
Robustness Improvement by Dynamic State 
Feedback Stabilization 

 
 

Submitted for the partial fulfillment of the requirement for the degree of  
 

Master of Technology (Research) 
 

in 
 

Electrical Engineering 

 

by 

DUSHMANTA KUMAR DAS 

 
 

Under the guidance of 
 

Prof. SANDIP GHOSH 

 

DEPT. OF ELECTRICAL ENGINEERING 
NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA-769008, INDIA. 
 

NOVEMBER 2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

CERTIFICATE OF APPROVAL 

This is to certify that Mr. Dushmanta Kumar Das has 
successfully defended his M. Tech (Research) via-voce examination on the 
thesis entitled “Robustness Improvement by Dynamic State 
Feedback Stabilization” today.  
  

  
 

 
Prof.B. Subudhi 
(MSC Member) 

 
Prof.K. C. Pati 
(MSC Member) 

 
Prof. S. Maity 
(MSC Member) 

 

 

 
 
 

 

 
 

Prof.S.Ghosh 
(Supervisor) 

 
 

Prof. D. R. Parhi 
(External Examiner) 

 
 

Prof.B.D.Subudhi 
(Chairman) 



 
CERTIFICATE 

This is to certify that the thesis entitled “Robustness 
Improvement by Dynamic State Feedback Stabilization” by Mr. 
Dushmanta Kumar Das, submitted to the National Institute of 
Technology, Rourkela for the award of Master of Technology 
(Research) in Electrical Engineering, is a record of bonafide research work 
carried out by him in the Department of Electrical Engineering, National 
Institute of Technology, Rourkela under my supervision. I believe that 
this thesis fulfills part of the requirements for the award of degree of 
Master of Technology (Research). The results embodied in the thesis 
have not been submitted for the award of any other degree elsewhere. 

 
Prof. Sandip Ghosh  

Department of Electrical Engineering  
National Institute of Technology  

Rourkela- 769008 

 



Acknowledgement 

 

"The mediocre teacher tells. The good teacher explains. The superior teacher demonstrates. The 

great teacher inspires." 

Prof. Sandip Ghosh truly epitomizes these words. He is one of the most influential people in my 

life. I have gained immense knowledge and experience from him, which is invaluable. Without 

his expertise in the field of control system, this thesis wouldn’t have been possible. I sincerely 

thank him for demonstrating confidence in me and providing an opportunity to work under his 

able guidance. 

I thank all my teachers Prof. B. D. Subudhi, Prof. J. K. Satpathy, Prof. (Mrs.) S. Das, for their 

contribution in my studies and research work. They have been great sources of inspiration to me 

and I thank them from the core of my heart. 

I take this opportunity to thank my beloved parents, wife, brother and my daughter for believing 

my ability and providing constant encouragement and support. Lastly, I thank GOD, the 

almighty for providing me with strength and His choicest blessings, 

 

 

Dushmanta Kumar Das 

 

 

 
 



i 
 

Contents 

           Page No. 

Abstract             iii 
 
List of Symbols          v 
 
List of Figures           vii 

1. Introduction 

1.1  Introduction          1 

1.2  State Feedback Stabilization        1 

1.3  A Review on State Feedback Stabilization of Uncertain Systems   3 

1.4 A Review on State Feedback Stabilization of Systems with Feedback Delay 6 

1.5 Scope of the Present Work         8 

1.6 Organization of the Thesis        9 

2. Stabilization of an Uncertain System 

2.1  Introduction          11 

2.2  Stabilization of Systems with Input Matrix Uncertainty    12 

2.3  A Characterization of a Class of Second Order Uncertain System   13 

2.3.1 When this Proof of Contradiction Applies?     15 

2.4  Numerical Examples          16 

2.5  Conclusion          26 

3. Stabilization of an Input Delayed System 

3.1 Introduction           27 

3.2 Delays in the Feedback Loop        27 

3.3 An Observation          28 

3.3.1 Methodology for the Test       28 



ii 
 

3.3.2 The Case of Static State Feedback Controller     29 

3.3.3 The Cases of Dynamic State Feedback Controller   30 

3.3.4 A New Dynamic Feedback Controller with an Artificial Delay   32 

3.4 A Continuous Pole Placement Method for Time-Delay Systems    34 

3.4.1 Computation of the Right Most Eigenvalues using BIFTOOL  37 

3.5 Results and Analysis         38 

3.5.1 The Case of Equal Delays ( a s cτ τ τ= = )     38 

3.5.1.1 Computing Sensitivity of Eigenvalues w.r.t. the Feedback 

             Gain Parameters       39 

 3.5.1.2 Computing the Required Change in the Feedback Gain (K)  40 

3.5.1.3 Obtaining the Maximum Tolerable Delay    44 

3.5.2 The Case when a sτ τ≠         46 

3.5.2.1 Computation of Sensitivity of Eigenvalues w.r.t. Feedback Gain 48 

 3.5.3 The Case of s c aτ τ τ≠ ≠        51 

3.5.3.1 Computation of Sensitivity of Eigenvalues w.r.t. Feedback Gain 52 

3.6 Conclusion          56 

4. Conclusion 

     4.1 Contributions of the Thesis        57 

     4.2 Future Scope of Work          58 

APPENDIX-A: Frequency Sweeping Test (FST)      63 

APPENDIX-B: Using BIFTOOL        67 

APPENDIX-C: MATLAB Programs       71 



iii 
 

Abstract 

 

A general perception is that dynamic state feedback controllers may have superior capabilities 

compared to the static feedback ones. Although, for nominal systems, such superiority does not exist, 

it may hold true for systems other than the nominal one. This thesis investigates such capabilities of 

dynamic state feedback controllers. 

First, the case of systems with time-invariant uncertainties is considered. It appears that only a limited 

number of example systems exist for which dynamic feedback controller has superior ability to 

improve tolerable uncertainty bounds. This thesis shows that not only the available ones but there exist 

a class of systems for which such improvement may occur. This claim has been verified by presenting 

more numerical examples in the category. 

Second, this thesis considers the class of systems with feedback delays, more specifically, systems 

having both input and output delays. The superiority of dynamic feedback controllers for such systems 

appears to be not investigated so far in literature. However, it is observed, for the first time, that if one 

considers a dynamic state feedback controller but with an artificial delay in its state then the tolerable 

delay margin improves considerably. The performance of such a controller is investigated thoroughly 

for scalar systems using a continuous pole placement technique for delay systems. 
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ed      Chapter 1 

 

 Introduction 

 

1.1 Introduction 

Feedback concept arises when the output of a plant is fed back to the plant input in order to 

attain certain desired performance automatically. A well-known performance measure is the 

robustness of the system in the sense that the system remains stable in spite of plant parameter 

variations. One may get improved robustness by using suitable feedback control. 

Often, it is required first to stabilize an unstable plant by using feedback. Such a problem is 

known as stabilization problem. This thesis considers such stabilization problems in broad. A 

block diagram representation of such feedback stabilization problem using state feedback is 

shown in Fig.1.1. Moreover, problems on robust stabilization of different classes of systems are 

considered in this thesis. 

1.2 State Feedback Stabilization  

For illustration, consider a nominal Linear Time Invariant (LTI) system, the state space 

representation of which is given by 

 ( ) ( ) ( )x t Ax t Bu t= +  (1.1) 

 

where ( ) nx t R∈ is the state of the system, ( )u t  is the control input, A is the system matrix and 

B  is the control input matrix. 
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Note that, in Fig 1.1, the controller may be of any type. The most basic one is the static state 

feedback controller in which one considers 

 

 ( ) ( )u t Kx t= , (1.2) 
 

where K  is a constant gain matrix. 

 

 

 

 

 

 

 

Fig.1.1: State Feedback Stabilization 

On the other hand, controllers involving some internal dynamics into then are called dynamic 

feedback controllers. For example, for system (1.1), a linear dynamic state feedback controller 

may be of the form 

 
( ) ( ) ( )
( ) ( ) ( )

c c

c c

z t A z t B x t
u t C z t D x t

= +

= +
 (1.3) 

where cnz R∈ is the state of the controller, and , ,c c cA B C  and cD  are matrices of  appropriate 

dimension. 

Note in this regard that the controller (1.3) is complex compared to the controller (1.2) since 

more controller parameters are required to be designed as well as requires integrator(s) for 

Unstable Plant 

Controller 

x(t)u(t)
Stable 
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implementation. However, for the nominal system (1.1), if the pair of A  and B  is controllable 

then there exists a static state feedback stabilizing controller ( K ) [24 and 35]. Obviously then 

the controllers of the type (1.3) is desired to be avoided. However, such dynamic controllers 

may be used to improve the robustness of the system other than the nominal one. This thesis 

investigates such possibilities. For the purpose, first we present a review on stabilization of an 

uncertain system for which there exists results that dynamic controllers may improve tolerable 

robustness bounds compared to the static feedback one. Next, a review on systems with 

feedback delay is also presented in which case it appears that superiority of dynamic feedback 

controllers has not been investigated so far. 

1.3 A Review on State Feedback Stabilization of Uncertain Systems 

One of the main objectives of feedback control is to achieve optimal plant performance in 

presence of uncertainties. There are several different causes that contribute to uncertainty in 

systems. One among these is the modeling error. Modeling error itself may arise out of two 

reasons (i) parameter perturbations originated by uncertainty in physical parameters, (ii) 

unmodeled dynamics arises out of the neglected delays and high frequency dynamics due to the 

model order reduction [1, 18, 21, 19 and 36]. In general, the order of a real plant is infinite 

dimensional due to the presence of time-delays and nonlinearities that is approximated to a 

finite dimensional one in order to have computationally convenient analysis, e.g., in case of a 

multi-loop control, the non-diagonal terms are often disregarded and each loop is individually 

tuned. In addition to these, there may also be unmeasurable perturbations that produce output 

deviations. With a robust controller in place, the achieved deviations must satisfy a user-

defined bound. 



4 

 

The classical way of ensuring robustness is by designing a controller by guaranteeing relative 

stability in terms of gain and phase margin [17 and 39]. However, guaranteeing these margins 

ensures robustness of the system w.r.t. the loop gain and phase. In case of parametric 

uncertainty present in the system and at least their range of variations are known then such 

designs become conservative [13, 6 and 14]. Lyapunov based approaches have been used for 

determining the robustness bounds or robust stabilization in [5, 10 and 2]. Moreover, ensuring 

such frequency domain specifications are computationally heavy for Multi-Input-Multi-Output 

(MIMO) systems. 

For systems having parametric uncertainties with known bounds of them, one may use the 

well-known Kharitonov’s theorem to check system’s stability for SISO systems [3].The 

methods based on Inverse Nyquist Array, Zero Inclusion Principle and Sixteen Plant Theorem 

may also be used to check the same [3]. However, some of these methods are based on 

graphical techniques and hence computationally heavy even for analysis. Controller design to 

obtain optimal robustness become more difficult and may be obtained by trial and error method 

for a certain finite range of the controller. 

On the other hand, using the state-space models, where one does not have to bother about 

number of inputs/outputs of the system, the well-known approach for stability analysis is based 

on Lyapunov theory [12]. In this, one searches for the existence of a positive energy function 

over the states and tries to ensure that it decays with time for a particular system. The same 

approach may also be used for robust analysis of the system using the quadratic stability 

approach [23 and 24]. However, in this approach, one may obtain conservative results in the 

sense that this yields only sufficient conditions. In fact, it appears that given an uncertain 

system model, obtaining the stable parameter space in the case of the system having several 
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uncertain parameters is difficult. However, for systems with a few uncertain parameters, it may 

be possible to obtain the parameter region for which the system remains stable. For systems 

either in state-space form or in transfer function form with a single uncertain parameter, criteria 

for obtaining tolerable parameter bound have been obtained in [8].  

Apart from analysis, one may like to stabilize an uncertain system in such a way that its 

robustness is improved, in the sense that it can tolerate larger parameter variations. In 

comparison of the linear static state feedback and linear dynamic state feedback controllers, it 

is well known that using the quadratic stability approach (Lyapunov approach using a quadratic 

energy function), one does not get a better dynamic controller than the static one that can 

stabilize the system with larger uncertainty bound [24].  

However, showing the limitations of the linear quadratic regulators in enhancing the open-

loop gain-margin and phase-margin criterion, it has been shown in [39] that if a dynamic state 

feedback controller is used then the robustness can be improved considerably. Although the 

design result reported therein is erroneous as it has been pointed out in [17] and has further 

been rectified. More categorically, for systems with time-invariant uncertainties, it has been 

shown that there exist example cases of systems and dynamic controller for it that improves the 

robustness performance of the system [33]. That is, a dynamic feedback controller is superior to 

the static one at least for some stabilization problems. Note that, although no systematic design 

procedure of such controllers is available, one may use the stability results of [8] to check 

stability of the system. Also, one may possibly use parameter-dependent [16] or non-quadratic 

[40] Lyapunov function for analyzing stability of closed loop system in the case when 

controller parameters are given. 
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1.4 A Review on State Feedback Stabilization of Systems with Feedback Delay 

Time-delays are common in real-world systems, e.g., it is often encountered in chemical 

processes and biological systems. In such cases, the future evolution of the state variables ( )x t  

depends on their past values, say ( ),x t r tξ ξ− ≤ ≤ . Design of controllers for such time-delay 

systems are difficult compared to systems not having it. In fact, a closed loop control system 

may be unstable or may exhibit unacceptable transient response characteristics if the time delay 

used in the system model for controller design does not match with the actual delay present in 

the system [9]. Also, ignorance of the computation delay during analysis and design of digital 

control systems may lead to unpredictable and unsatisfactory system performance.  

On the other hand, in perspective of the state feedback stabilization problem described in § 1.1, 

it was assumed that the control input is generated using the present states information only. 

However, in reality, this present states may not be available for the purpose due to (i) the time 

taken in measuring the states or to estimate the states from output measurement, (ii) 

computation time taken by the controller and (iii) time taken by the actuating process. Due to 

these reasons, the actual state used for the control input is basically the delayed state and the 

corresponding delay in the feedback loop is known as the feedback delay. 

Based on the appearance of time-delays in the system model, there are two types of 

time-delay: input delay and state delay. Input delay is caused by the transmission of a control 

signal over a long-distance, or the delay is sometimes built into a system deliberately for 

control purposes [12, 34 and 37] whereas, state delay arises due to transmission or transport 

delay among interacting elements in a dynamic system [12]. 

In case of a closed loop control systems, time delay between output and input in the feedback 

loop is a common phenomena. They are introduced by transportation and communication lag 
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[12]. Time-delays in a control loop generally having a destabilizing influence and a make 

design of satisfactory controller is difficult to achieve [4]. When delays are not appropriately 

taken into account, a severe degradation of performance and even instability may occur [4 and 

9]. The importance of study of time delays in control is now well recognized in a wide range of 

applications (transportation systems, communication networks, tele-operation systems, etc.). In 

last two decades, probably due to the new emerging applications in engineering (such as 

network controlled systems) well-supported by new theoretical results, several open problems 

have been solved (decoupling problems, stabilization, robustness, etc.) and several attempts 

have been made to obtain better and better results [12].  

Several authors have considered stabilization of systems having both input and output delays in 

the feedback loop. In [11], a new approach is developed for sampled-data state feedback 

stabilization to the H∞  control by considering the input and output delay in the closed loop 

system. The approach consists of lifting technique in which the problem is transformed into an 

equivalent finite-dimensional discrete H∞  control problem and the solution is obtained in 

terms of differential Riccati equations. [11]. In case of such feedback delays, the stabilization 

of the closed loop system depends on the total tolerable delay in the feedback path that is the 

sum of the delays from the plant output to the controller and the controller to the plant input 

[15]. 

The stability of time-delay systems has been widely investigated in the last two decades. It is 

well known that there are several methods for studying stability of a time-delay system. Some 

of them are: Lyapunov-Krasovskii approach [12], Lyapunov-Razumikhin approach [12], and 

spectral radius method [26]. However, designing a stable controller is more difficult problem to 

solve as compared to the analysis one, since not only one has to guarantee the stability but also 
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has to find a controller at the same time. For this, the above Lyapunov approaches yields only 

sufficient results.  

The stabilization, i.e., to design a controller ensuring stability, for linear time-delay systems has 

been studied extensively in literature. Since Lyapunov approaches yields conservative results 

for stability analysis, they yield the same for stabilization problems as well. If the delay values 

are known exactly, then, in [29 and 30], an algorithm has been proposed based on numerical 

techniques. It is called as a continuous pole placement technique since it is an extension of the 

classical pole placement technique for linear systems. The approach makes use of the 

BIFTOOL toolbox [29] for computing the right most eigenvalues of the system and iteratively 

tries to place them in the left half plane by changing the controller parameters. 

 

1.5 Scope of the Present Work 

Based on the review carried out, the following problems on stabilization of uncertain systems 

and time-delay systems are seen to be not answered in literature. 

• Although there exist few second order and third order example systems in literature for 

which dynamic feedback controllers may improve tolerable uncertainty bound, it is not 

clear whether there exist for which class of systems such improvements may be 

possible. 

• Several attempts have been made to design both static and dynamic state feedback 

controllers for systems with delays. However, no attempt has been made so far to 

investigate whether a dynamic feedback controller can outperform static feedback 

controllers or not for systems with feedback delays in terms of the tolerable delay.  

This thesis work attempts to answer the above issues. 
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1.6 Organization of the Thesis 

This thesis has four chapters. As seen so far, the first chapter, a brief study on the stabilization 

of system with uncertainty and also a review on the stabilization of systems with feedback 

delay has been done. This chapter also discusses the scope of the present work. 

In the second chapter, dynamic feedback stabilization of uncertain systems is 

considered. There, an algorithm is developed to check whether tolerable uncertainty bound for 

a given uncertain system can be enhanced by using a dynamic controller than that of a static 

one or not. The same algorithm is also used to develop some new example systems for which 

dynamic state feedback controller may enhance the tolerable uncertainty bound. 

The third chapter considers the problem of stabilizing systems with feedback delay, a 

dynamic state feedback controller with a state delay is proposed to enhance the tolerable delay 

margin in the feedback loop, at least, for first order systems. The abilities of such controllers 

are thoroughly studied using continuous pole placement technique.  

 The final chapter presents a conclusion of the work and also proposes some future 

works. 

At the end, three appendices are provided each on Frequency Sweeping Test (FST), 

BIFTOOL and MATLAB programs to demonstrate the uses of these computational tools used 

to obtain results of the third chapter. 
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Chapter 2 

 

 Stabilization of an Uncertain System 

2.1 Introduction 

It is well known that for systems with time-invariant uncertainties the robust margin in the 

sense that the tolerable uncertainty bound may be improved by using a dynamic state feedback 

controller compared to the static feedback one [33 and 24]. However, such improvements have 

been studied for some example cases [33] and it is not clear whether there exist some more 

examples or certain class of systems for which the improvement holds. In this paper, we 

investigate whether systems may be characterized in such a way that one may determine the 

tolerable uncertainty bound for static feedback case and compare with that obtainable by a 

suitable dynamic feedback one. 

For the purpose, one first requires to obtain an approximate tolerable uncertainty bound 

achievable by static state feedback one. This has been computed by using a method of 

contradiction in [33]. Based on this method of contradiction, we attempted to characterize the 

class of second order systems for which this applies. Subsequently, we have developed an 

algorithm to test and verify whether a dynamic feedback controller can improve the uncertainty 

bound or not. Using this proposed algorithm, we have generated some new examples and 

verified that there exists a dynamic feedback controller which indeed improves the uncertainty 

bound for these cases. 
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Uncertainty in power system state estimation is mainly due to measurement inaccuracy and the 

network mathematical model used. For instance, meter inaccuracies and communication errors 

are major sources of measurement uncertainty [1]. In practice, most physical systems are 

generally nonlinear and include parametric uncertainty [38 and 41]. These nonlinearities and 

uncertainty may be caused by saturation of actuators, friction forces, backlashes, aging of 

components, changes in environmental conditions, or calibration errors [1]. 

2.2 Stabilization of Systems with Input Matrix Uncertainty 

Consider a linear system of the form 

( ) ( ) ( ( )) ( )x t Ax t B B r u tΔ= + +                                        (2.1) 

where ( ) nx t R∈  is the state, ( ) mu t R∈ is the control input, r  is the uncertain parameter in the 

control input matrix. 

The static state feedback controller of the form  

 ( ) ( )u t Kx t=  (2.2) 

which can stabilize the system with an appropriate value of controller gain ( K ). 

Or dynamic state feedback controller of the form 

 
( ) ( ) ( )
( ) ( ) ( )

c c

c c

z t A z t B x t
u t C z t D x t

= +

= +
 (2.3) 

where ( ) cnz t R∈ is the state of the controller, cA , cB , cC , cD  are constant matrices in 

appropriate dimension. 

If a system is controllable, all the poles of the closed loop system can be placed anywhere in 

the left half plane, obviously there is nothing more to attain by using dynamic state feedback 
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controller. If the uncertainty parameter is time varying then the stability bound of the system 

cannot be enhanced by dynamic state feedback controller [24]. If the uncertainty parameter is 

time invariant then the stability bound of the system can be enhanced by dynamic state 

feedback controller than static state feedback controller which has been shown in the paper [33] 

 

 

2.3 A Characterization of a Class of Second Order Uncertain System 

Considering a second order system with time-invariant uncertain input matrix may be described 

as  

 1 2 1

3 4 2
( ) ( ) ( )

a a b
x t x t u t

a a b
⎡ ⎤⎡ ⎤

= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2.4) 

 

where 2( )x t R∈  is the state vector and ( )u t R∈  is the control input, 2 2A R ×∈ , 2 1B R ×∈  and 

1 1b b r= + . 

To categorize this class of systems whose stability bound can be enhanced by using a dynamic 

state feedback controller. 

For this system (2.4), consider a static state feedback controller of the form 

 [ ]1 2( ) ( )u t k k x t=  (2.5) 

 

The closed loop equation is then given by 1 1 1 2 1 2

3 2 1 4 2 2
( ) ( )

a b k a b k
x t x t

a b k a b k
⎡ ⎤+ +

= ⎢ ⎥
+ +⎣ ⎦

 (2.6) 
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The eqn. (2.6) is in the form of, ( ) ( )x t Ax t= . The characteristic equation can be represented by 

0sI A− = , which yields 

{ } { }2
1 1 2 2 1 4 4 1 2 2 1 1 2 3 1 2 1 4 2 3( ) ( ) ( ) ( ) 0s s b k b k a a a b a b k a b a b k a a a a− + + + + − + − + − =        (2.7) 

From the above characteristic equation (2.7), one may derive the following conditions to satisfy 

the stability criteria of the system. 

 

                              { }1 1 2 2 1 4( ) 0b k b k a a+ + + <                                            (2.8) 

                         { }4 1 2 2 1 1 2 3 1 2 1 4 2 3( ) ( ) ( ) 0a b a b k a b a b k a a a a− + − + − >                              (2.9) 

 

The above equations (2.8) and (2.9) will contradict each other, when coefficients of the 

equations are equal with opposite sign of r  (uncertainty factor) in both the sides to give us the 

range of r for which the system will be stable. 

Now, to satisfy the method of contradiction, one obtains  

1 1 4 2 2( )b r b r a a b+ = − −                (2.10)

2 1 2 3 1( )b a b a b r= − −                (2.11)

1 4 1 4 2 3a a a a a a+ = −                (2.12) 

From these above conditions, we derive a set of conditions such that a given system may be 

checked whether a dynamic state feedback controller may yield better stability performance 

compared to the static one or not. These are presented in next section. 
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2.3.1 When this Proof of Contradiction Applies? 

Algorithm 2.1 

The following are the conditions for which the method of contradiction applies. 

1: ) )Trace(A Det(A=  

2: 4 1a = + , (This is not that restrictive as it appears since one can always interchange the state 

definitions, i.e., can interchange 1a and 4a ). 

3: 4
2

4 3 4

1
1 ( 1)

a
a

a a a
+

≠
− − +

. 

4: Finally, if 4 2 3
1

4 1
a a a

a
a
+

=
−

 and 3 1
2

1 4 2 3

2
( 1)( 1)

a b
b

a a a a
=

− + −
. 

Note that, if the system is in controllable canonical form, this enhancement may not be possible 

using a dynamic state feedback controller.  

Remark 2.1: If the system satisfies the above condition then one may obtain a sufficient 

tolerable uncertainty bounds for any static state feedback controller by following the method of 

contradiction as 

 1 4 2 2

4

( 1)
1

b a a b
r

a
− −

<
+

 

 

Following the above conditions, several examples may be developed for which the tolerable 

uncertainty bound by using static state feedback controller can be obtained. 
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For the same examples, one may also search for a dynamic feedback controller that improves 

the tolerable uncertainty bound. It is seen that the dynamic feedback controllers are able to 

improve the tolerable bound. Some numerical examples are developed to validate the above 

proposed algorithm. 

Next, we present a lemma that will be used to determine the tolerable uncertainty bounds for a 

given controller case.  

Lemma 2.1 [8]: Given two appropriate dimensional matrices 0M  and 1M  with 0M  is Hurwitz. 

Then any matrix belonging to the set of this matrices 

0 1 min max{ , [ , ]}rM M M rM r r r= = + ∈              (2.13) 

remains stable for any ( )min maxr r r∈ , where  

min 1
min 0 0 1 1

1
( ( ) ( ))

r
M M M M−

=
− ⊕ ⊕λ

               (2.14) 

max 1
max 0 0 1 1

1
( ( ) ( ))

r
M M M M−

=
− ⊕ ⊕λ

             (2.15) 

where max ( )Xλ  will denote the maximum positive real eigenvalue of X  (if X  has no positive 

eigenvalue then max ( ) 0X +=λ ) and min ( )Xλ  denotes the minimum real eigenvalue of X  (if 

X  has no negative eigenvalue then min ( ) 0X −=λ ). 

2.4 Numerical Examples 

In this section, we demonstrate two new examples for which the method of contradiction 

applies and there exists at least a dynamic state feedback controller that improves the tolerable 

uncertainty bound. 
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Example 2.1: Considering a second order system with constant uncertainty with input control 

matrix as 

1 1 1
( ) ( ) ( )

1 2 2
r

x t x t u t
− − +⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
                (2.16) 

Appling a static state feedback controller of the form 1 1 2 2( ) ( ) ( )u t k x t k x t= + , the closed loop 

equation may be written as   

 
[ ]1 2

1 2

1 2

1 1 1
( ) ( )

1 2 2

1 ( 1 ) 1 ( 1 )
( )

1 2 2 2

− − +⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

+ − + − + − +⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

r
x t x t k k

r k r k
x t

k k

 (2.17) 

  
The characteristic equation corresponding to system (2.17) is  

 { } { }2
1 2 1 2(1 ) 2 3 (4 2 ) (1 ) 3 0s s k r k k r k r+ − + − − − + + − =               (2.18) 

For stability of the system, it requires that all the coefficient of  , 0,1, 2=is i  must be positive, 
then one obtains   

     { }1 2(1 ) 2 3 0k r k− + − >                 (2.19) 

and      { }1 2(4 2 ) (1 ) 3 0k r k r− + + − <                (2.20) 

At  1r = − , from eqn. (2.19), one obtains { }1 22 2 3 0k k+ − >                 (2.21) 

Similarly, from eqn. (2.20), one obtains { }16 3 0k − <                  (2.22) 

Again, at 1r = , from eqn. (2.19), it requires that  { }12 3 0k − >                 (2.23) 

and from eqn. (2.20)    { }1 22 2 3 0k k+ − <                 (2.24) 
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Note from the above stability requirements that the equations (2.21) and (2.24) are 

contradicting each other so the system can be stabilized by a static feedback controller only 

when 1r < .The above system (2.16) has been simulated at different uncertain cases and it has 

been observed from the result that system is stable at 0,0.9 and 1r = but unstable for a chosen 

1.1r = which validates the computed result. The simulation results are shown in the Fig.2.1. 
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Fig 2.1: Simulation for the Stability of System (2.16) Using Static State Feedback Controller 

Next, consider a dynamic state feedback controller for system (2.25), whose parameters are 

computed by using  fminsearch program of MATLAB. The controller parameters are searched 

so that the most right hand eigenvalue of the system for r 0,1and 1= −   get placed to LHS of 

the complex plane. 

By this, we obtain a dynamic feedback controller as, 

                                  1 2

1 2

( ) 122.5501 ( ) 12.06766 ( ) 2.3592 ( )
( ) 40.8416 ( ) 51.1517 ( ) 0.8173 ( )

z t x t x t z t
u t x t x t z t

= − + −
= − + +

                           (2.25) 
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The closed loop system of (2.16) using dynamic feedback controller (2.25) may then be 

represented as  

[ ]
1 1 1

2 2 2

1 1 0 1
1 2 0 2 40.8416 51.1517 0.8173

122.5501 12.0676 2.3592 0

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x r x
x x x
z  z z

 

                          

1 1

2 2

1 1 0 ( 1 )*40.8416 ( 1 )*51.1517 ( 1 )*0.8173
1 2 0 40.8416*( 2) 51.1517*( 2) 0.8173*( 2)

122.5501 12.0676 2.3592 0 0 0

− − − + − + − +⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

x r r r x
x x

 z z
 

       

1 1

2 2

1 1 0 40.8416 51.1517 0.8173
1 2 0 81.6832 102.3034 1.6346

-122.5501 12.0676 -2.3592 0 0 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x
x x

 z z

                                                                     
1

2

40.8416 51.1517 0.8173
0 0 0
0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x
r x

z

 

Then, the closed loop equation may be written as  

1 1 1

2 2 2

41.8416 -52.1517 -0.8173 -40.8416 51.1517 0.8173
82.6832 -100.3033 -1.6346 0 0 0

-122.5501 12.0676 -2.3592 0 0 0

x x x
x x r x
z  z z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

     (2.26) 

 

Now, the range of the tolerable uncertainty ( )min maxr r r∈  may be determined using Lemma 

2.1. For the purpose, we express the above closed loop system (2.26) as  
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1 1

2 2

x x
x M x
z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where M is a set of perturbed matrices and can be expressed as  

 0 1= +M M rM  (2.27) 
where  0M  and 1M  are n n×  matrices with 0M  strictly stable . The maximal range of r  for 

M   to be strictly stable using Lemma 2.1 is obtained as min 1.1709= −r , max 1.2655r  =  and 

1.1709r < .Then we have simulated the closed loop system (2.26) at different uncertain cases 

and it has been observed that the system is stable at 1.17  to 1.17r = −  which has been shown 

in the Fig.2.2. 
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Fig 2.2: Simulation for the Stability of System (2.16) Using dynamic feedback controller (2.25) 
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Hence, the dynamic controller enhances the stability bound than that of any static state 
feedback controller. 

Example 2.2: We have considered another example to justify more appropriately that by 

referring the above algorithm, one can develop new examples, 

 
1 1 1

( ) ( ) ( )
1 3 2

r
x t x t u t

− +⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2.28) 

The above system obeys the method of contradiction for 1r ≤ . Hence, the system cannot be 

stabilized by a static state feedback controller for 1r > . Then, the closed loop system of system 

(2.28) using static state feedback controller is simulated at different cases and observed that the 

system is stable at 0,0.9 and 1r =  and unstable at 1.1r = . 
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Fig 2.3: Simulation for the stability of system (2.28) using static feedback controller 
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However, consider a dynamic state feedback controller obtained using fminsearch program as 

    1 2

1 2

( ) 1.4294 ( ) 9.9279 ( ) 4.5957 ( )
( ) 25.0799 ( ) 29.8277 ( ) 5.9040 ( )

z t x t x t z t
u t x t x t z t

= − + −
= − +

                  (2.29) 

The closed loop equation may be represented in the form (2.27) as: 

1 1 1

2 2 2

26.0799 30.8277 5.9040 25.0799 29.8277 5.9040
51.1597 56.6554 11.8081 0 0 0
-1.4294  9.9279 -4.5957 0 0 0

x x x
x x r x
z z z

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (2.30) 

the tolerable uncertainty bound using Lemma 2.1 is obtained as: min 1.1882r = − , max 1.1187r =  

and 1.1187r < . We have simulated the closed loop system (2.30) and observed that the above 

system is stable at 1.11 to 1.11r = − . The simulated results are shown in the Fig.2.4. 
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Fig 2.4: Simulation for the stability of system (2.28) using dynamic feedback controller (2.29) 
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Clearly this controller improves the tolerable uncertainty bound compared to that tolerable by 

using any static feedback one. 

Corresponding to the above second order system, one may develop a third order system 

with uncertainty in the system matrix for which the enhancement in tolerable uncertainty bound 

is possible. To define it more appropriately, we have presented an example case of this class of 

third order system. 

Example 2.3: Consider a third order system with uncertainty in the system matrix as 

 

 
1 1 1 0

( ) 1 2 2 ( ) 0 ( )
0 0 0 1

r
x t x t u t

− − +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.31) 

 

where r  is an uncertain parameter. 

Appling a static state feedback controller of the form 1 1 2 2 3 3( ) ( ) ( ) ( )u t k x t k x t k x t= + + , it is 

seen that  the system cannot be stabilized by a static feedback controller  for 1r ≥ . The system 

(2.31) is simulated using static state feedback controller gain values for different uncertain 

cases. The corresponding simulation results are shown in Fig.2.5. From this, one may see that 

the system is stable at 0,0.9 and 1r =  but unstable for a chosen 1r ≥ . 

However, considering a dynamic state feedback controller of the form  

 1 2 3

1 2 3

( ) 1.3562 ( ) 0.8641 ( ) 0.8279 ( ) 0.6120 ( )
( ) 1.5051 ( ) 4.5800 ( ) 3.7494 ( ) 0.3555 ( )

z t x t x t x t z t
u t x t x t x t z t

= − + + +

= + − +
 (2.32) 
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Fig 2.5: Simulation for the stability of system (2.31) using static feedback controller 

the closed loop system of (2.31) using (2.32) may be written in the augmented form as 

 

[ ]
1 1 1

2 2 2

3 3 3

1 1 1 0 0
1 2 2 0 0

1.5051 4.5800 3.7494 0.3555
0 0 0 0 1

1.3562 0.8641 0.8279 0.6120 0

x r x x
x x x
x x x
z z z

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

        

1 1

2 2

3 3

1 1 1 0 0 0 0 0
1 2 2 0 0 0 0 0
0 0 0 0 1.5051 4.5800 3.7494 0.3555

1.3562 0.8641 0.8279 0.6120 0 0 0 0

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

r x x
x x
x x
z z
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The closed loop system may be represented into the desired form as 

 

1 1 1

2 2 2

3 3 3

1 1 1 0 0 0 1 0
1 2 2 0 0 0 0 0

1.5051 4.5800 3.7494 0.3555 0 0 0 0
1.3562 0.8641 0.8279 0.6120 0 0 0 0

x x x
x x x

r
x x x
z z z

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

For this case, the tolerable uncertainty bound using Lemma 2.1 is obtained as: 

min 21.3666r = − , max 1.6698r =  and 1.6698r < . The system (2.31) is simulated using 

dynamic state feedback controller (2.32) for different uncertain cases. This simulation results 

are shown in Fig.2.6. From this simulation one may observe that the system is stable 

at 1.11,1.11 and 21.3r = − − . 
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Fig 2.6: Simulation for the stability of system (2.31) using dynamic feedback controller (2.32) 
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Note that, the tolerable uncertainty bounds obtained using dynamic feedback controller are not 

the optimal one since one may design a different controller which may yield larger bounds than 

the present one. 

2.5 Conclusion 

The class of second order uncertain systems with time-invariant uncertainty in the input has 

been identified for which tolerable uncertainty bound may be improved by using suitable 

dynamic feedback controller. Two new examples of second order system have been 

demonstrated for which it has been seen that dynamic feedback controller indeed enhances the 

tolerable uncertainty bound. Correspondingly, a new example of third order system has been 

developed for which a dynamic state feedback controller may improve the tolerable uncertainty 

bound compared to the static one. However, searching the parameters of dynamic state 

feedback controller by fminsearch program of MATLAB is a heuristic approach because there 

is no systematic procedure is available to obtain the parameters of such a dynamic state 

feedback controller. 
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Chapter 3 

 

Stabilization of an Input Delayed System 

 

3.1 Introduction 

Input delay often arises in engineering systems due to time-taken in communicating signal from 

one to other place. In feedback control systems, delay appear due to time taken in measuring 

the output signals, called as measurement delay or sensor delay, and activating the actuator, 

called as actuation delay. There may also be computational delay due to the time taken in 

computing the control law. It is well known that the existence of time-delay degrades the 

controller performance and even instability of the closed loop system [4]. In this chapter, the 

problem of stabilizing systems while maximizing such delays in the feedback loops is 

considered. To proceed further, the system under consideration is described in the next section.  

3.2 Delays in the Feedback Loop 

Due to finite time taken in sending (i) measured outputs from the sensor to the controller and 

(ii) from the controller to the actuator of the plant, the feedback loop may involve time-delay 

[11 and 22]. These delays may cause instability of the system [7 and 29]. A closed-loop control 

system with such delays in the feedback loop is shown in Fig. 3.1. The time-delay involved in 

measuring and thereby sending an output signal to the controller is represented by sτ , whereas 

aτ  represents the time taken to send the control signal from the controller to the actuator of the 
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plant. The former one may be referred to as the sensing (measurement) delay and the latter one 

as the actuation delay. 

 

 

 

 

 

Fig 3.1: Feedback Control System with Transmission Delays 

The total delay in the feedback path for static feedback case is the sum of these two delays, i.e., 

total a s= +τ τ τ [15]. 

Now, consider the first order plant dynamics as:  

 ( ) ( ) ( )ax t ax t bu t= + −τ  (3.1) 

where ( )x t  is the state and ( )u t is the control input with aτ  being the actuation delay. 

3.3 An Observation 

In this section, a simple test is presented that leads to further work on the stabilization problem 

considered in this chapter. 

3.3.1 Methodology for the Test 

To obtain an optimal controller in the sense that the tolerable delay bound is maximum, the 

controller parameters are searched using the fminsearch program of MATLAB® while 

computing the delay values using Frequency Sweeping Test (FST) [12]. 

Plant

Controller

Actuation Delay ( aτ ) Measurement or 
Sensor Delay ( sτ ) 

( ) ( ( ))= − τ − τa su t f y t  
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To start with, first, note that, with known values of the controller parameters irrespective of 

static or dynamic, the closed loop system may be represented as 

 ( )dx Ax A x t= + −τ  (3.2) 

where A  and dA  are known matrices of appropriate dimension. Next, the static and dynamic 

feedback cases are treated individually. 

3.3.2 The Case of Static State Feedback Controller 

Considering a static state feedback controller with sensing delay sτ as 

 ( ) ( )su t kx t τ= −  (3.3) 

with k  is the controller gain, the closed loop dynamics becomes 

 ( ) ( ) ( )a sx t ax t bkx t τ τ= + − −  (3.4) 

where dA bk= . 

Note that, for stability of the closed loop system (3.2), it is required to be stable at 0=τ , i.e., 

dA A+  is stable. Now, if one increases τ from zero value then the system will remain stable up 

to a maximum value of the delay ( maxτ ). Beyond maxτ , the system will be unstable [12]. 

Next, we consider investigating stability of such delay systems. 

The characteristic equation of (3.2) is 

 det( ) 0dI A A e−− − =λτλ  (3.5) 

Note that due to the presence of the exponential term, the above equation has infinite number of 

roots, i.e., the system has infinite number of poles. Clearly, it is difficult to analyze stability 
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considering all the poles at a time by finite computations [12, 27 and 28]. However, several 

methods are available for analyzing stability of time-delay systems by using computational 

algorithms or by approximating the infinite dimensional system to a finite dimensional one, 

e.g., using PADE approximation [31]. In this paper, we will use a FST for computing the 

tolerable delay margin for the time-delay systems. The procedure to compute the maximum 

tolerable delay using frequency sweeping test is presented in the Appendix-A. 

Example 3.1: For static state feedback case, the closed-loop dynamics will 

be ( )kx ax b x t= + −τ .For 2a = and 2.1kb = − , the tolerable value of delay using FST is 

obtained as 0.4839=τ .In this case, the well known result is that the system is stabilizable with 

static state feedback for 1/ a<τ  [29].  Hence, in this case, the system is stabilizable for 0.5<τ . 

 

3.3.3 The Cases of Dynamic State Feedback Controller 

Now, consider a first order dynamic feedback controller of the form 

 ( ) ( ) ( )c c c c sx t a x t b x t= + −τ  (3.6) 

 

If a dynamic feedback controller is used, the following two cases may be studied. 

Case I: The case when, 0s =τ  and a =τ τ : 

The closed loop equation may be represented by 

 
( ) ( ) ( )
( ) ( ) ( )

c

c c c c

x t ax t bx t
x t a x t b x t

τ= + −

= +
 (3.7) 
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The augmented form of this system may be  

 
( ) 0 ( ) ( )0
( ) ( ) ( )0 0c c c c c

x t a x t x tb
x t b a x t x t

τ
τ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.8) 

 

Example 3.2: For the case, when 2a =  and 1b = , the cb  and ca are searched by fminsearch 

method and tolerable delay is computed by FST. The system may be represented as 

( ) ( ) ( )2 0 0 1
( ) ( ) ( )1 004 * ( 2.4262) 1 004 * ( 4.8525) 0 0c c c

x t x t x t
x t x t x te e

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −+ − + −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

τ
τ

 

The value ofτ is found to be 0.5. So, the total tolerable delay ( total s aτ τ τ= + ) is 0.5. 

Case II: The case when, 0s a= = ≠τ τ τ : 

The closed loop equation may be represented by 

 
( ) ( ) ( )
( ) ( ) ( )

c

c c c c

x t ax t bx t
x t a x t b x t

τ
τ

= + −

= + −
 (3.9) 

The augmented form of this system may be  

 
( ) 0 ( ) 0 ( )
( ) 0 ( ) 0 ( )c c c c c

x t a x t b x t
x t a x t b x t

τ
τ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.10) 

 

Example 3.3: For this case, 

( ) ( ) ( )2 0 0 1
( ) ( ) ( )0 1.0 004 * ( 2.6063) 1.0 004 * ( 1.3029) 0

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −+ − + −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦c c c

x t x t x t
x t x t x te e

τ
τ
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The value of sτ and aτ  are found to be 0.25.So, the total delay ( totalτ ) is approximately 0.5. 

It is observed from the above experimentation that neither the static feedback nor the 

conventional dynamic feedback controller is able to stabilize the system for 0.5>τ . However, 

we have shown in the following that if we introduce an artificial delay in the state of the 

dynamic feedback controller then the tolerable delay margin is comprehensively improved. 

3.3.4 A New Dynamic Feedback Controller with an Artificial Delay 

If one considers a dynamic feedback controller with a state delay as  

 
( ) ( ) ( )

( ) ( )
c c c c c s

c a

x t a x t b x t
u t x t

τ τ
τ

= − + −

= −
  (3.11) 

and again search for the controller parameters ca  and cb . A representative block-diagram of the 

closed loop system with all the delays in the feedback network is shown in the Fig.3.2.  

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Feedback Control System with an Artificial Delay in the Controller. 

Plant 

Dynamic Controller 
with state delay ( τc ) 

Measurement or Sensor 
delay ( sτ )  

Actuation delay ( τa ) 

( ) ( ( ))= − −a su t f y t τ τ  
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Considering the controller (3.11) with 0s a c= = = ≠τ τ τ τ  the dynamics of the closed loop 

system may be represented as 

 
( ) ( ) ( )
( ) ( ) ( )

c

c c c c

x t ax t bx t
x t a x t b x t

τ
τ τ

= + −

= − + −
 (3.12) 

In the matrix form, the system along with the dynamic controller may be represented as: 

 

                                                   
( ) ( ) 0 ( )0
( ) ( ) ( )c c c c c

x t x t b x ta
x t x t b a x t0 0

τ
τ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                  (3.13) 

Again considering the previous case for 2a = , we may check whether there is an enhancement 

in the total tolerable delay margin in the network due to our proposed controller or not. To 

compute the total tolerable delay, we have used the FST and to compute the controller 

parameter fminsearch program in MATLAB® is used. 

 

Example 3.4: Considering 2a =  and 1b = .The controller parameters are searched to be -

6.9719 and -13.9439 by fminsearch method. Then, the closed system may be  

 
( ) ( ) ( )2 0 0 1
( ) ( ) ( )0 0 6.9719 13.9439c c c

x t x t x t
x t x t x t

τ
τ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.14) 

 

For this case, the value of τ is found to be 0.3565. Hence, the total tolerable delay ( totalτ ) is 

0.7130. 
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Note that, the total tolerable delay has been enhanced to 0.7130 by using our proposed dynamic 

state feedback controller, which is nearly 40% enhancement than the existing result. 

Remark 3.1: For case-I, the eigenvalues of dA  matrix are present at the origin. For case-II, all 

the eigenvalues of the matrix dA are on the imaginary plane that means the closed loop system 

is stable because of matrix A  but in case of our proposed controller the eigenvalues of dA  

matrix are present in left half plane of the imaginary axis that’s why these eigenvalues have 

more influencing effect on A . 

Several questions arise from the above study. These are (i) how the tolerable delay margin 

varies with cτ  and (ii) what happens if the sensor and actuation delays are not equal and what 

should be the choice of the cτ  in that case? Next, we attempt to answer these questions. For the 

purpose, note that, the above approach FST to compute the maximum tolerable delay margin 

along with the fminsearch program to obtain the controller parameters is heuristic. So, we next 

use the continuous pole placement method which is used to design controller parameters 

algorithmically. 

 

3.4 A Continuous Pole Placement Method for Time-Delay Systems [29] 

This is a numerical stabilization method for delay differential equation which is related to the 

classical pole-placement method for ordinary differential equations to stabilize a system, all the 

eigenvalues must be placed in the left half of the imaginary axis by bringing small changes in 

the feedback gain. In case of a delay system there are infinite number of poles, if we can check 

the location of the right most eigenvalue, then we can define the stability of the system. An 
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unstable time-delay system may be stabilized by changing the feedback gain, bringing the right 

most eigenvalues to the left half of the imaginary axis and at the same time the movement of 

other uncontrolled eigenvalues must be taken care. This is the method by means of the 

stabilization of a linear: finite dimensional system in the presence of an actuation delay (input 

delay), sensor delay (output delay) and delay in the feedback controller itself. The unstable 

poles are controlled by procedural steps, which are shown below. 

 

Algorithm 3.1 

Step 1: Set how many eigenvalues to be controlled. 

Step 2: Initialize the gain value, eigenvector. 

Step 3: Calculate the right most eigenvalues at nominal value ofτ . 

Step 4: Calculate the corresponding eigenvector, ( iv ). 

Step 5: Calculate the normalization function, ( ( )in v ). 

Step6: Calculate the sensitivity function. 

Step 7: Compute the desirable change in the controller parameters and update the gain. 

Step 8: Check the real part of the right most eigenvalue. 

Step 9: If the real part of the rightmost eigenvalue is greater than zero then go to Step 3. 

Step 10: Else stop 
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Flow Diagram for Continuous Pole Placement Technique: 

 

SS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3: Flow Diagram for Continuous Pole Placement Technique. 

Start Start 

Initialize: how_many_eig, K, n_v_old, tau, which_eig 
and e  

• Calculate right_eig = the right most eigenvalues 
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• Calculate the sensitivity function 

Compute  † dK S ΛΔ = Δ  
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Is  

real part of the right  

most eigenvalue 

greater than equal to 

zero 

Stop 

no

yes 



37 

 

Note: how_many_eig=No. of eigenvalue to be controlled. 

 K=gain of the controller. 

 right_eig=Right most eigen value. 

 n_v_old=old eigen vector. 

 n=no. of row the gain vector. 

 m=No. of column of the gain vector. 

 e=unity vector. 

Remark 3.2: Note that, as per our experience, for faster convergence of the algorithm, the 

desired displacement of the controlled poles may be chosen to be dynamic and proportional to 

the real part of the rightmost pole. It indicates that when the poles are far away then 

convergence will be faster and it will converge slowly once it comes closer to the origin. 

3.4.1 Computation of the Right Most Eigenvalues using BIFTOOL 

Engelborghs and Roose proposed a method which automatically computes the rightmost 

eigenvalues of the characteristic equation of a Time-Delay system [29]. First, a discretization is 

obtained of the time integration operator of the linear or linearized system of Delay Differential 

Equations, whose eigenvalues are exponential transforms of the roots of the characteristic 

equation. Then, selected eigenvalues of the resulting large matrix are computed. A step length 

heuristic is used to ensure that all eigenvalues of interest are accurately approximated by the 

discretization. Accuracy can be increased by employing Newton iteration on the characteristic 

equation using the approximate eigenvalues as starting values. This method has been 

implemented in the Matlab package DDE-BIFTOOL, proposed by K. Engelborghs. 

DDE-BIFFTOOL v.2.00 package is a collection of matlab routines for bifurcation 

analysis of a delay system. We have used this tool to locate the right most eigenvalues of the 

closed loop system with feedback delays. From the location of the rightmost poles of the closed 
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loop system, one can analyze the stability of the system, if the rightmost pole is in the left-hand 

side of the imaginary axis of the s-plane then the system is stable. A brief idea for using 

BIFFTOOL is given in Appendix-B. 

3.5 Results and Analysis 

3.5.1 The Case of Equal Delays ( a s cτ τ τ= = ) 

The system with dynamic feedback controller, when all the delays in the closed loop system, 

measurement delay or sensor delay ( sτ ), actuation delay ( aτ ) and controller delay ( cτ ) are 

equal. The closed loop system (3.12) may alternatively be represented as:   

  [ ]1 2
( ) ( ) ( ) ( )0 0 0
( ) ( ) ( ) ( )0 0 0 0 1c c c c

x t x t x t x ta b
k k

x t x t x t x t
τ τ
τ τ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                (3.15) 

Considering 2a =  and 1b = , the closed loop system (3.15) may be represented as   

 
1 2

( ) ( ) ( ) ( )0 02 0 0 1
( ) ( ) ( ) ( )0 0 0 0c c c c

x t x t x t x t
x t x t x t x tk k

τ τ
τ τ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                (3.16) 

For computational approach, we have defined the system (3.16) as 

 
1 2

( ) ( ) ( )0 12 0
( ) ( ) ( )0 0c c c

x t x t x t
x t x t x tk k

τ
τ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.17) 

where 
2 0
0 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and 
1 2

0 1
BK

k k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Using BIFTOOL the right most poles of the system (3.17) are located at a particular value of 

delay (τ ). To check the convergence of our algorithm, we have set the value of 0.3565τ = . 
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Initially, when there is no gain adjustment; one pole is unstable, which is present in the right 

half of the imaginary axis. The unstable rightmost pole is shown in the Fig.3.4 below. By 

following the above algorithm 3.1, the gain parameters are adjusted by computing the 

sensitivity of the eigenvalues. The Computational procedure for sensitivity is given in the next 

section below. 
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Fig.3.4:The Lacation of Pole when there is no Gain Adjustment 

 

3.5.1.1 Computing Sensitivity of Eigenvalues w.r.t. the Feedback Gain Parameters  

By making small changes in feedback gain, we may control the right most eigenvalue, but there 

is a possibility for other eigenvalues to be uncontrolled. So, we have to compute the sensitivity 

of the eigenvalues w.r.t. the changes in the feedback gain. 
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From the system (3.15), one may have two different conditions: 

 ( ) 0,iT
i iI A BK e vλτλ −− − =  (3.18) 

 ( ) 0,in v =  (3.19) 

where iλ is a solution of the characteristic equation , , [ ,0]iv eλθ θ τ∈ −  is the corresponding 

eigen function and ( )in v is a normalizing condition. To know the variation of eigenvalues and 

eigenvector w.r.t. change in feedback gain, we can differentiate (3.18 and 3.19) w.r.t. feedback 

gain. We can obtain i jkλ∂ ∂  and i jv k∂ ∂ : 

 

 
( )

0 0

i i iT T T
i ji i i j

T
i ji

v kI A BK e I BK e v Bv e e
kdn dv

λτ λτ λτλ τ
λ

− − −∂ ∂⎡ ⎤ ⎡ ⎤⎡ ⎤− − +
=⎢ ⎥ ⎢ ⎥⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (3.20) 

 

with 1n
je R ×∈  the thj unity vector. 

The sensitivity can be computed from the above equation (3.20) as i jS kλ= ∂ ∂ . 

After computing the above sensitivity function, one may have the value of small change in gain 

in each iteration by following the computational procedure presented in the next section. 

3.5.1.2 Computing the Required Change in the Feedback Gain( K) 

After checking the location of rightmost eigenvalue and corresponding eigenvector of our 

defined system, if the system is not stable then we have to change the gain by adding the 

previous with small change in gain ( KΔ ). This small change in gain can be calculated by  
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 . dS KΔ ΔΛ=  (3.21) 

where 1 2[ , , ......., ]d d d d
mΔΛ Δλ Δλ Δλ= is the desired small displacement of the controlled 

eigenvalues, m is the eigenvalue of the system matrix. Then 

 † dK SΔ ΔΛ=  (3.22) 

where †S  is the Moore-Penrose inverse of sensitivity matrix ( S ) 

The change in gain can be computed using the above equation (3.22), after some changes in the 

gain, the unstable poles becomes stable but two stable poles become unstable ,the poles are 

shown in the Fig.3.5. Later on with some more gain adjustment (more iteration), all the poles 

become stable which has been shown in the Fig.3.6. 
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Fig.3.5: The Location of Stable and Unstable Poles After Some Adjustment in Gain 
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Fig.3.6: The Location of All the Stable Poles 

 

 

The convergence of three rightmost eigenvalues are shown in the Fig.3.7. Simultaneously, the 

parameters of the controller have been computed at the convergence of the all the poles,it has 

been observed that the controller gains are [ ]6.9719 13.9439K = − − .The controller 

parameters are found to be same, as we have computed using fminsearch and FST 

method,which validates this pole placement algorithm.The convergence of three rightmost 

poles have been shown in the Fig.3.7. From the Fig.3.7  below, one may observe the variation 

of three rightmost poles w.r.t. change in gain(iteration)  
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Fig 3.7: Plot Between ( )R λ and Iteration when All the Delays are Considered to be Equal 

 
 
 

To check the stability of the states of both the system and the controller, the closed loop system 

is simulated using SIMULINK®. The corresponding simulation result is shown in the Fig.3.8. 

One may observe the states of the system and the controller to be stable at total tolerable delay, 

0.7130totalτ = . 

 

It may be a question that the above total tolerability is the maximum one or not. For that reason, 

one must have a test of maximum tolerability.The procedure to have a test maximum 

tolerability is given in the next section. 
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Fig 3.8: Simulation Result for the System (3.17) 

 
 

3.5.1.3 Obtaining the Maximum Tolerable Delay 

Using this pole placement algorithm the maximum tolerable delay value is obtained using the 

following steps: 

1. Start with a small value of delay and check whether the algorithm converges for that. 

2. If the algorithm converges then increase the delay value by a small amount and check 

whether for that convergence is there. 

3. If it converges in the last step then repeat the same as Step 2 till the algorithm diverges. 

The last value up to which the algorithm converges will be the maximum tolerable 

delay value. 
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Maximum tolerability for the above system (3.17) is checked starting from a nominal value of 

delay (τ ) =0 to 0.3566. Till 0.3565τ = , it is seen that the algorithm successfully yields 

controller parameters for which all the poles are placed in the left-half plane. Variations of the 

real parts of the rightmost eigenvalues of the closed-loop system w.r.t  iterations for  

0.3566τ =  are shown in Fig.3.9. From the figure, it can easily be seen that initially the poles 

are converging towards zero but after some iteration they are diverging. Hence, we conclude 

that tolerable delay limit is 0.3565  and the total tolerable delay ( totalτ ) is 0.7130 . 
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τ =0.3566
τtotal=0.7132

 

Fig.3.9: The Locus of Three Rightmost Eigenvalues at 0.3566τ =  

Next, the variation of maximum attainable τ has been studied w.r.t. variation in system 

parameter a  from 1 to 3.5, which is shown in Fig.3.10. The maximum attainable τ using the 

existing static feedback controller has also been plotted in the same figure. The maximum 
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tolerable delay ( totalτ ) in the feedback loop is 0.7130,when the system parameter ( a ) is 1 and 

its values decreases near about 0.2 when a  is equal to 3.5 but using the existing static feedback 

controller, the maximum tolerable delay is 0.5, when a is equal to 1 and decreases near to 

0.15,when a is equal to 3.5.A comparison of these two characteristics shows that the proposed 

controller has better performance than the existing one. 
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Fig 3.10: Plot Between a  and maxτ  when All the Delays are Considered to be Equal 
 

 
3.5.2 The Case when a sτ τ≠  

In this section, we consider the case when a sτ τ≠ . In this regard, note that, cτ is to be chosen by 

the designer and hence one may select c sτ τ= . Then, considering 1aτ τ=  and 2s cτ τ τ= = , the 

dynamic controller becomes 2 2( ) ( ) ( )c c c c cx t a x t b u tτ τ= − + −  and the closed loop system is 
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1

2 2

( ) ( ) ( )
( ) ( ) ( )

c

c c c c

x t ax t bx t
x t a x t b x t

τ
τ τ

= + −
= − + −

               (3.23) 

The augmented form of the closed loop system may be represented as, 

 1 2

1 2

( ) ( ) ( ) 0 0 ( )0 0
( ) ( ) ( ) ( )0 0 0 0c c c c c c

x t x t x t x ta b
x t x t x t b a x t

τ τ
τ τ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.24) 

 

For computational approach, we have defined the system (3.24) as 

 [ ]1 2
1 2

1 2

( ) ( ) ( ) ( )0 0 0
( ) ( ) ( ) ( )0 0 0 0 1c c c c

x t x t x t x ta b
k k

x t x t x t x t
τ τ
τ τ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.25) 

where 1cb k=  and  2ca k=  

The characteristics equation of the closed loop system (3.25) may be represented, 

 

 1 2{ exp( ) exp( )} 0i d i iI A A BKλ τ λ τ λ− − − − − =  (3.26) 

 

where 
0

0 0
a

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,
0
0 0d

b
A ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , *BK B K= ,
0
1

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and [ ]1 2K k k=  

 

where iλ  is a solution of the characteristic equation and exp( )iv λθ , [ ,0]∈ −θ τ  is its 

corresponding eigenfunction.  

The procedure for computing the sensitivity of the eigenvalues for this special case is presented 

in the next section. 
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3.5.2.1 Computation of Sensitivity of Eigenvalues w.r.t. the Feedback Gain 

To compute the sensitivity of the eigenvalues w.r.t. the changes in the feedback gain for the 

case when 1aτ τ=  and 2s cτ τ τ= = . To compute the sensitivity function, we have  

 1 2{ exp( ) exp( )} 0i d i i iI A A BK vλ λτ λ τ− − − − − =  (3.27) 

 ( ) 0,in v =  (3.28) 

where iλ is a solution of the characteristic equation , , [ ,0]iv eλθ θ τ∈ −  is the corresponding 

eigen function and ( )in v is a normalizing condition. To know the variation of eigenvalues and 

eigen vector w.r.t. change in feedback gain, we can differentiate (3.27) and (3.28) w.r.t.  

feedback gain to obtain i jkλ∂ ∂  and i jv k∂ ∂ : 

 
1 2

2exp( )
0 0

i
T

j i j iT

i
i

j

v
k Bv e

dn
dv

k

θ θ
λ τ

λ

∂⎡ ⎤
⎡ ⎤ ⎢ ⎥∂ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂⎢ ⎥⎣ ⎦

 (3.29) 

 

where  1 1 2{ exp( ) exp( )}i d i iI A A BKθ λ λτ λ τ= − − − − −    and     

 2 1 1 2 2{ exp( ) exp( )}d i i iI A BK vθ τ λ τ τ λ τ= + − + −  

with 1n
je R ×∈  the thj unity vector. 

 

After computing the value of i jS kλ= ∂ ∂ , we may follow the §3.5.1.2 to obtain the change of 

controller gain ( KΔ ).  

In this case, the pole placement algorithm is again used to study the variation of maximum 

tolerable aτ  w.r.t. variation of sτ . This characteristic is shown in Fig.3.11. In this characteristic, 
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one may observe that considering c sτ τ= , the maximum tolerability of sτ has been enhanced to 

0.7240 when aτ  is equal to 0.3480. It may be a case that one may choose c aτ τ= and the plot of 

sτ versus aτ would be the same. If the cτ is chosen to be equal to any one of the other delays 

( sτ or aτ ) then the tolerability of the other delay will enhanced to 0.7240  and the total tolerable 

delay bound ( totalτ ) may even be enhanced to 1.0640 (see the case when 0.7240sτ = ). 
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Fig.3.11: Variation of aτ  w.r.t. sτ  

Note that, this tolerable delay is almost twice of that achievable by any static feedback 

controller. For this case, the convergence of the three right most eigenvalues is shown in the 
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Fig.3.12. And to check the stability of the above system (3.25) at the maximal tolerable value 

of delay, we have simulated the system, which is shown in the Fig.3.13. 
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Fig.3.12: The Convergence of Rightmost Eigenvalues at 1.0720totalτ =  

 
 
From Fig.3.12, it is clear that the rightmost poles are on the left-half plane after gain adjustment 

in near about 64 iterations at maximal value of delay. From the simulation result shown in 

Fig.3.13, one may observe that the closed loop system is stable at the maximal tolerable delay 

value of 1.0640 . 



51 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

Time

S
ta

te

k2=-6.5875
k1=-13.1751
τs=0.7240
τc=0.7240
τa=0.3480 
τtotal=1.0720

  

Fig.3.13: The Simulation of System (3.25) at Maximal Condition when 1.0720totalτ =  
 
 
 

If the controller delay is arbitrarily chosen then all the delays in the feedback path will be 

unequal.  

3.5.3 The Case of s c aτ τ τ≠ ≠  

When the controller delay ( cτ ) is arbitrarily chosen, then all the delays may not be equal. For 

this case, the controller may be chosen as ( ) ( ) ( )c c c c c c sx t a x t b u tτ τ= − + − . The closed loop 

system may be defined as 

( ) ( ) ( )
( ) ( ) ( )

c a

c c c c c s

x t ax t bx t
x t a x t b x t

τ
τ τ

= + −
= − + −

                               (3.30) 
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The augmented form of the closed loop system may be represented as: 

( ) ( ) ( ) 0 0 ( ) 0 0 ( )0 0
( ) ( ) ( ) 0 ( ) 0 ( )0 0 0 0

a c s

c c c a c c c c c s

x t x t x t x t x ta b
x t x t x t a x t b x t

τ τ τ
τ τ τ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  (3.31) 

 

The characteristics equation of the closed loop system (3.17) may be represented, 

 

                     { exp( ) exp( ) exp( )} 0i a i c c i c s iI A B A Bλ τ λ τ λ τ λ− − − − − − − =                  (3.32) 

 

Note that, when iλ  is a solution of (3.32) then exp( )iv λθ , [ ,0]∈ −θ τ  is its eigen function. The 

computation of the corresponding sensitivity function for this case is given in the next section. 

3.5.3.1 Computation of Sensitivity of Eigenvalues w.r.t. the Feedback Gain 

For the case, s c aτ τ τ≠ ≠ , we may compute the sensitivity of the eigenvalues w.r.t.  the 

changes in the feedback gain by the following procedure. 

To compute the sensitivities, the following conditions are taken into account: 

 { exp( ) exp( ) exp( )} 0i a i c c i c s i iI A B A B vλ τ λ τ λ τ λ− − − − − − − =  (3.33) 

 

                                                             ( ) 0,in v =                                                                   (3.34) 

where iλ is a solution of the characteristic equation , , [ ,0]iv eλθ θ τ∈ −  is the corresponding 

eigenfunction and ( )in v is a normalizing condition. To know the variation of eigenvalues and 
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eigenvector  w.r.t. change in feedback gain, we can differentiate (3.33 and 3.34) w.r.t.  

feedback gain. We can obtain i jkλ∂ ∂  and i jv k∂ ∂ from the equation below. 

 

 

3 4 (1)
00

i

jT

i
i

j

v
k v

dn
dv

k

θ θ

λ

∂⎡ ⎤
⎡ ⎤ ⎢ ⎥∂ ⎡ ⎤⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂⎢ ⎥⎣ ⎦

 (3.35) 

 

where  3 { exp( ) exp( ) exp( )}i a i c c i c s iI A B A Bθ λ τ λ τ λ τ λ= − − − − − − −   and  

 4 { exp( ) exp( ) exp( )}a a i c c c i c s s i iI B A B vθ τ τ λ τ τ λ τ τ λ= + − + − + −  

 

with 1n
je R ×∈  the thj unity vector. 

 

After computing the value of i jS kλ= ∂ ∂ , we may follow the §3.5.1.2 to obtain the change of 

controller gain  

 

In this case, the pole placement algorithm is used to study on variation of cτ is 

considered. Maximum tolerable aτ  w.r.t. variation of cτ is obtained, keeping sτ  fixed. This 

study is shown in Fig.3.14, in which it may be observed that with increase in cτ , tolerable aτ  

also increases up to a certain limit, here, approximately 0.49cτ = .Beyond that tolerable aτ  

first gradually and then suddenly decreases. 
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Fig.3.14: Variation of aτ  w.r.t. cτ keeping sτ constant. 

 

 

It shows that cτ  cannot be chosen arbitrarily rather it should be chosen judicially to obtain 

improvement in tolerable delay margin. 

 

To check the convergence of this algorithm developed for unequal delays in the feedback loop, 

we have taken a case for 2a = , 1b = , 0.30aτ = , 0.34cτ =  and 0.25aτ = .For this case, 

convergence of the algorithm is shown in the Fig.3.15 and its simulation result is shown to be 

stable in the Fig.3.16. 
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Example 3.6: We have considered the above case, 

1 2

( ) ( ) ( ) ( ) ( )0 0 0 02 0 0 1
( ) ( ) ( ) ( ) ( )0 00 0 0 0

a c s

c c c a c c c s

x t x t x t x t x t
x t x t x t x t x tk k

τ τ τ
τ τ τ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                 

           (3.36) 

From the Fig.3.15, it is clear that three rightmost eigenvalues are converging after an iteration 

of 70 and simultaneously the controller gain is found to be [-10.4469 -5.2229]. From the figure, 

one may observe that the system is stable at 0.30aτ = , 0.34cτ =  and 0.25aτ = . 

0 10 20 30 40 50 60 70
-10

-8

-6

-4

-2

0

2

Iteration

R
( λ

)

 

 

3rd rightmost eigenvalue
2nd rightmost eigenvalue
1st rightmost eigenvalue

 

Fig 3.15: The Convergence of Three Right Most Eigenvalues of System (3.36) 
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Fig 3.16: Simulation of System (3.36) 

 

3.6 Conclusion 

Tolerable delay margin in the feedback path of a closed loop system is enhanced to even 

twice that of existing results by a proposed dynamic state feedback controller with an 

artificial delay in its state. For designing such dynamic feedback controllers, a continuous 

pole placement algorithm is used. The study carried out in this chapter shows that the 

proposed controller is uniform in improving tolerable delay margin in respect to different 

system parameters and delay values. 
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      Chapter 4 

 

    Conclusion 

This thesis investigates benefits of using dynamic state feedback controllers. Firstly, the case of 

tolerable robustness improvement for systems with parametric uncertainty by using dynamic 

state feedback controllers is investigated. In this regard, some new examples have been 

developed for which dynamic feedback controller can improve the tolerable uncertainty 

bounds. Next, a dynamic state feedback controller with an artificial delay in its states has been 

proposed that enhances the tolerable delay margin for systems having delays in both the input 

and output. The design and characteristic of such a new type of dynamic feedback controller 

have been studied by implementing the continuous pole-placement algorithm of [29]. 

 

4.1 Contributions of the Thesis 

The following are the salient contributions of the thesis. 

• For the class of second order systems with constant uncertainty in the input matrix, an 

algorithm has been developed to identify the systems for which a sufficient tolerable 

uncertainty bound by using static feedback may be computed. The same algorithm has 

been used to develop several new examples and it has been tested for those that 

dynamic state feedback controller improves tolerable uncertainty bounds for such 

systems compared to the static state feedback controller. 

• The same second order systems have been used to construct third order systems with 

system matrix uncertainty and verified that improvement by dynamic state feedback 

controller still holds. 

• For systems with both input and output delays in the feedback loop, a dynamic feedback 

controller with an artificial delay in its states to improve the tolerable delay bound in the 

feedback loop. It is shown that such a controller improves the tolerable delay bounds 

considerably, at least, for nominal systems. 
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• The existence of such dynamic feedback controller that can improve tolerable delay 

bound has been computed by continuous pole placement algorithm of [29] and different 

characteristics of such controllers w.r.t. variations in system parameters have been 

studied. It is seen that the in improving the tolerable delay bound the ability of such 

controllers is consistent with respect of variations in different parameters. Such 

verification also establishes consistency in convergences of continuous pole placement 

algorithm.  

 

4.2 Future Scope of Work  

The present work not only presents some new results and but it also helps in defining 

several problems to be investigated in future. These are: 

• So far no systematic methodology exists to design a stabilizing dynamic state 

feedback controller that may be used to stabilize a system with maximum 

possible tolerable uncertainty bound. One may implement and study some 

computational algorithm to address this issue. 

• For systems with feedback delays, a scalar system has only been considered. It 

will be interesting to investigate the same problem considered here but for 

higher order systems. 

• Constant delays in the feedback loop have been considered in this thesis. These 

delays may be time-varying. One may investigate the performance of the 

proposed controllers in that case. 

• One may check whether the proposed controller for systems with feedback 

delays can able to improve the tolerable delay in the feedback loop, if the system 

is having uncertainty with time varying delay in the feedback loop.  
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Appendix-A 

 

Frequency Sweeping Test (FST) 

 

A.1 Introduction 

Frequency sweeping test is very efficient computational tool for computing the tolerable delay 

margin of a given system. 

Consider a system 

( ) ( ) ( )dx t Ax t A x t τ= + − , 0τ ≥  

The characteristic equation of the above system may be written as: 

( , ) det( )s s
da s e sI A A eτ τ− −= − −  

The necessary and sufficient condition for stability of the above system is given in the 

following theorem that is the foundation of the frequency sweeping test. 

Theorem [12]: Suppose that the system is stable at 0τ = . Let ( )drank A q= . 

Furthermore, define 

  1
min

:

i
k
ik ni k

θ
τ ω≤ ≤

⎧
⎪= ⎨
⎪ ∞⎩

                 
if ( , )  for some  (0, ), [0, 2 ]

 if ( , ) 1, (0, )

i
kji i i

i k d k k

d

j I A A e

j I A A

θλ ω ω θ π

ρ ω ω

−− = ∈ ∞ ∈

− > ∀ ∈ ∞
 

Then
1

: min ii q
τ τ

≤ ≤
=  
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That is, the system is stable for all [0, )τ τ∈ , but becomes unstable atτ τ= . 

The proof of the above theorem may be found in [12]. 

A.2 Frequency Sweeping Test [12] 

If the system matrices A  and dA are known, then one may compute the tolerable delay margin 

by using the following algorithm. 

Algorithmic A.1: 

Step 1: Calculate the maximum of the real parts of all the eigenvalues of dA A+ . If it is less 

than zero then proceed. 

Step 2: Obtain the rank of dA  matrix. Let, rank( )dA  = q . Then, there will be q  number of 

crossover points from closed left half plane to right half plane through the imaginary 

axis over frequency sweep and maximum tolerable 
1
min ii q

τ τ
≤ ≤

= where τ is the optimal 

value ofτ , i.e., the system is stable for all [ )0,τ τ∈ , but unstable atτ τ= . 

Step 3: Set a frequency range and fix the step size for frequency variation. 

Step 4: For different frequencies ( i
kw ), calculate the absolute values of all the eigenvalues of 

the matrix pencil ( , )i
k djw I A A− . 

Step 5: From the above calculation, obtain the frequency at which the absolute value 

corresponding to each eigenvalue variation reaches one. If not then go to Step 3. 

Step 6: Calculate the corresponding value of eigenvalue at that frequency.  
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Step 7: Get the angle corresponding to that eigenvalue in complex plane. 

Step 8: Compute the value of delay (τ ), where τ =angle/frequency. 
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    Appendix-B 
 

     Using BIFTOOL 

 
B.1 Introduction 

 It is a tool for numerical bifurcation analysis of steady state solutions and periodic solutions of 

differential equation with constant delays. Basically, it is a collection of MATLAB routines for 

numerical bifurcation analysis of systems of delay differential equations and may be used to 

analyze the stability of a time-delay system by determining the rightmost or stability 

determining roots of the characteristics equation. 
B.2 Delay Differential Equations with Constant Delays 

Consider the system of delay differential equations (DDEs) with constant delays 

1
( ) ( ( ), ( ),........... ( ), )= − − m

dx t f x t x t τ x t τ η
dt

    (B.1) 

where ( 1)( ) , : +∈ × →n n m p nx t R f R R R  is a nonlinear smooth function depending on a number 

of parameters ∈ pη R  and delays 0>iτ , 1, 2,........=i m  

Maximal delay  
1,2...
max
=

= ii m
τ τ   

The linearization of equation (B.1) around a solution * ( )x t is the variational equation given by 

 

0
1

( ) ( ) ( ) ( ) ( )
=

= + −∑
m

i i
i

dy t A t y t A t y t τ
dt

     (B.2) 

where using 0 1( , ,......... , )= mf f x x x η  
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* * *

1( ( ), ( )........ ( ), )
( )

− −

∂
=
∂ m

i i
x t x t τ x t τ η

fA t
x

 , 1, 2,........=i m             (B.3) 

If * ( )x t  corresponds to a steady state solution * *( ) ≡ ∈ nx t x R , with * * *( , ....... , ) 0=f x x x η  then 
the matrices ( ) =i iA t A and the corresponding variational equation (B.2) leads to a 
characteristics equation, 

0
1

( ) exp( )
=

= − − −∑
m

i i
i

Δ λ λI A A λτ  

And the characteristics equation  

det( ( )) 0=Δ λ      (B.4) 

Equation (B.4) has an infinite number of roots, which determines the stability of the steady 

state solution *x .The steady state solution is asymptotically stable, provided all roots of the 

characteristic equation (B.4) have negative real part; it is unstable if there exists a root with 

positive real part. It is known that the number of roots in any right half plane ( ) ,> ∈R λ γ γ R  is 

finite; hence the stability is always determined by a finite number of roots. 

B.3 How to use BIFFTOOL: 

For stability analysis, computation of rightmost poles is very much required. To locate these 

poles or stability determining poles, we may define our system with feedback delay by 

replacing some routines by our defined routines in this tool like sys_rhs.m, sys_tau.m and 

sys_deri.m. Someone may define another default routine df_deriv.m in place of sys_deri.m 

because of less typing error and less complexity. 

B.3.1 Defining sys_rhs.m : 

The right hand side of the system is defined in sys_rhs.m. It has two arguments, ( 1)× +∈ n mxx R  

which contains the preset state variable(s) and the delayed state variable, 
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1[ ( ), ( - ),............ ( - )]= mxx x t x t τ x t τ .And 1×∈ ppar R which contains the parameter =par η .The 

delays iτ , i =1,2,3….m. are considered to be part of the parameter because the stability of the 

system and position of poles depend on the value s of the delays so the delay can occur both as 

a physical parameter as in x from these inputs the right hand side function ( f ) is evaluated at 

time( t ) and the representation of parameter has a specific order.  

B.3.2 Defining sys_tau.m: 

Here, a function is required which returns the position of the delays in parameter list. The order 

in this list corresponds to the order in which they appears in xx  as passed to the function 

sys_rhs and syy_deri. 

B.3.3 Defining sys_deri.m: 

If f  is a right hand side function, in this routine several derivatives of the function ( f ) is 

evaluated. The input variable of the function ( )f are state variables ( )xx , parameters ( )par , no. 

of state variables ( )nx , no. of parameter ( )np  and v . Here 1×∈ nv C  or empty. The J  is a matrix 

of partial derivatives of f  which depends on the type of derivative requested via 

nx and np multiplied with v  (when non empty), 

 

J  is informally defined as follows: Initialize J with f .if nx is non empty take the derivative 

of J  w.r.t. each of its elements. Each element is a number between 0 and m based on 

0 1( , ,............. , )≡ mf f x x x η .E.g., if nx has only one element take the derivative w.r.t. (1)nxx .If 

it has two elements take of the result, the derivative  w.r.t. (2)nxx and so on. Similarly, if np is 

nonempty take of the resulting J , the derivative w.r.t. ( )np iη where i  ranges over all the element 
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of np ,1 i p≤ ≤ .finally, if v  is not an empty vector multiply the result with v .The latter is used 

to prevent J from being a tensor if two derivative w.r.t.  state variables are taken (when nx  

contains two elements).Not all possible combinations of these derivatives should be provided. 

In the current version, nx  has at most two elements and np at most one. The element of J are 

given by 
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 Appendix-C 
 

       MATLAB Programs 

 

BIFTOOL has been used for computing the rightmost poles or stability determining poles of a 

closed loop system with feedback delay. In Appendix-B, we have mentioned the procedure to 

use the above tool. The programs written for our system are listed below. 

C.1 The case of Equal Delays ( a s cτ τ τ= = ) 

C.1.1 Define sys_tau.m 

%dx(t)/dt=[a11 a12;a21 a22]*x(t)+[ad11 ad12;ad21 ad22]*x(t-tau) 
%+[0 0;k1 k2]*x(t-tau); 
%dx(t)/dt=[a11 a12;a21 a22]*[x1(t);x2(t)+[ad11 ad12;ad21 
%ad22]*[x1(t-tau);x2(t-tau)]+[0 0;k1 k2]*[x1(t-tau);x2(t-tau)]; 
%dx1(t)/dt=a11x1(t)+a12x2(t)+ad11x1(t-tau)+ad12x2(t-tau) 
%dx2(t)/dt=a21x1(t)+a22x2(t)+ad21x1(t-tau)+ad22x2(t-tau)+k1x1(t-tau) 
%+k2x2(t-tau) 
function tau=sys_tau() 
%A(1,1),A(1,2),BK(1,1),BK(1,2),A(2,1),A(2,2),BK(2,1),BK(2,2),tau; 
tau=[9]; 
return; 
 

C.1.2 Define sys_rhs.m 

%dx(t)/dt=[a11 a12;a21 a22]*x(t)+[ad11 ad12;ad21 ad22]*x(t-tau) 
%+[0 0;k1 k2]*x(t-tau); 
%dx(t)/dt=[a11 a12;a21 a22]*[x1(t);x2(t)+[ad11 ad12;ad21 
%ad22]*[x1(t-tau);x2(t-tau)]+[0 0;k1 k2]*[x1(t-tau);x2(t-tau)]; 
%dx1(t)/dt=a11x1(t)+a12x2(t)+ad11x1(t-tau)+ad12x2(t-tau) 
%dx2(t)/dt=a21x1(t)+a22x2(t)+ad21x1(t-tau)+ad22x2(t-tau)+k1x1(t-tau) 
%+k2x2(t-tau) 
function f=sys_rhs(xx,par) 
%A(1,1),A(1,2),BK(1,1),BK(1,2),A(2,1),A(2,2),BK(2,1),BK(2,2),tau; 
f(1,1)=par(1)*xx(1,1)+par(2)*xx(2,1)+par(3)*xx(1,2)+par(4)*xx(2,2); 
f(2,1)=par(5)*xx(1,1)+par(6)*xx(2,1)+par(7)*xx(1,2)+par(8)*xx(2,2); 
return; 
 
 



72 

 

C.1.3 Define sys_deri.m 
 
%dx(t)/dt=[a11 a12;a21 a22]*x(t)+[ad11 ad12;ad21 ad22]*x(t-tau) 
%+[0 0;k1 k2]*x(t-tau); 
%dx(t)/dt=[a11 a12;a21 a22]*[x1(t);x2(t)+[ad11 ad12;ad21 
%ad22]*[x1(t-tau);x2(t-tau)]+[0 0;k1 k2]*[x1(t-tau);x2(t-tau)]; 
%dx1(t)/dt=a11x1(t)+a12x2(t)+ad11x1(t-tau)+ad12x2(t-tau) 
%dx2(t)/dt=a21x1(t)+a22x2(t)+ad21x1(t-tau)+ad22x2(t-tau)+k1x1(t-tau) 
%+k2x2(t-tau) 
function J=sys_deri(xx,par,nx,np,v) 
%a11,a12,ad11,ad12,a21,a22,ad21,ad22,k1,k2,tau; 
% par(1)=a11   x1(t)=xx(1,1) 
% par(2)=a12   x2(t)=xx(2,1) 
% par(3)=ad11  x1(t-tau)=xx(1,2) 
% par(4)=ad12  x2(t-tau)=xx(2,2) 
% par(5)=a21 
% par(6)=a22 
% par(7)=ad21 
% par(8)=ad22 
% par(9)=k1 
% par(10)=k2 
% par(11)=tau 
J=[]; 
if length(nx)==1&length(np)==0&isempty(v) 
    %first order derivative wrt state variable 
    if nx==0 %derivative wrt x(t) 
        J(1,1)=par(1); 
        J(1,2)=par(2); 
        J(2,1)=par(5); 
        J(2,2)=par(6); 
    elseif nx==1 %derivative wrt x(t-tau) 
        J(1,1)=par(3); 
        J(1,2)=par(4); 
        J(2,1)=par(7)+par(9); 
        J(2,2)=par(8)+par(10); 
    end; 
elseif length(nx)==1&length(np)==1&isempty(v) 
     %mixed states and parameter derivatives  
     if nx==0 %derivative wrt x(t) 
         if np==1 %derivative wrt a11 
             J(1,1)=1; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==2 %derivative wrt a12 
             J(1,1)=0; 
             J(1,2)=1; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==3 %derivative wrt ad11 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==4 %derivative wrt ad12 
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             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==5 %derivative wrt a21 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=1; 
             J(2,2)=0; 
         elseif np==6 %derivative wrt a22 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=1; 
         elseif np==7 %derivative wrt ad21 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==8 %derivative wrt ad22 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==9 %derivative wrt k1 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==10 %derivative wrt k2 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==11 %derivative wrt tau 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         end; 
     elseif nx==1 %derivative wrt x(t-tau) 
         if np==1 %derivative wrt a11 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==2 %derivative wrt a12 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==3 %derivative wrt ad11 
             J(1,1)=1; 
             J(1,2)=0; 
             J(2,1)=0; 
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             J(2,2)=0; 
         elseif np==4 %derivative wrt ad12 
             J(1,1)=0; 
             J(1,2)=1; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==5 %derivative wrt a21 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==6 %derivative wrt a22 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         elseif np==7 %derivative wrt ad21 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=1; 
             J(2,2)=0; 
         elseif np==8 %derivative wrt ad22 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=1; 
         elseif np==9 %derivative wrt k1 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=1; 
             J(2,2)=0; 
         elseif np==10 %derivative wrt k2 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=1; 
         elseif np==11 %derivative wrt tau 
             J(1,1)=0; 
             J(1,2)=0; 
             J(2,1)=0; 
             J(2,2)=0; 
         end; 
     end; 
     elseif length(nx)==0 &length(np)==1&isempty(v) 
         if np==1 %derivative wrt a11 
             J(1,1)=xx(1,1); 
             J(2,1)=0; 
         elseif np==2 %derivative wrt a12 
             J(1,1)=xx(2,1); 
             J(2,1)=0; 
             
         elseif np==3 %derivative wrt ad11 
             J(1,1)=xx(1,2); 
            
             J(2,1)=0; 
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         elseif np==4 %derivative wrt ad12 
             J(1,1)=xx(2,2); 
             
             J(2,1)=0; 
              
         elseif np==5 %derivative wrt a21 
             J(1,1)=0; 
              
             J(2,1)=xx(1,1); 
             
         elseif np==6 %derivative wrt a22 
             J(1,1)=0; 
              
             J(2,1)=xx(2,1); 
              
         elseif np==7 %derivative wrt ad21 
             J(1,1)=0; 
             
             J(2,1)=xx(1,2); 
              
         elseif np==8 %derivative wrt ad22 
             J(1,1)=0; 
             
             J(2,1)=xx(2,2); 
              
         elseif np==9 %derivative wrt k1 
             J(1,1)=0; 
             
             J(2,1)=xx(1,2); 
              
         elseif np==10 %derivative wrt k2 
             J(1,1)=0; 
             
             J(2,1)=xx(2,2); 
             
         elseif np==11 %derivative wrt tau 
             J(1,1)=0; 
              
             J(2,1)=0; 
         end; 
elseif length(nx)==2&length(np)==0&isempty(v) 
    %second order derivatives wrt state variable 
    J=0; 
end; 
if isempty(v) 
    err=[nx np size(v)]; 
    error('SYS_DERI: requested derivative could not be computed!'); 
end; 
  
return; 
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Note that, the above routine sys_deri.m may be optionally replaced by sys_deriv.m which may 

be used as a general routine for any cases. 

C.1.4 Define sys_deriv.m 

function J=sys_deri(xx,par,nx,np,v) 
 
% function J=sys_deri(xx,par,nx,np,v) 
% INPUT: 
%   xx state variable and delayed state variables columnwise 
%   par list of parameter values 
%   nx empty or list of requested state-derivatives (numbers of delay or 
zero)  
%   np empty or list of requested parameter-derivatives  
%   v matrix to multiply result with 
% OUTPUT: 
%   J result of derivatives on righthandside multiplied with v 
% COMMENT: 
%   the numerical derivatives are evaluated using forward differences 
  
% (c) DDE-BIFTOOL v. 1.00, 11/03/2000 
  
% first order derivative discretisation parameters: 
  
abs_eps_x1=1e-6; 
abs_eps_x2=1e-6; 
abs_eps_p1=1e-6; 
abs_eps_p2=1e-6; 
rel_eps_x1=1e-6; 
rel_eps_x2=1e-6; 
rel_eps_p1=1e-6; 
rel_eps_p2=1e-6; 
  
n=size(xx,1); 
  
J=[]; 
  
% first order derivatives of the state: 
if length(nx)==1 & length(np)==0 & isempty(v), 
  f=sys_rhs(xx,par); 
  for j=1:n 
    xx_eps=xx; 
    eps=abs_eps_x1+rel_eps_x1*abs(xx(j,nx+1)); 
    xx_eps(j,nx+1)=xx(j,nx+1)+eps; 
    J(:,j)=(sys_rhs(xx_eps,par)-f)/eps; 
  end; 
% first order parameter derivatives: 
elseif length(nx)==0 & length(np)==1 & isempty(v), 
  f=sys_rhs(xx,par); 
  par_eps=par; 
  eps=abs_eps_p1+rel_eps_p1*abs(par(np)); 
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  par_eps(np)=par(np)+eps; 
  J=(sys_rhs(xx,par_eps)-f)/eps; 
% second order state derivatives: 
elseif length(nx)==2 & length(np)==0 & ~isempty(v), 
  for j=1:n 
    J(:,j)=sys_deri(xx,par,nx(1),[],[])*v; 
    xx_eps=xx; 
    eps=abs_eps_x2+rel_eps_x2*abs(xx(j,nx(2)+1)); 
    xx_eps(j,nx(2)+1)=xx_eps(j,nx(2)+1)+eps; 
    J(:,j)=(sys_deri(xx_eps,par,nx(1),[],[])*v-J(:,j))/eps; 
  end; 
% mixed state parameter derivatives: 
elseif length(nx)==1 & length(np)==1 & isempty(v), 
  J=sys_deri(xx,par,nx(1),[],[]); 
  par_eps=par; 
  eps=abs_eps_p2+rel_eps_p2*abs(par(np)); 
  par_eps(np)=par(np)+eps; 
  J=(sys_deri(xx,par_eps,nx(1),[],[])-J)/eps; 
end; 
  
if isempty(J) 
  [nx np size(v)] 
  error('SYS_DERI: requested derivative does not exist!'); 
end; 
  
return; 
 

C.1.5  The Continuous Pole Placement Algorithm 

C.1.5.1 The Control Gain Updating Program 

how_many_eig=2; 
K=[-1,-1]; 
[n,m]=size(K); 
right_eig=1;iter=0;n_v_old=zeros(2,n*m); 
while right_eig>=0 
    iter=iter+1; 
    for i2=1:1:how_many_eig 
        which_eig=i2; 
        for i1=1:1:n*m 
            e=zeros(n*m,1);e(i1)=1; 
            
[S(i2,i1),right_eigs(:,iter),how_many_eig_new,n_v_new]=sensitivity_control(K
,e,which_eig,how_many_eig,iter,n_v_old(:,i1)); 
            n_v_old(:,i1)=n_v_new; 
        end 
    end 
if right_eig>1e-3 
    Lamda_d=right_eig*[-0.1;-0.1]; 
else 
    Lamda_d=1e-2*[-0.1;-0.1]; 
end 
    del_K=(pinv(S)*Lamda_d)'; 
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    K=K+real(del_K); 
    right_eig=max(right_eigs(:,iter)); 
    right_eig 
    how_many_eig=how_many_eig_new; 
end 
figure(2) 
hold on 
plot(1:iter,right_eigs(3,:),'r'); 
plot(1:iter,right_eigs(2,:),'g'); 
plot(1:iter,right_eigs(1,:),'k'); 
grid; 
 

C.1.5.2 Computing Sensitivity Function Program: 

function[R,right_eigs,no_right_eig,n_v_new]=sensitivity_control(K,e,which_ei
g,no_right_eig,iter,n_v_old) 
  
%dx(t)/dt=[a11 a12;a21 a22]*x(t)+[ad11 ad12;ad21 ad22]*x(t-tau)+[0 0;k1 
k2]*x(t-tau); 
%A=[a11 a12;a21 a22];AD=[ad11 ad12;ad21 ad22];K=[0 0;k1 k2]; 
 A=[2,0;0,0];B=[0;1]; 
% A=[2,0;0,0];B=[0;1]; 
BK=B*K;BK(1,2)=1;tau=0.3566; 
  
stst.kind='stst'; 
stst.parameter=[A(1,1),A(1,2),BK(1,1),BK(1,2),A(2,1),A(2,2),BK(2,1),BK(2,2),
tau]; 
%stst.parameter=[A(1,1),A(1,2),AD(1,1),AD(1,2),A(2,1),A(2,2),AD(2,1),AD(2,2)
,K(2,1),K(2,2),tau]; 
stst.x=[0;0]; 
method=df_mthod('stst'); 
method.stability.minimal_real_part=-20; 
method.stability.max_number_of_eigenvalues=6; 
method.stability.max_newton_iterations=20; 
%[stst,success]=p_correc(stst,[],[],method.point) 
  
stst.stability=p_stabil(stst,method.stability); 
% figure(1);clf; 
% p_splot(stst); 
% stst.stability.l1 
if which_eig>1 
    if imag(stst.stability.l1(1))~=0 
        which_eig=which_eig+1; 
    end 
end 
  
Abar=A+BK*exp(-(stst.stability.l1(which_eig))*tau); 
[v,d]=eig(Abar); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eigs=diag(d); 
[Y,which_eig_vec]=min(abs(eigs-stst.stability.l1(which_eig))); 
n_v_new(1)=v(2,which_eig_vec); n_v_new(2)=-v(1,which_eig_vec); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% n_v_new(1)=v(2,1); n_v_new(2)=-v(1,1); 
if iter==1 
    d_n_v=[1,1]; 
else 
    d_n_v=(n_v_new-n_v_old'); 
end 
if d_n_v==[0,0] 
    d_n_v=[1,1]; 
end 
P=[stst.stability.l1(which_eig)*eye(2)-A-BK*exp(-
stst.stability.l1(which_eig)*tau),(eye(2)+tau*exp(-
stst.stability.l1(which_eig)*tau)*BK)*v(:,which_eig_vec);d_n_v 0]; 
Q=[B*v(:,which_eig_vec)'*e*exp(-stst.stability.l1(which_eig)*tau);0]; 
        R1=inv(P)*Q; 
        R=R1(3); 
right_eigs=real(stst.stability.l1); 
 

C.2 The Case when a sτ τ≠ , Considering 1aτ τ=  and 2s cτ τ τ= =  

C.2.1 Define sys_tou.m 

% dx(t)/dt=A*x(t)+B*xc(t-tau1); 
% dxc(t)/dt=Ac*xc(t-tau2)+Bc*x(t-tau2); 
% A=par(1),B=par(2),Ac=par(3),Bc=par(4),tau1=par(5),tau2=par(6); 
% x(t)=xx(1,1),xc(t-tau1)=xx(2,2),x(t-tau2)=xx(1,3),xc(t-tau2)=xx(2,3); 
function tau=sys_tau() 
%A,B,Ac,,Bc,tau1,tau2; 
tau=[5,6]; 
return; 
 

C.2.2 Define sys_rhs.m 

% dx(t)/dt=A*x(t)+B*xc(t-tau1); 
% dxc(t)/dt=Ac*xc(t-tau2)+Bc*x(t-tau2); 
% A=par(1),B=par(2),Ac=par(3),Bc=par(4),tau1=par(5),tau2=par(6); 
% x(t)=xx(1,1),xc(t-tau1)=xx(2,2),x(t-tau2)=xx(1,3),xc(t-tau2)=xx(2,3); 
function f=sys_rhs(xx,par) 
%A,B,Ac,,Bc,tau1,tau2; 
f(1,1)=par(1)*xx(1,1)+par(2)*xx(2,2); 
f(2,1)=par(3)*xx(1,3)+par(4)*xx(2,3); 
return; 
 
C.2.3 The Continuous Pole Placement Algorithm 

C.2.3.1 The Control Gain Updating Program: 

clc; 
clear all; 
close(figure(1)) 
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how_many_eig=2; 
K=[-1,-1]; 
[n,m]=size(K); 
right_eig=1;iter=0;n_v_old=zeros(2,n*m); 
while right_eig>=0 
    iter=iter+1; 
    for i2=1:1:how_many_eig 
        which_eig=i2; 
        for i1=1:1:n*m 
            e=zeros(n*m,1);e(i1)=1; 
            
[S(i2,i1),right_eigs(:,iter),how_many_eig_new,n_v_new]=sensitivity_control2(
K,e,which_eig,how_many_eig,iter,n_v_old(:,i1)); 
            n_v_old(:,i1)=n_v_new; 
        end 
    end 
if right_eig>1e-3 
    Lamda_d=right_eig*[-0.1;-0.1]; 
else 
    Lamda_d=1e-2*[-0.1;-0.1]; 
end 
    del_K=(pinv(S)*Lamda_d)'; 
    K=K+real(del_K); 
    right_eig=max(right_eigs(:,iter)); 
    right_eig 
    how_many_eig=how_many_eig_new; 
end 
figure(1) 
hold on 
plot(1:iter,right_eigs(3,:),'r'); 
plot(1:iter,right_eigs(2,:),'g'); 
plot(1:iter,right_eigs(1,:),'k'); 
grid; 
 

C.2.3.2 Computing Sensitivity Function Program: 

function[R,right_eigs,no_right_eig,n_v_new]=sensitivity_control(K,e,which_ei
g,no_right_eig,iter,n_v_old) 
  
%dx(t)/dt=[a11 a12;a21 a22]*x(t)+[ad11 ad12;ad21 ad22]*x(t-tau)+[0 0;k1 
k2]*x(t-tau); 
%A=[a11 a12;a21 a22];AD=[ad11 ad12;ad21 ad22];K=[0 0;k1 k2]; 
A=[2,0;0,0];B=[0;1]; 
BK=B*K;Ad=[0 1;0 0];tau1=0.348;tau2=0.724; 
  
stst.kind='stst'; 
stst.parameter=[A(1,1),Ad(1,2),BK(2,1),BK(2,2),tau1,tau2]; 
% 
stst.parameter=[A(1,1),A(1,2),AD(1,1),AD(1,2),A(2,1),A(2,2),AD(2,1),AD(2,2),
K(2,1),K(2,2),tau]; 
stst.x=[0;0]; 
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method=df_mthod('stst'); 
method.stability.minimal_real_part=-20; 
method.stability.max_number_of_eigenvalues=6; 
method.stability.max_newton_iterations=20; 
%[stst,success]=p_correc(stst,[],[],method.point) 
  
stst.stability=p_stabil(stst,method.stability); 
%  figure(1);clf; 
%  p_splot(stst); 
% stst.stability.l1 
if which_eig>1 
    if imag(stst.stability.l1(1))~=0 
        which_eig=which_eig+1; 
    end 
end 
Abar=A+Ad*exp(-(stst.stability.l1(which_eig))*tau1)+BK*exp(-
(stst.stability.l1(which_eig))*tau2); 
[v,d]=eig(Abar); 
%n_v_new(1)=v(1,1); n_v_new(2)=-v(2,1); 
eigs=diag(d); 
[Y,which_eig_vec]=min(abs(eigs-stst.stability.l1(which_eig))); 
n_v_new(1)=v(2,which_eig_vec); n_v_new(2)=-v(1,which_eig_vec); 
if iter==1 
    d_n_v=[1,1]; 
else 
    d_n_v=(n_v_new-n_v_old'); 
end 
if d_n_v==[0,0] 
    d_n_v=[1,1]; 
end 
P=[stst.stability.l1(which_eig)*eye(2)-A-Ad*exp(-
stst.stability.l1(which_eig)*tau1)-BK*exp(-
stst.stability.l1(which_eig)*tau2),(eye(2)+tau1*Ad*exp(-
stst.stability.l1(which_eig)*tau1)+tau2*exp(-
stst.stability.l1(which_eig)*tau2)*BK)*v(:,which_eig_vec);d_n_v 0]; 
Q=[B*v(:,which_eig_vec)'*e*exp(-stst.stability.l1(which_eig)*tau2);0]; 
        R1=inv(P)*Q; 
        R=R1(3); 
right_eigs=real(stst.stability.l1); 
 
 

C.3 The Case when a s cτ τ τ≠ ≠  

C.3.1 Define sys_tou.m 

% dx(t)/dt=A*x(t)+B*xc(t-tau_a); 
% dxc(t)/dt=Ac*xc(t-tau_c)+Bc*x(t-tau_s); 
% 
A=par(1),B=par(2),Ac=par(3),Bc=par(4),tau_a=par(5),tau_s=par(6),tau_c=par(7)
; 
%x(t)=xx(1,1),xc(t-tau_a)=xx(2,2),x(t-tau_s)=xx(1,3),xc(t-tau_c)=xx(2,4); 
 function tau=sys_tau() 
%A,B,Ac,,Bc,tau_a,tau_s,tau_c; 
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 tau=[5,6,7]; 
 return; 
 

C.3.2 Define sys_rhs.m 

%  dx(t)/dt=A*x(t)+B*xc(t-tau_a); 
%  dxc(t)/dt=Ac*xc(t-tau_c)+Bc*x(t-tau_s); 
% 
A=par(1),B=par(2),Ac=par(3),Bc=par(4),tau_a=par(5),tau_s=par(6),tau_c=par(7)
; 
% x(t)=xx(1,1),xc(t-tau_a)=xx(2,2),x(t-tau_s)=xx(1,3),xc(t-tau_c)=xx(2,4); 
 function f=sys_rhs(xx,par) 
% A,B,Ac,,Bc,tau_a,tau_s,tau_c; 
 f(1,1)=par(1)*xx(1,1)+par(2)*xx(2,2); 
 f(2,1)=par(3)*xx(2,4)+par(4)*xx(1,3); 
 return; 
 

C.3.3 The Continuous Pole Placement Algorithm 

C.3.3.1 The Control Gain Updating Program: 

clc; 
clear all; 
%close(figure(1)) 
  
how_many_eig=2; 
K=[-1,-1]; 
[n,m]=size(K); 
right_eig=1;iter=0;n_v_old=zeros(2,n*m); 
while right_eig>=0 
    iter=iter+1; 
    for i2=1:1:how_many_eig 
        which_eig=i2; 
        for i1=1:1:n*m 
            e=zeros(n*m,1);e(i1)=1; 
            
[S(i2,i1),right_eigs(:,iter),how_many_eig_new,n_v_new]=sensitivity_control1(
K,e,which_eig,how_many_eig,iter,n_v_old(:,i1),i1); 
            n_v_old(:,i1)=n_v_new; 
        end 
    end 
if right_eig>1e-3 
    Lamda_d=right_eig*[-0.1;-0.1]; 
else 
    Lamda_d=1e-2*[-0.1;-0.1]; 
end 
    del_K=(pinv(S)*Lamda_d)'; 
    K=K+real(del_K); 
    right_eig=max(right_eigs(:,iter)); 
    right_eig 
    how_many_eig=how_many_eig_new; 
end 
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figure(2) 
hold on 
plot(1:iter,right_eigs(3,:),'r'); 
plot(1:iter,right_eigs(2,:),'g'); 
plot(1:iter,right_eigs(1,:),'k'); 
grid; 
  
 
C.3.3.2 Computing Sensitivity Function Program: 

function[S,right_eigs,no_right_eig,n_v_new]=sensitivity_control1(K,e,which_e
ig,no_right_eig,iter,n_v_old,which_k) 
 
%[dx(t)/dt dxc(t)/dt]=[A 0;0 0][x(t) xc(t)]+[0 B;0 0][x(t-tau_a) 
%xc(t-tau_a)]+[0 0;0 Ac][x(t-tau_c) xc(t-tau_c)]+[0 0;Bc 0][x(t-tau_s) 
%xc(t-tau_s)]; 
A_bar=[2,0;0,0];B_bar=[0 1;0 0];Ac_bar=[0 0 ;0 K(1)];Bc_bar=[0 0;K(2) 0]; 
tau_a=0.3;tau_s=0.2565;tau_c=0.34; 
%tau=0.35; 
stst.kind='stst'; 
stst.parameter=[A_bar(1,1),B_bar(1,2),Ac_bar(2,2),Bc_bar(2,1),tau_a,tau_s,ta
u_c]; 
stst.x=[0;0]; 
method=df_mthod('stst'); 
method.stability.minimal_real_part=-20; 
method.stability.max_number_of_eigenvalues=4; 
method.stability.max_newton_iterations=5; 
%[stst,success]=p_correc(stst,[],[],method.point) 
stst.stability=p_stabil(stst,method.stability); 
% figure(1);clf; 
% p_splot(stst); 
% stst.stability.l1 
Abar=A_bar+B_bar*exp(-(stst.stability.l1(which_eig))*tau_a)+Ac_bar*exp(-
(stst.stability.l1(which_eig))*tau_c)+Bc_bar*exp(-
(stst.stability.l1(which_eig))*tau_s); 
[v,d]=eig(Abar); 
% n_v_new(1)=v(1,how_many_eig); n_v_new(2)=-v(2,how_many_eig); 
eigs=diag(d); 
[Y,which_eig_vec]=min(abs(eigs-stst.stability.l1(which_eig))); 
n_v_new(1)=v(2,which_eig_vec); n_v_new(2)=-v(1,which_eig_vec); 
if iter==1 
    d_n_v=[1,1]; 
else 
    d_n_v=(n_v_new-n_v_old'); 
end 
if d_n_v==[0,0] 
    d_n_v=[1,1]; 
end 
P=[stst.stability.l1(which_eig)*eye(2)-A_bar-B_bar*exp(-
stst.stability.l1(which_eig)*tau_a)-Ac_bar*exp(-
stst.stability.l1(which_eig)*tau_c)-Bc_bar*exp(-
stst.stability.l1(which_eig)*tau_s),(eye(2)+tau_a*exp(-
stst.stability.l1(which_eig)*tau_a)*B_bar+tau_c*exp(-
stst.stability.l1(which_eig)*tau_c)*Ac_bar+tau_s*exp(-
stst.stability.l1(which_eig)*tau_s)*Bc_bar)*v(:,which_eig_vec);d_n_v 0]; 
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if which_k==1 
    Q=zeros(3,1);Q(2,1)=v(2,which_eig_vec); 
else 
    Q=zeros(3,1);Q(2,1)=v(1,which_eig_vec); 
end     
        S1=inv(P)*Q; 
         S=S1(3); 
right_eigs=real(stst.stability.l1); 
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