90 to 1.99 keeping m1 fixed at 11, and at η2 = 1.98, 

the least value of Etr is obtained. Hence, from both the steps, it is found that the least value of Etr 

is 1.010*10-5 for the combination of η2 = 1.98 and m1 = 11.  Tables 4.10 - 4.11 show the variation 

of Etr as a function of m1 and  η2 respectively. The network structure for this model is the same 

as Figure 4.3 The variation of Etr of the training data with the number of iterations with  η2  = 

1.98, m1 = 11 is represented in Figure 4.8.  
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Table 4.10: Variation of Training error Etr with m1 

(η2 = 1.96, Number of iterations = 400) 

m1 Etr

6 1.82*10-4

7 1.73*10-5

8 1.64*10-5

9 1.55*10-5

10 1.47*10-5

11 1.02*10-5

12 2.30*10-5

13 2.86*10-5

Table 4.11: Variation of Training error Etr with η2 

(m1 = 11, Number of iterations = 400)

η2 Etr

1.90 3.060*10-4

1.95 1.023*10-5

1.96 1.020*10-5

1.97 1.013*10-5

1.98 1.010*10-5

1.99 4.410*10-4
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Figure 4.8:  Variation of Etr of the Training data as a function of Number of iterations  

              Finally, the modeled value of the breakdown voltage V b = f (t, d) is obtained for the test 

data  by  passing  through  the  trained  network.  Table  4.12  shows  a  comparison  of  the 

experimental and the modeled value of the breakdown voltage for the 15 sets of the test data. 

The value of MAE of the test data Ets is obtained as 0.2334%, as may be seen from Table.
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  Table 4.12: Comparison of the Experimental and modeled values of Breakdown voltage 

Insulating 
Material

t

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the Test 

data

Ets (%)

White 
Minilex

0.26 3 2.2807 2.2898

0.2334

0.125 2 2.2697 2.2697

0.18 1.5 2.2885 2.2885

Leatherite 
Paper

0.13 5 1.3306 1.3305

0.175 4 1.8313 1.8603

0.235 2 2.2909 2.2880

Glass Cloth 0.195 5 2.2294 2.2289

0.155 3 2.2447 2.2448

0.155 1.5 2.3088 2.3088

Manila Paper 0.035 3 0.8154 0.8158

0.06 2 0.8388 0.8387

0.06 4 0.8758 0.8871

Lather 
Minilex

0.245 5 2.2697 2.2697

0.185 1.5 2.3088 2.3088

0.12 2 2.3170 2.3170

• Model 5

              The model 5 is proposed based on an additional input parameter, namely the void 

depth t1,  with respect to the model 4. Hence, the total number of input-output patterns in this 

model has increased by a factor of two and becomes 130. The 130 sets of input output patterns 

have been taken from Table 2.7.  The training of the model is carried out with 115 sets of input 

output patterns and the rest 15 sets are utilized for testing purpose.
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Results and Discussions

            The reasons for fixing the range of values of m1 and η2 in order to obtain the least value of 

training error Etr have been discussed exhaustively in the previous four models and the same 

process is also adopted in this model. On following these guidelines it can be confirmed from 

Tables 4.13, 4.14 and Figure 4.9 that the least value of Etr is seem to obtain as 5.61*10-5 for m1 = 

9 , η2 = 1.96 after 400 iterations. The network structure for this model is the same as Figure 4.5.
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Figure 4.9:  Variation of Etr of the Training data as a function of Number of iterations  

Table 4.13: Variation of Training error Etr with m1 

(η2 = 1.96, Number of iterations = 400) 

m1 Etr

6 2.10*10-2

7 4.50*10-3

8 1.57*10-4

9 5.61*10-5

10 1.46*10-4
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Table 4.14: Variation of Training error Etr with η2  

 (m1 = 9, Number of iterations = 400)

η2 Etr

1.90 4.82*10-3

1.95 5.64*10-5

1.96 5.61*10-5

1.97 6.72*10-5

1.98 4.08*10-2

              On completion of the training, the breakdown voltage, Vb = f (t, t1, d) for the 15 sets of 

test input data for all the five insulating materials are calculated using the trained network. 

The value of the Mean Absolute Error Ets is 0.2586% for this model and this may be confirmed 

from Table 4.15. In addition, the experimental and the modeled value of the breakdown voltage 

have been compared in this Table.
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Table 4.15: Comparison of the experimental and modeled values of the breakdown 

voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 0.025 3 2.2294 2.2330

0.2586

0.125 0.125 2 2.2447 2.2505

0.18 0.025 1.5 2.2697 2.2697

Leatherite 
Paper

0.13 0.125 5 1.2972 1.2973

0.175 0.125 4 1.8520 1.8535

0.235 0.025 2 2.2697 2.2697

Glass Cloth 0.195 0.025 5 2.3088 2.3171

0.155 0.025 3 2.3088 2.3088

0.155 0.125 1.5 2.2294 2.2172

Manila Paper 0.035 0.125 3 0.8388 0.8380

0.06 0.025 2 0.8154 0.8154

0.06 0.125 4 0.8479 0.8474

Lather 
Minilex

0.245 0.025 5 2.2447 2.2792

0.185 0.125 1.5 2.2294 2.2470

0.12 0.025 2 2.2909 2.2909

• Model 6

              In all the previous models proposed in this Chapter, the breakdown voltage due to PD in 

voids was predicted as a function of the thickness of the material t and the void parameter(s). 

However, it is reported that the PD activities and thus breakdown of insulation are dependent 

on the value of relative permittivity Єr of a material [50, 51]. Hence, in this model, the relative 

permittivity  Єr of  the  sheet  samples are  considered as an additional  input parameter  with 
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respect  to  model  5.   The value  of  Ni is  thus  four.  The  number  of  training  and the  testing 

patterns is the same as model 5. 

Results and Discussions

               To obtain the least value of  the training error, network parameters are varied 

extensively as before to obtain the optimum values. It is found that the least value of Etr is 

seemed to obtain as 8.79*10-5 for the combination of η2  = 1.96 and m1  = 9. Tables 4.16 - 4.17 

shows the variation of Etr as a function of m1 and η2 respectively. The network structure for this 

model is depicted in Figure 4.10. The variation of Etr of the training data with the number of 

iterations with η2 = 1.96, m1 = 9 is shown in Figure 4.11. 

 

Table 4.16: Variation of Training error with m1 

(η2 = 1.96, Number of iterations = 400) 

m1 Etr

6 2.52*10-2

7 7.20*10-3

8 1.94*10-4

9 8.79*10-5

10 2.10*10-4

Table 4.17: Variation of Training error Etr with η2  

(m1 = 9, Number of iterations = 400)

η2 Etr

1.90 9.15*10-4

1.95 8.84*10-5

1.96 8.79*10-5

1.97 9.88*10-5

1.98 4.08*10-2

142



Chapter 4                                                                Modeling of Breakdown Voltage using Radial Basis Function Network
     

Figure 4.10:  RBF Network used in Model 6
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Figure 4.11:  Etr of the training data as a function of Number of iterations  
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              Finally, the breakdown voltage, Vb = f (t, t1, d, Єr)  for the 15 sets of test input data for all 

the five insulating materials are calculated using the trained network. A comparison of the 

experimental and the modeled value of the breakdown voltage is presented in Table 4.18. The 

MAE value of test data Ets is obtained as 0.5735 %. 

Table 4.18: Comparison of the Experimental and Modeled values of the Breakdown 

voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Єr Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 0.025 3 4.4 2.2294 2.2330

0.5735

0.125 0.125 2 4.4 2.2447 2.2505

0.18 0.025 1.5 4.4 2.2697 2.2697

Leatherite 
Paper

0.13 0.125 5 4.21 1.2972 1.2973

0.175 0.125 4 4.21 1.8520 1.8534

0.235 0.025 2 4.21 2.2697 2.2607

Glass Cloth 0.195 0.025 5 4.97 2.3088 2.3164

0.155 0.025 3 4.97 2.3088 2.3088

0.155 0.125 1.5 4.97 2.2294 2.2179

Manila Paper 0.035 0.125 3 4.68 0.8388 0.8380

0.06 0.025 2 4.68 0.8154 0.8154

0.06 0.125 4 4.68 0.8479 0.8474

Lather 
Minilex

0.245 0.025 5 5.74 2.2447 2.3918

0.185 0.125 1.5 5.74 2.2294 2.2419

0.12 0.025 2 5.74 2.2909 2.2909
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4.3.3 Extrapolation capability of RBFN

            Model 6 just presented before is based on RBFN that was trained with 110 input-output 

data sets of five insulating sheet materials of thickness in the range of 0.06 to 0.245 mm. The 

depth of the artificial voids is 0.025 and 0.125 mm and the void diameter ranges between 1.5 

and 5 mm. After the training is over as in Model 6, the RBFN was tested for it’s extrapolation 

capability  with  the  help of  20 sets  of  new test  input  data  sets  of  Manila Paper and White 

Minilex with insulation thickness 0.035mm and 0.26 mm, void depth of 0.025 and 0.125 mm 

and void diameter of 1.5 to 5 mm. Thus, the insulation thickness of 0.035mm and 0.26 mm lies 

outside the range of the other thicknesses used for the training purpose for the five insulating 

materials. With the new test data sets, the MAE, Ets of the test data is found slightly increased to 

0.9896% than is obtained with model 6. The comparison of experimental and modeled values 

of the test data sets are presented in Table 4.19. This clearly indicates the adaptability of the 

network for a data, which is beyond the ranges of training set.  
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Table 4.19: Comparison of the Experimental and modeled breakdown voltage 
(Extrapolation capability)

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Єr Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage  (kV)

(Modeled)

MAE of 
the Test 

data

Ets (%)

Manila Paper 0.035 0.025 3 4.68 0.8154 0.8154

0.9896

0.035 0.125 2 4.68 0.8758 0.8527

0.035 0.025 1.5 4.68 0.8758 0.8757

0.035 0.125 5 4.68 0.9089 0.9096

0.035 0.125 4 4.68 0.8479 0.8573

0.035 0.025 2 4.68 0.8479 0.8430

0.035 0.025 5 4.68 0.8683 0.8683

0.035 0.025 4 4.68 0.9089 0.9036

0.035 0.125 1.5 4.68 0.8154 0.8246

0.035 0.125 3 4.68 0.8388 0.8379

White 
Minilex

0.26 0.025 2 4.4 2.3088 2.3112

0.26 0.125 4 4.4 2.2909 2.2959

0.26 0.025 5 4.4 2.3170 2.3165

0.26 0.125 1.5 4.4 2.2885 2.2640

0.26 0.125 3 4.4 2.2885 2.4432

0.26 0.025 1.5 4.4 2.2294 2.2958

0.26 0.125 2 4.4 2.2697 2.2799

0.26 0.025 3 4.4 2.2294 2.2208

0.26 0.025 4 4.4 2.2885 2.2678

0.26 0.125 5 4.4 2.2909 2.2883
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4.4 Conclusion

            In this Chapter, six models are proposed based on the RBFN structure to predict the 

breakdown voltage of solid insulating materials. The combinations of network parameters for 

best result in each model are identified. All the six models clearly indicate their effectiveness in 

predicting the breakdown voltage as is evident from the low Mean Absolute Error values of the 

test data. Further, the extrapolation capability of the RBFN has been explored. This too gives 

very satisfactory results.
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5.1 Introduction

              In Chapters 3 and 4, the modeling of the breakdown voltage of solid insulating materials 

was attempted with the help of several ANN models utilizing MFNN and RBFN structures with 

the  help  of  experimental  data,  generated  in  the  laboratory  and those  are  available  in  the 

literature.  In  this  Chapter,  the  same  data  sets  have  been utilized and the  modeling  of  the 

breakdown  voltage  is  proposed  based  on  the  Fuzzy  Logic  (FL)  technique  with  Mamdani 

inferencing. First, a general outline of the Mamdani Fuzzy Logic (MFL) has been presented in 

brief. Then, detailed discussions on the proposed models are made. 

5.2 Mamdani Fuzzy Logic (MFL)

           The ANN models discussed in the last two Chapters such as the MFNN and the RBFN 

model  can recognize input-output  data  patterns and are  able  to update  their  weights.  The 

weight updating is possible in the MFNN and the RBFN model by using the BPA and the LMS 

algorithm respectively. Hence, these ANN models are able to adapt themselves to cope with 

changing environments. The Fuzzy Logic (FL) models on the other hand incorporate human 

knowledge  and  perform  inferencing  and  decision-making.  It  is  essentially  knowledge 

representation via fuzzy if then rules. 

             In this section, first of all the general theory of the MFL inferencing for the purpose of 

prediction is discussed before applying it to certain models in the next section. 

• General Theory of the inferencing

             The MFL Rule Based inferencing [82-83] is computationally very efficient. For applying 

this inferencing to the various models, the relationship between the linguistic values and the 

actual values of the input and the output parameters is required. The relationship between the 

linguistic values and the actual values of the input parameters is created with the help of Table 
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5.1, while Table 5.2 shows the relationship between the linguistic and actual values for the 

output parameter, namely the breakdown voltage.

Table 5.1: Relationship between the Linguistic and the Actual values from Input 1 to 
Input Ni

Linguistic Values Input 1 Input 2 Input Ni

Low i1L1-i1L2 i2L1-i2L2 iNiL1-iNiL2

Medium Low i1ML1-i1ML2 i2ML1-i2ML2 iNiML1-iNiML2

Medium i1M1-i1M2 i2M1-i2M2 iNiM1-iNiM2

Medium High i1MH1-i1MH2 i2MH1-i2MH2 iNiMH1-iNiMH2

High i1H1-i1H2 i2H1-i2H2 iNiH1-iNiH2

Table 5.2: Relationship between the Linguistic and the Actual values for V 

Linguistic Values V  (kV)

Low VL1-VL2

Medium Low VML1-VML2

Medium VM1-VM2

Medium High VMH1-VMH2

High VH1-VH2

             The set of linguistic values assigned to input 1, input 2, ……., input N i and the breakdown 

voltage  V is given by equation (5.1).

Ł= {Low (L), Medium Low (ML), Medium (M), Medium High (MH), High (H)} (5.1)

While the Membership Functions (MFs) for input 1, input 2 and input Ni are µi1,  µi2  and µiNi 

respectively.

 µi1, µi2 and µiNi would be having components corresponding to each linguistic value defined as 

follows
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µi1 = {µilL, µilML, µilM, µilMH  µi1H}                                                                                          (5.2) 

µi2 = {µi2L, µi2ML, µi2M, µi2MH  µi2H}                                                                                       (5.3) 

µiNi = {µiNiL, µiNiML, µiNiM, µiNiMH  µiNiH}                                                                                                                                      (5.4)

       The Membership Functions (MFs) for V is µV.

  µV would be having five components corresponding to each linguistic value as

µV = {µVL, µVML, µVM, µVMH, µVH}                                                                                          (5.5)

The procedure for finding the number of rules is model specific. Let the total number of rules 

be R1.

Out of the total number of input output sets, Np of them is used for creating R1 rules in the rule 

base and Ns is used for testing purpose. 

A typical clipped fuzzified MFs obtained by firing the first rule is as follows:

µ1 = minimum Ni+1(µiN1* , µiN2*,…… µiNi*, µVMH)                                                           (5.6)

Where µN1*…. µNi* are the MFs corresponding to the crisp inputs for the input 1 up to input Ni 

respectively.

Similarly, the other fuzzified MFs obtained by firing the rest R1-1  rules are

µ2,  µ3,  µ4,………………………., µR11-1,  µR1.  All the R1 clipped fuzzified MFs are aggregated to form the 

aggregated fuzzified MFs. A typical rule base appears as follows in Table 5.3.
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Table 5.3: Typical Mamdani Rule Base 

IF Input parameters THEN Output parameters

SL No. Input 1 Input 2 Input Ni Breakdown Voltage V 

1. L M L MH

2. ML L MH M

3. H L L H

¦ ¦

¦ ¦

¦ ¦

R1-1 MH ML L ML

R1 M L H L

The aggregated fuzzified MFs is given by

µA1(V) = maximumR1 (µ1, µ2, µ3 ………………., µR11-1 ,µR1 )                                             (5.7)

• Membership Function (MF) used in the proposed models 

             For computational efficiency, efficient use of memory, and performance analysis needs, 

a uniform representation of the MFs for the input and the output parameters are required. This 

may be achieved by employing MFs with uniform shapes. The most popular choices for the 

shapes of the MFs include triangular, trapezoidal, gaussian, generalized Bell and pi shaped. The 

shape  of  the  MFs  considered  for  the  input  and the  output  parameters  are  assumed to  be 

triangular and trapezoidal for all the discussed models in this Chapter which are defined as 

follows. Figure 5.1 and 5.2 shows the sketches of the triangular and trapezoidal MF .

The triangular MF is defined as

        µx   =      0                                x < a

              = (x-a) / (b-a)                  a ≤ x ≤ b                                                                      (5.8)
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The parameters  a and  c locate the "feet" of the triangle and the parameter  b locates the 
peak. 

Figure 5.1: Triangular MF

The parameters a and d locate the "feet" of the trapezoid and the parameters b and c locate the 

"shoulders. 

Figure 5.2: Trapezoidal MF
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  = (c-x) / (c-b)                  b ≤ x ≤ c

              =     0                                 x > c     

The trapezoidal MF is defined as

        µx =      0                                  x < a

             = (x-a)/ (b-a)                      a ≤ x≤ b                                                               

             =     1                                b ≤ x≤ c                                                                           (5.9)

             = (d1-x)/ (d1-c)                  c≤ x≤ d1

             =     0                                  x>d1     

The fuzzy toolbox was used for equations (5.8) and (5.9). 

5.3 Modeling of Breakdown Voltage using MFL

             In this section, the breakdown voltage is predicted as a function of different void 

parameters, namely, void diameter and void depth and insulation sheet thickness both at DC 

and AC conditions using the MFL. Figure 5.3 shows the flowchart for the MFL.

            In order to predict the breakdown voltage under DC / AC conditions a software program 

has been developed in MATLAB 7.1 which solves equations (5.1) to (5.7). However, the defuzz 

function in the fuzzy toolbox was used to compute the defuzzified or the modeled value of the 

breakdown voltage from µA1(V). In addition, the program calculates the Mean Absolute Error 

(MAE)  of  the  test  patterns  Ets using  equation (3.10).  The program is  suitably  modified for 

different models based on the input – output parameters.

5.3.1 Prediction of the breakdown voltage due to PD in voids under DC conditions 

            The two proposed models have predicted the breakdown voltage of a single insulating 

material  as  a  function of  two and three input  parameters using  triangular and trapezoidal 

shapes for MFs. 

154



Chapter 5                                                                 Breakdown Voltage Modeling using Mamdani Fuzzy Logic Technique

• Model 1

            In this model [114], the number of input parameters is assumed to be two i.e. the 

thickness of the paper t and the void diameter d and the output parameter is the breakdown 

voltage  to be  predicted as a  function of  these input  parameters.  The void depth t1 is  kept 

constant at 0.125 mm. The model data sets used the experimental data generated using White 

Minilex paper. Since, the input parameters are two, the value of Ni is two for this model. In 

addition, since the output parameter is only one, the value of Nk is one. 

             Further, there are three values of thickness t of White Minilex paper and five values of 

void diameter d, thus, the number of input-output data sets is 15. These 15 sets of input-output 

patterns are taken from Table 2.6. Table 5.4 represents the relationship between the linguistic 

and the actual values of t and d and Table 5.5 showing the relationship between the linguistic 

and the actual values of V, which are obtained from these input-output patterns.  Out of the 15 

sets  of  input-output  patterns,  Np  = 8 sets  of  input-output  patterns,  Tables  5.4  and 5.5  are 

utilized for creating the rule base. The remaining Ns  = 7 sets are used for the testing the rule 

base.

The general form of this Table has been highlighted in Table 5.1.

Table 5.4: Relationship between the Linguistic and the Actual values for t and d 

Linguistic 
Values

t 

(mm) 

d 

(mm)

Low 0-0.15 1.0-3.8

Medium 0.09-0.24 2.0-4.8

High 0.18- 0.33 3.0-5.8
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Table 5.5: Relationship between the Linguistic and the Actual values for V dc 

Linguistic 
Values

V dc 

(kV)

Low 23.3-24.8

Medium 24.1-25.6

High 24.9-26.4

The set of linguistic values assigned to t and d are given by

Ł1= {Low (L), Medium (M), High (H)}                                                                       (5.10)

on using equation  (5.1).

The Membership Functions (MFs) for t and d are µt  and µd respectively. 

µt and µd would be having components corresponding to each linguistic value as

µt = {µtL, µtM, µtH}                                                                                                                (5.11)                 

µd = {µdL,µdM ,µdH}                                                                                                              (5.12)  

on following equations (5.2) to (5.4).

Results and Discussions

A.  Triangular MF

              The rule base is as shown in Table 5.6. Since the linguistic values associated with t and d 

are both 3, there are 9 rules in the rule base. Hence, in this model the value of R1 is 9.   This rule 

base Table is similar to the general rule base Table 5.3.
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Table 5.6: Mamdani Rule Base          

IF Input parameters THEN Output parameters

Thickness, t Diameter of the void,  d Breakdown Voltage, V

L L L

L M M

L H L

M L M

M M M

M H M

H L H

H M M

H H M

            The variation of the height b of the triangular MF defined in equation (5.8) plays a very  

critical role in reducing the MAE of the test data Ets. After trying out 15 combinations of the 

heights  btL (corresponding to  µtL in  equation (5.11)),  bdL (corresponding to  µdL in  equation 

(5.12))  and bVL (corresponding  to  µVL in  equation  (5.5)),  it  was  found  that  when  btL=0.08, 

bdL=2.4 and bVL=23.8, the Ets turns out to be the least .

            The modeled value of the breakdown voltage is obtained by defuzzification of equation 

(5.7).  Table  5.7  shows  a  comparison  of  the  experimental  and  the  modeled  values  of  the 

breakdown voltage when 7 sets of input-output patterns are presented to the MFL model as 

test data with triangular MF for the input and the output parameters. The least value of MAE of 

the test data Ets is found to be 0.7789 %.

Figure 5.4 shows the aggregated MFs plot for the test inputs using equation (5.7).
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Figure 5.4:  Aggregated Fuzzy MFs for the Test inputs with Triangular MF 

Table 5.7: Comparison of the Experimental and Modeled values of the Breakdown 

voltage 

t 

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)

(kV)

MAE of the Test 
data

Ets 

(%)

0.125 1.5 23.85 24.4081

0.7789

0.125 2 24.32 24.4394

0.18 1.5 24.70 24.7783

0.18 3 24.77 24.7783

0.26 5 25.66 25.6095

0.26 1.5 25.42 25.5783

0.125 4 24.09 24.4394
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B. Trapezoidal MF

    This Case is very similar to Case A except that the triangular MF is now replaced by the 

trapezoidal  MF.  Hence,  Tables  5.4  -  5.6  are  also  used  here.  The  heights  b  and  c  of  the 

trapezoidal MF defined in equation (5.9) solely decides the value of MAE of the test data Ets. 

           After trying out 25 combinations of the heights  btL and ctL (corresponding to µtL in 

equation  (5.11));  bdL and  cdL (corresponding  to  µdL in  equation  (5.12)),  bVL and   cVL 

(corresponding to µVL in equation (5.5)), it is found that when these heights  of µtL, µdL and µVL 

are btL= 0.07, ctL= 0.13, bdL=1.5, cdL= 3.1 , bVL= 23.6 & cVL= 24.3 respectively, the Ets seems to be 

the minimum. 

            Table 5.8 shows a comparison of the experimental and the modeled values of the 

breakdown voltage when 7 sets of input data are presented to the MFL model as test data with 

trapezoidal  MF for  the  input  and the  output  parameters.  The  procedure  for  obtaining  the 

modeled value of the breakdown voltage is identical to that of Case A. The least value of MAE of 

the test data Ets is found to be 0.6477 %.

 Figure 5.5 shows the aggregated MFs plot for the same test inputs as Case A.
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Figure 5.5:  Aggregated Fuzzy MFs for the Test inputs with Trapezoidal MF
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Table 5.8: Comparison of the Experimental and Modeled values of the breakdown 

Voltage 

• Model 2

              In this model, the experimental data are obtained using Manila paper but the number of 

input parameters is assumed to be three, that is, the thickness of the paper t, void depth t1 and 

the void diameter d and the output parameter is the breakdown voltage to be predicted as a 

function of these input parameters. Hence, the value of Ni is three and the value of Nk is one for 

this model.

              Now, there are two values of thickness t of Manila paper considered here, two values of 

void depth t1 and five values of void diameter d. Thus, the number of input-output sets is 20. 

The 20 sets of input output patterns of Manila paper are taken from Table 2.6. Table 5.9 and 

Table 5.10 represents the relationship between the linguistic and actual values of 20 sets of 

input-output  patterns.  Out  of  the  20 sets  of  input-output  patterns,  13 sets  of  input-output 

patterns are utilized for formulating the rule base and the remaining 7 sets are used for testing 

the rule base.

t 

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)

(kV)

MAE of the Test 
data

Ets 

(%)

0.125 1.5 23.85 24.2898

0.6477

0.125 2 24.32 24.4035

0.18 1.5 24.70 24.8061

0.18 3 24.77 24.8061

0.26 5 25.66 25.6061

0.26 1.5 25.42 25.6061

0.125 4 24.09 24.2898
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Table 5.9: Relationship between the Linguistic and the Actual values for t, t1 and d 

Linguistic 
Values

t (mm) t1(mm) d (mm)

Low 0.015-0.04 0-0.07 1.0-3.8

Medium 0.03-0.055 2.0-4.8

High 0.045- 0.07 0.08-0.15 3.0-5.8

Table 5.10: Relationship between the Linguistic and the Actual values for Vdc

Linguistic 
Values

V dc (kV) 

Low 1.60-1.66

Medium 1.63-1.69

High 1.66-1.72

          

 In this case µtL, µdL (defined by equation (5.11) , (5.12)) and µVL (defined in equation (5.5)) have 

been used. 

           The set of linguistic values assigned to t1 are given by

Ł2= {Low (L), High (H)}                                                                                                (5.13)

using equation (5.1).

Whereas the set of linguistic values to t and d are given in equation (5.10).

The Membership Functions (MFs) for t1  is µt1.

 µt1 = {µt1L, µt1H}                                                                                                                (5.14)
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Results and Discussions

A.  Triangular MF

              The rule base is as shown in Table 5.11. Since the linguistic values associated with t, t1 

and d are 3, 2 and 3 respectively; there are 18 rules in the rule base. Hence, in this model the 

value of R1 is 18.   This rule base as represented by Table 5.11 is similar to Table 5.3. 

            19 combinations of  the heights btL (corresponding to µtL in equation (5.11)),  bt1L 

(corresponding to µt1L in equation (5.14)) bdL (corresponding to µdL in equation (5.12)) and  bVL 

(corresponding to µVL in equation (5.5)) have been tried. On carrying out this exercise, it is 

found that when the heights are btL= 0.03, bt1L= 0.04, bdL= 2.6 and bVL= 1.63 , the Ets turns out to 

be the least value at 1.2705 %. 
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Table 5.11: Mamdani Rule Base            

IF Input parameters THEN Output 
parameters

Thickness, t 
of the 

material

Thickness, t1 of 
void

Diameter of  the 
void,  d

Breakdown Voltage, V

L L L L

M L L L

H L L H

L L M H

M L M M

H L M L

L L H H

M L H H

H L H M

L H L M

M H L H

H H L L

L H M H

M H M L

H H M M

L H H H

M H H H

H H H L

             Table 5.12 shows the comparison of the experimental and modeled values of the 

breakdown voltage along with the least value of Ets. Figure 5.6 shows the aggregated MFs plot 

for the   test inputs.
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Figure 5.6: Aggregated Fuzzy MFs for the Test inputs with Triangular MF

Table 5.12: Comparison of the Experimental and Modeled values of the Breakdown 
voltage

t 

(mm)

t1

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 

(kV)

MAE of the Test 
data

Ets 

(%)

0.035 0.025 1.5 1.6389 1.6645

1.2705

0.035 0.125 2 1.6821 1.6723

0.06 0.025 1.5 1.6682 1.6750

0.06 0.125 3 1.6454 1.6645

0.035 0.025 5 1.6323 1.6600

0.06 0.125 1.5 1.7002 1.6447

0.035 0.025 4 1.6563 1.6600
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A.  Trapezoidal MF

              This Case is similar to Case A, except the fact the triangular Membership function for 

the input parameters is replaced by trapezoidal Membership function. The number of rules is 

obviously 18. It is revealed here that when the heights b and c defined in equation (5.9) for µtL, 

µt1L, µdL, µVL are  btL= 0.023, ctL= 0.032, bt1L= 0.03, ct1L= 0.05, bdL= 1.7, cdL= 3.1, bVL= 1.615 & cVL= 

1.645 , the Ets turns out to be the least at 1.1674 %. It may be noted this particular combination 

of b’s and c’s is obtained after 32 trials. The Tables 5.9 to 5.11 may also be used in this Case.
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Figure 5.7: Aggregated Fuzzy MFs for the Test inputs with Trapezoidal MF

              When the same test inputs as in Case A is presented to the MFL, a comparison between 

the experimental and the modeled value of the breakdown voltage is presented in Table 5.13. 

The MAE of the test data Ets also indicated in the same Table is 1.1674 %. Figure 5.7 shows the 

aggregated MFs plot for the same test inputs as Case A.
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Table 5.13: Comparison of the Experimental and Modeled values of the Breakdown 

voltage 

5.3.2 Prediction of the breakdown voltage due to PD in voids under AC conditions 

             The number of proposed models under AC conditions is three. Out of these models, two 

of them have predicted the breakdown voltage of a single insulating material as a function of 

two and three input parameters and one of them has predicted the breakdown voltage of five 

insulating materials as a function of four input parameters

• Model 3

              This model has predicted the breakdown voltage of White Minilex quiet similar to 

model 8, but under AC conditions. The number of input parameters and the number of input-

output data sets are the same as model 1. But since AC conditions are being discussed, the 

input  output  data  sets  are  taken  from  Table  2.7.  The  Tables  5.4  and  5.14  showing  the 

relationship between the linguistic values and the actual values of the input output parameters 

is prepared from the input output data sets. Since the input parameters are the same as model 

1, the rule base can be created with 9 rules. In addition, the equations (5.10) to (5.12) are used 

in this model.

t 

(mm)

t1

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 

(kV)

MAE of the Test 
data

Ets 

(%)

0.035 0.025 1.5 1.6389 1.6645

1.1674

0.035 0.125 2 1.6821 1.6723

0.06 0.025 1.5 1.6682 1.6750

0.06 0.125 3 1.6454 1.6645

0.035 0.025 5 1.6323 1.6600

0.06 0.125 1.5 1.7002 1.6447

0.035 0.025 4 1.6563 1.6600
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Table 5.14: Relationship between the Linguistic and the Actual values for V ac

Linguistic 
Values

V ac 

(kV) 

Low 2.15-2.25

Medium 2.20-2.30

High 2.25-2.35

Results and Discussions

A.  Triangular MF

              The rule base as shown in Table 5.15 has been created using 8 input-output patterns  

and referring to Table 5.4 and Table 5.14.  When the rule base is fired with the  7  input test 

patterns  and when btL=  0.09,  bdL=  2.0  and bVL=  2.2,  the  Ets turns  out  to  be  the  least.  This 

particular combination of the heights of µtL, µdL, µVL is obtained after 13 trials.

              The least value of the MAE of the test data E ts is 0.5188% as may be seen from Table 

5.16.  In addition,  the comparison between the modeled and the experimental values of  the 

breakdown voltage is provided in the same Table.  Figure 5.8 shows the aggregated MFs plot 

for the   test inputs.  
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Table 5.15: Mamdani Rule Base          

IF Input parameters THEN Output parameters

Thickness, t Diameter of the void,  d Breakdown Voltage, V

L L H

L M H

L H H

M L M

M M H

M H M

H L H

H M L

H H L
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Figure 5.8:  Aggregated Fuzzy MFs for the Test inputs with Triangular MF
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Table 5.16: Comparison of the Experimental and Modeled values of the Breakdown 

voltage  

B.  Trapezoidal MF

              The procedure for this Case is identical to Case A. Hence, Table 5.4, Table5.14 and Table 

5.15 are  also used here.  When the  combinations  of  heights  b and c  of  trapezoidal  MF (as 

defined in equation (5.9)) for µtL, µdL & µVL) are varied 24 times, the least value of Ets is obtained. 

The combination of  btL= 0.06, ctL= 0.11, bdL=1.5, cdL= 3.1, bVL= 2.175,  cVL= 2.225 has given  the 

least value of Ets .

              Along with these combination of the heights, the same test inputs as Case A is used for  

firing the rule base Table 5.15. As may be seen from Table 5.17, the least value of the MAE of 

the test data Ets is 0.5788%. The seven modeled and the experimental values of the breakdown 

voltage validate the accuracy of the model for the prediction purpose.

t 

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 

(kV)

MAE of the Test 
data

Ets 

(%)

0.125 1.5 2.2697 2.2759

0.5188

0.125 2 2.2807 2.2759

0.18 1.5 2.2447 2.2500

0.18 3 2.2909 2.2846

0.18 5 2.2407 2.2500

0.26 1.5 2.3170 2.3000

0.26 4 2.2294 2.2000
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Figure 5.9:  Aggregated Fuzzy MFs for the test inputs with Trapezoidal MF

Table 5.17: Comparison of the Experimental and Modeled values of the Breakdown 

voltage 

t 

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)

 (kV)

MAE of the Test 
data

Ets 

(%)

0.125 1.5 2.2697 2.2759

0.5788

0.125 2 2.2807 2.2759

0.18 1.5 2.2447 2.2500

0.18 3 2.2909 2.2750

0.18 5 2.2407 2.2500

0.26 1.5 2.3170 2.3000

0.26 4 2.2294 2.2000

170



Chapter 5                                                                 Breakdown Voltage Modeling using Mamdani Fuzzy Logic Technique

• Model 4

              The model 4 has the same number of input parameters as model 2. Hence, Table 5.9 can 

also be used in this model. The relationship between the linguistic and the actual values of V is 

given in Table 5.18. Table 2.7 has been used to extract 20 input-output data patterns. 

Table 5.18: Relationship between the Linguistic and the Actual values for Vac

Linguistic 
Values

Vac 

(kV) 

Low 0.76-0.83

Medium 0.81-0.88

High 0.86-0.93

Results and Discussions      

A.  Triangular MF

               The Table 5.19 for the rule base is formulated by referring to Table 5.9, Table 5.18 and  

using 13 out of the 20 input-output patterns. The number of rules R1 is 18, which is the same as 

model 2.

              The heights btL, bt1L, bdL, bVL for µtL, µt1L, µdL & µVL have been varied. 21 combinations of 

these heights were explored and when btL= 0.03, bt1L= 0.04, bdL= 2.6 and bVL= 0.8 , the Ets turns 

out to be the least.   
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Table 5.19: Mamdani Rule Base           

IF Input parameters THEN Output 
parameters

Thickness of 
the material, 

t

Depth of void, 
t1

Diameter of  the 
void,  

d

Breakdown Voltage , 

V

L L L L

M L L L

H L L H

L L M H

M L M M

H L M L

L L H H

M L H H

H L H M

L H L M

M H L H

H H L L

L H M H

M H M L

H H M M

L H H H

M H H H

H H H L

              When the rule base get fired by the test inputs, aggregated MF as per equation (5.7) 

results.  The  aggregated  Fuzzy  MFs  on  defuzzification  results  in  the  modeled  value  of  the 

breakdown voltage. Table 5.20 shows the comparison of the experimental and modeled values 
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of the breakdown voltage.  Figure 5.10 shows the aggregated MFs plot for the test inputs. The 

least value of the MAE of the test data Ets is 2.3702%. 
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Figure 5.10: Aggregated Fuzzy MFs for the Test inputs with Triangular MF

Table 5.20: Comparison of the Experimental and Modeled values of the Breakdown 

voltage   

t 

(mm)

t1

(mm)

d 

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 

(kV)

MAE of the Test 
data

Ets 

(%)

0.035 0.025 1.5 0.8758 0.8534

2.3712

0.035 0.125 2 0.8683 0.8670

0.06 0.025 1.5 0.8479 0.8708

0.06 0.125 3 0.9089 0.8534

0.035 0.025 5 0.8388 0.8462

0.06 0.125 1.5 0.8154 0.8222

0.035 0.025 4 0.8758 0.8462
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A. Trapezoidal MF

                The trapezoidal Case for model 4 also uses Table 5.9, Table 5.18 and Table 5.19. In 

order to obtain the least value of MAE of the test data E ts, the heights b and c of the trapezoidal 

MF  defined  in  equation  (5.9)  for  the  material  thickness,  void  depth,  void  diameter  and 

breakdown voltage are varied. 31 combinations of btL, bt1L, bdL, bVL, ctL, ct1L, cdL, cVL have been tried. 

It is found that when btL= 0.025, bt1L= 0.03, bdL= 1.6, bVL= 0.775, ctL= 0.034, ct1L= 0.05, cdL= 3.1, 

cVL= 0.815, the Ets turns out to be the least at 2.2002%.
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Figure 5.11: Aggregated Fuzzy MFs for the test inputs with Trapezoidal MF

              When test inputs are provided to rule base Table 5.19, a comparison between the 

experimental and the modeled value of the breakdown voltage is obtained in Table 5.21. Figure 

5.11 shows the aggregated MFs plot for the same test inputs as Case A.
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Table 5.21: Comparison of the Experimental and Modeled values of the Breakdown 

voltage  

• Model 5

              The model 5 based on the MFL scheme has used  the same training and testing sets of  

input output patterns as that used for the model 6 based on the MFNN structure in Chapter 3 

and model 6 based on the RBFN structure in Chapter 4. 

              Moreover, in this model, it was found that while framing two rules associated with two 

different insulating materials,  the two rules had identical linguistic values for t,  t1,  d and  Єr 

(antecedent part of the rule). As a result,  it was extremely difficult to identify an insulating 

material based on the rules. This problem was solved by assigning a different identification 

number I to a particular material. Hence, in addition to the fuzzification of the thickness t, void 

depth t1,  void diameter d and relative permittivity Єr ,  the identification number I was also 

fuzzified and  incorporated in the antecedent part of the rules. 

             The relative permittivity is the additional input parameter with respect to model 3 and 

model 4. The 130 sets of input output patterns are taken from Table 2.7. 

             The relationship between the linguistic values and the actual values for t, t1, d and Єr are 

presented  in  Table  5.22  and  the  relationship  between  the  linguistic  and  actual  values  of 

t 

(mm)

t1

(mm)

d 

(mm)

Breakdown 
Voltage 

(Expeimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 

(kV)

MAE of the Test 
data

Ets 

(%)

0.035 0.025 1.5 0.8758 0.8555

2.2002

0.035 0.125 2 0.8683 0.8643

0.06 0.025 1.5 0.8479 0.8643

0.06 0.125 3 0.9089 0.8555

0.035 0.025 5 0.8388 0.8450

0.06 0.125 1.5 0.8154 0.8200

0.035 0.025 4 0.8758 0.8450
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identification number I  are presented in Table 5.23.  The Table 5.24 shows the relationship 

between the linguistic and actual values of the breakdown voltage V. The Table 5.22, Table 5.23 

and Table 5.24 have been prepared from the input output patterns. Out of 130 input output 

patterns, 115 patterns and Tables 5.22, 5.23, 5.24 are used for creating 72 rules in the rule 

base Table 5.25.

Table 5.22: Relationship between the Linguistic and the Actual values for t, t1, d and Єr

Linguistic 
Values

t 

(mm)

t1

(mm)

d 

(mm)

Єr

Low 0.02-0.16 0-0.07 1.0-3.5 4.0-5.2

Medium 0.08-0.22 - 2.0-4.5 4.8-6.0

High 0.14-0.28 0.08-0.15 3.0-5.5 -

Table 5.23: Relationship between the Linguistic and the Actual values for Identification 
numbers for the materials

Linguistic Values I

Low (White Minilex ) 0.5-1.5

Medium Low (Leatherite Paper) 1.0-2.0

Medium (Glass Cloth) 1.5-2.5

Medium High ( Manila Paper) 2.0-3.0

High (Lather Minilex) 2.5-3.5

             The set of linguistic values assigned to t, t1 and d are defined in equation (5.10) and 

(5.13) and the components of µt, µt1 and µd are defined in equations (5.11), (5.12) and (5.14). 

The Membership Functions (MFs) for Єr  and I are µe and µi respectively.

The set of linguistic values assigned to Єr is given by

Ł3= {Low (L),Medium (M)}                                                                                            (5.15)
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The set of linguistic values assigned to I is given by

Ł4= {Low (L), Medium Low (ML), Medium (M), Medium High (MH), High(H)}(5.16)

Also, µe and µi would be having components corresponding to each linguistic value as

 µe =  {µeL, µeM}                                                                                                                    (5.17)

 µi = {µiL, µiML,µiM, µiMH,µiH }                                                                                                 (5.18)

Table 5.24: Relationship between the Linguistic and the Actual values for Vac

Linguistic 
Values

Vac 

(kV) 

Low 0.5-1.2

Medium Low 0.9-1.6

Medium 1.3-2.0

Medium High 1.7-2.4

High 2.1-2.8

Results and Discussions      

A.  Triangular MF

              Table 5.25 shows the rule base under AC condition for the five insulating materials. The 

value of number of rules in the rule base R1 is 72 in this model and the procedure for arriving at 

this value is explained below: 

              The number of rules for White Minilex is calculated as follows.

              Since the linguistic values associated with the thickness of the material, void depth, 

diameter of the void, relative permittivity and the identification number are 3, 2, 3, 1 and 1 

respectively  the  number  of  rules  is  3*2*3*1*1  =18.  Similarly,  for  other  materials  such  as 

Leatherite Paper,  Glass Cloth,  Manila Paper and Lather Minilex the number of  rules can be 

calculated following the procedure of White Minilex. They are 18, 12, 6 and 18 respectively. 

Hence, the total number of rules is 18+18+12+6+18 = 72.
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Table 5.25: Mamdani Rule Base 

A. White Minilex

IF Input parameters THEN 
Output 

parameters

SL 
No.

Identification 
number, I

Thickness 
of 

material, t

Thickness 
of  void, t1

Diameter 
of the void, 

d

Relative 
Permittivity 

Єr

Breakdown 
Voltage, V 

1. L L L L L MH

2. L L L M L H

3. L L L H L MH

4. L L H L L MH

5. L L H M L H

6. L L H H L MH

7. L M L M L MH

8. L L H L L H

9. L M L H L H

10. L M H L L H

11. L M H M L MH

12. L M H H L MH

13. L H L L L H

14. L H L M L MH

15. L H L H L H

16. L H H L L MH

17. L H H M L H

18. L H H H L MH
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B. Leatherite Paper

IF Input parameters THEN 
Output 

parameters

SL 
No.

Identification 
number, I

Thickness 
of 

material, t

Thickness 
of  void, t1

Diameter 
of the void, 

d

Relative 
Permittivity 

Єr

Breakdown 
Voltage, V 

19. ML L L L L M

20. ML L L M L M

21. ML L L H L ML

22. ML L H L L M

23. ML L H M L Ml

24. ML L H H L ML

25. ML M L M L MH

26. ML L H L L MH

27. ML M L H L M

28. ML M H L L MH

29. ML M H M L MH

30. ML M H H L M

31. ML H L L L H

32. ML H L M L H

33. ML H L H L H

34. ML H H L L MH

35. ML H H M L MH

36. ML H H H L MH
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C. Glass Cloth

IF Input parameters THEN 
Output 

parameters

SL 
No.

Identification 
number, I

Thickness 
of 

material, t

Thickness 
of  void, t1

Diameter 
of the void, 

d

Relative 
Permittivity 

Єr

Breakdown 
Voltage, V 

37. M M L L L H

38. M M L M L H

39. M M L H L H

40. M M H L L H

41. M M H M L H

42. M M H H L MH

43. M H L L L MH

44. M H L M L MH

45. M H L H L H

46. M H H L L H

47. M H H M L MH

48. M H H H L MH
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D. Manila Paper

IF Input parameters THEN 
Output 

parameters

SL 
No.

Identification 
number, I

Thickness 
of 

material, t

Thickness 
of  void, t1

Diameter 
of the void, 

d

Relative 
Permittivity 

Єr

Breakdown 
Voltage, V 

49. MH L L L L L

50. MH L H M L L

51. MH L L H L L

52. MH L H L L L

53. MH L L M L L

54. MH L H H L L
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E. Lather Minilex

IF Input parameters THEN 
Output 

parameters

SL 
No.

Identification 
number, I

Thickness 
of 

material, t

Thickness 
of  void, t1

Diameter 
of the void, 

d

Relative 
Permittivity 

Єr

Breakdown 
Voltage, V 

55. H L L L M MH

56. H L L M M MH

57. H L L H M H

58. H L H L M MH

59. H L H M M H

60. H L H H M MH

61. H M L M M H

62. H L H L M MH

63. H M L H M H

64. H M H L M H

65. H M H M M H

66. H M H H M MH

67. H H L L M MH

68. H H L M M MH

69. H H L H M H

70. H H H L M MH

71. H H H M M H

72. H H H H M MH

               The rule base presented in Table 5.25 gets fired by the 15 test inputs. Moreover the 

combination of the six heights btL, bt1L, bdL, beL, bIL, bVL have been varied 39 times in order to 
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obtain the minimum value of Ets.  The minimum value of Ets occurs when btL=0.07, bt1L=0.05, 

bdL=2.0, beL=4.5 , bIL=0.8 and bVL=0.8 and this value is  2.8444%.

              Table 5.26 shows the comparison of the experimental and modeled values of the 

breakdown  voltage  for  all  the  five  materials  under  AC  conditions.  Figure  5.12  shows  the 

aggregated MFs plot for all the 15 test inputs with this value of Ets.
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Figure 5.12:  Aggregated Fuzzy MFs for the Test Inputs with Triangular MF
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Table 5.26: Comparison of the Experimental and Modeled values of the Breakdown 

voltage   

B.  Trapezoidal MF

              In this Case also,  the Table 5.25 is fired by the same test inputs as Case A. 45  

combinations of the 12 heights btL, ctL, bt1L, ct1L, bdL, cdL,  beL, ceL, bIL, cIL, bVL and cVL have been tried. 

The Ets turns out to be the least at 2.9741% when btL= 0.06, ctL= 0.115, bt1L= 0.03, ct1L= 0.05, bdL= 

1.6, cdL= 3.0,  beL= 4.3, ceL= 5.0, bIL= 0.75, cIL=1.2, bVL= 0.65 and cVL= 1.0. It may be recalled that b’s 

and c’s are the notations used in equation (5.9).

Insulating 
Material

t 

(mm)

t1

(mm)

d 

(mm)

Єr Breakdown 
Voltage 

 (Experimental)

(kV)

Breakdown 
Voltage 

(Modeled)

(kV)

MAE of 
the Test 

data

Ets (%)

White 
Minilex

0.26 0.025 3 4.40 2.2807 2.2500

2.8444

0.125 0.125 2 4.40 2.2697 2.2692

0.18 0.025 1.5 4.40 2.2885 2.2516

Leatherite 
Paper

0.13 0.125 5 4.21 1.3306 1.4558

0.175 0.125 4 4.21 1.8313 1.8558

0.235 0.025 2 4.21 2.2909 2.4429

Glass 
Cloth

0.195 0.025 5 4.97 2.2294 2.2312

0.155 0.025 3 4.97 2.2447 2.2366

0.155 0.125 1.5 4.97 2.3088 2.3052

Manila 
Paper

0.035 0.125 3 4.68 0.8154 0.8429

0.06 0.025 2 4.68 0.8388 0.8419

0.06 0.125 4 4.68 0.8758 0.8357

Lather 
Minilex

0.245 0.025 5 5.74 2.2697 2.4500

0.185 0.125 1.5 5.74 2.3088 2.2500

0.125 0.025 2 5.74 2.3170 2.4500
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Figure 5.13:  Aggregated Fuzzy MFs for the Test Inputs with Trapezoidal MF

             Table 5.27 shows the comparison of the experimental and modeled values of the 

breakdown voltage. Figure 5.13 shows the aggregated MFs plot for the same 15 test inputs.
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Table 5.27: Comparison of the Experimental and Modeled values of the Breakdown 

voltage 

Insulating 
Material

t 

(mm)

t1

(mm)

d 

(mm)

Єr Breakdown 
Voltage 

 ( Experimental)

(kV)

Breakdown 
Voltage 

(Modeled)

(kV)

MAE of 
the Test 

data

Ets (%)

White 
Minilex

0.26 0.025 3 4.40 2.2807 2.2500

2.9741

0.125 0.125 2 4.40 2.2697 2.2624

0.18 0.025 1.5 4.40 2.2885 2.2404

Leatherite 
Paper

0.13 0.125 5 4.21 1.3306 1.4567

0.175 0.125 4 4.21 1.8313 1.8527

0.235 0.025 2 4.21 2.2909 2.4395

Glass Cloth 0.195 0.025 5 4.97 2.2294 2.2333

0.155 0.025 3 4.97 2.2447 2.2651

0.155 0.125 1.5 4.97 2.3088 2.2878

Manila 
Paper

0.035 0.125 3 4.68 0.8154 0.8500

0.06 0.025 2 4.68 0.8388 0.8407

0.06 0.125 4 4.68 0.8758 0.8419

Lather 
Minilex

0.245 0.025 5 5.74 2.2697 2.4500

0.185 0.125 1.5 5.74 2.3088 2.2500

0.125 0.025 2 5.74 2.3170 2.2500
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5.3.3 Prediction of the breakdown voltage due to PD in voids using CIGRE Method II 

Electrode System under AC conditions 

• Model 6

              The models 1, 2 ,3, 4, 5 proposed so far for the prediction of breakdown voltage had 

utilized  the  experimental  generated  data  using  Cylinder-Plane  Electrode  System,  which  is 

discussed in details in Chapter 2. In this model, prediction of breakdown voltage is proposed 

with  the  help  of  experimentally  generated  data  using  CIGRE  Method  II  Electrode  System 

reported in [75]. The thickness of the Leatherite paper used is 0.18 mm, 0.23 mm and 0.3 mm. 

The void depth had three values, 0.0625mm, 0.125 mm and 0.25 mm, while the void diameter 

has three values, namely 1mm, 2 mm and 5 mm. Hence, the proposed model [115] is carried 

out with the help of 27 sets of experimental input-output patterns generated for the Leatherite 

Paper insulation. The equations (5.5) to (5.9) have been used in arriving at the results of this 

model discussed below.         

             The procedure used for finding the relationship between the actual and the linguistic 

values of t, t1, d and V and formation of Tables 5.28 and 5.29 has been discussed for all the five 

models in Section 5.3.1 and 5.3.2.

Table 5.28: Relationship between the Linguistic and the Actual values for t, t1 and d 

Linguistic 
Values

t 

(mm)

t1

(mm)

d

(mm)

Low 0.13-0.23 0.00-0.125 0.0-3.0

Medium 0.20-0.30 0.05-0.212 1.5-4.5

High 0.28-0.35 0.173-0.298 3.0-6.0
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Table 5.29: Relationship between the Linguistic and the Actual values for Vac

Linguistic Values Vac (kV) 

Low(L) 3.25-3.50

Medium Low(ML) 3.35-3.65

Medium(M) 3.55-3.80

Medium High(MH) 3.70-3.95

High(H) 3.85-4.30

Results and Discussions      

A.  Triangular MF

             Out of the 27 sets of input output patterns, the rule base Table 5.30 is created using 21 

sets of input output patterns, Table 5.28 and Table 5.29. Since the linguistic values of t, t1 and d 

are 3 each, the rule base Table has 27 rules.  
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Table 5.30: Mamdani Rule Base         

IF Input parameters THEN Output parameters

SL No. Thickness of the material, t
Depth of the void, t1

Diameter of  the void,  d Breakdown Voltage , 

V

1. L L L H

2. L L M M

3. L L H M

4. L M L MH

5. L M M M

6. L M H ML

7. L H L MH

8. L H M ML

9. L H H L

10. M L L H

11. M L M H

12. M L H MH

13. M M L H

14. M M M MH

15. M M H M

16. M H L MH

17. M H M MH

18. M H H M

19. H L L H

20. H L M H

21. H L H MH

22. H M L H

23. H M M MH

24. H M H M

25. H H L MH

26. H H M M

27. H H H H
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             The rule base has been tested with 6 sets of input output patterns for the triangular MF  

for t, t1, d and V defined in equation (5.8) . We find that when btL= 0.18, bt1L= 0.063, bdL= 1.5 and 

bVL= 3.37, the Ets value is 1.4%. 

              Table 5.31 shows the comparison of the experimental and modeled values of the 

breakdown voltage for Leatherite Paper under AC conditions.

Table 5.31: Comparison of the Experimental and Modeled values of the Breakdown 

voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 
(kV)

MAE of 
the test 

data

Ets (%)

Leatherite 
Paper

0.3 0.0625 2 4.0 4.0458

1.4

0.3 0.25 1 3.9 3.8236

0.23 0.125 5 3.6 3.6736

0.23 0.25 2 3.8 3.8237

0.18 0.0625 5 3.7 3.6737

0.18 0.125 1 3.9 3.8237

B.  Trapezoidal MF

             This Case has all things in common with Case A, except that the triangular MF is 

replaced by trapezoidal MF. This implies that Table 5.28, 5.29 and 5.30 can be utilized here for 

calculation of Ets.

              It is revealed that when btL= 0.16, ctL= 0.20, bt1L= 0.04, ct1L= 0.08, bdL= 0.8, cdL= 1.8, bVL= 

3.30 and cVL= 3.44, the value of Ets is 1.324%.  

              Table 5.32 shows the comparison of the experimental and modeled values of the 

breakdown voltage for Leatherite Paper under AC conditions.
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Table 5.32: Comparison of the Experimental and Modeled values of the Breakdown 

voltage  

Insulating 
Material

t

(mm)

t1

(mm)

d

(mm)

Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 
(kV)

MAE of 
the test 

data

Ets (%)

Leatherite 
Paper

0.3 0.0625 2 4.0 4.0465

1.324

0.3 0.25 1 3.9 3.8435

0.23 0.125 5 3.6 3.6638

0.23 0.25 2 3.8 3.8444

0.18 0.0625 5 3.7 3.6642

0.18 0.125 1 3.9 3.8410

5.4 Conclusion

              In this Chapter, five models have been proposed to predict the breakdown voltage due 

to PD in voids by use of the experimental data generated with Cylinder-Plane Electrode System 

under  DC  and  AC  conditions  using  FL  and  Mamdani  inferencing.  A  model  using  the  data 

obtained from the literature, which are essentially generated by CIGRE Method II Electrode 

System, has also been proposed to predict the breakdown voltage.  The shape of the MFs for 

the input and output parameters are assumed to be triangular and trapezoidal in all cases. The 

MAE of the test data obtained in all the models clearly indicates that the MFL inferencing is 

reasonably effective in predicting the breakdown voltage of solid insulating materials. 

191



Chapter 6

BREAKDOWN VOLTAGE MODELING 
USING ADAPTIVE SUGENO FUZZY 

LOGIC TECHNIQUE



Chapter 6                                                  Breakdown Voltage Modeling using Adaptive Sugeno Fuzzy Logic Technique

6.1 Introduction

              In Chapter 5, the modeling of the breakdown voltage of solid insulating materials was 

attempted with the help of Mamdani Fuzzy Logic (MFL) using the experimental data. The Fuzzy 

Logic (FL) model based on the Sugeno-inferencing and with adaptive features may also be used 

for the same modeling purpose. In this Chapter, the same experimental data as Chapter 5 has 

been utilized and the modeling of the breakdown voltage is proposed based on the Adaptive 

Sugeno Fuzzy  Logic  (ASFL)  inferencing.  First,  an  outline  of  the  ASFL inferencing  has  been 

presented. Then, a detailed discussion on the proposed models are made. 

6.2 Adaptive Sugeno Fuzzy Logic (ASFL) Inferencing

             As discussed in Chapter 5, the Fuzzy Logic (FL) models such as the Mamdani Fuzzy Logic 

(MFL)  and  the  Sugeno  Fuzzy  Logic  (SFL)   incorporate  human  knowledge  and  perform 

inferencing and decision making. 

            Although the MFL and the SFL have a structured knowledge representation in the form 

of fuzzy if then rules, it lacks the adaptability to deal with changing environments. But in recent 

times the researchers primarily working in the control systems faced certain interesting issues 

such as designing a controller for a nonlinear system [116] or designing a controller for a static 

compensator[117] in a multi machine power system. These issues were expertly handled by 

designing a robust adaptive Sugeno controller. These controllers had the essential attributes of 

an  intelligent  controller  having  the  learning  capability  and  could  reduce  computation  via 

reducing the size of the rule base. Since these controllers are intelligent in nature they can be 

termed as Adaptive Sugeno Fuzzy Logic (ASFL) controllers. Hence there is a scope for creating 

a  ASFL scheme depending on a specific application. In this section first of all the general theory 

of  the ASFL scheme for the purpose of prediction is discussed before applying it to certain 

models in the next section.    
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• General Theory of the Inferencing

             In this inferencing, first of all the relationship between the linguistic values and the 

actual values of the input parameters is created with the help of  Table 5.1 shown in Chapter 5.

The set of linguistic values assigned to input 1, input 2 and up to input Ni  is given by equation 

(5.1).

The  Membership  Functions  (MFs)  for  input  1,  input  2  and  input  Ni are  µi1,  µi2  and  µiNi 

respectively. In addition, µi1, µi2  and µiNi would be having components corresponding to each 

linguistic value as given by equations (5.2) to (5.4).

The procedure for finding the number of rules is model specific. Let the total number of rules 

be R1 .

A typical fuzzy rule in a Sugeno fuzzy model has the form

             If input1 is L and input 2 is M ………….and input Ni is L 

             then Output = f (input1, input2,………….input Ni)                                       (6.1)

Where L, M and L are the linguistic values of the input 1, input 2 and input Ni respectively and 

the output is a crisp function in the consequent. Usually f (input1, input2,………….input Ni) is a 

polynomial in the input variables input 1, input 2 ,…. input Ni  . When f (input1, input2,….input 

Ni) is a 1st order polynomial, the resulting fuzzy inference system is called a 1st  order Sugeno 

Fuzzy  model  (SFL)  [81].  Since  each  rule  has  a  crisp  output,  the  output  is  obtained  by  a 

weighted average, thus avoiding the time-consuming process of defuzzification required in a 

Mamdani Fuzzy Logic (MFL). The SFL model can be made adaptive by updating the coefficients 

of the polynomial in the consequent part of the rules. The updating is possible by using the LMS 

algorithm. Hence, the SFL model would be now termed as Adaptive Sugeno Fuzzy Logic (ASFL) 

model. A typical 1st Order Sugeno Rule base is illustrated in Table 6.1 using equation (6.1).   Out 

of the total number of input-output data sets, the Np  sets  are used for training or updating the 

coefficients of  R1 1st order polynomials in the rule base and the  Ns sets are used for testing the 

trained rule base. The details of the updating with ASFL model are explained with the help of 

equations below the Table 6.1. 
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Table 6.1 : 1st Order Sugeno Rule Base 

IF Input parameters THEN Output parameters

SL No. Input 1 Input 2 Input Ni Output  Function Vr1m

1. L M L a1m*i1+b1m*i2 ..+s1m*iNi

2. ML L MH a2m*i1+b2m*i2 ..+s2m*iNi

3. H L L a3m*i1+b3m*i2 ..+s3m*iNi

¦ ¦

¦ ¦

¦ ¦

R1-1 MH ML L a(R1-1)m*i1+b(R1-1)m*i2 ..+s(R1-

1)m*iNi

R1 M L H aR1m*i1+bR1m*i2 ..+sR1m*iNi

A typical firing strength of a rule is as follows:

wr1z = minimum Ni(µi1z , µi2z ,.............. µiNiz)                                                                     (6.2)

Where z = 1 to Np  for training patterns 

and      z= 1 to Ns  for testing patterns

r1  varies from 1 to R1.

The sum of the firing strengths of rules is given by

 wz =  ∑
=

1

11

R

r

 wr1z                                                                                                                (6.3)

Similarly, a typical 1st  order polynomial  for the r1
th rule at the mth iteration  is given by 

Vr1m = ar1m*i1z + br1m*i2z ........... sr1m*iNiz                                                                           (6.4)

 Where i1z, i2z and iNiz   are the inputs corresponding to the zth pattern  and ar1m, br1m and sr1m  are 

the coefficients at the mth iteration for the r1
th rule . These are updated using the LMS algorithm. 

 The modeled value of the breakdown voltage for the zth pattern at the mth iteration is given by

V2z(m)= V1zm /  wz                                                                                                              (6.5) 

Where     V1zm =  ∑
=

1

11

R

r

 wr1z* Vr1m                                                                                 (6.6)

The error for the zth pattern at the mth iteration is given by

e1zm =  V1z-  V2z(m)                                                                                                             (6.7)
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  Where V1z is the experimental value of the breakdown voltage for the zth pattern .

The Mean Square Error for the training pattern at the mth iteration is calculated using equation 

(3.9) and (6.7).

The coefficient ar1m in equation (6.4)  is updated as follows 

ar1m+1 =ar1m + (η3) * e1zm*  i1z                                                                                           (6.8)

η3 is the learning rate for the LMS algorithm. All the other coefficients in equation (6.4)  are 

similarly updated  till a reasonably low value of Mean Square Error for the training patterns is 

obtained. After the training is over , the Ns sets of input output patterns are used for testing 

purpose. The Mean Absolute Error (MAE) for the test data Ets is calculated in equation (3.10) 

based on the least value of Mean Square Error in equation (3.9).

6.3 Modeling of Breakdown Voltage using ASFL

     In this  section,  the breakdown voltage is predicted as a function of different void 

parameters, namely, void diameter and void depth and insulation sheet thickness both at DC 

and AC conditions using the ASFL. The rule base is provided with both input data and desired 

response; and the first order polynomials are updated using the LMS algorithm. The training 

phase is completed when polynomials are updated after a series of iterations. In each iteration, 

the output is compared with the desired response and a match is obtained. 

              In order to predict the breakdown voltage under DC / AC conditions a software 

program has been developed in MATLAB 7.1 for the equations (6.1) to (6.8). Also the program 

has calculated  the Mean Square Error Etr of the training patterns  and the Mean Absolute Error 

Ets  of the test patterns.  The program is suitably modified for different models based on the 

input – output parameters. The flowchart for the ASFL  inferencing is shown in Figure 6.1.

              The shape of the MFs considered for the input parameters are assumed to be triangular 

and  trapezoidal  for  all  the  discussed  models  in  the  Chapter.  The  reason  for  selecting  an 

uniform shape of the MF has been discussed in Chapter 5. The triangular and the trapezoidal 

MF are defined by equations (5.8) and (5.9) respectively.
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Calculate the sum of the firing 
strength of all the rules

Calculate 1st  order polynomial 
for all the rules

Yes

Mean Square Error for 
training patterns < ЄNo

Stop Training

Figure 6.1 : Flow Chart for the ASFL

Update the 
coefficients of 

the polynomial 
for all the rules

Calculate Mean Absolute 
Error for test patterns

Find out the relationship between the linguistic and actual values of the input and 
output parameters and fix number of iterations

Find out the Membership function for 
the input and output parameters

Calculate modeled value of the breakdown 
voltage for all the training patterns 
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6.3.1 Prediction of the breakdown voltage due to PD in voids under DC conditions 

            The two proposed models discussed in this subsection is the same as discussed in 

subsection 5.3.1.

• Model 1   

               The model 1 based on the ASFL inferencing has the same number of input and output 

parameters  as  model  1  based  on  the  MFL inferencing.  Hence  the  number  of  input  output 

patterns is 15. These 15 sets of input output patterns of White Minilex paper are taken from 

Table 2.6. 

              Out of the 15 sets of input-output patterns, Np  = 8 sets of input-output patterns are 

utilized to update the 1st order polynomials in the rule base and the remaining Ns  = 7 sets are 

used for the testing the rule base.

               Table 5.3 showing the relationship between the linguistic and the actual values of t and 

d can also be used in this model. 

The set of linguistic values assigned to t and d are given by equation (5.10).

The Membership Functions (MFs) for t and d are µt  and µd respectively. 

µt and  µd would  be  having  components  corresponding  to  each  linguistic  value  given  by 

equations (5.11) and (5.12)

Results and Discussions

A Triangular MF

              The value of η3 defined in equation (6.8) plays a very important role in order to obtain 

the least value of Mean Square Error Etr for the training patterns. Initially η3 value is chosen to 

be 1.80 as the values of Etr corresponding to η3 less than 1.80 are in the order of 10-4 and above. 

Then it is varied till the value becomes 1.92. It is found that the least value of Etr is 1.1703*10-6 

when η3 = 1.90 after 100 iterations. The Table 6.2 shows the rule base for model 8 and this is 

very similar to Table 6.1. Since the linguistic values associated with t and d are both 3, there 

are 9 rules in the rule base. Hence, in this model the value of R1 is 9.  The µtL, and µdL defined in 

equations (5.11) and (5.12) have assumed the triangular shape defined in equation (5.8). It 

may be noted that btL  (corresponding to µtL) is 0.08 and bdL(corresponding to  µdL) is 2.3 and 

these represent the heights of µtL and µdL respectively.  The variation of Etr of the training data 

with  the  number  of  iterations  with  η3= 1.90 is  shown in Figure  6.2.   Table  6.3  shows the 

variation of Etr as a function of η3. 
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Table 6.2:  1st Order Sugeno Rule Base 

IF Input parameters THEN Output parameters

SL No Thickness of 
material, t

Diameter of the 
void,  d

Breakdown voltage function 
Vr1

1. L L 180.9367*t +179.4988*d

2. L M 180.2502*t +180.0084*d

3. L H 180.8191*t +180.5607*d

4. M L 179.9494*t +179.0735*d

5. M M 180.6793*t +179.9259*d

6. M H 180.2673*t +180.6204*d

7. H L 180.8801*t +180.5129*d

8. H M 179.3890*t +179.8479*d

9. H H 0.9571*t -0.9561*d
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Figure 6.2: Variation of  Etr of the training data as a function of Number of iterations  

Table 6.3: Variation of Etr with   η3 

(Number of iterations = 100) 

              The modeled value of the breakdown voltage is obtained from equations (6.4) and 

equations (6.6) by substituting R1 as 9. Table 6.4 shows a comparison of the experimental and 

the  modeled  values  of  the  breakdown  voltage  when  7  sets  of  input-output  patterns  are 

presented to the trained ASFL model as test data with triangular MF for the input parameters. 

The value of MAE of the test data Ets is found to be 0.0583% .

η3 Etr

1.80 2.8382*10-6

1.85 1.7862*10-6

1.89 1.2223*10-6

1.90 1.1703*10-6

1.91 1.6053*10-6

1.92 6.1249*10-6
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Table 6.4 : Comparison of the experimental and modeled  breakdown voltage 

B Trapezoidal MF

             The procedure for varying η3 is the same as discussed for the triangular MF. Initially η3 is 

kept at 1.80 and then it is varied till the value becomes 1.91. It is found that the least value of 

Etr is 1.4991*10-6 when η3 =1.90 and the number of iterations is 100. The rule base Table 6.2 

used for Case A can be used here.  The µtL, and µdL defined in equations (5.11) and (5.12) have 

assumed  the  trapezoidal  shape  defined  in  equation  (5.9).  It  may  be  noted  that   btL& 

ctL(corresponding to µtL)= 0.08& 0.12 and  bdL& cdL (corresponding to  µdL)=2.4 & 2.8 and these 

represent the heights 1 and 2 of µtL and µdL respectively.   The variation of Etr  of the training 

data with the number of iterations with  η3= 1.90  is shown in Figure 6.3.  Table 6.5 shows the 

variation of Etr as a function of η3. 

t (mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) 

(kV)

MAE of the Test 

data

Ets (%)

0.125 1.5 23.85 23.9453

0.0583
0.125 2 24.32 24.3207

0.18 1.5 24.70 24.7000

0.18 3 24.77 24.7700

0.26 5 25.66 25.6612

0.26 1.5 25.42 25.4202

0.125 4 24.09 24.0900
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Figure 6.3: Variation of  Etr of the training data as a function of Number of iterations  

             Table 6.6 shows a comparison of the experimental and the modeled values of the 

breakdown voltage when 7 sets of input output patterns are presented to the trained ASFL 

model  as  test  inputs  with  trapezoidal  MF  for  the  input  parameters.  The  procedure  for 

obtaining the modeled value of the breakdown voltage is identical to that for the triangular MF. 

The value of MAE of the test data  Ets is found to be 0.0591% with trapezoidal MF.

Table 6.5: Variation of Etr  with  η3 

( Number of iterations=100) 

η3 Etr

1.80 3.3218*10-6

1.85 2.2121*10-6

1.90 1.4991*10-6

1.91 1.9129*10-6
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Table 6.6 : Comparison of the experimental and modeled  breakdown voltage 

• Model 2

             This model[118] has used the same 20 input output patterns of Manila paper as that 

used for model 2 based on the MFL inferencing. These 20 sets of input output patterns are 

taken from Table  2.6.  Out  of  the  20 sets  of  input-output  patterns,  13 sets  of  input-output 

patterns are utilized to update the 1st Order polynomials in the rule base and the remaining 7 

sets are used for  testing the rule base.

             Table 5.9 showing the relationship between the linguistic and the actual values of t, t1 

and d can also be used here.

The set of linguistic values assigned to t1 are given by equations (5.13) and (5.14).

Whereas the set of linguistic values to t and d are given in equation (5.10).

While the Membership Functions (MFs) for t and d are µt  and µd  defined in equation (5.11) and 

(5.12).

t (mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) (kV)

MAE of the Test 
data

Ets (%)

0.125 1.5 23.85 23.9453

0.0591

0.125 2 24.32 24.3221

0.18 1.5 24.70 24.7000

0.18 3 24.77 24.7700

0.26 5 25.66 25.6612

0.26 1.5 25.42 25.4202

0.125 4 24.09 24.0900
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Results and Discussions

A Triangular MF

             The  btL(corresponding  to  µtL)  is  0.03,   bt1L(corresponding  to  µt1L)  is  0.04  and 

bdL(corresponding to  µdL)  is  2.4.  These  represent  the  heights  of  µtL,  µt1L and µdL.  Table  6.7 

represents the rule base of model 9 with 18 rules. This Table is very similar to Table 6.1. The 

starting value of  η3 is 1.7 as the values of Etr  for  η3 less than 1.7 are in the order of 10-3 and 

above. After carrying out the training for 100 iterations, it is revealed that the least value of Etr 

is 3.3683*10-4 at η3 =1.86. Figure 6.4 shows the variation of Etr with the number of iterations. 

Table 6.8 shows the variation of  Etr with η3.  Table 6.9 has compared the modeled and the 

experimental value of the breakdown voltage. The modeled value of the breakdown voltage is 

obtained from equation (6.4) to (6.6) by substituting R1=18. The value of MAE of the test data 

Ets is found to be 0.0165 %. 
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Figure 6.4: Variation of  Etr of the training data as a function of Number of iterations  
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Table 6.7: 1st Order Sugeno Rule Base 

IF Input parameters THEN Output parameters
SL No. Thickness of 

material, t
Thickness 
of void, t1

Diameter 
of the 

void,  d

Breakdown voltage 
function Vr1

1. L L L 104.0255*t+176.2484*t1 

+141.6426*d
2. M L L 103.0972*t+177.5687*t1

+141.9531*d
3. H L L 103.0382*t+175.8231*t1 

+142.0717*d
4. L L M 103.0146*t+177.0170*t1

+142.0128*d
5. M L M 103.9688*t+177.2625*t1 

+140.7814*d
6. H L M 102.9366*t+177.6570*t1

+142.2627*d
7. L L H 102.9458*t+177.5734*t1 

+140.5447*d
8. M L H 102.8310*t+177.4124*t1

+140.4486*d
9. H L H 102.4030*t+176.1916*t1 

+140.8263*d
10. L H L 102.3328*t+176.3305*t1

+140.8265*d
11. M H L 102.1558*t+177.2797*t1 

+141.3191*d
12. H H L 103.9889*t+176.7181*t1

+141.2662*d
13. L H M 6.4461*t-3.7602*t1 

-0.0000*d
14. M H M 0.0000*t-0.0001*t1

+0.0002*d
15. H H M 1.0632*t+0.9601*t1

 +1.6245*d
16. L H H -0.0002*t+0.0003*t1

-0.0004*d
17. M H H 0.0007*t-0.0008*t1

+0.0005*d
18. H H H 0.8119*t+0.3726*t1

+0.6970*d
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Table 6.8: Variation of Etr with η3 

(Number of iterations=100)

Table 6.9: Comparison of the experimental and modeled values of the breakdown 

voltage 

η3 Etr

1.70 0.0010

1.75 7.5766*10-4

1.80 5.2978*10-4

1.85 3.5560*10-4

1.86 3.3683*10-4

1.87 4.0870*10-4

t (mm) t1(mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)(kV)

MAE of the Test 
data

Ets (%)

0.035 0.025 1.5 1.6389 1.6389

0.0165

0.035 0.125 2 1.6821 1.6821

0.06 0.025 1.5 1.6682 1.6689

0.06 0.125 3 1.6454 1.6454

0.035 0.025 5 1.6323 1.6329

0.06 0.125 1.5 1.7002 1.7002

0.035 0.025 4 1.6563 1.6569
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B Trapezoidal MF

              In this Case Table 5.9 and Table 6.7 are also  used. The learning rate η3 varies between 

1.75 and 1.87 and the values of  Etr for these values of   η3 are 6.7849*10-4 and 3.5766*10-4 

respectively. The number of iterations is the same as Case A that is 100. The Etr touches it’s 

nadir at η3 =1.86 and this value is 2.8267*10-4. The Table 6.10 depicts the variation of Etr with 

η3. The heights btL and height ctL of  µtL are 0.023 and 0.032. Similarly for µt1L they are 0.03 and 

0.05 and for  µdL they are 1.7 and 3.1. Figure 6.5 shows the variation of Etr with the number of 

iterations. 

Table 6.10 :Variation of Etr with η3 

( Number of iterations=100) 

η3 Etr

1.75 6.7849*10-4

1.80 4.5847*10-4

1.85 2.9834*10-4

1.86 2.8267*10-4

1.87 3.5766*10-4
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Figure 6.5: Variation of  Etr of the training data as a function of Number of iterations  

              When the same test data as in Case A is presented to the trained ASFL, a comparison 

between the experimental and the modeled value of the breakdown voltage is presented in 

Table 6.11. The MAE of the test data Ets also indicated in the same Table is 0.0161%.

 Table 6.11 : Comparison of the experimental and modeled values of the breakdown 

voltage 

t (mm) t1(mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)(kV)

MAE of the Test 
data

Ets (%)

0.035 0.025 1.5 1.6389 1.6389

0.0161

0.035 0.125 2 1.6821 1.6821

0.06 0.025 1.5 1.6682 1.6689

0.06 0.125 3 1.6454 1.6454

0.035 0.025 5 1.6323 1.6329

0.06 0.125 1.5 1.7002 1.7002

0.035 0.025 4 1.6563 1.6569
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6.3.2 Prediction of the breakdown voltage due to PD in voids under AC conditions 

             The three proposed models in this subsection are identical to the models discussed in 

subsection 5.3.2.

• Model 3

             This model has predicted the breakdown voltage of White Minilex quiet similar to model 

1, but under AC conditions. The number of input parameters, the number of input output data 

sets are the same as model 1.  But since AC conditions is being discussed, the input output 

patterns are taken from the Table 2.7. The Table 5.3 can be used for here and the rule base can 

be created with 9 rules. Also the equations (5.10) to (5.12) are used in this model.

Results and Discussions

A Triangular MF

              The Table 6.12 shows the rule base for model 3 with 9 rules. In order to obtain the 

lowest value of Etr, the η3 is varied between 1.75 and 1.92. The η3 =1.75 has been decided to be 

the initial value in this case  as the values of Etr are greater than 4.7654*10-6 for η3 less than 

1.75. The Etr decreases with the increase in η3 till η3= 1.90. Then it again increases from there 

onwards. Hence the lowest value of Etr is 1.3334*10-6 occurring for η3= 1.90. The Table 6.13 

shows the variation of Etr with  η3. Figure 6.6 shows the variation of Etr with the number of 

iterations.  It  may be  noted  that  btL(corresponding  to  µtL)  is  0.09 and bdL(corresponding  to 

µdL)=2.0.
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Table 6.12 :  1st Order Sugeno Rule Base 

IF Input parameters THEN Output parameters

SL No Thickness of 
material, t

Diameter of the 
void,  d

Breakdown voltage function 
Vr1

1. L L 186.6866*t +185.2486*d

2. L M 186.0*t +185.7583*d

3. L H 186.5689*t +186.3105*d

4. M L 185.6992*t +184.8283*d

5. M M 186.4291*t +185.6757*d

6. M H 186.0172*t +186.3702*d

7. H L 186.6299*t +186.2677*d

8. H M 185.1388*t +185.5977*d

9. H H 0.9877*t -0.9863*d
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Figure 6.6: Variation of  Etr of the training data as a function of Number of iterations  

Table 6.13 :Variation of Etr  vs. η3 

( Number of iterations=100) 

         

             

η3 Etr

1.75 4.7654*10-6

1.80 3.0757*10-6

1.85 1.9389*10-6

1.86 1.7642*10-6

1.87 1.6044*10-6

1.89 1.3401*10-6

1.90 1.3334*10-6

1.91 2.2355*10-6

1.92 1.0818*10-5
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             The MAE of the test data Ets is 0.0590% and it is based on the least value of Etr after 100 

iterations. This can be seen from Table 6.14. Also the comparison between the modeled and 

the experimental values of the breakdown voltage is provided in the same Table.

Table 6.14 : Comparison of the experimental and modeled values of the breakdown 

voltage

B Trapezoidal MF

              In this Case Table 5.4  and the Table 6.12  are also used. The Table 6.15 provides the 

values of Etr for different values of  η3 at 100 iterations. The values of η3 from 0 to less than 1.85 

are not considered as the values of Etr in this range are greater than 2.4360*10-6. Hence η3 is 

varied from 1.85 till the lowest value of Etr is reached. From the same Table it can be seen that 

lowest value of Etr occurs at  η3=1.90. The heights of the trapezoidal shape of µtL are 0.08 and 

0.12 and the heights of  µdL are 2.4 and 2.8 .  Figure 6.7 shows the variation of  Etr with the 

number of iterations.

t (mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)(kV)

MAE of the Test 
data

Ets (%)

0.125 1.5 2.2697 2.2789

0.0590

0.125 2 2.2807 2.2808

0.18 1.5 2.2447 2.2447

0.18 3 2.2909 2.2909

0.18 5 2.2447 2.2448

0.26 1.5 2.3170 2.3170

0.26 4 2.2294 2.2294
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Figure 6.7: Variation of  Etr of the training data as a function of Number of iterations  

Table 6.15 : Variation of Etr  with η3 

(Number of iterations=100) 

            

             

                 When the same test data as Case A is provided to the trained ASFL , the MAE of the 

test  data  Ets  is  0.0597%  as  can  be  seen  from  Table  6.16.  The  seven  modeled  and  the 

experimental  values  of  the  breakdown  voltage  validates  the  accuracy  of  the  model  for 

prediction purpose.

η3 Etr

1.85 2.4360*10-6

1.88 1.8848*10-6

1.90 1.7070*10-6

1.91 2.5831*10-6

1.92 3.0083*10-5
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Table 6.16 : Comparison of the experimental and modeled values of the breakdown 

voltage 

• Model 4

              The breakdown voltage of Manila paper has been predicted under AC conditions with 

the same number of input parameters and the same number of input output sets as model 2. 

But the input output parameters are now taken from Table 2.7.

 Results and Discussions

A Triangular MF

            With triangular MF for the input parameters the heights of  µtL, µt1L and  µdL are 0.03, 0.04 

and 2.4 respectively. The Table 5.9 can be used here as the number of input parameters is the 

same as model 2. The Table 6.17 shows the rule base with 18 rules for this model. The training 

of the rule base has been carried with 13 input output patterns and the Etr has been studied as 

a function of  η3 in Table 6.18 and as a function of number of iterations in Figure 6.8.  The 

t (mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled)(kV)

MAE of the Test 
data

Ets (%)

0.125 1.5 2.2697 2.2789

0.0597

0.125 2 2.2807 2.2809

0.18 1.5 2.2447 2.2447

0.18 3 2.2909 2.2909

0.18 5 2.2447 2.2448

0.26 1.5 2.3170 2.3170

0.26 4 2.2294 2.2294
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equations (5.10) to (5.14) are used for this model. The η3 is varied between 1.70 and 1.87 and 

at 1.86 the lowest value of Etr is obtained. For  η3 less than 1.70, the values of Etr are greater 

than 0.0010.

Table 6.17 : 1st Order Sugeno Rule Base 

IF Input parameters THEN Output parameters
SL No. Thickness of 

material, t
Thickness 
of void, t1

Diameter 
of the 

void,  d

Breakdown voltage 
function Vr1

1. L L L 104.4035*t+176.8963*t1 

+142.1609*d
2. M L L 103.4752*t+178.2167*t1

+142.4714*d
3. H L L 103.4161*t+176.4711*t1 

+142.5901*d
4. L L M 103.3926*t+177.6649*t1

+142.5311*d
5. M L M 104.3468*t+177.9105*t1 

+141.2998*d
6. H L M 103.3146*t+178.3050*t1

+142.7811*d
7. L L H 103.3237*t+178.2214*t1 

+141.0630*d
8. M L H 103.2089*t+178.0604*t1

+140.9670*d
9. H L H 102.7810*t+176.8396*t1 

+141.3447*d
10. L H L 103.7108*t+176.9784*t1

+141.3449*d
11. M H L 102.5337*t+177.9276*t1 

+141.8374*d
12. H H L 104.3668*t+177.3660*t1

+141.7845*d
13. L H M 6.4696*t-3.7740*t1 

-0.0000*d
14. M H M 0.0000*t-0.0001*t1

+0.0002*d
15. H H M 1.0632*t+0.9601*t1

 +1.6245*d
16. L H H -0.0002*t+0.0003*t1

-0.0004*d
17. M H H 0.0007*t-0.0008*t1

+0.0005*d
18. H H H 0.8119*t+0.3726*t1

+0.6970*d
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Figure 6.8: Variation of  Etr of the training data as a function of Number of iterations  

Table 6.18 :Variation of Etr with   η3 

(Number of iterations=100) 

      

             After the training is over, the test data is provided to the trained ASFL. A very good 

comparison is  drawn between the  modeled  and the  experimental  value  of  the  breakdown 

voltage in Table 6.19. The MAE of the test data Ets is 0.0166%.

η3 Etr

1.70 0.0010

1.75 7.4161*10-4

1.80 5.2016*10-4

1.85 3.5090*10-4

1.86 3.3353*10-4

1.87 4.1223*10-4

215



Chapter 6                                                  Breakdown Voltage Modeling using Adaptive Sugeno Fuzzy Logic Technique

Table 6.19: Comparison of the experimental and modeled values  of the breakdown 

voltage 

B Trapezoidal MF

               The η3 is varied between 1.75 and 1.87 in this Case with the number of iterations fixed 

at 100. It is revealed that when η3 is 1.86, the value of Etr is the lowest. This value is 2.8258*10-4 

. The Tables 5.9 and 6.17 used in Case A are also used here. The heights of  µtL are 0.023& 0.032 

, the heights of  µdL are 1.7 & 3.1, the heights of  µdL are 0.03 & 0.05. The variation of Etr of the 

training data with the number of iterations with  η3= 1.86  is shown in Figure 6.9.  Table 6.20 

shows the variation of Etr as a function of η3. 

t (mm) t1(mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) (kV)

MAE of the Test 
data

Ets (%)

0.035 0.025 1.5 0.8758 0.8758

0.0166

0.035 0.125 2 0.8683 0.8683

0.06 0.025 1.5 0.8479 0.8482

0.06 0.125 3 0.9089 0.9089

0.035 0.025 5 0.8388 0.8391

0.06 0.125 1.5 0.8154 0.8154

0.035 0.025 4 0.8758 0.8761
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Figure 6.9: Variation of  Etr of the training data as a function of Number of iterations  

Table 6.20 : Variation of Etr with η3 

( Number of iterations=100) 

               The MAE of the test data Ets is 0.0163% and it occurs when the same 7 sets of input 

output data as A are provided to the trained ASFL. The performance with the triangular and 

trapezoidal MFs are very similar for model 11. Table 6.21 has shown the comparison between 

the breakdown voltage values along with the value of Ets.

η3 Etr

1.75 6.6702*10-4

1.80 4.5312*10-4

1.85 2.9705*10-4

1.86 2.8258*10-4

1.87 3.6419*10-4
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Table 6.21: Comparison of the experimental and modeled values  of the breakdown 

voltage 

• Model 5

               The model 5 based on the ASFL inferencing has used  the same training and testing sets  

of input output patterns as that used for the model 5  in Chapter 5. 

               Proceeding in a similar way as model 5 in Chapter 5, the fuzzification of the thickness t, 

void depth t1, void diameter d and relative permittivity Єr took place. Also the identification 

number was also fuzzified and  incorporated in the antecedent part of the rules. The reason for 

assigning  a  different  identification  number  to  a  particular  material  has  been  explained  in 

Chapter 5.

               As with model 5 based on the MFL inferencing, the 130 sets of input output patterns  

are taken from Table 2.3 in addition to Table 2.7.  Out of  these 130 sets  ,  Np=115sets  are 

utilized to update the 1st Order polynomials in the rule base and the remaining Ns=15 sets are 

used for the testing the rule base.

              The relationship between the linguistic values and the actual values for t, t1 ,d and Єr are 

presented  in  Table  5.22  and  the  relationship  between  the  linguistic  and  actual  values  of 

identification number I are presented in Table 5.23.

              The set of linguistic values assigned to t,t1 and d are defined in equation (5.10) and 

(5.13) and the components of  µt, µt1 and  µd are defined in equations (5.11), (5.12) and (5.14). 

t (mm) t1(mm) d (mm) Breakdown 
Voltage 

(Experimental) 
(kV)

Breakdown 
Voltage 

(Modeled) (kV)

MAE of the Test 
data

Ets (%)

0.035 0.025 1.5 0.8758 0.8758

0.0163

0.035 0.125 2 0.8683 0.8683

0.06 0.025 1.5 0.8479 0.8483

0.06 0.125 3 0.9089 0.9089

0.035 0.025 5 0.8388 0.8391

0.06 0.125 1.5 0.8154 0.8154

0.035 0.025 4 0.8758 0.8761
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The Membership Functions (MFs) for Єr  and I are µe and µi respectively.

The set of linguistic values assigned to Єr is given by equation (5.15).

The set of linguistic values assigned to I is given by equation (5.16).

Also,  µe and  µi would  be  having  components  corresponding  to  each  linguistic  value  by 

equations (5.17) and (5.18) respectively.

Results and Discussions

A Triangular MF

              The η3 is varied between 1.80 and 1.91 in steps of 0.01. The values of η3 less than 1.80 

and greater than 1.91 are not considered, as the corresponding Etr values are greater than 

0.2181 and 0.1296 respectively. It is found that the least value of Etr is 0.0021 when η3 =1.85 

and the number of iterations is 400. The value of R1 is 72 in this model and the procedure for 

arriving at this value is explained in Chapter 5.

               Table 6.22 shows the rule base for the model 6. Table 6.23 shows the variation of Etr 

with η3 . The variation of Etr of the training data with the number of iterations with  η3= 1.85 is 

shown in Figure 6.10 . The heights of µtL, µt1L, µdL, µeL and µiL are 0.07, 0.05 ,2.0, 4.5 and 0.8 .
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Table 6.22: 1st Order Sugeno Rule Base

A. White Minilex

IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

1. L L L L L 674.7*t +714.5*t1 

+715.3*d+715.1*Єr+7
15.9*I

2. L L L M L 674.4*t +715.1*t1 

+714.1*d+715.7*Єr+7
15.0*I

3. L L L H L 674.1*t +715.7*t1 

+715.9*d+715.6*Єr+7
14.4*I

4. L L H L L 673.6*t +715.9*t1 

+715.9*d+715.9*Єr+7
15.9*I

5. L L H M L 674.9*t +714.8*t1 

+715.7*d+715.1*Єr+7
15.3*I

6. L L H H L 674.2*t +715.5*t1 

+714.3*d+715.6*Єr+7
15.5*I

7. L M L L L 674.9*t +715.6*t1 

+715.0*d+715.9*Єr+7
14.0*I

8. L M L M L 673.7*t +715.8*t1 

+715.1*d+715.5*Єr+7
15.5*I

9. L M L H L 674.5*t +715.1*t1 

+715.5*d+715.9*Єr+7
14.8*I

10. L M H L L 673.9*t +715.5*t1 

+715.9*d+715.7*Єr+7
15.5*I

11. L M H M L 674.2*t +715.5*t1 

+715.7*d+715.2*Єr+7
14.4*I

12. L M H H L 673.2*t +715.8*t1 

+715.8*d+715.8*Єr+7
15.3*I

.
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IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

13. L H L L L 674.8*t +714.9*t1 

+715.7*d+715.4*Єr+7
15.7*I

14. L H L M L 674.2*t +715.8*t1 

+714.7*d+715.8*Єr+7
15.2*I

15. L H L H L 674.3*t +715.7*t1 

+715.8*d+715.2 
*Єr+714.8*I

16. L H H L L 673.3*t +715.2*t1 

+715.0*d+715.5*Єr+7
15.4*I

17. L H H M L 674.5*t +714.0*t1 

+715.1*d+715.9*Єr+7
15.5*I

18. L H H H L 674.8*t +715.6*t1 

+714.6*d+715.8*Єr+7
15.6*I

.

221



Chapter 6                                                  Breakdown Voltage Modeling using Adaptive Sugeno Fuzzy Logic Technique

B. Leatherite Paper

IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

19. ML L L L L 674.1*t +714.1*t1 

+715.9*d+715.5*Єr+7
15.7*I

20. ML L L M L 674.2*t +715.7*t1 

+714.0*d+715.3*Єr+7
15.1*I

21. ML L L H L 674.1*t +715.7*t1 

+715.9*d+715.6*Єr+7
14.4*I

22. ML L H L L 673.6*t +715.9*t1 

+715.9*d+715.9*Єr+7
15.9*I

23. ML L H M L 674.9*t +714.8*t1 

+715.7*d+715.1*Єr+7
15.3*I

24. ML L H H L 674.2*t +715.5*t1 

+714.3*d+715.6*Єr+7
15.5*I

25. ML M L L L 674.9*t +715.6*t1 

+715.0*d+715.9*Єr+7
14.0*I

26. ML M L M L 673.7*t +715.8*t1 

+715.1*d+715.5*Єr+7
15.5*I

27. ML M L H L 674.5*t +715.1*t1 

+715.5*d+715.9*Єr+7
14.8*I

28. ML M H L L 673.9*t +715.5*t1 

+715.9*d+715.7*Єr+7
15.5*I

29. ML M H M L 674.3*t +715.6*t1 

+715.8*d+715.4*Єr+7
14.4*I

30. ML M H H L 673.3*t +715.3*t1 

+715.4*d+715.9*Єr+7
15.3*I

.
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IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

31. ML H L L L 674.8*t +714.9*t1 

+715.7*d+715.4*Єr+7
15.7*I

32. ML H L M L 674.2*t +715.8*t1 

+714.7*d+715.8*Єr+7
15.2*I

33. ML H L H L 674.3*t +715.7*t1 

+715.8*d+715.2 
*Єr+714.8*I

34. ML H H L L 673.3*t +715.2*t1 

+715.0*d+715.5*Єr+7
15.4*I

35. ML H H M L 674.5*t +714.0*t1 

+715.1*d+715.9*Єr+7
15.5*I

36. ML H H H L 674.8*t +715.6*t1 

+714.6*d+715.8*Єr+7
15.6*I

.
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C. Glass Cloth

IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

37. M M L L L 674.1*t +714.1*t1 

+715.5*d+715.9*Єr+7
15.6*I

38. M M L M L 674.4*t +715.9*t1 

+714.6*d+715.7*Єr+7
15.9*I

39. M M L H L 674.3*t +715.6*t1 

+715.2*d+715.3*Єr+7
14.4*I

40. M M H L L 673.6*t +715.9*t1 

+715.9*d+715.9*Єr+7
15.9*I

41. M M H M L 674.9*t +714.8*t1 

+715.7*d+715.1*Єr+7
15.3*I

42. M M H H L 674.2*t +715.5*t1 

+714.3*d+715.6*Єr+7
15.5*I

43. M H L L L 674.9*t +715.6*t1 

+715.0*d+715.9*Єr+7
14.0*I

44. M H L M L 673.7*t +715.8*t1 

+715.1*d+715.5*Єr+7
15.5*I

45. M H L H L 674.5*t +715.1*t1 

+715.5*d+715.9*Єr+7
14.8*I

46. M H H L L 673.2*t +715.8*t1 

+715.5*d+715.4*Єr+7
15.5*I

47. M H H M L 674.7*t +715.8*t1 

+715.1*d+715.7*Єr+7
14.0*I

48. M H H H L 673.8*t +715.0*t1 

+715.9*d+715.9*Єr+7
15.1*I

.
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D. Manila Paper

IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

49. MH L L L L 674.5*t +714.2*t1 

+715.5*d+715.4*Єr+7
15.0*I

50. MH L H M L 674.9*t +715.9*t1 

+714.5*d+715.3*Єr+7
15.6*I

51. MH L L H L 674.3*t +715.7*t1 

+715.8*d+715.2 
*Єr+714.8*I

52. MH L H L L 673.3*t +715.2*t1 

+715.0*d+715.5*Єr+7
15.4*I

53. MH L L M L 674.3*t +714.9*t1 

+715.2*d+715.4*Єr+7
15.6*I

54. MH L H H L 674.9*t +715.9*t1 

+714.7*d+715.4*Єr+7
15.9*I

.
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E. Lather Minilex

IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

55. H L L L M 674.1*t +714.5*t1 

+715.9*d+715.9*Єr+7
15.4*I

56. H L L M M 674.5*t +715.9*t1 

+714.9*d+715.3*Єr+7
15.2*I

57. H L L H M 674.3*t +715.1*t1 

+715.7*d+715.1*Єr+7
14.5*I

58. H L H L M 673.6*t +715.9*t1 

+715.9*d+715.9*Єr+7
15.9*I

59. H L H M M 674.9*t +714.8*t1 

+715.7*d+715.1*Єr+7
15.3*I

60. H L H H M 674.2*t +715.5*t1 

+714.3*d+715.6*Єr+7
15.5*I

61. H M L L M 674.9*t +715.6*t1 

+715.0*d+715.9*Єr+7
14.0*I

62. H M L M M 673.7*t +715.8*t1 

+715.1*d+715.5*Єr+7
15.5*I

63. H M L H M 674.5*t +715.1*t1 

+715.5*d+715.9*Єr+7
14.8*I

64. H M H L M 673.7*t +715.3*t1 

+715.6*d+715.9*Єr+7
15.1*I

65. H M H M M 674.3*t +715.9*t1 

+715.0*d+715.2*Єr+7
14.4*I

66. H M H H M 673.5*t +715.8*t1 

+715.7*d+715.5*Єr+7
15.3*I

.
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IF Input parameters THEN Output 
parameters

SL 
No.

Identification 
number , I

Thickness 
of 

material, t

Thickness of 
void, t1

Diameter of 
the void,  d

Relative 
Permittivity 

Єr

Breakdown voltage 
function Vr1

67. H H L L M 674.6*t +714.1*t1 

+715.9*d+715.2*Єr+7
15.3*I

68. H H L M M 674.0*t +715.9*t1 

+714.6*d+715.7*Єr+7
15.7*I

69. H H L H M 674.2*t +715.5*t1 

+715.6*d+715.3 
*Єr+714.2*I

70. H H H L M 673.3*t +715.2*t1 

+715.0*d+715.5*Єr+7
15.4*I

71. H H H M M 674.5*t +714.0*t1 

+715.1*d+715.9*Єr+7
15.5*I

72. H H H H M 674.0*t +715.9*t1 

+714.6*d+715.8*Єr+7
15.6*I
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Figure 6.10: Variation of  Etr of the training data as a function of Number of iterations  
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Table 6.23: Variation of Etr with η3 

( Number of iterations=400)   

η3  Etr

1.80 0.2181

1.81 0.1399

1.82 0.0786

1.83 0.0356

1.84 0.0106

1.85 0.0021

1.86 0.0075

1.87 0.0238

1.88 0.0474

1.89 0.0750

1.90 0.1033

1.91 0.1296

       

              The modeled value of the breakdown voltage as per the equations (6.5) to (6.7) with  

R1= 72 and the experimental values of the breakdown voltage have been compared with the 

triangular shape of MF in Table 6.24. The MAE of the test data Ets with 15 input output data 

patterns is 1.5650%.
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Table 6.24 : Comparison of the experimental and modeled values  of the breakdown 

voltage    

B Trapezoidal MF

              In this Case the Table 5.22, 5.23 and 6.22 can also be used. The heights b and c of µ tL, µt1L, 

µdL, µeL and µiL are (0.055, 0.125), (0.03, 0.05) , (1.7,3.1), (4.3,4.9) and (0.75,1.25) respectively 

.The η3 is varied between 1.85 and 1.89 . The values of η3 less than 1.85 and greater than 1.89 

are not considered as the Etr values corresponding to this range of  η3 are greater than 0.6651 

Insulating 
Material

t 

(mm)

t1

(mm)

d 

(mm)

Єr Breakdown 
Voltage (kV

(Experimental)

Breakdown 
Voltage(kV) 

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 0.025 3 4.40 2.2294 2.1853

1.5650

0.125 0.125 2 4.40 2.2447 2.2412

0.18 0.025 1.5 4.40 2.2697 2.2653

Leatherite 
Paper

0.13 0.125 5 4.21 1.2972 1.2912

0.175 0.125 4 4.21 1.8520 1.8470

0.235 0.025 2 4.21 2.2697 2.2595

Glass Cloth 0.195 0.025 5 4.97 2.3088 2.2833

0.155 0.025 3 4.97 2.3088 2.2845

0.155 0.125 1.5 4.97 2.2294 2.1744

Manila 
Paper

0.035 0.125 3 4.68 0.8388 0.8162

0.06 0.025 2 4.68 0.8154 0.8075

0.06 0.125 4 4.68 0.8479 0.8322

Lather 
Minilex

0.245 0.025 5 5.74 2.2447 2.2036

0.185 0.125 1.5 5.74 2.2294 2.2278

0.125 0.025 2 5.74 2.2909 2.2479
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and 0.1351 respectively. The lowest value of Etr is 0.0989 occuring at η3=1.88 and after 400 

iterations. Table 6.25 shows the variation of Etr with  η3. Figure 6.11 shows the variation of Etr 

with the number of iterations.
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Figure 6.11: Variation of  Etr of the training data as a function of Number of iterations  

Table 6.25: Variation of Etr with η3 

(Number of iterations=400) 

η3  Etr

1.85 0.6651

1.86 0.3492

1.87 0.1640

1.88 0.0989

1.89 0.1351

              Table 6.26 shows that the MAE of the test data E ts with trapezoidal MF for the input 

parameters  and  15  input  output  data  patterns  is  2.9538%.  The  comparison  between  the 

breakdown voltage values is similar to Case A. 
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Table 6.26: Comparison of the experimental and modeled values of the breakdown 

voltage 

6.4 Conclusion

              In this Chapter the  five ASFL based models with triangular and trapezoidal shape of 

MFs  for  the  input  parameters  have  predicted  the  breakdown  voltage  of  solid  insulating 

materials from the Cylinder Plane Electrode System set up.  For a single insulating material 

Insulating 
Material

t 

(mm)

t1

(mm)

d 

(mm)

Єr Breakdown 
Voltage (kV)

(Experimental)

Breakdown 
Voltage(kV) 

(Modeled)

MAE of 
the 

Test 
data

Ets (%)

White 
Minilex

0.26 0.025 3 4.40 2.2294 2.1752

2.9538

0.125 0.125 2 4.40 2.2447 2.2312

0.18 0.025 1.5 4.40 2.2697 2.2453

Leatherite 
Paper

0.13 0.125 5 4.21 1.2972 1.2712

0.175 0.125 4 4.21 1.8520 1.8270

0.235 0.025 2 4.21 2.2697 2.2247

Glass Cloth 0.195 0.025 5 4.97 2.3088 2.2433

0.155 0.025 3 4.97 2.3088 2.2345

0.155 0.125 1.5 4.97 2.2294 2.1244

Manila 
Paper

0.035 0.125 3 4.68 0.8388 0.8062

0.06 0.025 2 4.68 0.8154 0.8034

0.06 0.125 4 4.68 0.8479 0.8308

Lather 
Minilex

0.245 0.025 5 5.74 2.2447 2.1986

0.185 0.125 1.5 5.74 2.2294 2.1178

0.125 0.025 2 5.74 2.2909 2.2079
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under DC and AC condition, the prediction of the voltage is extremely good as is evident from 

the Ets values.  Even for five solid insulating materials under AC condition,  reasonably good 

values of Ets results.  
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7.1 Introduction

This  thesis  work  deals  with  some  studies  on  breakdown  of  solid  dielectrics  and  it’s 

modeling using soft computing techniques. Detailed discussions have been presented in different 

chapters and conclusions have been made at the end of each chapter.  Therefore, this concluding 

chapter is devoted to the summarization of the main contributions of the work and arriving at 

general conclusions.

7.2 Summary 

The major studies reported in this thesis pertain to:

1. The experimental procedure adopted in the laboratory in order to generate breakdown 

voltage data under DC and AC conditions has described in Chapter 2. The experimental 

data are obtained with artificially created voids of various dimensions and with different 

insulation  thicknesses  of  three  common  insulating  materials,  namely,  White  Minilex 

Paper,  Leatheroid Paper,  Glass Cloth,  Manila Paper and Lather Minilex  using Cylinder-

Plane Electrode System.  The purpose and the procedure for carrying out the statistical 

analysis of  the breakdown voltage have been explained. An attempt has been made to 

monitor the state of an insulating material at various percentages of the applied voltage 

ultimately leading to breakdown with the help of SEM. The SEM images for White Minilex, 

Leatherite paper, Lather Minilex and Manila paper under DC and AC conditions has been 

illustrated and explained. Finally, the Chapter ends with few plots showing the variations 

of the breakdown voltage of some of the insulating materials as a function of insulation 

thickness, void depth and void diameter.

2. In Chapter 3, seven models are proposed for prediction of the breakdown voltage of solid 

insulating  materials  due  to  PD  in  cavities  as  a  function  of  two,  three  and  four  input 

parameters using MFNN. Out of these seven models, six models, that is, model No. 1 to 6 

have used the input -output data patterns generated in the laboratory using Cylinder- 

Plane  Electrode  System  and  one  model  (model  No.  7)  has  utilized  the  data  from  the 

literature, which are essentially obtained experimentally using CIGRE Method II Electrode 
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System. The Mean Square Error for the training patterns and the Mean Absolute Error for 

the testing patterns has been calculated for all the seven models. 

3. In Chapter  4  attempt  has been made to use another ANN structure for the purpose of 

breakdown voltage prediction. The number of chosen centers of the radial basis functions 

and the learning rate of the LMS algorithm are varied in order to obtain a low value of the 

Mean Square Error for the training patterns Etr. Based on the lowest value of the Etr, Mean 

Absolute Error Ets for the test data is calculated. Six models developed, have used the same 

data patterns as used by the corresponding model No. based on the MFNN structure. 

4. In Chapter 5,   the capability of fuzzy logic technique as a function estimator has been 

exploited to predict the breakdown voltage of solid insulating materials as a function of 

two, three and four input parameters with the help of six models and MFL inferencing. 

The maximum minimum composition is adopted in order to obtain the modeled value of 

the breakdown voltage.  The rule base for any model has been framed using the training 

input-output data patterns. The number of rules is model specific. The shape of the MFs 

for the input and output parameters are assumed to be triangular and trapezoidal in all 

the cases.  The Mean Absolute Error for  the testing patterns Ets is  the main evaluation 

criteria used in this type of inferencing and the heights of the MF play a major role in 

reducing this value.

5. An attempt has been made to use Adaptive Sugeno FL inferencing scheme for the purpose 

of breakdown voltage modeling in Chapter 6. This type of inferencing   has an adaptability 

feature incorporated in it. The coefficients of the polynomial in the consequent part of the 

rules are updated using the LMS algorithm and the training input output patterns. The 

training is complete when the value of Etr reaches a tolerably low value and then the rule 

base is tested with the testing patterns.  The shape of the MFs for the input and output 

parameters are assumed to be triangular and trapezoidal in all the cases. 

7.3 Conclusions

Before the thesis draws to a close, the general conclusions that emerge out from this 

work are highlighted. These conclusions are mainly arrived at based on the performance and 

the  capabilities  of  the  soft  computing  techniques  presented  here  for  breakdown  voltage 

modeling. Based on such a critical appraisal, the current state of technology, its promises and 

pitfalls are charted. This finally leads to an outline of the future directions for research and 

development efforts in this subject area.

The main conclusions drawn are:
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1. The combination of  parameters for the best results in each of  the models has been 

identified.  A  comparison  of  modeled  and  experimental  results  indicates  that  SC 

techniques  can  be  very  well  employed  for  estimation  of  breakdown  voltage  as  a 

function of insulation and void dimensions.

2. Tables 7.1 – 7.2 depicts the comparison between the MAE values obtained for different 

models using different techniques. As may be seen from Table 7.1 that for most of the 

models, the MFNN structure is better at predicting the breakdown voltage compared to 

the RBFN structure.  

Table 7.1: Comparison of the MAE of the test data for the ANN techniques (in %age)

MFNN RBFN

Model No. 1 0.0182 1.5953

Model No. 2 0.2260 0.3868

Model No. 3 0.0801 0.5611

Model No. 4 0.2581 0.2334

Model No. 5 0.7401 0.2586

Model No. 6 0.1638 0.5735

              

 Again,  Table  7.2  indicates  that  as  far  as  the  FL  inferencing  is  concerned,  ASFL  predictor 

performs much better than MFL.

 Table 7.2: Comparison of the MAE of the test data for the FL techniques (in %age)

MFL

(Triangular)

MFL

(Trapezoidal)

ASFL

(Triangular)

ASFL

(Trapezoidal)

Model No. 1 0.7789 0.6477 0.0583 0.0591

Model No. 2 1.2705 1.1674 0.0165 0.0161

Model No. 3 0.5188 0.5788 0.0590 0.0597

Model No. 4 2.3702 2.2002 0.0166 0.0163

Model No. 5 2.8444 2.9741 1.5650 2.9538
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3. The study indicates that ASFL models predict the breakdown value more accurately in 

most of the cases while the MFL models perform inferior amongst all. Moreover, in all 

cases the model values closely follow the experimental values and the MAE between 

the two values lie within 3%.

4. Tables 7.3 – 7.4 depicts the comparison between the execution time/ computational 

overheads obtained for different models using different techniques.  As may be seen 

from Table 7.3- 7.4  that for most of the models, the execution time is quiet low. 

Table 7.3: Comparison of the Computational Overheads for the ANN techniques (in s)

MFNN RBFN

Model No. 1 3 s 3 s

Model No. 2 6 s 4 s

Model No. 3 2 s 2 s

Model No. 4 3 s 3 s

Model No. 5 6 s 4 s

Model No. 6 10 s 7 s

Table 7.4: Comparison of the Computational Overheads for the FL techniques (in s)

MFL

(Triangular)

MFL

(Trapezoidal)

ASFL

(Triangular)

ASFL

(Trapezoidal)

Model No. 1 3 s 2 s 1 s 1 s

Model No. 2 2 s 2 s 1 s 1 s

Model No. 3 2 s 2 s 1 s 1 s

Model No. 4 2 s 2 s 1 s 1 s

Model No. 5 3 s 3 s 16 s 16 s

5.   The execution time for model No. 6 in Table 7.3 based on the MFNN and RBFN structure 

and model No. 5 based on the ASFL inferencing in Table 7.4 exceeds 7 s. The result is quiet 

expected as these models process the highest data out of all the proposed models.

     6.   The processor used is Intel Pentium 4 CPU with 2.40 GHz being the clock frequency.
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Thus, this work is successful in applying SC techniques for prediction of breakdown voltages 

under both DC and AC conditions as a function of insulation and void parameters. 

For a more generalization of the models developed, it would be interesting to include more 

parameters responsible for breakdown of insulating materials. Moreover, the entire process is 

data specific. Thus, more insulating materials may be tested, so that there is likelihood that this 

opens up areas for future research.

Further, in this thesis work, the shapes of the MF considered for FL techniques are triangular 

and trapezoidal in nature. More shapes of MF can be included in the FL inferencing scheme and 

the corresponding analysis carried out in calculating the values of Etr and Ets. Again, more SC 

techniques can be explored in order to carry out the prediction with more accuracy.
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