
Heat Transfer Model for Cryosurgery 

       

 

 

Thesis submitted in the partial fulfillment of the requirements for the degree of 

 

Master of Technology 

In 

BIOMEDICAL E�GI�EERI�G 

 

By: 

VARSHA RA�I CHIKA�JURI 

Roll. �o. 209BM1002 

 

Under the guidance of 

DR. AMITESH KUMAR 

 

 

 

 

             Department of Biotechnology and Medical Engineering 

  National Institute of Technology, Rourkela (Odisha)  



Heat Transfer Model for Cryosurgery 

       

 

 

Thesis submitted in the partial fulfillment of the requirements for the degree of 

 

Master of Technology 

In 

BIOMEDICAL E�GI�EERI�G 

 

By: 

Varsha Rani Chikanjuri 

Roll �o.209BM1002 

 

Under the guidance of 

Dr. Amitesh Kumar 

 

 

 

 

             Department of Biotechnology and Medical Engineering 

  National Institute of Technology, Rourkela (Odisha)  



 

 

 

    

 

  �ational Institute Of Technology 

Rourkela 
 

        

                                

    C E R T I F I C A T E 

 

 

 

 
This is to certify that the thesis entitled “HEAT TRA�SFER MODEL FOR 

CRYOSURGERY” by Miss. Varsha Rani Chikanjuri submitted to the �ational Institute of 

Technology, Rourkela for the Degree of Master of Technology in Biotechnology, is a record of 

bonafide research work, carried out by her in the Department of Biotechnology and Medical 

Engineering under my supervision. I believe that the thesis fulfils part of the requirements for the 

award of Master of Technology. To the best of my knowledge, the matter embodied in the thesis 

has not been submitted to any other University / Institute for the award of any Degree or 

Diploma. 

 

 

 

             

             

  

Date:                 Dr. Amitesh Kumar 

Place:                 Department of Biotechnology and Medical Engineering  

                                                   NIT Rourkela  

 



ACK�OWLEDGEME�T 

 

This dissertation would not have been possible without the guidance and help of several 

individuals who in one way or another, contributed and extended their valuable assistance in the 

preparation and completion of this work.  

 

First and foremost, my utmost gratitude to my supervisor Dr. Amitesh Kumar, Assistant 

Professor, Department of Biotechnology and Medical Engineering, for his supervision, advice 

and guidance as well as sharing his extra-ordinary experiences throughout the work. Above all 

and the most needed, he unflinchingly encouraged and helped me.  

 

I am thankful to my lab mates and colleagues Ms. Dibya Devismita, Mr. Sadanand Jinna, Ms. 

Prerna Dixit, and Mr. Teepireddy Sudeep, who were a great moral support during my work. 

 

Last, but not the least, I would thank the God and my family, whose love and trust on me has 

brought at this stage of my life. 

 

   

                          

 

 

 

Varsha Rani Chikanjuri 

 

 

 

 



ABSTRACT 

 

Cryosurgery is a surgical technique which employs extreme freezing to treat diseased or 

abnormal tissue. Here, a new numerical approach is devised to simulate the heat transfer process 

in cryosurgery in order to assess the propagation of ice front’s positions and thermal history 

inside the ice ball. The developed numerical code is validated against the published experimental 

results. The emphasis is placed on minimizing the computational time so that the devised 

approach can be used in planning of cryosurgery treatment. The phase change phenomenon is 

solved using finite volume method on a fixed multiblock structured grid. An enthalpy method in 

addition to two-dimensional axisymmetric model is used to approximate the process of 

cryoablation. The model has used constant thermal properties for both the unfrozen region and 

the frozen region. In this study, we predicted thermal profile of tissue simulating gel during 

freezing and holding after certain time duration, while considering various dependent 

parameters. In addition, effect of cryoprobe size on the propagation of ice front positions and 

thermal history inside the ice ball is studied. And, it is found that ice volume varies almost 

linearly with time as well as with cryoprobe size. 

 

Keywords: Cryosurgery, Finite volume method, Multiblock Technique, Ice- front position  
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1.1 Background 

 

Cryosurgery, also referred as cryotherapy or cryoablation, is a novel surgical technique which 

employs extreme freezing to destroy diseased tissue [1]. Modern era of cryosurgery began with 

the development of automated cryosurgical equipment in the 1960s. Using freezing as the means 

to destroy undesirable tissues, modern cryosurgery presents many remarkable merits over its 

competitive modalities. Cryosurgery is conducted by means of a cryoprobe either by placing its 

continuously cooled tip on or into the tissue to be frozen. Cryogens (used as a cooling medium ) 

which have been used in cryosurgery include liquid nitrogen, nitrogen oxide, solid carbon 

dioxide, liquid argon having boiling temperature of -196
0
C, -89.5

0
C, -78.5

0
C and -187

0
C 

respectively [1]. Generally liquid nitrogen is used for cryogen because of minimum boiling 

temperature. Cryosurgery is widely applied in the treatment of various undesired cancerous and 

non-cancerous tissues in liver, lung, kidney, prostrate, brain, skin, breast, bone etc. One of the 

key advantage of cryosurgery is that cell destruction is localized which minimizes damage to 

surrounding healthy tissue [12]. The goal of this surgical technique is to maximize the 

destruction of target tissue while minimizing the damage to surrounding healthy tissue. Two 

mechanisms of tissue injury, immediate and delayed, are associated with cryosurgery. The 

immediate destruction involves direct destruction of cells while the delayed invokes post 

application damage due to the destruction of blood vessels or delayed immune system [1, 2, 3]. 

The basic technique requires fast freezing to lethal temperature of tissue, slow thawing, and 

repetition of the freeze-thaw cycle. Ice-front’s positions, holding time duration, freeze-thaw 

cycles, freezing rate and induced thermal stress should be properly monitored for the optimal 

destruction of undesired tissue. The cryosurgeon monitors the freezing process by means of 

medical imaging such as ultrasound or MRI and adjusts the cooling power of the individual 

cryoprobe accordingly to maximize the cell death and minimize the destruction of surrounding 

normal tissue or organ.  

For the purpose of cryosurgical planning, it is highly desirable to compute the process of ice 

propagation and thermal history inside the ice-ball, which cannot be determined by imaging. 

Computerized planning helps surgeons in pre-planning of surgery. To determine the effect of 

cooling rate, exposure of cryoprobe temperature, freeze-thaw cycle and arrangement of 

cryoprobe on the degradation of cancerous cells and thermal history within the tumor, numerical 
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simulations can be valuable help. Such a tool resonates well with surgeons, providing them with 

the capacity to maximize the efficacy of the surgery. Numerical simulation can become more 

advantageous in real time operation to predict the internal thermal history of the target tissue.  

 

1.2 Review of Literature 

In 1961, first cryosurgical system was invented by an American neurosurgeon Irving Cooper [2, 

3]. They built a cryosurgical probe capable of freezing brain tissue, with good control over target 

region. Originally developed for the treatment of parkinson and other neural disorders, the probe 

was found with great value for broad use in destroying undesirable tissues deep in the body. The 

field of cryosurgery therefore experienced a rapid growth after the introduction of the first 

cryosurgical probe. Many new applications of cryosurgery have been introduced between years 

1961 and 1970. Cahan and his associates applied cryosurgery to uterus with the inclusion of 

heating element [4]. Rand et al. [5] reported the use of cryosurgery in neurology. Markcover and 

his colleagues extended the use of cryosurgery in orthopedics [6]. Torre made contributions in 

cutaneous cryosurgery [7].  

To apply cryosurgery precisely it is necessary to know the mechanism of tissue destruction 

during cryosurgery, thermal history within frozen tissue, and methods to evaluate extent of 

freezing. 

 

1.2.1 Mechanisms of cryosurgery 

The destructive effect of freezing tissue has been categorized into two major mechanisms    

(figure 1), one immediate and the other delayed.  The immediate destruction is due to the direct 

destruction of cells while the delayed invokes post application damage due to the destruction of 

blood vessels or delayed immune system. The immediate process involves formation of 

intracellular and extracellular ice- crystals. As tissue temperature falls below zero degree, ice-

crystals form in extracellular space and in microvasculature; this removes water from biological 

system and invokes hyperosmotic drying of the tissue, further tissue ablation starts. Higher rate 

of freezing produces intracellular ice crystals which causes progressive cell destruction [1, 2, 

3,11]. Delayed mechanism is operative during thawing. The cryogen circulation is stopped for 

certain time duration which causes the failure of microcirculation. Furthermore, rupture of blood 



 
4 

vessels and platelets aggregation lead to cell injury due to thrombosis, vascular occlusion and 

necrosis [1, 2, 3, 11]. 

 

 

                                    Figure 1: Mechanism of Cryosurgery [11] 

 

Tissue response varies with intensity of cryogenic injury. Less cryogenic injury produces 

inadequate tissue destruction while more cryogenic injury may extend deleterious effects to 

surrounding normal tissue. For optimal cryoablation of the diseased tissue, it is necessary to be 

concerned on following controlling parameters:-  

 

Cooling rate 

In cryosurgery, rapid cooling rate i.e. more than 50
0
C/min

 
produces intracellular ice- crystals 

which is more destructive. Review of experimental data suggested that cooling rates of 3
0
C/min, 

22
0
C/min and 50

0
C/min are required in order to induce intracellular ice in neoplastic cells, liver 

and dunning AT-Tumor [3]. Such higher rates of cooling can only be achieved close to the 

cryoprobe and further away it lowers, and whole tissue is not subjected to rapid cooling. Farrant, 

Walter and Mazur support that cooling rate is not a prime factor for cryosurgery. They suggested 

that the cells are exposed to diverse thermal profiles for different times [3, 22, 23, 24]. 



 
5 

Temperature 

Cryosurgical treatment requires that lethal tissue temperature should be achieved in all parts 

(whole) of the tumor. The lethality of freezing increases as temperature falls more and more. 

Mazur stated that the lethal temperature range is between -5
0
C to -50

0
C [22]. According to 

Cooper, -20
0
C temperature for 1 min time duration is sufficient to produce necrosis [25]. Rivoire 

et al. [32] found -15
0
C temperature is needed to produce complete necrosis. In experiment with 

rat liver, Smith and Fraser suggested that necrotic effect activates at -15
0
C, but they also 

observed that some undesired cell survival was possible at this temperature [3, 33, 34]. The 

treatment of tumor requires a tissue temperature at which all the abnormal cells are certainly 

dead. It shows the importance of lethal tissue temperature in cryosurgery, especially for the 

treatment of cancer. However, varieties of experiments have provided many range of lethal 

temperature for corresponding type of tissue (Table 1) [3].    

               

Table 1  

      Lethal Temperatures for Cells Experiments in Vivo—Single Freeze–Thaw Cycles [3] 

           F-T is Freeze- thaw 

 

First 

Author 

Year Cell/Tissue Lethal 

Temperature(
0
C) 

Freeze-thaw 

program 

Gage 1966 Osteocytes, bone, dog -2 5-min F–slow T 

Gage 1979 Melanocytes, skin, dog -4 4-min F–slow T 

Smith 1974 Liver, rat -15 3-min F–slow T 

Rivoire 1996 Liver, pig -15 5-min F–slow T 

Lefebvre 1975 Cheek pouch, hamster -18 1-s F–slow T 

Dow 1970 Prostate, dog -20 1-min F–slow T 

Gage 1982 Skin, dog -40 3-min F–slow T 

Yamada 1976 Skin,mouse -40 1-min F-slow T 

Gage 1978 Palate, dog -40 3-min F–slow T 

Neel 1971 Sarcoma,mouse -60 6-min F–slow T 

Steren 1997 Adenocarcinoma, rat -70 7-min F–slow T 
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Due to variations in sensitiveness and thermophysical properties of normal and cancerous tissue, 

it is quite complex to achieve the lethal temperature of the diseased tissue. From the review of all 

experimental studies the end point temperature below -40
0
C has been considered prime factor for 

tissue destruction [3, 24]. 

 

Hold Time/ freeze-duration 

A measure of optimal freezing duration, i.e. how long tissue should be held in a frozen state, is 

not known prior to the surgery. Mazur stated that the rate of cell death is greatest when tissue is 

held at temperature above than -30
0
C [23]. Below that temperature, little water remains unfrozen, 

so duration is less important.
 
However, other cryosurgical experiments showed its importance. 

Prolongation of freezing was thought to be advantageous in experiments with breast tumors in 

animals. Longer freezing also produced more damage to the cartilage of the ears of pigs. Gage 

and Baust suggested that freeze-duration is unimportant if the tissue is held at temperatures 

colder than -50°C, but holding tissue at warmer temperature i.e. more than -40
0
C, will increase 

destructive effect [3, 24]. 

 

Thawing rate 

Thawing rate should be slow and continued for longer time period; rapid thaw rates allow cell 

survival. Within temperature range of -20
0
C to -25

0
C, thaw is more important due to maximal 

growth of ice-crystals. If tissue is held at this temperature for longer duration, cell death is more 

effective due to recrystallization process which produces large ice crystals. Prolongation of thaw 

is advantageous in cell damage only if it is processed completely [3, 12, 24]. 

  

Repetitive freeze-thaw cycles 

Rapid freezing and slow thawing do not guarantee effective cell destruction. Therefore, the 

cryosurgery process should be programmed in such a way to produce appropriate lethal effect to 

certain volume of tissue. Now freeze-thaw cycle came into concept, each of which cycle is 

injurious to cells [12]. During repetition of cycles, several times cells undergo through disturbed 

thermal conditions than the thermal conditions for their survivability, this leads to more volume 

of cell death. Freeze-thaw cycle is more destructive if repetition is performed within temperature 

range of -20
0
C to -30

0
C. Intracellular ice formation is progressive in repeated cycles, which 
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causes tissue abrasion. Use of repeated freeze-thaw cycle is also beneficial in treatment of 

cancerous tumor [3, 24].  

  

1.2.2 Monitoring cryosurgery 

Improper monitoring of cryosurgical process may lead to either incomplete surgery or an 

additional undesired damage to healthy tissue. Therefore, for optimal destruction of diseased 

object, monitoring should be performed precisely and simultaneously extent of freezing should 

be evaluated. There are following ways of cryosurgery monitoring:- 

 

1. Local Monitoring of Cryosurgery: -  

Local monitoring techniques are based on thermometry and impedancemetry. In first case, 

thermocouples are inserted inside the tissue to be frozen for direct measurement of local 

temperature and in second case electrode needles are placed inside the target tissue to detect 

freezing-induced changes in local impedance. While thermometry and impedancemetry have a 

valuable contribution to cryosurgery, they also have some major drawbacks. Both are invasive 

and have localized thermal information (only for inserted site) [2]. Therefore, lack of detailed 

knowledge may forward to fault result. 

 

2. Imaging Monitoring Technique: -  

In cryosurgery, ultrasound was the first imaging technique used in clinical cryosurgery because it 

was easier to use and economical. Several techniques are available for acoustic imaging of the 

body. A short pulse of electrical energy is converted into a burst of acoustic energy with a 

piezoelectric transducer. The pressure wave that is produced propagates through the body. When 

the pressure pulse encounters the boundary between regions with different acoustic impedance, 

part of the wave is reflected back to the transducer where it is converted back to an electrical 

impulse. The piezoelectric transducer functions both as an emitter and a detector. In whole-body 

imaging it is assumed that the velocity of the acoustic wave is approximately 1450 m/s. When 

pressure waves return to the piezoelectric element, the measured time of flight of these waves 

can be combined with knowledge of the tissue wave speed to determine the location of the 

acoustic impedance discontinuity. Two-dimensional images of acoustic discontinuities in tissue 

can be produced using multiple piezoelectric elements and computer analysis of the data. The 
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accuracy of ultrasound images is limited by the assumption of the wave velocity in tissue. 

Freezing interfaces can be conveniently monitored with conventional ultrasound because there is 

a large difference in acoustic impedance between ice and water. Ice essentially reflects all the 

acoustic energy, therefore entire freezing area looks dark. Ultrasound can only capture the image 

of the freezing interface in front of transducer, this is the problem associated with ultrasound. 

Magnetic resonance imaging (MRI) produces an image of the body organ by applying an 

alternating magnetic field. It produces an image of proton density, which closely relates to tissue 

structures. MRI produces a precise three-dimensional image of freezing interface; therefore it 

can be used to calculate the temperature distribution in the frozen region. MRI has solved the 

problem encountered by ultrasound as it is able to produce real-time three-dimensional image of 

frozen tissue without acoustic shadowing. However, high cost and special surgical environment 

may limit its usage. 

Another imaging technique is optical monitoring; it overcomes the problem of ultrasound and is 

also less expensive. It employs two methods: one uses the time of flight of a proton through the 

tissue, and other is based on scattering characteristics of the tissue. In both the methods, light is 

emitted on one tissue-surface and detected on other. Tomography is then used to reconstruct the 

image from the optical properties of the tissue. Sufficient optical contrast should exist to capture 

the frequent changes in tissue while freezing. 

Electrical impedance tomography (EIT) is another new technique that may provide an 

inexpensive and flexible supplement to existing cryosurgical monitoring techniques. Injecting 

small sinusoidal electrical currents into the body and measuring the resulting voltages through an 

electrode array produces a typical EIT image. An impedance image of the tissue is then produced 

from the voltage data using a reconstruction algorithm [2]. 

 

3. Mathematical models: - Above imaging techniques only monitor the outer freezing front and 

those are not able to provide thermal information inside the frozen tissue. Then mathematical 

models came into existence to predict the thermal history within the target object and the extent 

of freezing. Based on bio-heat equation, heat transfer model has been developed to describe 

cryosurgical process numerically. Many scientists have imposed mathematical techniques to 

evaluate and optimize the cryosurgical planning. It can be used by surgeons in real-time 
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cryosurgery. However, to make it more effective there is need for the inclusion of advanced 

mathematical techniques [2]. 

 

1.2.3 Advantages of cryosurgery over other surgical treatment  

1. Minimal invasion of tissue 

2. Less bleeding 

3. Local application 

4. Less time taking 

5. Anesthetic capabilities 

6. Repetition of procedure 

7. Minimal hospitalization 

8. Less expensive 

 

1.2.4 Analysis of Experimental and �umerical Study 

Historical review of cryosurgery and involvement of advanced techniques in its development are 

presented by Rubinsky [2]. Major concern was on mechanism (both biophysical and 

biochemical) of tissue destruction during cryosurgery and monitoring technology. Baust et al. [1] 

discussed the minimal invasiveness of cryosurgery and mechanisms of cryodestruction. The 

focus was on advanced technologies associated with cryosurgical instruments, monitoring 

techniques and clinical applications. A large volume of research efforts have been conducted in 

cryosurgery to improve its efficacy and to promote the applications. Popken et al. [13] 

experimentally studied thermal response of pig liver, human liver, and human colorectal cancer 

liver metastases using cryoprobes of 3 mm and 8 mm diameters, and compared the size of ice-

balls produced by those cryoprobes. The ice-ball diameters and the temperatures at different 

distances from the cryoprobe were measured. There was no significant difference in ice-ball size 

in the different tissues. The diameter of frozen region enclosed by -40°C temperature or less was 

noticed approximately 44 mm using 8-mm cryoprobe in porcine liver and between 27-31 mm 

using 3-mm cryoprobe in the different tissues. The results suggested various cryoprobe’s 

placement configurations which may help in pre-planning of the cryosurgical treatment of liver 

metastases. From the review of experimental studies it is analyzed that experimental results were 

not sufficient to determine exact lethal cell volume, temperature distribution throughout the 



 
10 

tumor, effect of moving ice-fronts etc. These factors have a vital role to optimize cryosurgery 

protocol in operating room. Thus, to study the phase change phenomena and heat transfer 

process inside an ice-ball numerical methods have become an important tool.  

In cryosurgery, it is important to control the cooling/thawing rate over some critical range of 

temperatures in order to regulate the spatial extent of injury during freezing. An analytical model 

has been developed by Chua et al. [11] to study the temperature profiles within a liver tumor 

undergoing freeze-thaw cycle. The simulation algorithm was based on solving the transient bio-

heat equation using the finite volume scheme for a single or multiple-probe geometry. The 

calibrated model has been employed to study the effects of different freezing rates, freeze–thaw 

cycle(s), and multi-probe freezing on cell damage in a liver tumor. Results from the model show 

the potential of freeze-thaw cycles to enhance cell destruction within the cancerous tissue. The 

proposed model also helps in preserving surrounding healthy tissue. In another study, they 

devised a simulation algorithm to provide essential information for estimating the extent of 

freezing during cryosurgery [12]. The validation of the bio-heat model with in-vitro experimental 

data derived from an experimental setup showed a good agreement of up to 6.8%. Deng et al. 

[29] presented a new tumor ablation technique based on immediate freezing followed by a rapid 

and strong enough heating. Three-dimensional phase-change problems (combining both freezing 

and heating) have been solved using an algorithm based on heat capacity method. They tried to 

solve the problems encountered during cryosurgery which include complexity due to irregular 

shape of the frozen region, propagation of ice-fronts, and temperature distribution within ice-

balls. A numerical algorithm based on the dual reciprocity boundary element method (DRBEM) 

was developed to solve multidimensional phase change problem in biological tissues subjected to 

cryosurgery [26]. In addition to this, they proposed a method for controlling the extent of 

freezing by percutaneously injecting some solutions with particular thermal properties into the 

target tissues [27]. A new numerical algorithm was developed to solve multidimensional freezing 

problem of biological tissues injected in situ with functional solutions. Two specific cases were 

investigated: the injection of solutions with high thermal conductivity; the injection of solutions 

with low latent heat. It was found that the injection of such solutions enhances the freezing effect 

and controls the direction of growth of ice-ball. They pointed out the effect of large blood vessels 

in biological tissue which resulted in non-uniform temperature distribution during cryosurgery 

treatment [28]. The thermal model combines the Pennes bio-heat transfer equation describing 
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perfused tissues and the energy equation for single or countercurrent large blood vessels with a 

constant Nusselt number. A finite-difference algorithm was used to model the complex heat 

transfer process with phase change in biological tissues embedded with large blood vessels. The 

results suggested that careful treatment planning is necessary to operate the tumor close to or 

with large blood vessels transmitting through it. Later, the thermal effects of large blood vessels 

during cryosurgery were experimentally investigated with the use of infrared tomography [14]. 

The experimental results suggested that the heat source effect of large blood vessels may result 

in improper freezing power and then contribute to failed-killing of tumor during cryosurgery. 

Zhao at el. [15] also characterized the effect of thermally significant blood vessels (TSBV) on 

heat transfer inside the tissues during cryosurgery. The tissues were treated as non-ideal 

materials with temperature dependent thermophysical properties regarding the effects of blood 

perfusion and metabolic heat generation in the unfrozen region. It was found that the thermally 

significant blood vessel had much influence on the temperature distributions inside the normal 

and the tumor tissues; and isotherms reshaped differently from the case in the absence of blood 

vessel. Fortin et al. [10] numerically studied phase change process during cryosurgery. They 

predicted the freezing front’s positions and the thermal effect experienced within ice-ball. A 

three-dimensional mesh was reconstructed at each time step to match at exact moving ice-fronts. 

Stefan condition was imposed on moving frozen interfaces to predict the time-evolving position 

of freezing front; at the same time, the temperature is computed everywhere in the computational 

domain giving access to the complete thermal history. The numerical results were matched with 

in-vivo experimental data of porcine cryosurgery. An experiment of approximately 1 minute 

freezing followed by a passive thaw was performed on rat prostate tumor by placing cryoprobe 

of nearly 1 mm diameter [30]. Thermal information obtained from this experiment was used to 

investigate the validity of two models based on freezing and thawing behaviours within the ice-

ball. The first model was a two-dimensional transient axisymmetric numerical solution using an 

enthalpy method and incorporating heating due to blood flow. The second model was a one-

dimensional radial steady state analytical solution without blood flow. It has been analyzed that 

two-dimensional model sufficiently captured the freezing and thawing parameters recorded by 

the thermocouples which were used to estimate the thermal history throughout the ice-ball. 

A multi-cryo-needle surgery was performed on gel considering it as a tissue-simulating medium 

and three-dimensional numerical model has been developed by Magalov et al. [18]. It was 
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observed that it took only first few minutes of operation to form lethal ice volume enclosed by    

-40
0
C isotherm. The new term “ablation ratio” was included which is percentage of volume 

enclosed by certain temperature to the volume of total frozen region. The result showed that for 

one, two and three cryo-needles, ablation ratio attained 3%, 3-6%, and 3-8% respectively after 30 

minutes of application. Using high pressure argon gas as a cryogen, an experiment was 

conducted on gel and the phase change problem on gel was numerically solved by ANSYS7.0 

software, based on enthalpy method by Magalov et al. [8]. They found that cylindrical structure 

of cryoprobe was effective for ice fronts growth in upward and radial directions. The analysis 

provided essential information regarding various probes placements and insertion depths in 

target tissue which is helpful in pre-planning of cryosurgical procedures. Yang et al. [17] devised 

finite element method for simulating both thermal and mechanical aspects of a multiprobe 

prostate cryosurgery. The quantitative and graphical results can help to plan cryosurgical 

protocols. Fixed grid finite element based enthalpy formulation was used by Bhattacharya et al. 

[19] for computing phase change related problems. Rewcastle et al. [16] introduced finite 

difference method to track ice ball formation using an axisymmetric model around a single 

cryoprobe. To develop computerized planning tools for cryosurgery, Rossi et al. [31] developed 

an efficient numerical technique for bio-heat transfer simulations using finite difference scheme. 

The goal was to develop computerized tool which takes 3D construction of a target region and to 

generalize best cryoprobe placement configuration. In another computerized study, they focused 

on insertion depth of cryoprobe in prostate cryosurgery [9]. Investigations performed in order to 

judge the benefit of active length of cryoprobe by comparing the results of variable insertion 

depth planning with uniform insertion depth planning. The result stated that variable insertion 

depth is effective in case of more number of cryoprobes. 

 

For optimizing the cryosurgery protocol in real-time application, this research has concerned on 

computer runtime, thermal history within ice-ball and position’s of ice-fronts propagation. The 

aim of current study is to devise an efficient numerical method for simulating the phase change 

phenomena and heat transfer process during cryosurgery to determine the exact volume of cell 

death. The main emphasis is on minimum computational time to mimic cryosurgery process. The 

numerical method thus developed can be used in planning of a real time cryosurgery treatment. 

Also, some new features have been brought out in connection with the effect of cryoprobe size 
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on thermal history inside the ice ball. It is hoped that results presented in this paper can assist 

clinical practitioners in dealing with the limitations of cryosurgery. 
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CHAPTER 2  

 MATHEMATICAL FORMULATIO� 
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Cryosurgery process can be accomplished using system as represented in figure 2; a cryoprobe is 

inserted inside diseased body part (for an example kidney) and simultaneously the process is 

monitored with the help of imaging device. The cryoprocedure starts by turning the cryoprobe on 

to initiate the freezing process; an ice-ball forms surrounding the closed end of cryoprobe which 

is in contact with tissue which causes them to die. The current study focused on heat transfer 

modelling during freezing of a biological tissue in order to determine internal thermal history 

within ice-ball, propagation of ice front’s positions and the extent of ice volume. In this context, 

the gelatin solution (1.4%) in a cylindrical perspex phantom is considered as the tissue-

simulating medium. Because of the axisymmetry of the problem, we have considered only right 

half of the cross-section. 

 

 

Figure 2: Cryosurgery Process 
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2.1 Model Description 

The schematic diagram of cryoprobe setup is shown in figure 3. The geometrical configurations 

of domain are: domain radius Ldw, domain length Ldh and cryoprobe radius rp and length Lp. 

Because of the axisymmetrical nature of the problem only right cross-section is considered for 

the simulation. The domain size is taken as 100�� × 60��. The insertion depth of the 

cryoprobe is Lp = 66mm; the lower half is insulated while remaining exposed half is provided 

extreme cold condition. The temperature of the exposed part is a function of temperature and 

space. The detailed temperature profile for exposed half can be found in Rewcastle et al. [16] . 

The gelatin solution is initially refrigerated to a temperature of  �� = 1.5�
.                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 3: Schematic diagram of cryoprobe setup 
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2.2 Bio-Heat Equation 

Heat is defined as flow of energy from one physical entity to another physical entity, when 

entities are at different temperatures. It transfers from higher temperature system to lower 

temperature system. The transfer process proceeds towards thermal equilibrium.      

Several heat transfer mechanisms occur during cryosurgery, including conduction, convection, 

metabolism and phase change.  

 

1. Conduction:  

Conduction is heat transfer by means of molecular agitation within a material without any 

motion of the material as a whole. The heat conduction is governed by Fourier's Law, which 

states that the time rate of heat transfer through a material is proportional to the negative gradient 

in the temperature and to the area, at right angles to that gradient, through which the heat is 

flowing.  

For one-dimensional heat conduction in x-direction- 

 

x

T
q k

x

∂
= −

∂
 

 

    where qx is heat flux in x-direction 

     k thermal conductivity 

     T temperature 

 

2. Convection:  

Convection is the transfer of heat from one place to another by the movement of fluids. This 

motion is due to collective movement or aggregation of large numbers of molecules. Free or 

natural convection results from the density variations due to variations of temperature in the 

fluid. 

Heat transfer by conduction has been assumed to be the primary heat transfer process 

during cryosurgery since the cryoprobe operates at an extremely low temperature. Bio-heat 

transfer is the study of heat transfer in biological system. The fundamental heat transfer equation 

in biological tissue was firstly suggested by Pennes.  
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Pennes suggested that the rate of heat transfer between blood and tissue is proportional
 
to the 

product of the volumetric perfusion rate and the difference
 
between the arterial blood 

temperature and the local tissue temperature [21, 22].
 
He expressed that relationship as follows 

 

ℎ� = ������1 − ����� − �� 

 

where  

hb is the rate of heat transfer per unit volume of tissue,  

V is the perfusion rate per unit volume of tissue,  

ρb is
 
the density of  blood,  

cb is the specific heat of blood,  

K is a
 
factor that accounts for incomplete thermal equilibrium between

 
blood and tissue 

(0  K 
 
1, for some cases K = 0)  

      Ta is the temperature of arterial blood, and
  

      T is the local tissue temperature.  

In this study we have used following form Pennes bio-heat equation: 

 

       

 

Where 

 ρ is density of the tissue 

H is total enthalpy 

cb is specific heat capacity of the blood  

Tb is temperature of the blood 

T is temperature of the tissue 

  ����� is metabolic rate 

 �� � is blood perfusion rate  

 t is time 

r is radial co-ordinate 

 z is axial co-ordinate 

( ) ( )1
b b b m e t

H T T
k r k m c T T q

t r r r z z

ρ∂ ∂ ∂ ∂ ∂   = + + − +   ∂ ∂ ∂ ∂ ∂   
ɺ ɺ
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 2.3 Boundary and Initial Conditions 

 

 
       

        Figure 4: Geometrical Model of cryoprobe setup with boundary conditions 
 

For the above described model, following boundary conditions are imposed: 

 

In the above conditions, �� is the domain boundary temperature which is kept fixed at 1.5�
 

throughout the simulation. Initially the whole domain is kept at ��Ω, 0� = 1.5�
. 

 

,0 0.5 , 0

,0.5 ,

0, , 0

, 0,

0 , ,

,0 ,

p p

p p p p

p dh

p dw B

dw dh B

dw dh B

T
r r z L

r

r r L z L T T

T
r L z L

r

r r L z T T

r L z L T T

r L z L T T

∂
= ≤ < =

∂
= ≤ < =

∂
= ≤ < =

∂
≤ ≤ = =

≤ ≤ = =

= ≤ ≤ =



 
20 

2.4 Solution Approach 

 

The two-dimensional axisymmetrical Pennes equation has been discretized on a structured, 

multiblock grid system using finite volume approach. The finite volume method is a method for 

representing and evaluating partial differential equations in the form of algebraic equations. 

Finite volume refers to the small volume surrounding each node point on a mesh and in this 

method values are calculated at discrete places on a meshed geometry. 

The grid with three blocks used for this simulation is shown in figure 5. The diffusive term and 

the unsteady term are discretized using central difference scheme and implicit three time level 

method (a quadratic backward approximation) respectively giving second order accuracy in 

space and time. A typical computational time for a simulation run is 40s on a personal computer 

(Pentium IV processor). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A typical multiblock structured grid 
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 2.5 Code Validation 

The present numerical code is validated against the published experimental result of Rewcastle et 

al. [16]. In the experiments, the temperature was recorded at 4 thermocouples placed at 10mm 

from the axis of the probe. Figure 6 shows a comparison between the computed temperatures, at 

the three thermocouples having coordinates (10mm,36mm), (10mm,46mm) and (10mm,56mm), 

and the experimental temperatures. The numerical results agree quite well with the experimental 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        

 

 

Figure 6: Validation of present numerical code 
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The gelatin solution (1.4%) in a cylindrical perspex phantom is considered as the tissue-

simulating medium. The thermal properties of which are given in Table 2. It should be noted 

here that the blood perfusion term and the metabolic term appearing in equation (3) are neglected 

for numerical simulations while considering gel as a tissue simulating medium. A two-

dimensional axisymmetrical methodology is applied to prescribed grid geometry. Numerical 

results have obtained for cryoprobe radii of 1mm, 2mm and 3mm. Cancerous cell destruction 

occurs due to extracellular ice formation (between temperatures of -4
0
C to -21

0
C) and 

intracellular ice formation (temperature less than -40
0
C) [11]. To assess the effect of cryoprobe 

radius on the thermal history inside the solution, isothermal volume contours, propagation of 

freezing front (0
0
C) and two other sub-cooled fronts (-20

0
C and -40

0
C) with time and variation 

of ice volume with time are numerically obtained for a single freeze-cycle of 600s. 

Table 2 

Thermal properties from Rewcastle et al. [16] 

��� = 1.95 × 10!     "/�$%℃� 

��' = 4.186 × 10! "/�$%℃� 

$� = 2.22  +/��℃� 

$' = 0.603  +/��℃� 

�'- = 3.33 × 10. "/�/ 

�� = −4 ℃ 

�' = 0 ℃ 

 

3.1 Isothermal Contours for Different Cryoprobe radii 

Figures 7, 8 and 9 show the isothermal contours of 0
0
C, -20

0
C and -40

0
C at four different time 

instances (150s, 300s, 450s and 600s) during freeze-cycle for cryoprobe radius of 1mm, 2mm 

and 3mm respectively. This information is important to determine the regions of total cell 

destruction. For all the cases, it is found that the formation of ice (volume enclosed by 0
0
C 

temperature contour) is faster than the formation of other two sub-cooled ice (volume occupied 

by -20
0
C and -40

0
C temperature contours). Heat transfer surface area increases with increase in 

the cryoprobe radius. Therefore, ice formation increases with increase in the cryoprobe radius 

(figure 8, 9). 
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Figure 7: Isothermal Contours of 00C, -200C and -400C for 1mm cryoprobe radius 

(c) t = 450s

(b) t = 300s (a) t = 150s 

(d) t = 600s
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    Figure 8: Isothermal Contours of 00C, -200C and -400C for 2mm cryoprobe radius 

(b)  t = 300s (a) t = 150s 

(c) t = 450s (d) t = 600s 
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    Figure 9: Isothermal Contours of 00C, -200C and -400C for 3mm cryoprobe radius 

(a) t = 150s (b) t = 300s 

(c) t = 450s

  

(d) t = 600s 



 
27 

3.2 Evolution of Ice volume and Ice-front’s Positions 

 

 

Figure 10(a) Positions of ice-fronts for Cryoprobe radius of 1mm 

 

Figure 10(b) Positions of ice-fronts for cryoprobe of radius 2mm 
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Figure 10(c) Positions of ice-fronts for cryoprobe of radius 3mm 

 

Figure 10 shows the different front positions at an axial distance of 60mm from the origin of the 

domain (i.e., bottom-left corner of the domain) for a freeze-cycle of 10min. The propagation of 

freezing front (0
0
C) and sub-cooled fronts (-20

0
C and -40

0
C) positions for a cryoprobe radius of 

1mm, 2mm is shown in figure 10(a), figure 10(b) while figure 10(c) corresponds to a cryoprobe 

radius of 3mm. 

It can be noticed that throughout the freeze-cycle location of freezing front is always ahead of the 

other two sub-cooled front’s positions. Also, the rate of freezing front propagation is more at the 

beginning of the freeze-cycle while it attains a fixed value at the end as reflected in figure 10. 

The remaining two fronts show different patterns: at the beginning, the rate of front propagation 

is more while it is almost zero at the end of the freeze cycle. 
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Figure 11 represents the variation of ice volume with time for cryoprobe radii of 1mm, 2mm and 

3mm. It is found that ice volume increases almost linearly with increase in cryoprobe size at any 

instant of freeze-cycle. It is also interesting to observe that the variation of ice volume is almost 

linear with time. 

 

3.3 Conclusion 

 

A new numerical approach has been devised to predict the temperature contours and freezing 

front positions inside the ice ball. It has been shown that the developed two-dimensional 

axisymmetric model is capable of solving a phase change problem in a complex geometry within 

40s on a Pentium IV personal computer. The complex geometry is easily subdivided into small 

sub domains using multiblock structured grid which resulted in less computational time. Use of 

larger radius cryoprobe increases the surface area of heat transfer with the surrounding and 

consequently, there is an increase in lethal volume (volume below -40
0
C temperature contour) 

inside the ice ball. Also, it has been found that ice volume increases almost linearly with increase 

in cryoprobe radius as well as with increase in time. The developed approach can be applied in 

Figure 11: variation of ice-volume with time 
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cryosurgical protocol for decision making in real time application. To make it applicable to 

cryosurgery, still some improvements are required (i.e., incorporation of blood perfusion rate in 

the numerical model). 
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