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Abstract

With the rapid increase of small devices and its usage, a better suitable security

providing mechanism must be incorported keeping the resource constraints of the

devices in mind. Elliptic Curve Cryptography (ECC) serves the best and highly

suitable for wireless sensor Networks (WSN) in providing security because of its

smaller key size and its high strength of security against Elliptic Curve Discrete

Logarithm Problem (ECDLP) than any other public-Key Cryptographic Systems.

But there is a scope to reduce key calculation time to meet the potential appli-

cations, without compromising in level of security in particular for wireless sensor

networks. Scalar Multiplication is the costliest operation among the operations

in Elliptic Curve Cryptography which takes 80% of key calculation time on WSN

motes. This research proposes an algorithm based on Booth’s Encoding Pattern,

offering minimal Hamming Weight and significantly reduces the computational

cost of scalar multiplication. Simulation results has proved that the Booth’s en-

coded pattern performs better over the existing techniques if there are atleast 46%

number of 1’s in the key on an average.
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Chapter 1

Introduction

Rapid growth in use of small computer devices with wireless communication ca-

pabilities drive the future development of Internet Applications. The number of

people using small devices far exceeds than that of Personal Computers. To tap

this potential the security issues with applications on these devices have to be ad-

dressed.As the resources like battery power, memory, small processors are limited

in such devices, the level of security is need to be addressed efficiently. Several

approaches to enhance the security are based on cryptographic primitives such as

message authentication codes, hash functions, and digital signatures. The limi-

tations of providing a high level of security using these primitives include: the

memory needed for generating cryptographic keys; the storage needed for storing

the key generating algorithms as well as the keys; the bandwidth necessary to

transmit keys; and the CPU to generate keys [1].

Elliptic Curve Cryptography has emerged as an attractive public-key cryp-

tosystem for use in small wireless environments. Compared to the conventional

cryptosystems like RSA, ECC offers a higher level of security with small key sizes,

resulting in faster computations, lower power consumption, as well as memory and

bandwidth savings [2]. For the same key sizes, ECC provides higher security than

that of RSA. These properties make ECC very useful on small mobile devices and

smartcards which are typically limited in terms of their CPU, power and network

connectivity.
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1.1 Security goals

1.1 Security goals

The keen observation of a loosely packed communication channel between the

communication entities reveals the following fundamental objective of secure com-

munication:

• Confidentiality: Data meant to be secret has to be secret for all unauthorized

, but only authorized should have a way to access the original communication

i.e.; message between two communicating parties A and B should not be

readable by E (any third-party entity).

• Data Integrity: Data should not be altered by unauthorized means in any

way

• Authentication: Only the authorized entities are given access to obtain the

information.

• Availability: The information created and stored needs to be available to

authorized entities. Information is useless if it is not made available.

Key forms the most important component in the today cryptography systems.

They are numbers randomly choosen from a large pool of numbers in a set.Thus,

management of keys plays an important role and includes the following:

• Key Generation: It is the process in which a pool of keys are generted.

• Key Establishment: It is the most important phase of key management pro-

cess. It deals how the keys are determined to each and every node in the

network.

• Key Updation: It is the process by which we can update the keys of all the

users after regular time intervals to keep the network secured.

• Key Revocation: This process is like renewing the keys once they are known

to be compromised.

3



1.1 Security goals

Based on the usage of the key, Cryptographic algorithms can be divided into two

categories.

• Private Key Cryptography: Same key is used for encryption and decryp-

tion sessions. It is common-shared secret key between the communicating

entities. The key is known to be as secret key.

• Public Key Crytography: Two types of keys public key and private keys are

used in the system. Every party involved in the communication has to have

the both of the keys where as public key is known to the world and private

key is only known to that party.

As public key cryptography deals with the computation on large numbers,it needs

huge computational and communication costs where as Private key cryptography

deals with substitution or permutations of the characters , so it is faster in com-

putation involved. But in terminology, both has to go hand−in−hand where each

has its own advantages and disadvantages when compared with each other. To be

able to use all the aspects of security, both Private−Key and Public−Key Cry-

tography techniques are needed.

The main idea behind Public Key Cryptography is the concept of the Trapdoor

One−Way Function.

• One−Way Function: It is function satisfying the following two properties.

– Function y = f(x) can be easily computed.

– Given y, comptuing Inverse of the function x = f−1(y) is computati-

nally infeasible.

• Trapdoor One−Way Function: It is a one−way function along with another

property

– Given y, and a trapdoor(Private Key) k, x can be computed at ease.

There are several criteria that should be considered when selecting a family of

public-key cryptography schemes. A few are [3]:

4



1.2 Motivation

• Functionality: The selected scheme has to provide the desired capabilites.

• Security: The security need to be provided has to be assured.

• Performance: For the security level provided, the protocol has to meet the

performance objectives.

RSA, ELGAMAL and ECC are some of the schemes providing all these function-

alities expected of Public−Key Cryptography: Key Management, Signatures and

Encryption.The fundamental security issue that remains is the hardness of the

underlying mathematical problem that is necessary for the security of all proto-

cols in a public-Key family − the integer factorizatin problem for RSA systems,

the discrete logarithm problem for DL systems, and Elliptic Discrete Logarthim

Problem for EC systems [3].

1.2 Motivation

Wireless sensor networks contain hundreds or thousands of sensor nodes that are

resource specific like limitted battery power, lesser memory, lower computation

processing speeds etc., where a small task is processed by all the nodes. Security

plays a vital role in order to protect each and every sensor node as the information

is revealed by intruder on compromise of a single sensor node.So many light-weight

architectures have been proposed to accomodate the characteristics of such small

devices. So the reduction in computation in the node increases the lifetime of

the node, thus increasing the lifetime of the network. Dharmendra sharma [4]

has discussed an approach based on one’s complement subtraction to reduce the

hamming weight in the key by recoding it, thus reducing the computation cost.

Our motivation is to reduce the computation cost, further. We have recoded the

integer key using Booth’s encoding pattern and has got still lesser hamming weight

, suceeding in reducing the computation cost and speeding the operation further.

The proposed approach doesnt need any memory overheads or precomputations.
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1.3 Thesis Organization

1.3 Thesis Organization

In this thesis, we have discussed about Booth’s Encoding Pattern of the integer

key and how it outperforms the existing recoding shcemes. In chapter-1, we have

discussed the introduction of Wireless Sensor Networks and Elliptic Curve Cryp-

tography. The rest of this paper is organized as follows. In Chapter-2, we have

discussed about the background of Elliptic Curve Cryptography and its Prelim-

inaries, Elliptic Curve Point Multiplication and some of the existing methods of

point multiplication in ECC and its Related Work. Chapter-3 goes through the

Simulation and Results. Chapter-4 concludes our thesis.
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Chapter 2

Background

This chapter is divided into three parts. In the first part, we have presented

the Elliptic Curve Cryptosystem and its Preliminaries. In the second part, we

have explained the basics of scalar and point multiplication. In the third part we

have discussed about the various existing point multiplication techniques and the

related work.

2.1 Background of Elliptic Curve Cryptography
and its Preliminaries

Elliptic Curve Cryptography(ECC) has emerged as an attractive public-key cryp-

tosystem for use in small wireless environments. The advantage of Elliptic Curve

Cryptography over other public key cryptography techniques such as RSA, Diffie-

Hellman is that Key sizes of ECC are lesser and the best known algorithm for

solving ECDLP is the hard mathematical problem that takes the fully exponen-

tial time [5]. On contrary, the best algorithm for solving RSA and Diffie-Hellman

takes sub-exponential time. To keep in short, ECC can be solved only in expo-

nential time and so far there is lack of known sub-exponential attack on ECC.

Elliptic curve cryptography is an approach to public-key cryptography based

on the algebraic structures of elliptic curves over finite fields [6]. It was intro-

duced by Vector and Miller independently in eighties [7] [8]. The elliptic curves in

cryptography are typically defined over two types of finite fields: prime fields Fp,

where p is a large prime number, and binary extension fields F2m . Although both

implementations were done for WSN networks, the more efficient in terms of space

and processing is elliptic curves over prime fields Fp. The number of elements in
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2.1 Background of Elliptic Curve Cryptography and its Preliminaries

the field is called its order. There exists a finite field of order q if and only if p is of

a prime power. If q = pm, where p is prime and a positive integer, then p is called

the characteristic and the m extension degree of Fq. When setting up an elliptic

curve cryptosystem, there are three basic decisions that need to be made: [3]

• Selection of the underlying finite field Fp.

• Selection of the representation for the elements of Fp.

• Selection of the elliptic curve E over Fp.

2.1.1 Domain Parameters

These parameters for an Elliptic Curve scheme describe the Elliptic Curve E de-

fined over a finite field Fq, a base point P εE(fq) and its order n. These parameters

are chosen such that the ECDLP is resistant to all the attacks. These Domain

parameters are shared by the group of entities involved in the communciation.

Domain Paramters D=(q, FR, S, a, b, P, n, h) are: [3]

• Field Order q: prime field FP or binary field F2m .

• Field Representation FR: Representation used for the elements of Fq

• Seed S: if the elliptic curve was randomly generated

• Coefficients a,b: defines the equation of the curve

– y2 = x3 + ax + b if the field chosen is Prime Field, where determinant

4a3 + 27b3 6= 0 should be satisfied.

– y2 + xy = x3 + ax2 + b if the field chosen is Binary Field, where b 6= 0

• Base Point P: P (xP , yP ) on the equation has prime order.

• Order n: The least integer when multiplied with the base point P result in

point at infinity O.

• Cofactor h: E(Fq)/n.
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2.1 Background of Elliptic Curve Cryptography and its Preliminaries

Since the group is abelian a point known as Point at Infinity O is also included

in the point set of the equation, which serves as additive identity of the group

satsifying the abelian property.

The three opertaions Point-Addition, Point-Double and Point-Negation on the

points of the Elliptic Curve are define as:

Let P(x1, y1) and Q(x2, y2) be two different points on the elliptic curve.The

operations on the points are defined in the following algorithms.

2.1.2 Point-Addition:

R(x3,y3) = P(x1,y1) + Q(x2,y2) on the curve is defined[Fig 2.1] as:

yy

x x

P+(-P)=O 

Where O is the  

Point at infinity

QQ

P P

P

-P

R

-R

P+Q=R

Figure 2.1: Point Addition

Algorithm :

• step 1: check if either point is O,then R = the other point.

• Step 2: If P = Q , use POINT DOUBLE routine.

• Step 3: If x1 = x2 , R = O;

• Step 4: If P 6= Q, R(x3,y3) where

λ = (y2 − y1)/(x2 − x1);

x3 = λ2 − x1 − x2;

y3 = (x1 − x3)λ− y1;

10



2.1 Background of Elliptic Curve Cryptography and its Preliminaries

2.1.3 Point-Double:

R(x3,y3) = P(x1,y1) + p(x1,y1) on the curve is defined[Fig 2.2] as:

P

P=O 

hence 

2P=O  

Where O 

y 

R

-R 

P
2P=R

x
x

y 

Figure 2.2: Point Double

Algorithm :

• step 1: check if the point is O,then R = O.

• Step 2: If P 6= O , R(x3, y3) where

λ = (3x2 + a)/2y1;

x3 = λ2 − x1 − x2;

y3 = (x1 − x3)λ− y1;

2.1.4 Point-Negation:

Let P(x1,y1) be a point on the curve. R(x3,y3) =-p on the curve is defined as

Algorithm :

• step 1: R(x3, y3) = -(x1, y1) = (x1,x1+y1);

where the addition, subtraction, multiplication and inverse are the arithmetic

scalar operations over the field GF(p).

11



2.2 Elliptic Curve Point Multiplication

2.2 Elliptic Curve Point Multiplication

In Elliptic Curve Cryptography, exponentiation operation of RSA and several

crypographic algorithms like Elgamal Cryptosystems, is replaced by an operation

called Point Multiplication, where its really impracticable to break, easy to use

and computation sensitive. ECDLP hardness lies in the operation Q = k.P where

P and Q are any arbitrary points on the curve, and is impracticable to deceive k

though P,Q are known. This forms the costliest and very important operation in

ECC.

2.2.1 Ellipitc Curve Point Generation

In ECC simulating ElGamal Cryptosystems, in Key Generation stage at a com-

munication entity

e2 = d× e1 (2.1)

is the point multiplication operation where e1 and e2 are coordinate points ,forming

part of public key. d forms the private key. e2 is a point generated by multiplying

another point e1, k number of times where k is the randomly selected large number

that serves as private key.

2.2.2 Elliptic Curve Diffie-Hellman Key Exchange

This scalar point multiplication is used to obtain the common shared key between

two communication entities in the network.

Let ka and kb are the private keys of two nodes A and B respectively. Corre-

spondingly, node A and node B calculates the intermediate keys using the scalar

point multiplication Qa=ka.G and Qb=kb.G and exchanges mutually. To obtain

the shared common key between the communicating parties

• A calculates ka.Qb

• B calculates kb.Qa

12



2.4 Background of Point Multiplication

• Thus,the shared key is obtained and verified as

ka.kb.G = kb.ka.G (2.2)

Theoretically, Scalar Point Multiplication operation k.P is calculated as

Q = k.P = (P+P+...+P) i.e. k times

2.3 Recoding of Integer k in Point Multiplica-
tion

Computational cost significantly varies by the recoding of the integer k in the

scalar point multiplication operation. The number of point doubling and point

additions in scalar multiplication depends on the coding pattern of the integer k.

The number of ones and zeros in the binary form, their places and the total number

of bits in the integer key k affects the computational cost of the operation. The

number of non-zero bits,in the binary form, known as hamming weight determines

the point additions, where as the point double operations are determined by the

total bit length of the key k [4].

One point addition requires one field inversion and three field multiplications.

Squaring is counted as regular multiplication. One point double operation requires

one field inversion and four multiplications. And additions can be neglected as

multiplication cost is much more than that of addition cost and multiplication

with small constant is also neglected [4].

2.4 Background of Point Multiplication

The Q=k.P operation is implemented practically by recoding the integer k in

significant format and either a left-to-right or right-to-left scan of k is performed

along with one of the following existing methods.In our approach, we strict to

left-to-right scan of the integer key i.e.most significant bit to least significant bit

when the internal storage architecture is Little Endian format.

13



2.4 Background of Point Multiplication

2.4.1 Basics of Multiplication

A machine is only capable of storing two bits 0 and 1, denotion of +5V and

0V electric signals. Every multiplication in hardware is done by representing the

multiplicand and multiplier in binary form.

2.4.1.1 Multiplication of scalar with a scalar

When both the multiplicand and multiplier are scalars, Shift-and-add multiplica-

tion method is used to obtain the product, where shift does the double opertaion

of the multiplicand and add does the addition of multiplicand with the multiplier.

This method adds the multiplicand P to itself k times, where k denotes the multi-

plier. To multiply two numbers, the algorithm is to take the bits of the multiplier

one at a time from right-to-left or left-to-right, multiplying the multiplicand by a

single digit of the multiplier and placing the intermediate product in the appro-

priate positions to the left of the earlier results.

As an example, consider the multiplication of two unsigned 4-bit numbers, 8 (1000)

and 9 (1001) [Fig 2.3].

Multiplicand                        1000     X 

Multiplier                             1001 

1000

0000

0000

1000

Product     =       1001000=  72 

Figure 2.3: Multiplication of scalar with a scalar

14



2.4 Background of Point Multiplication

2.4.1.2 Multiplication of point with a scalar

When a elliptic curve point is multiplied with a scalar integer, point acts as mul-

tiplicand and the scalar as multiplier. The product can be obtained in one of

the following two ways , where the multiplier has to be processed either from

left-to-right or from right-to-left multiplying with the multiplicand for each bit in

the coded pattern of scalar integer. The scalar can be any of the two representa-

tions [4].

• Binary-Digit Representaion Method In this method the integer k is repre-

sented in its binary form

k =
∑l−1

i=0 2iki , where kjε{0, 1}
In this method, only two bits 0 and 1 are used to represent the integer.

• Signed-Digit Representation Method In this method the integer k is repre-

sented in its canonical form

k =
∑l−1

i=0 2iki , where kjε{0, 1,−1}
The subtraction operation is typically of same cost as addition in the ellip-

tic curve group. The negative of point (x, y) is (x,-y) in ECC operations.

This leads to scalar multiplication methods based on additionsubtraction

chains, helping to reduce the number of curve operations. When integer

is represented with the following forms, it is called as binary signed digit

representations.

15



2.4 Background of Point Multiplication

2.4.2 Binary - Add and Double Method

Add and Shift method of integer Arithmetic is similar to that of Add and Double

method, as we deal with the point double operations in ECC, shifting the bits

in the integer multiplier to obtain the product. This is obtained by repeatedly

applying of elliptic curve point add and double operations.Algorithm 1 explains

the Add and Double method to compute the product by Right-to-Left Scanning

of the scalar integer.

Algorithm 1 Right-to-Left Scan of k

Input: k = (kl−1kl−2 . . . k0) where kiε0, 1.
Output: kP
Initialize: Q=0
for i = 1 → l − 1 do

if ki == 1 then
Q:=Q+P

end if
P:=2P

end for
return Q

[Fig 2.4] explains the scalar point multiplication between two integers 10 and

25,where 10 is assumed as scalar multiplier and 25 as point multiplicand based on

the Algorithm 1.

Multiplier 

Example: 10*25=?

Multiplicand 

10=           1            0              1              0 

10*25= 0250 50

++

100200 50    25400 P = 

Figure 2.4: Right-to-Left Scan Method

The cost of multiplication in Add and Double method depends on the number of

non-zero elements and length of the binary representation of k. If the represen-

tation has kl−1 6= 0 then this method require l − 1 point double operations and

16



2.5 Related Work

h − 1 point addition operations, where l is the length of the binary expansion of

k and h is the Hamming weight of the k that is the number of non zero elements

in expansion of k i.e.

if k = 723 = (1100010011)2, total h-1=4 point additions and l − 1 = 9 point

double operations are required. when point at infinity is added with a point or

doubled itself there is no computation involved.

2.4.3 Binary - Double and Add Method

Algorithm 2 Left-to-Right Scan of k

Input: k = (kl−1kl−2 . . . k0) where kiε0, 1.
Output: kP
Initialize: Q=0
for i = l − 1 → 0 do

Q:=2Q
if ki == 1 then

Q:=Q+P
end if

end for
return Q

The cost of the point multiplication opertaion of Left-to-Right Scan method is

often lesser than the Right-to-Left Scan method, since in certain settings of Elliptic

Curves the latter method outperforms the former one. And in the former case in

every pass of the algorithm, multiplier is updated and multiplicand scalar is not

disturbed, where as in the other both are updated in each and every pass.we strict

out attention towards Left-to-Right Scan method only as it is more convenient to

use.Algorithm[2] explains the Left-to-Right scan method.

2.5 Related Work

The concept of Elliptic Curve in Cryptography was introduced by Miller and

Koblitz in [7] [8]. In [6], Lenstra and Verheul has shown that 1937-bit key size

RSA may provide a similar security as 190-bit key size Elliptic Curve Cryptosys-

tem. In [9], Marc Joye and Sung-Ming Yen has discussed about the left-to-right

scanning of bit-by-bit of the key for performing the point multiplication operation.
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Multiplier

Example: 10*25=?

P=25

10=           1        0             1                  0

Multiplicand

25

10*25= 0 0 50 100 250

D D

D 125

A A

D

Figure 2.5: Left-to-Right Scan Method

In [10], Sangook Moon has discussed about the scalar point multiplication using

the Booth’s radix-4 algorithm.

In [11], He, Yajuan and Chang, Chip-Hong used a new redundant binary booth

encoding for fast 2n-bit multiplier design. In [12], Villaln Turrubiates did the com-

parison among the Booth’s and Pekmestzi’s Algorithm for the multiplication of

two numbers. In [13], David J. Malan, Matt Welsh, Michael D. Smith had pre-

sented the first known implementation of Elliptic Curve Cryptography Over finite

fields for Sensor Networks. In [5] [14], it is analyzed and tested the feasibility of

Public-Key Cryptography in Wireless Sensor Networks.

In [15] [16], Rajendra S. Katti and Xiaoyu Ruan has discussed about the parti-

tion the integer key into two , reducing the Joint Sparse Form for fast scalar point

multiplication. In [17],Hai Yan and Zhijie Jerry Shi has published an article based

on the software implementations of Elliptic Curve Cryptosystems. In [4], Pritam

Gajkumar Shah, Xu Huang and Charmendra Sharma have discussed about the al-

gorithm based on One’s Complement Subtraction for Fast Scalar Multiplicationin

ECC for WSN.

2.5.1 One’s Complement Subtraction Method

This is a signed representation method, where binary form of the integer k is re-

coded to its one’s complement subtraction form [4]. It is found by the equation

18



2.5 Related Work

(kl−1kl−2...k0)2 = 2l − (kl−1 kl−2...k0)− 1 (2.3)

(kl−1kl−2...k0)2 = (1(−kl−1) (−kl−2)...(−k0 − 1))2 (2.4)

To keep it simple, it is written as

C = (2l − 1)− k; (2.5)

where k = Binary Number

l = Number of bits in k

C = One’s Complement of the number

However it is not a unique pattern representation as there exists two values

for zero (all zeros or all ones), but this is violated as key should be a large prime

number and not zero. So, any positive integer is represented by using minimal

non-zero bits in its one’s complement notation.

The equation(2.5) can be modified as below

k = (2l − 1)− C; (2.6)

For example take k=377

k = (101111001)2

C = (2l − 1)− k

C = (1000000000)2 − 1− (101111001)2

C = (010000110)2

Therefor, k can be written as k = (2l − 1)− C

k = 1000000000− 1− 010000110

If every word is splitted out such that it consists only a single one

k = 1000000000− 1− 010000000− 000000100− 000000010

k = 110000111

We can observe that hamming weight of recoded integer in OCS approach is

lesser than that of original integer. The key length of recoded integer in OCS

19
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approach is a bit more than the key length of the original integer. For the above

example, the hamming weight of the integer key in OCS approach is 5, whereas

in original integer it is 6.

Total computations needed when k = 377 in the operation Q = k.P in this

approach are calculated as:
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Figure 2.6: OCS Method’s Cost Computation

From Figure[2.6], It is observed that total point additions involved are 4 and point

doubles are 9.Thus, It results in 48 Scalar Multiplications, 69 Scalar Additions and

13 Scalar Inversions.

Similarly, the total computational cost when no recoding is done on the integer

key ,is calculated as:����� �������	

A

��� � � � � � � � � �� � �� �� ��� ��� ��� ��� ���� ����
DD

D

D

D
D

D

AAA A��� ������ ������
Figure 2.7: Basic Method’s Cost Computation

From Figure[2.7], It is observed that the total point additions involved are 5 and

point doubles are 8, resulting 47 scalar multiplications, 70 scalar additions and 13

scalar inversions when no recoding of the integer is performed.

Likewise, for odd binary numbers, the number is converted to the required

signed-digit representation form keeping all the ones negative expect MSB one.

Here in OCS approach, no memory overhead is required because for every recoded

integer, each and every bit in the recoded bit pattern is negative other the MSB
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bit.This approach performs better when there are more than 65% of ones in the

integer k.

2.6 Summary

In this chapter, we have seen all the backgroud details of Elliptic Curve Cryp-

tography ,background of point multipliction of ECC, basics of multiplication and

some of the various existing methods of point multiplication and related work in

brief.
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Simulation and Results

Summary



Chapter 3

Proposed Method And
Simulation Results

3.1 Proposed Algorithm Based on Booth’s En-
coding Pattern for Recoding of integer k

A signed binary representation (kl−1, kl−2, ..., k0) of an integer k is said to be in

Non-Adjacent Form(NAF) provided that no two consecutive bits are non-zero.It

has certain special proporties like:

• NAF of a number is a unique signed-digit representation.

• NAF defines that no two adjacent non-zeros should be in the bit pattern.

• Hamming Weight of the NAF form is minimal.

• NAF representation contains more zeros than the traditional binary repre-

sentation of a positive integer

• For regular binary representations of values, half of all bits will be non-zero

on average, but with NAF this drops to only one-third of all digits.

• Since every non-zero has to be adjacent to two 0’s, NAF representation can

be implemented such that it only takes a maximum of l+1 bits for a value

that would normally be represented in binary with l bits.

There are various algorithms to obtain the NAF form of an integer, we are

confined to Booth’s Encoding Pattern to recode the integer k with minimal number

of ones in order to reducing the hamming weight.

In hardware, there is no way of storing -1 hence some software approach has

24



3.1 Proposed Algorithm Based on Booth’s Encoding Pattern for Recoding of
integer k

Algorithm 3 Computation of NAF

input: k = (kl−1 kl−2 . . . k0) where kiε{0, 1}
ouput: Z = (Zl+1 Zl ... Z0) where Ziε{0, 1,−1},

i := 0
while k > 0 do

if k is odd then
Zi := 2− (k mod 4); //Ziε{1,−1} as k is odd

else
Zi := 0;
k := (k − Zi)/2;
i := i + 1;

end if
end while

to be followed to achieve it virtually. Algorithm 4 is for converting the integer

k into its NAF form where it stores all the non-zeros as 1 but to differentiate

between the 1 and -1, an overhead of memory i.e. equal to the integer key size l

and (+1) bits is taken and is used to remember the -1 bits in the NAF form.For a

180 bit key in ecc, another 180 bit overhead is required in our proposed method.

It significantly improves the computation needed in this approach than the other

existing methods as the number of ones are significantly reduced.

The integer k in Q = k.P is recoded based on the following algorithm
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3.1 Proposed Algorithm Based on Booth’s Encoding Pattern for Recoding of
integer k

Algorithm 4 Computation of NAF with auxilary memory

input: k ≥ 0
ouput: Z = (Zl Zl−1 . . . Z0) where Ziε{0, 1,−1}
initialize : aux = (auxl auxl−1 . . . aux0) = 0,

count = 0;
for j = l − 1 → 0 do

if ki = 1 then
if count > 0 then

if count = 1 then
auxj+1 = 1;

end if
Zj = 0;
increment count by 1;

else
increment count by 1;

end if
else if count ≥ 1 then

Zj = 1;
count = 1;

else
count = 0;

end if
end for
for j = i− 1 → 0 do

Zj+1 = Zj;
auxj+1 = auxj;

end for
if count ≥ 1 then

y0 = 1;
aux0 = 0;

else
y0 = 0;
aux0 = 0;

end if
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For example,take k = 377

k = (101111001)2

By applying the Algorithm 4, k is recoded to z

z = (1010001001)2

aux = (0000101001)2

We can observe that hamming weight of recoded integer in our approach is

lesser than that of one’s complement approach. The key length of recoded integers

is same in both the approaches. For the above example, the hamming weight in

One’s complement approach is 5, whereas in our approach is only 4.

Total computations needed are calculated as
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Figure 3.1: Proposed Method’s Cost Computation

[Fig 3.1] shows the processing of integer key k by left-to-right scan method and

total point additions are 3 and point doubles are 9. Thus, It results in 45 Scalar

Multiplications, 63 Scalar Additions and 12 Scalar Inversions which are lesser

when compared with OCS method and the basic method.

3.2 Simulation and Results

For simulation, We have considered the elliptic curve cubic equation with the

coefficients a, b and p as 2, 3 and 67 respectively. We have considered a 8-bit

key in our simulation paradigm. The key chosen is random and may vary highly
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with the total number of 1’s . Based on the Hamming Weight, The average

number of computations (here scalar multiplications,additions and inversions) are

plotted against the total number of ones in the original key bit pattern. The three

approaches are taken for considered and it has been proven that the proposed

approach needed lesser number of computations relatively.
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Figure 3.2: Avg No. of Multiplications vs No. of 1’s in k
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3.3 Summary

3.3 Summary

From Fig[3.2], Fig[3.3] and Fig[3.4 ], it is observed that the One’s compliment

approach outperforms the traditional existing basic method when there are more

than 65% ones in the key bit pattern. But the proposed approach outperforms

both the schemes when the total number of ones in the bit pattern are more than

46% of the bits. The proposed approach drawbacks where there are less number of

ones in the key because of the overhead of the extra one-bit added to the recoded

integer.
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Chapter 4

Conclusion

In this thesis, We have proposed an algorithm based on Booth’s Encoded Pat-

tern to obtain Non-adjacent form with minimal hamming weight by recoding the

integer key in Signed-Digit Representation to speed up the point multiplication

operation. Minimizing hamming weight reduces the total number of partial scalar

operations like additions, multiplications, thus reducing the total computational

cost involved in the heavy mathematical Point Multiplication operation of Ellip-

tic Curve Cryptography for wireless sensor network platforms. The 180-bit extra

auxiliary memory needed in our approach, considered as overhead to remember

the -1’s in the recoded pattern for a 180-bit key in Elliptic Curve Cryptosystems

does not seems to be a real overhead in Wireless Sensor Network mica motes as

it is negligible in 512KB flash memory. This approach provides a very simple

way to recode the key reducing the hamming weight, further reducing the com-

putation cost efficiently. The existing OCS method perform better than that of

Basic method when there are 65% of 1’s in the key bit pattern But our method

outperforms the Basic and OCS methods when there are atleast 46% of 1’s in the

key.
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