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ABSTRACT 
                                       

 

                                   In optical networks, physical layer impairments (PLIs) incurred by non-

ideal optical transmission media, accumulates along the optical path. The overall effect of PLIs 

determines the feasibility of the light-paths. It is important to understand the process that 

provide PLI information to the central manager and use this information efficiently to compute 

feasible routes and wavelengths. Based on the PLI impairments like fiber attenuation, 

chromatic dispersion ,cross talk, amplifier spontaneous noise and polarization mode dispersion, 

which reflects the Quality of service, factors (Q-Factor); In this project we worked about both 

linear and non linear physical layer impairments and calculated parameters like power loss , 

channel capacity and Quality factor of all possible paths. From that we proposed centralized 

PLI based routing algorithm is proposed for the selection of data-paths. 
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1.1 Introduction  

Day to day growth in telecommunication network requires functionalities like dynamic data-

path selection with guaranteed Quality of service (QoS) [1] [2], which are essential for any 

optical network. Data-path selection of the WDM network depends on the physical as well as 

IP layer information. The degradation of data-path may happen due to Physical layer 

impairments (PLI).  

WDM (Wavelength Division Multiplexing) technology is growing day-by-day in 

accordance with the requirement of clients. The basic requirement of clients is QoS (Quality 

of Service), which depends on various parameters in network as well as in physical layer. In 

order to satisfy such Requirements, it is necessary to search for a data-path in WDM network. 

The optical information on data-paths are generally affected or degraded by various 

constraints such as physical layer impairments  [1] . 

Q-Factor can be widely used as a system performance indicator for optical communication 

systems since it is directly related to system-bit error rate  [1] [2] [3] [4] [5] [6] . This also 

can be used for light-path routing. There are few PLI based routing algorithms considered in 

[7] [8]. The advantages of Q-Factor [9] include rate transparency and in service performance 

monitoring in addition to fast and compete performance analysis. 

1.2 Physical layer impairments  

PLIs are broadly classified in to two categories: linear and non-linear impairments  [3] [4] [5] 

[6]. The terms linear and non-linear in fiber optics mean intensity-independent and intensity-

dependent, respectively. The linear impairments are static in nature and non-linear 

impairments are dynamic in nature [9]. The non-linear impairments strongly depend on the 

current allocation of route and wavelength, i.e., on the current status of allocated light paths. 

Linear impairments are independent of the signal power and affect each of the wavelengths 

(optical channels) individually, whereas nonlinear impairments affect not only each optical 

channel individually but they also cause disturbance and interference between them [10].   

1.2.1 Linear impairments  

The important linear impairments are: fiber attenuation, component insertion loss, amplifier 

spontaneous emission (ASE) noise, chromatic dispersion (CD) (or group velocity dispersion 

(GVD)), polarization mode dispersion (PMD), polarization dependent losses (PDL), crosstalk 

(XT) (both inter- and intra-channel), and filter concatenation (FC). Optical amplification in 
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the form of EDFAs always degrades the optical signal to noise ratio (OSNR). The amplifier 

noise is quantified by noise figure (NF) value, which is the ratio of the optical signal to noise 

ratio (OSNR) before the amplification to the same ratio after the amplification and is 

expressed in dB [10].  

Chromatic dispersion causes pulse broadening, which affects the receiver performance by: (1) 

reducing the pulse energy within the bit slot and (2) spreading the pulse energy beyond the 

allocated bit slot leading to inter-symbol interference (ISI). CD can be adequately (but not 

optimally) compensated for on a per link, and/or at transmission line design time [10] 

PMD is not an issue for most type of fibers at 10 Gbps, however it become an issue at 40 

Gbps or higher rates [11], [12] [13] [14] In general, in combination with PMD there is also 

polarization dependent loss (PDL). It can cause optical power variation, waveform distortion 

and signal-to-noise ratio fading.  

Imperfect optical components (e.g. filters, de-multiplexers, and switched) inevitably 

introduce some signal leakage either as inter-channel (also incoherent or out-of-band) or 

intra-channel [15] (or intra-band) crosstalk in WDM transmission systems.  

Filter concatenation is the last physical impairment that we consider and define in this 

category. As more and more filtering components are concatenated along the light-path, the 

effective pass band of the filters becomes narrower [16]. This concatenation also makes the 

transmission system susceptible to filter pass band misalignment due to device imperfections, 

temperature variations and aging.  

A. Power Losses: Power loss can be defined as the optical loss that is accumulated from 

source to destination along fiber links and is normally made up of intrinsic fiber losses and 

extrinsic bending losses  [1]  . Intrinsic fiber losses are due to attenuation, absorption, 

reflections, refractions, Rayleigh scattering, optical component insertion losses, etc. Let Pin 

be the power launched at the input of a fiber of length L; then the output power Pout is given 

by Pout = Pin · e
−αL,

 where α is the fiber attenuation coefficient. The loss introduced by the 

insertion of optical components, such as couplers, filters, multiplexers/ de multiplexers, and 

switches, into the optical communications system is called insertion loss and is usually 

independent of wavelength.  

The extrinsic losses are due to micro and macro bending losses. Additional losses 

occur due to the combined effects of dispersion resulting from inter symbol interference (ISI), 

mode-partition noise, and laser chirp as discussed later in this section. 
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B. Chromatic Dispersion (CD): The degradation of an optical signal caused by the 

various spectral components traveling at their own different velocities is called dispersion. 

CD causes an optical pulse to broaden such that it spreads into the time slots of the other 

pulses. It is considered as the most serious linear impairment for systems operating at bit-

rates higher than 2.5 Gb/s. CD depends on bit-rate, modulation format, type of fiber, and the 

use of dispersion compensation fiber (DCF) modules.  

  The total dispersion at the end of a light-path is the sum of dispersions on each fiber-

link of the considered light-path, where the dispersion on a fiber-link is the sum of 

dispersions on the fiber-spans that compose the link. Most commonly deployed compensation 

techniques are based on DCF. Dispersion compensation techniques are useful in long-haul as 

well as metro networks. A fiber of length Lf and dispersion Df can be compensated by using a 

spool of DCF of length Lc and dispersion parameter Dc such that the dispersion at the end of 

the fiber is close to zero and satisfies DfLf + DcLc = 0. Due to imperfect matching between the 

dispersion slopes of CD and DCF, some wavelengths may be over-compensated and some 

others may be undercompensated.  

Moreover DCF modules may only be available in fixed lengths of compensating fiber. 

Hence, sometimes it may be difficult to find a DCF chat exactly compensates the CD 

introduced by the fiber, leading to residual CD. A typical value of dispersion compensation 

tolerance in commercial receivers is around ±800 ps/nm for non-return-to-zero (NRZ) 10 

Gb/s, while it is ±160 ps/nm for optical duo binary (ODB) 40 Gb/s [7]. 

C. Polarization Mode Dispersion (PMD): Anywhere along a fiber-span, fiber could be 

non-circular, contain impurities, or be subject to environmental stress such as local heating or 

movement. These irregularities present obstacles to an optical pulse along its path. These 

obstacles cause different polarizations of the optical signal to travel with different group 

velocities resulting in pulse spread in the frequency domain, known as PMD. The differential 

group delay (DGD) is proportional to the square root of fiber length L, i.e., Δτ = DPMD ·√L, 

where DPMD is the PMD parameter of the fiber and typically measured in ps/√km. Because of 

the √L dependence, the PMD-induced pulse broadening is relatively small compared to CD. 

The PMD on a fiber link is a function of PMD on each fiber-span and is given by PMD 

fiber−link =√ (∑fiber−spans PMD (f)
 2
).  

  The PMD at __ the end of a light-path is PMD light path =√ (∑fiber links along the route PMD (f)
 2

). 

The PMD values vary from fiber to   fiber in the range of 0.01-10 ps/√km [7]. PMD becomes 

a major limiting factor for WDM systems designed for longer distances at higher bit-rates. 

The effect of second and higher order PMD becomes prominent at high-bit rates exceeding 
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40 Gb/s. PMD induced problems can be reduced by shortening the optical transmission 

distance by placing OEO regenerators between two optical nodes.  

However, as most long-haul DWDM systems are multi-wavelength, the transmission 

link must first be de-multiplexed, then regenerated, and then multiplexed again, which is a 

very expensive operation. Another alternative is to use dispersion compensation modules 

(DCM) at optical add/drop multiplexers (OADMs), optical cross-connects (OXCs), or 

amplifier sites to compensate for accumulated PMD on an optical path. Because PMD effects 

are random and time-dependent, this requires an adaptive/active PMD compensator that 

responds to feedback over time. Hence, the most reliable and efficient PMD compensation 

technology is the use of adaptive optics to realign and correct the pulses of dispersed optical 

bits. 

D. Polarization Dependent Loss (PDL): The two polarization components along the two 

axes of a circular fiber suffer different rates of loss due to irregularities in the fiber, thereby 

degrading signal quality in an uncontrolled and unpredictable manner and introducing 

fluctuations in optical signal to noise ratio (OSNR). The combined effect of PMD and PDL 

can further degrade the optical signal quality.  

PDL is a measure of the peak-to-peak difference in transmission of an optical 

component/system w.r.t. all possible states of polarization and is given by PDLdB = 10 · log 

(PMax/PMin), where PMax and PMin are the maximum and minimum output power, respectively. 

PDL mainly occurs in passive optical components. The most common passive optical 

components that exhibit PDL include couplers, isolators, multiplexers/de-multiplexers, and 

photo detectors. The polarization scanning technique (PST) and the Mueller matrix method 

(MMM) are suitable methods for measuring the PDL  [8]. While the PST is preferable for 

determining PDL at a specific wavelength, the MMM has clear advantages when PDL must 

be characterized at numerous wavelength points with equal spacing.  

The worries that plagued optical fiber communication in the early days were fiber attenuation 

and, sometimes, fiber dispersion; however, these issues are dealt with using a variety of 

dispersion compensation techniques. However, fiber nonlinearities present a new realm of 

obstacles that must be overcome. Effects of non-linear impairments become crucial as data 

transmission rates, transmission lengths, number of wavelengths, and optical power levels 

increase in addition to reduction in channel spacing. Network designers must be aware of 

these limitations and of the steps that can be taken to minimize the detrimental effects of 

these fiber non-linearities. The response of any dielectric medium to light becomes non-linear 

under intense electromagnetic field, and optical fibers are no exception. 
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 Due to an harmonic motion of bound electrons the total polarization P induced by electric 

dipoles is not linear in the electric field E, but satisfies a more general relation as  

 P = ε0(χ(1).E1 + χ(2).E2 + χ(3).E3 + ...),        

where ε0 is the permittivity of vacuum and χ(k) is the k
th

 order susceptibility. The 

predominant contribution to P is from linear susceptibility χ(1). For a medium like fiber with 

symmetric molecules, χ(2) vanishes. Therefore optical fibers do not exhibits second order 

non-linear refractive effects. Hence, the third order susceptibility χ(3) is responsible for the 

lowest order non-linear effects such as non-linear refraction, third order harmonic generation, 

and four-wave mixing as discussed later. The non-linear effects in optical fiber occur either 

due to change in the refractive index of the medium with optical intensity (power) or due to 

inelastic-scattering phenomenon.  

    A general classification of non-linear effects in fiber medium [2] are the dependence of 

refractive index on power is responsible for Kerr effect which produces three different kinds 

of effects—self-phase modulation (SPM), cross phase modulation (XPM), and four-wave 

mixing (FWM),depending on the type of input signal. At high power levels, the light waves 

(optical signals) interact with the phonons of the fiber medium resulting in scattering 

phenomenon. The intensity of scattered light grows exponentially if the incident power 

exceeds a certain threshold value. 

 The inelastic scattering phenomenon can induce stimulated effects such as stimulated 

Brillouin scattering (SBS) and stimulated Raman scattering (SRS). The Brillouin generated 

phonons (acoustic) are coherent and give rise to a macroscopic acoustic wave in the fiber, 

whereas, in Raman scattering, the phonons (optical) are incoherent and no macroscopic wave 

is generated. All nonlinear effects, except SPM and XPM, provide gains to some channel at 

the expense of depleting power from other channels. SPM and XPM affect only the phase of 

the optical signal and can cause spectral broadening, which leads to increased dispersion. A 

comparison of various non-linear effects in fiber medium is presented in Table I [6] 

  

The importance of non-linear effects is growing due to  

 Increase in optical power levels to increase the optical reach,  

  Recent developments in optical components such as EDFA and DWDM systems to 

build more flexible networks 
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 Increase in channel bit-rate to increase the traffic carrying capacity of wavelengths 

 Decrease in channel spacing to increase the number of wavelengths and overall 

network capacity.  

Although the individual power in each channel may be below the one needed to produce 

non-linearities, the total power summed over all channels in a multi-wavelength WDM 

system can become significant. The combination of high total optical power and a large 

number of channels at closely spaced wavelengths is ideal for many kinds of non-linear 

effects. For all these reasons it is important to understand and be able to accurately measure 

fiber non- linearities. In the following, we briefly explain the reasons behind each of these 

non-linear effects and discuss some possible solutions to overcome these effects. 

1.1.2 Non-Linear Impairments: 

 

The important non-linear impairments are Self phase modulation (SPM), Cross Phase 

Modulation (CPM), Four wave mixing (FWM) , Stimulated Brilloin Scatter and Stimulated 

Raman Scattering . The following sections describe the all non linear impairments in detail.  

A. Self-Phase Modulation (SPM): The non-linear phase modulation of an optical pulse 

caused by its own intensity in an optical medium is called SPM. An ultra-short optical pulse, 

when travelling in a medium, will induce a time varying refractive index of the medium, i.e., 

the higher intensity portions of an optical pulse encounter a higher refractive index of the 

fiber compared with the lower intensity portions.  

  This results in a positive refractive index gradient (dn/dt) at the leading edge of the 

pulse and a negative refractive index gradient (−dn/dt) at its trailing edge. This temporally 

varying refractive index change results in a temporally varying phase change leading to 

frequency chirping, i.e., the leading edge of the pulse finds frequency shift towards the higher 

side whereas the trailing edge experiences shift towards the lower side. 

 Hence, the primary effect of SPM is to broaden the pulse in the frequency domain, 

keeping the temporal shape unaltered. As the chirping effect is proportional to the transmitted 

signal power, the SPM effects are more pronounced in systems with high transmitted power. 

SPM is the strongest among the Kerr effects for DWDM systems workingat100GHz spacing. 

The chirp also depends on the input pulse shape. The appropriate chirping of input signals 

using chirped RZ (CRZ) modulation can reduce the SPM effects [11].The effects produced 

by nonlinear SPM and linear dispersion are opposite in nature. By proper choice of pulse 
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shape and input power, one effect will compensate for another, leading to undistorted pulse in 

both time and frequency domains. Such a pulse is called a soliton pulse and is useful in high-

bandwidth optical communication systems. 

B. Cross-Phase Modulation (XPM): The non-linear refractive index seen by an optical 

pulse depends not only on the intensity of the pulse but also on the intensity of the other co- 

propagating optical pulses, i.e., the non-linear phase modulation of an optical pulse caused by 

fluctuations in intensity of other optical pulses is called XPM. The result of XPM may be 

asymmetric spectral broadening and distortion of the pulse shape. XPM hinders the system 

performance through the same mechanism as SPM: chirping frequency and chromatic 

dispersion. XPM damages the system performance even more than SPM and influences it 

severely when the number of channels is large. The XPM-induced phase shift can occur only 

when two pulses overlap in time. 

 Due to this overlap, the intensity-dependent phase shift and consequent chirping is 

enhanced, leading to enhanced pulse broadening. The effects of XPM can be reduced by 

increasing the wavelength spacing between individual channels. Another way to reduce XPM 

effects is by careful selection of bit-rates for adjacent channels that are not equal to the 

present channels. For increased wavelength spacing, the pulses overlap for such a short time 

that XPM effects are virtually negligible. XPM is more important at50 (or less) GHz spacing 

compared to 100GHz spacing. 

C. Four Wave Mixing (FWM): FWM originates from third order non-linear 

susceptibility (χ (3)) in optical links. If three optical signals with carrier frequenciesω1,ω2 

andω3, co-propagate inside a fiber simultaneously, (χ(3)) generates a fourth signal with 

frequencyω4, which is related to the other frequencies by ω4 = ω1±ω2±ω3. In general for W 

wavelengths launched into a fiber, the number of FWM channels produced is M=W2 

(W−1)/2).  

The FWM effect is independent of the bit-rate and is critically dependent on the 

channel spacing and fiber dispersion. Decreasing the channel spacing increases the four-wave 

mixing effect. FWM has severe effects in a WDM system, which uses dispersion-shifted 

fiber. If there is some dispersion in the fiber, then the effect of FWM is reduced. This is why 

non-zero dispersion-shifted fibers are normally used in WDM systems. Another way to 

reduce FWM effect is to employ unequal channel spacing in such a way that the generated 

signals do not interfere with the original signals. 

D. Stimulated Brillouin Scattering (SBS): SBS occurs when an optical signal in fiber 

interacts with the density variations such as acoustic phonons and changes its path. In SBS, 
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the scattering process is stimulated by photons with a wavelength higher than the wavelength 

of the incident signal.SBS is recognized as the most dominant fiber non-linear scattering 

effect. SBS sets an upper limit on the amount of optical power that can be launched into an 

optical-fiber [4] . 

When input optical power exceeds the SBS threshold, a significant amount of the 

transmitted light is redirected back to the transmitter leading to saturation of optical power in 

the receiver, and introducing noise that degrades the BER performance.  

The SBS threshold depends on the line-width of the optical source, with narrow line-

width sources having considerably lower SBS thresholds. The back-scattered signals can be 

measured using a Fabry-Perot interferometer or pump probe or self-heterodyne techniques. 

Externally modulating the transmitter provides one way to broaden the line-width of the 

optical source. Hence, it is particularly important to control SBS in high-speed transmission 

systems that use external modulators and continuous wave (CW) laser sources. 

E. Stimulated Raman Scattering (SRS): In WDM systems, if two or more optical signals 

at different wavelengths are injected into a fiber, the SRS effect causes optical signal power 

from lower wavelength optical channels to be transferred to the higher wavelength optical 

channels. This can skew the power distribution among the WDM channels— reducing the 

signal-to-noise ratio of the lower wavelength channels and introducing crosstalk on the higher 

wavelength channels. 

 Both of these effects can lower the information carrying capacity of the optical 

transmission system. SRS occurs at significantly higher optical powers than SBS, with 

threshold powers of the order of watts for SRS compared to milli watts for SBS. Unlike SBS, 

SRS scatters in both forward and reverse directions. 

 The effect of SRS, i.e., Raman gain co-efficient, can be measured using relative 

cross-section method or pulse-scanning technique or Raman amplification method. Several 

optical filtering techniques are proposed to suppress SRS interactions in optical fiber systems 

[17].  

The filters, when inserted appropriately into the transmission link, can effectively 

suppress the SRS power flow from the WDM channels to lower frequency noise. 

Furthermore, usage of a high-pass filter can enhance the SRS threshold in an optical fiber. 
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1.2.3 Classification of physical impairments 

 

 

Figure 1: Classification of Physical impairments 

1.3 Proposed Work  

In this project, we focus on PLI Impairments, which are defined as the parameter effect in the 

physical layer while establishing the connection between source nodes to destination node. 

The main objectives of this paper is to when and how to select a data-path. In this project we 

proposed a centralized network. Then the Data-path selection is based on client requirement. 

Here we focused on the improvements in Data-path selection for WDM and DWDM 

networks.  

1.4 Organization of rest of report  

In the next Chapter, PLI Based Quality of Service Analysis for WDM introduced. In that 

chapter we discussed about introduction to WDM networks, and Calculation of PLI 

parameters for WDM network, in the 3
rd

 Chapter, PLI Based Quality of Service Analysis for 

DWDM introduced. In that chapter we discussed about introduction to DWDM networks, and 

Calculation of PLI parameters for DWDM network. In 4
th
 chapter we discussed about the 

result and discussion. Finally some conclusions are drawn. 
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2.1 Introduction to WDM 

Wavelength Division Multiplexing (WDM) is a promising technology for future all-optical 

networks. In WDM several optical signals using different wavelengths share the same fiber. 

The capacity of such fiber links can be huge, even terabits per second. So, essentially the 

optical spectrum is used more efficiently.  Routing in the network nodes is based on 

wavelengths of incoming signals [18] [19]. Currently the WDM technology is used to 

increase the capacity of optical links where at the end of each link the signal is converted 

back to electrical domain. But the technology is progressing towards transparent all-optical 

networks where the signal is routed through the network in the optical domain. 

 

 

 

 

 

 

Figure 2 : The optical spectrum and 8 wavelength channels. 

 

The International Telecommunication Union (ITU) has standardized the use of the wave-

length channels in a WDM link in standard G.692 (see [20]). The channel spacing is proposed 

to be 50 GHz or 100 GHz around the reference frequency of 193.10 THz, as depicted in Fig. 

2. 193.10 THz corresponds to about 1550 nm, hence the proposal is meant for the 1540 nm - 

1560 nm pass band of the optical fiber. 

2.2 Components of WDM-Network 

During recent years lots of effort has been put into the development of better optical 

components to enable all-optical WDM-networks (AON) . The most important components 

are light sources, tunable optical filters, optical switches and of course the fiber. Different 

components are briefly presented in the following sections. 
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a) Light Sources  

One important element of an optical system is the light source. For communication purposes a 

good light source should be quickly tunable with a wide range of wavelengths. To make a 

component also commercially attractive low power consumption and low price are vital 

parameters [21]. The time scale of tuning depends on case, with the optical packet switching 

the requirements are somewhere between microseconds and nanoseconds while with circuit 

switched WDM-networks the time scale is slower. Here is a list of several candidates:  

 Mechanically tuned lasers  

 Acousto-optically and electro-optically tuned lasers 

 Injection current tuned lasers 

  Switched sources 

  Array sources (using arrayed waveguide gratings (AWG) or               

distributed feedback (DFB) lasers) 

Mechanically tuned lasers, for example, have a tuning time of the order of milliseconds and 

are thus too slow for packet switched optical networks. Generally the choice between 

different light source types depends on the application and the two most important parameters 

for light sources are the tuning time and the tuning range. 

b) Tunable Filters 

A tunable optical filter is also an important part of the optical network. Many promising 

approaches have been studied including Fabry-Perot, acousto-optic, electro-optic and liquid 

crystal Fabry-Perot filters. The filters have two important parameters dealing with the 

performance: tuning range and tuning time. The tuning ranges are from around 10 nm up to 

500 nm, while the tuning time is from nanoseconds up to 10 milliseconds.  

c) Optical Switches 

The optical switch, or optical cross-connect (OXC), is a device which can be   dynamically 

configured to connect given input ports to any of the output ports. 
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The optical switches can be classified according to how flexible they are : 

 A non-blocking switch means any connection pattern can be realized by re- 

connection of some or all of the current connections. 

  Wide-sense non-blocking switch is a switch which can, with careful configuration,  

add any new connection without interrupting previously configured connections 

through the switch. 

  Strict-sense non-blocking switch, on the other hand, means that a simple    

configuration strategy allows adding new connections to the switch any time without 

interrupting any of the current connections. 

 Clearly the number of elements and device complexity grows at the same time  as the 

flexibility. This means a trade-off between hardware complexity and management 

complexity. 

 

d) Wavelength channels 

In WDM-networks each fiber contains W wavelength channels, and thus the optical switches 

should be capable to treat channels individually. The optical cross-connects used in WDM-

networks can be divided into two categories. A wavelength selective cross-connect (WSXC) 

is a device capable to configure any given input λ-channel from arbitrary input port to a given 

output port (using the same wavelength).  

Wavelength translation (conversion) is an operation where an incoming signal using λ1 

channel is converted to another channel λ2 at the output port. Wavelength interchange cross-

connect (WIXC), depicted in Figure 3, is a more advanced device than WSXC which can 

manipulate wavelengths of the signals as well, i.e. an incoming signal can emerge from the 

switch using another wavelength.  

Hence, such a device can configure any λ1 channel from any input port to any output port 

using λ2 channel, i.e. it is capable of doing wavelength translations as well. Clearly a WIXC 

device is more complex than WSXC, but it also gives more flexibility in the configuration of 

the network, and hence leads to more efficient use of the network resources. Note that both 

WSXC and WIXC are devices where every input channel is connected to no more than one 

output-channel (permutation switch). 
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Figure 3 : The basic components of the wavelength routed network. Wavelength selective 

cross-connect (WSXC) routes incoming signals per wavelength basis, while wavelength 

interchange cross-connect (WIXC) has also capability to perform wavelength 

  

e) Wavelength Conversion 

Wavelength conversion, as noted in the previous section, allows more efficient use of 

the network resources. The reason is that without it so called wavelength-continuity 

constraint has to be satisfied, i.e. the light-path reserves the same wavelength all the way 

along the route. Hence, even if there are free channels available in every link of the network, 

some connections may not be configured unless wavelength conversion is possible in some of 

the nodes. 

Again, an easy solution is to do the opto-electronic wavelength conversion where the optical 

signal is first converted to the electric domain and then reproduced in the optical domain at a 

different wavelength. The drawback with this approach is the limited bit rate of electronics. 

 Another approach is to do the conversion in the optical domain. Suggested solutions include 

using the four-wave mixing and fiber nonlinearities, and cross modulation with active 

semiconductor devices. An up-to-date survey on wavelength conversion can be found in [22] 

f) Optical Amplifiers 

The attenuation of optical signals is low in comparison with electrical signals. Still long-

distance links may need amplifiers in order to operate properly. The traditional way to solve 

the problem is to convert the signal back to electrical domain for amplification and retransmit 

it optically. This approach, however, requires knowledge of the used bit rate and modulation. 

A new solution is to use amplifiers operating totally in the optical domain. In particular, the 

erbium doped fiber amplifier (EDFA) operating at 1540 nm region has proven to be an 

excellent choice for the WDM systems. The amplifier is transparent to used coding and bit-

rate, and thus suits well to all-optical framework. Also a similar amplifier for the 1300 nm 

region has been built using praseodymium instead of erbium. 
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2.3 Evolution of WDM Technology 

Telecommunication field is full of standards defining different layers for the whole 

infrastructure. In the past the end users were people making phone calls or using fax 

machines etc. But now it has become very clear that in the future almost all the traffic will be 

IP-based. The evolution will go towards IP-over-WDM networks, where several alternative 

approaches have been proposed. Each additional layer brings naturally some extra overhead 

to the transmission. Hence, the standard IP over ATM over SONET/SDH over WDM 

mapping can be considered as an inefficient solution. The other extreme is a direct IP/MPLS 

over WDM solution, so called λ-labelling, presented in [23]. 

2.4   Quality Of Service : 

Q-Factor of a light-path is defined as the ratio of output power relative to input power. It is 

normalized by dividing the value of Q-Factor with maximum value of Q-Factor possible. It is 

expressed in percentage. So 100% Q-Factor means light-path has the highest Q-Factor and 

the light-path corresponding to this value of Q-Factor will be the best light-path.  

To maximize the Q-Factor we need to maximize the output power for constant value of input 

power. We know that output power received is the attenuated version of input power due to 

attenuation loss, splice loss and connector loss. So we should try to minimize the losses in the 

optical fiber communication. Losses can be reduced by selecting the best components like 

connectors, splices and optical fiber which are having minimum power loss values. Out of all 

possible light-paths, the light-path having minimum power loss should be selected as optimal 

light-path. Q-Factor has benefits like it allows simplified analysis of system performance and 

reflects the quality of the system without using difficult algorithm. It gives the cost in terms 

of power loss. Higher is the value of Q-Factor, better is the light-path of optical 

communication. It requires less time than other performance analysis method. 
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3.1 Introduction to DWDM 

Dense wavelength division multiplexing (DWDM) is a fiber-optic transmission technique 

that employs light wavelengths to transmit data parallel-by-bit or serial-by-character. The 

emergence of DWDM is one of the most recent and important phenomena in the development 

of fiber optic transmission technology. In the following discussion we briefly trace the stages 

of fiber optic technology and the place of DWDM in that development [24]. We then 

examine the functions and components of a DWDM system, including the enabling 

technologies, and conclude with a high-level description of the operation of a DWDM 

system. 

3.2 Evolution of Fiber Optic Transmission 

The reality of fiber optic transmission had been experimentally proven in the nineteenth 

century, but the technology began to advance rapidly in the second half of the twentieth 

century with the invention of the fiberscope, which found applications in industry and 

medicine, such as in laparoscopic surgery. After the viability of transmitting light over fiber 

had been established, the next step in the development of fiber optics was to find a light 

source that would be sufficiently powerful and narrow [25]. The light-emitting diode (LED) 

and the laser diode proved capable of meeting these requirements. Lasers went through 

several generations in the 1960s, culminating with the semiconductor lasers that are most 

widely used in fiber optics today. Light has an information-carrying capacity 10,000 times 

greater than the highest radio frequencies. Additional advantages of fiber over copper include 

the ability to carry signals over long distances, low error rates, immunity to electrical 

interference, security, and light weight. Aware of these characteristics, researchers in the mid-

1960s proposed that optical fiber might be a suitable transmission medium. There was an 

obstacle, however, and that was the loss of signal strength, or attenuation, seen in the glass 

they were working with. Finally, in 1970, Corning produced the first communication-grade 

fibers. With attenuation less than 20 decibels per kilometer (dB/km), this purified glass fiber 

exceeded the threshold for making fiber optics a viable technology. Innovation at first 

proceeded slowly, as private and government monopolies that ran the telephone companies 

were cautious. AT&T first standardized transmission at DS3 speed (45 Mbps) for multimode 

fibers. Soon thereafter, single-mode fibers were shown to be capable of transmission rates 10 

times that of the older type, as well as spans of 32 km (20 mi). In the early 1980s, MCI, 

followed by Sprint, adopted single-mode fibers for its long-distance network in the U.S. 
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Further developments in fiber optics are closely tied to the use of the specific regions on the 

optical spectrum where optical attenuation is low. These regions, called windows, lie between 

areas of high absorption. The earliest systems were developed to operate around 850 nm, the 

first window in silica-based optical fiber. A second window (S band), at 1310 nm, soon 

proved to be superior because of its lower attenuation, followed by a third window (C band) 

at 1550 nm with an even lower optical loss. Today, a fourth window (L band) near 1625 nm 

is under development and early deployment. 

3.3 Development of DWDM Technology 

Early WDM began in the late 1980s using the two widely spaced wavelengths in the 1310 nm 

and 1550 nm (or 850 nm and 1310 nm) regions, sometimes called wideband WDM. Figure 4  

shows an example of this simple form of WDM. Notice that one of the fiber pair is used to 

transmit and one is used to receive. This is the most efficient arrangement and the one most 

found in DWDM systems. 

 

 

 

 

 

 

 

The early 1990s saw a second generation of WDM, sometimes called narrowband WDM, in 

which two to eight channels were used. These channels were now spaced at an interval of 

about 400 GHz in the 1550-nm window. By the mid-1990s, dense WDM (DWDM) systems 

were emerging with 16 to 40 channels and spacing from 100 to 200 GHz. By the late 1990s 

DWDM systems had evolved to the point where they were capable of 64 to 160 parallel 

channels, densely packed at 50 or even 25 GHz intervals. The progression of the technology 

can be seen as an increase in the number of wavelengths accompanied by a decrease in the 

spacing of the wavelengths. Along with increased density of wavelengths, systems also 

End 
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Figure 4:  WDM with two channels 



DWDM Network 

 

[20] 
 

advanced in their flexibility of configuration, through add-drop functions, and management 

capabilities.  

Figure 5 shows the increases in channel density resulting from DWDM technology have 

had a dramatic impact on the carrying capacity of fiber. In 1995, when the first 10 Gbps 

systems were demonstrated, the rate of increase in capacity went from a linear multiple of 

four every four years to four every year . 

 

Figure 5 : Growth in Fiber Capacity 

3.4 DWDM System Functions 

At its core, DWDM involves a small number of physical-layer functions. These are depicted 

in Figure 6, which shows a DWDM schematic for four channels [26]. Each optical channel 

occupies its own wavelength. 

 

Figure 6 : DWDM schematic for four channels 
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The system performs the following main functions: 

• Generating the signal—the source, a solid-state laser, must provide stable light within a 

specific, narrow bandwidth that carries the digital data, modulated as an analog signal. 

• Combining the signals—Modern DWDM systems employ multiplexers to combine the 

signals. There is some inherent loss associated with multiplexing and de-multiplexing. 

This loss is dependent upon the number of channels but can be mitigated with optical 

amplifiers, which boost all the wavelengths at once without electrical conversion. 

• Transmitting the signals—the effects of crosstalk and optical signal degradation or loss 

must be reckoned with in fiber optic transmission. These effects can be minimized by 

controlling variables such as channel spacing’s, wavelength tolerance, and laser power 

levels. Over a transmission link, the signal may need to be optically amplified. 

• Separating the received signals—at the receiving end, the multiplexed signals must be 

separated out. Although this task would appear to be simply the opposite of combining 

the signals, it is actually more technically difficult. 

• Receiving the signals—the de-multiplexed signal is received by a photo-detector 

In addition to these functions, a DWDM system must also be equipped with client-side 

interfaces to receive the input signal. This function is performed by transponders On the 

DWDM side are interfaces to the optical fiber that links DWDM systems. 

Optical networking, unlike SONET/SDH, does not rely on electrical data processing. As 

such, its development is more closely tied to optics than to electronics. In its early form, as 

described previously, WDM was capable of carrying signals over two widely spaced 

wavelengths, and for a relatively short distance. To move beyond this initial state, WDM 

needed both improvements in existing technologies and invention of new technologies. 

Improvements in optical filters and narrowband lasers enabled DWDM to combine more than 

two signal wavelengths on a fiber. The invention of the flat-gain optical amplifier, coupled in 

line with the transmitting fiber to boost the optical signal, dramatically increased the viability 

of DWDM systems by greatly extending the transmission distance. Other technologies that 

have been important in the development of DWDM include improved optical fiber with 

lower loss and better optical transmission characteristics, EDFAs, and devices such as fiber 

Bragg gratings used in optical add/drop multiplexers. 
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Components and Operation 

DWDM is a core technology in an optical transport network. The essential components 

of DWDM can be classified by their place in the system as follows:  

• On the transmit side, lasers with precise, stable wavelengths 

• On the link, optical fiber that exhibits low loss and transmission performance in the 

relevant wavelength spectra, in addition to flat-gain optical amplifiers to boost the signal 

on longer spans  

• On the receive side, photo-detectors and optical de-multiplexers using thin film filters 

or diffractive elements and Optical add/drop multiplexers and optical cross-connect 

components. 

3.5   Quality of Service : 

Q-Factor of a light-path is defined as the ratio of output power relative to input power. It is 

normalized by dividing the value of Q-Factor with maximum value of Q-Factor possible. It is 

expressed in percentage. So 100% Q-Factor means light-path has the highest Q-Factor and 

the light-path corresponding to this value of Q-Factor will be the best light-path.  

To maximize the Q-Factor we need to maximize the output power for constant value of input 

power. We know that output power received is the attenuated version of input power due to 

attenuation loss, splice loss and connector loss. So we should try to minimize the losses in the 

optical fiber communication.  

Losses can be reduced by selecting the best components like connectors, splices and optical 

fiber which are having minimum power loss values. Out of all possible light-paths, the light-

path having minimum power loss should be selected as optimal light-path. Q-Factor has 

benefits like it allows simplified analysis of system performance and reflects the quality of 

the system without using difficult algorithm. 

 It gives the cost in terms of power loss. Higher is the value of Q-Factor, better is the light-

path of optical communication. It requires less time than other performance analysis method. 
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4.1 Network Model 

 

Figure 7 : Physical Topology 

 

The model shown in Figure 7 shows the physical topology of the network, consisting of three 

layers, the Service provider layer shown as the outermost layer, the Optical core layer which 

is the innermost Optical network layer, and the Electronic intermediate layer or also known 

as IP layer. This is an abstraction of the combined electro-optical network which allows us to 

focus on that portion of the network where our innovation applies, i.e. the combined electro-

optical network.  

The optical layer provides point-to-point connectivity between routers in the form of fixed 

bandwidth circuits, which is termed as light-paths. The collection of light-paths therefore 

defines the topology of the virtual network interconnecting electronics/IP Routers.  

In IP layer the IP routers are responsible for all the non-local management functions such as 

management of optical resources, configuration and capacity management, addressing, 

routing, topology discovery, traffic engineering, and restoration etc.  

The IP router communicates with the TCM (Traffic Control Manager) of service provider 

network and provides the information about the status of the optical layer. 
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Ideally the service provider layer will include elements of the access network such as the 

PON (Passive Optical Network) related elements and other devices / equipment located at the 

premises / home. However for this invention such details are not necessary.  

We assume that the service provider has access to General Purpose Routers and also optical 

components in the core optical network. Such an assumption is reasonable, given the fact that 

the prices of optical switching equipment have fallen by orders of magnitude till the point 

that they are being used in the premises of large corporations in order to interconnect 

buildings etc.  

Thus it is reasonable to assume, as we have done, that the service provider has information 

about the GPRs and the optical equipment within its domain of control. The service provider 

layer controls all the traffic corresponding to both IP and optical layers. All the routers shown 

in the figure are controlled by the service provider (SP).  

The SP maintains a traffic matrix in a Traffic Control Manager (TCM) for all the connected 

general purpose routers, i.e. all the Electronic Gateway Routers (EGR), Electronic Access 

Routers (EAR) and Optical Access Routers (OAR) within its domain of control. The Traffic 

Control Manager (TCM) maintains the network as well as PLI constraints such as Capacity, 

delay, and Q-Factor matrices for all the GPRs in the network, belonging to all the layers.  In 

the following sections we outline our algorithms that carry out the computations necessary 

for the decisions that lead to provisioning/de-provisioning of data-paths.  

Due to more number of possible paths, user can not select one path for data communication. 

To archive that information we consider quality factor is a factor to choose one best path 

among all possible paths.  

In the following section I describe network topology and calculation of physical layer 

impairments like power loss, channel capacity and quality factor for WDM network, DWDM 

network and finally comparison of WDM and DWDM network parameters.  
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4.1.1  Network Topology :  

 

 

 

 

 

 

                                

 

 

Figure 8 : Network Topology Graph 

For our simulation work, we have used MATLAB. The Figure 8 shows the basic 

network topology with six nodes. Here we considered three pair of source and destination 

nodes (1, 6), (2, 5), and (1, 3). Here all nodes considers as routers.  

There will be single wavelength or multiple wavelengths possible in between two 

routers. In my simulation I consider two cases one is WDM and another one is DWDM.  

In case of WDM, we considered 8 wavelengths with center wavelength 1532nm and 

in case of DWDM I considered 64 channels with same center wavelength.  

At final we compare both WDM and DWDM values in case of power loss, channel 

capacity and quality factor. 

 In the following section described about calculation of power loss, channel capacity 

and quality factor. From the values we are going to choose best path based on Data-path 

selection mechanism.  

The next table shows the parameters used in calculation.  
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Table 1  Parameters Used in Simulation 

 

Parameter  Values 

Attenuation Constant( ) 0.15db 

Chromatic dispersion ( cd ) 3000 ps 

Wavelength of lights (λ) 1530 nm-1564 nm  

Noise Figure(F) 0.4db 

  

4.2 Problem Formulation 

4.2.1 Power loss calculation   

 

Power loss can be defined as the optical loss that is accumulated from source to destination 

along fiber links and is normally made up of intrinsic fiber losses and extrinsic bending losses 

[1].  

Intrinsic fiber losses are due to attenuation, absorption, reflections, refractions, Rayleigh 

scattering, optical component insertion losses, etc. Let Pin be the power launched at the input 

of a fiber of length L; then the output power Pout is given by 

                                              P
out

 = P
in

 · e
−αL 

                                                                   (4.1) 

                          Where α is the fiber attenuation coefficient. The loss introduced by the 

insertion of optical components, such as couplers, filters, multiplexers/ de multiplexers, and 

switches, into the optical communications system is called insertion loss and is usually 

independent of wavelength.  

The extrinsic losses are due to micro and macro bending losses. Additional losses occur 

due to the combined effects of dispersion resulting from inter symbol interference (ISI), 

mode-partition noise, and laser chirp as discussed later in this section. 

                       Power loss =P
out

 -P
in     

                                           (4.2) 
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4.2.2 Channel capacity Calculation  

 

Suppose a flow for client m and n with data-path from source s to destination d. For every 

edge router, a free available capacity matrix has been considered, where s and d are the source 

and destination edge GPRs for a DP.  

If D (i, j) is the dispersion of the fiber at the operating wavelength with unit’s seconds per 

nano meter per kilometer, and L (i, j) is the length of fiber link pair (i, j) in kilometers, then 

the capacity matrix  dsnmC ,,,  can be explained [7] as follows: 

  ),(,
),(

jiLjiD
jiC





      (4.3) 

Here C(i,j) is light-path capacity .where, δ represents the pulse broadening factor should 

typically be less than 10% of a bit’s time slot for which the polarization mode dispersion 

(PMD) can be tolerated [27]and  D (i, j) = L (i, j) = ∞, when there is no link between i
th

 and 

j
th

 node. The capacity metrics  dsnmC ,,,  calculation is derived from a single link to a 

group of links in a Data-path (P). 

pjijiCdsnmC  ),()),,(min(),,,(     

 (4.4) 

4.2.3 Q-Factor Calculation  

 

Assume a flow for client m and n with DP from source s to destination d has Q-Factor 

requirement QFR (m, n, s, d). Then the average Q-Factor  dsnmAQF ,,, can be expressed 

as follows: 

 
 

M

dsnmQFR
dsnmAQF

iM

m  1
,,,

,,,                         (4.5) 

 Where, M is the total number of clients for sources i and destination j. Mi is the total 

possible light-paths between source and destination. The optical domain involves with variety 

of PLIs and their impact on the overall network performance. In order to get a possible DPs 
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based on the link cost, we can consider either network layer QoS parameters such as 

bandwidth and delay or PLI constraints in terms of Q-Factors. Also we can consider both the 

cases. We consider the Q-Factor as the link cost corresponding to a light-path as mentioned in 

[28]. The Q-Factor (QFi) for i
th
 link is given as below: 

 
k

N

k

d

ki

s

ki

i
N

QQ
QF

i

  1 ,,log10

                           (4.6) 

Where, Nk is the number of light-path at the i
th

 link, 
s

kiQ ,  and 
d

kiQ ,  are the quality factor 

measurements of the k
th

 light-path at the source (s) and destination (d) node of the i
th

 link 

respectively. 

If  dsnmp ,,,  is the route between m ,n clients source(s) and destination(d) nodes containing 

l number of links, the overall Q-Factor   dsnmpQFoverall ,,,  will be: 

   
l

i

ioverall QFdsnmpQF ,,,
      4.7) 

Further according to [29],  
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                      (4.8) 

Where,  kieye ,  ,  kinoise ,  are the Eye penalty and Noise penalty at i
th

 and k
th

 link. 

Then equation 4.6 becomes, 

      

i

N

j noiseeye
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i

 



1

,,1log10 
                                          (4.9) 

Due to amplifier spans, the channel lunch power can be relatively low without significant 

penalties due to noise accumulation. The eye related penalty is due to the effect of linear 

physical impairments such as polarization mode dispersion (PMD) and chromatic dispersion 
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(CD), while the noise related penalty is due to the effect of amplifier spontaneous emission 

(ASE) and crosstalk. 

 
Fp

P
ki

s

d

noise

1
, 

                                       (4.10) 

Where, P
d
 is the outputs signal power, P

s
 is the input signal power and F is the noise figure 

and Lsd ePP  ,   is the attenuation constant and L is the length of the DP. 

     kikiki cdpmdeye ,,,  
                       

(4.11) 

         kikiLkiDkiCki cdpeye ,,,,2.10, 22                (4.12) 

Where,  kiC , is the capacity,  kiDp ,  is the PMD parameter and  kiL ,  is the transmission 

length. 

4.3 Data-path Selection Mechanism  

Depending on bandwidth and PLI model explained in previous section, we have considered 

three different scenarios for data-path selection mechanism as follows.  

4.3.1     Data-path selection based on power loss 

 

Figure 9 : Flowchart for Data-path Selection based on Power Loss 

 Find All the possible data-path of a given 

network topology with individual Power 

Loss Calculation and assign them a path 

reference number, say 1 to R, where R is 

the total number of computed data-path. 

Find the path Pj(m, n, s, d), which is having 

the minimal Power loss and j Є R.  

Sort the Data-path in incremental order of 

Power Loss.  

Pj(m, n, s, d) is the best data-path 
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For this case we analyze the power loss for all possible paths existing in between source and 

destination. The data-path among the all possible paths, which is having the minimal power 

loss, will be selected as the best data-path. 

 

4.3.2 Data-path selection based on Channel capacity 

 

The capacity matrix will be analyzed using equation 1, for all possible data-paths, among all 

which has the highest channel capacity that can be chosen as the best path. 

 

Figure 10 : Flowchart for Data-path Selection based on Channel Capacity 

 

4.3.3 Data-path selection based on Q-Factor 

 

This method is the combination of both the above scenarios. For this case we analyze Q-

Factor for all possible data-paths with a path reference number.  

Again all the data-paths are sorted in an incremental order with a new path reference 

number, then based on the client Q- Factor requirement one of the data-path will be selected 

as the best one. We expressed the above mathematically as follows. 

 Find All the possible data-path of a given 

network topology with individual Channel 

Capacity Calculation and assign them a path 

reference number, say 1 to R, where R is the 

total number of computed data-path. 

Find the path Pj(m, n, s, d), which is having 

the highest Channel Capacity and j Є R.  

Sort the Data-path in incremental order of 

Channel Capacity.  

Pj(m, n, s, d) is the best data-path 
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    dsnmpQFdsnmAQF joverall ,,,,,,               (4.13) 

Where, j is the new data-path reference number and j = 1, 2, …, J . The new path reference 

number will be based on the incremental order of the data-path overall Q-Factor.  

 

Figure 11 : Flowchart for Data-path Selection based on Q-Factor 
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5.1 Simulation of PLI Based WDM network 

5.1.1 Power loss calculation 

 

 For all calculation we considered the network shown in Figure 8, for that we consider three 

source and destination pairs ((1, 6), (2, 5), and (1, 3)). 

Table 2 Power loss calculation 

 

 

In Figure 12, it shows the power loss for all the possible paths for a given source-destination 

pair, which are referred as path reference number. We have taken three different source-

destination pairs such as (1, 6), (2, 5), and (1, 3). The path reference number starts from 1, 2, 

SN DN Path PL(db) Ref. No BP 

   1 6 1-2-3-6 96.31 1 3 

1-4-3-6 94.22 2 

1-4-6 92.19 3 

1-5-6 97.64 4 

2 5 2-3-6-5 98.71 1 2 

2-1-5 93.28 2 

2-1-4-6-5 99.4 3 

2-3-4-6-5 99.5 4 

1 3 1-2-3 89.47 1 2 

1-4-3 83.47 2 

1-5-6-3 99.17 3 

1-4-6-3 97.26 4 

SN: Source Node, DN: Destination Node, PL: Power Loss, BP: Best path 
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3, and 4 etc has been assigned to all possible paths. From the plot, it has shown that, the 

minimum power loss path’s are (1-4-6), (2-1-5), and (1-4-3) for (1, 6), (2, 5), and (1, 3) 

source-destination pair respectively. 

 

Figure 12 : Power loss calculations 

5.1.2 Channel capacity calculation 

 

For channel capacity calculation we used the network topology with three source and 

destination pairs shown in Figure 8.  

We calculated by using equation 4.3 .Here dispersion values are taken from relation 

between dispersion with distance. The relation between dispersion and distance state that 

dispersion is proportional with distance. Here pulse broadening factors we taken as 0.187 for 

single mode fiber. In case of WDM we consider single mode fiber for transmission medium.   

  Here channel capacity is calculated for all possible paths existing between source and 

destination pairs. Among all paths the best path is chosen by following Data-path selection 

schemes described above. The following table shows the calculation of channel capacity for 

all possible paths existing between source and destination pairs as described above.  
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Table 3 Capacity Calculation 

SN DN Path Capacity 

(/ps*10
-3

) 

Ref. 

No 

BP 

1 6 1-2-3-6 0.39 1 2 

1-4-3-6 0.52 2 

1-4-6 0.41 3 

1-5-6 0.3 4 

2 5 2-3-6-5 0.25 1 2 

2-1-5 0.6 2 

2-1-4-6-5 0.2 3 

2-3-4-6-5 0.22 4 

1 3 1-2-3 0.9 1 2 

 

 

 

1-4-3 3.3 2 

1-5-6-3 0.21 3 

1-4-6-3 0.32 4 

 

 

In Figure 13, it shows the channel capacities for all the possible data-paths for the same 

source-destination pair as mentioned above. The plot says, the corresponding best possible 

paths are (1-4-3-6), (2-1-5), and (1-4-3) respectively for the given source-destination pair. 

 All the above calculations like power loss and channel capacity are calculated for single 

mode fiber WDM network. By following Data-path selection mechanism best path will be 

chosen based on power loss and channel capacity. In case of power loss we will choose best 

path which has less power loss and in case of channel capacity we will choose best path 

SN: Source Node, DN: Destination Node,   BP: Best path 
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which has high channel capacity. If channel capacity is very high, then bandwidth also will 

be high.  If maximum bandwidth is available then large number of data will be transmitted.  

 

Figure 13 : Channel Capacity 

5.1.3 Q-Factor Calculation: 

 

For Q-Factor calculation we used the network topology with three source and 

destination pairs shown in figure 8.  

We calculated by using equation 4.4 to 4.10. .Here dispersion values are taken 

from relation between dispersion with distance. The relation between dispersion and 

distance state that dispersion is proportional with distance. Here pulse broadening 

factor I taken as 0.187 for single mode fiber. In case of WDM we consider single 

mode fiber for transmission medium.  

  Here Q-Factor is calculated for all possible paths existing between source and 

destination pairs. Among all paths the best path is chosen by following Data-path 

selection schemes described above. The following table shows the calculation of Q-

Factor for all possible paths existing between source and destination pairs as described 

above.  
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Table 4 Q-Factor calculations 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

For Q-Factor based Data-path selection has two types one is based on all possible paths Q-

Factors and other one is based on client requirement. First case stated above. The figure 4.8 

shows the Q-Factor based Data-path selection. In that case we consider all possible paths Q-

Factor calculation and then choose maximum Q-Factor as best path. In case of client required 

Q-Factor we consider a default value as client requirement and compare it with all possible 

paths Q-Factors. By checking all possible path Q-Factors will choose nearest Q-Factor as best 

Data-path for communication.   

SN DN PP Path Ref. No QFoverall BP 

   1 6 1-2-3-6 1 10.47 4 

1-4-3-6 2 7.88 

1-4-6 3 6.09 

1-5-6 4 12.98 

2 5 2-3-6-5 1 16.23 3 

2-1-5 2 6.99 

2-1-4-6-5 3 20.18 

2-3-4-6-5 4 12.98 

1 3 1-2-3 1 4.25 3 

1-4-3 2 1.32 

1-5-6-3 3 18.61 

1-4-6-3 4 12.15 

PP: Possible Path;     BP: Best Path; SN: Source Node; DN: Destination Node  
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Figure 14 : Q-Factor calculation 

Figure 14 shows the plot of Q-Factor with respect to path reference number for all possible 

paths and source and destination pairs. Corresponding to the highest Q-Factor values, the best 

path for (1, 6), (2, 5), and (1, 3) are (1-5-6), (2-1-4-6-5), and (1-5-6-3) respectively. 

We had taken the average Q-Factor of 11 as the client requirement for all the source-

destination pair and the corresponding best path (BP) is shown in the table. According to the 

table 4.5,      Fig. 15 shows the plot of Q-Factor vs. the BPPRN i.e., the assigned new path 

reference number.  

Here new path reference number taken by arranging the all Q-Factors in increment order for 

all possible Data-paths between source and destination nodes. From this plot, the best data-

path can be selected for a source-destination pair of a client based on their required Q-Factor 

i.e., average Q-Factor.  

For example, if a client has average Q-Factor requirement (AQF) of 11 for the source 

destination pair (1, 6), then in accordance with the proposed algorithm, QFoverall >= AQF, i.e., 

12.5 >= 11, which is approaching the new path reference number 4, which will be the best 

path.  
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Table 5 Q-Factor with client requirement  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here the above table shows the Q-Factor values for all individual Data-paths existing in 

between source and destination pairs. Here we consider 11 as the client required Q-Factor. 

We can calculate Q-Factor for cent percent also.  

For that case we consider maximum Q-Factor as cent percent remaining cases are taken the 

ratio for cent percent. For example in case of 1 to 3 source and destination pair maximum Q-

Factor is 18.61 so we called that path has 100% Q-Factor. Remaining results are normalized. 

SN DN PP Path Ref. 

No 

QFoverall BPP 

RN 

AQF BP 

   1 6 1-2-3-6 1 10.47 3 11 4 

1-4-3-6 2 7.88 2 

1-4-6 3 6.09 1 

1-5-6 4 12.98 4 

2 5 2-3-6-5 1 16.23 3 11 2 

2-1-5 2 6.99 1 

2-1-4-6-5 3 20.18 4 

2-3-4-6-5 4 12.98 2 

1 3 1-2-3 1 4.25 2 11 3 

1-4-3 2 1.32 1 

1-5-6-3 3 18.61 4 

1-4-6-3 4 12.15 3 

BPPRN: Best possible path reference number according to highest overall Q-Factor 

(QFoverall ) ; AQF: Average Q-Factor required from Clients);  
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Figure 15 : Q-Factor calculation with respect to client requirement 

Figure 15, shows the Q-Factor for best possible data-path reference number to Q-

Factor. From this plot, based on Q-Factor value and clients Q-profile requirement, the best 

possible data-path can be selected. For example, the below table shows the various values for 

two source destination pairs 1,6 whose Q-Factor requirement is 11 , then in accordance with 

our algorithm, 

AQF (m, n, s, d) ≤ QFoverall (Pj(m, n, s, d)), i.e.,  a client has average Q-Factor requirement 

(AQF) of 11 for the source destination pair (1, 6), then in accordance with the proposed 

algorithm, QFoverall >= AQF, i.e., 12.5 >= 11, which is approaching the new path reference 

number 4, which will be the best path.  So the above figure shows path 4 is the best path for 

(1,6) source and destination pairs.  

5.2 Simulation of PLI Based DWDM network 

 Here in case of DWDM we consider multiple wavelengths in multi mode fiber for DWDM 

transmission. The power loss is same as WDM because it does not depends on wavelengths. 

It depends on distance only.  

5.2.1 Power loss calculation: 

 For all calculation we considered the network shown in Figure 8, for that we consider three 

source and destination pairs ((1, 6), (2, 5), and (1, 3)). 
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Table 6 : Power loss calculation for DWDM 

 

In Figure 4.6, it shows the power loss for all the possible paths for a given source-destination 

pair, which are referred as path reference number. We have taken three different source-

destination pairs such as (1, 6), (2, 5), and (1, 3).  

The path reference number starts from 1, 2, 3, and 4 etc has been assigned to all possible 

paths. From the plot, it has shown that, the minimum power loss path’s are (1-4-6), (2-1-5), 

and (1-4-3) for (1, 6), (2, 5), and (1, 3) source-destination pair respectively. 

SN DN Path PL(db) Ref. No BP 

   1 6 1-2-3-6 96.31 1 3 

1-4-3-6 94.22 2 

1-4-6 92.19 3 

1-5-6 97.64 4 

2 5 2-3-6-5 98.71 1 2 

2-1-5 93.28 2 

2-1-4-6-5 99.4 3 

2-3-4-6-5 99.5 4 

1 3 1-2-3 89.47 1 2 

1-4-3 83.47 2 

1-5-6-3 99.17 3 

1-4-6-3 97.26 4 
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Figure 16 : Power loss calculations for DWDM 

5.2.2 Channel capacity calculation 

 

For channel capacity calculation we used the network topology with three source and 

destination pairs shown in figure 8.  

We calculated by using equation 4.3 .Here dispersion values are taken from 

relation between dispersion with distance. The relation between dispersion and 

distance state that dispersion is proportional with distance. Here pulse broadening 

factors we taken as 0.187 for single mode fiber. In case of DWDM we consider multi 

mode fiber for transmission medium.  

  Here channel capacity is calculated for all possible paths existing between 

source and destination pairs. Among all paths the best path is chosen by following 

Data-path selection schemes described above.  

The following table shows the calculation of channel capacity for all possible paths 

existing between source and destination pairs as described above.  
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Table 7 : Channel capacity calculation for DWDM 

SN DN Path Capacity 

(/ps*10
-3

) 

Ref. 

No 

BP 

1 6 1-2-3-6 29.1263 1 1 

1-4-3-6 28.6069 2 

1-4-6 15.57 3 

1-5-6 5.876 4 

2 5 2-3-6-5 18.58 1 3 

2-1-5 16.42 2 

2-1-4-6-5 32.0122 3 

2-3-4-6-5 30.4879 4 

1 3 1-2-3 20.8804 1 4 

 

 

 

1-4-3 20.369 2 

1-5-6-3 14.1219 3 

1-4-6-3 23.82 4 

 

In Figure 17, it shows the channel capacities for all the possible data-paths for the same 

source-destination pair as mentioned above. The plot says, the corresponding best possible 

paths are (1-4-3-6), (2-1-5), and (1-4-3) respectively for the given source-destination pair. 

 All the above calculations like power loss and channel capacity are calculated for multi 

mode fiber DWDM network. By following Data-path selection mechanism best path will be 

chosen based on power loss and channel capacity.  

In case of power loss we will choose best path which has less power loss and in case of 

channel capacity we will choose best path which has high channel capacity.  
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If channel capacity is very high, then bandwidth will be high.  If maximum bandwidth is 

available then large number of data will be transmitted. 

 

Figure 17 : Channel Capacity for DWDM 

5.2.3 Q-Factor Calculation: 

 

For Q-Factor calculation we used the network topology with three source and 

destination pairs shown in figure 8. We calculated by using equation 4.4 to 4.10. .Here 

dispersion values are taken from relation between dispersion with distance. 

The relation between dispersion and distance state that dispersion is 

proportional with distance. Here pulse broadening factor w taken as 0.187 for single 

mode fiber. In case of DWDM we consider multi mode fiber for transmission 

medium.  

  Here Q-Factor is calculated for all possible paths existing between source and 

destination pairs. Among all paths the best path is chosen by following Data-path 

selection schemes described above. The following table shows the calculation of Q-
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Factor for all possible paths existing between source and destination pairs as described 

above.  

Table 8 : Q-Factor calculation for DWDM  

 

 

For Q-Factor based Data-path selection has two types one is based on all possible paths Q-

Factors and other one is based on client requirement. First case stated above. The figure 18 

shows the Q-Factor based Data-path selection. In that case we consider all possible paths Q-

Factor calculation and then choose maximum Q-Factor as best path.  

 In case of client required Q-Factor we consider a default value as client requirement and 

compare it with all possible paths Q-Factors. By checking all possible path Q-Factors will 

choose nearest Q-Factor as best Data-path for communication.  

SN DN PP Path Ref. No QFoverall BP 

   1 6 1-2-3-6 1 87.07 1 

1-4-3-6 2 85.99 

1-4-6 3 86.05 

1-5-6 4 72.56 

2 5 2-3-6-5 1 79.8 4 

2-1-5 2 81.59 

2-1-4-6-5 3 82.72 

2-3-4-6-5 4 86.86 

1 3 1-2-3 1 82.64 4 

1-4-3 2 74.98 

1-5-6-3 3 76.28 

1-4-6-3 4 83.7 

PP: Possible Path;     BP: Best path; SN: Source Node; DN: Destination Node  
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Figure 18 : Q-Factor calculation 

Figure 18 shows the plot of Q-Factor with respect to path reference number for all possible 

paths and source and destination pairs. Corresponding to the highest Q-Factor values, the best 

path for (1, 6), (2, 5), and (1, 3) are (1-2-3-6), (2-3-4-6-5), and (1-4-6-3) respectively. 

We had taken the average Q-Factor of 11 as the client requirement for all the source-

destination pair and the corresponding best path (BP) is shown in the table. According to the 

table 9,      Fig. 19 shows the plot of Q-Factor vs. the BPPRN i.e., the assigned new path 

reference number.  

Here new path reference number taken by arranging the all Q-Factors in increment order for 

all possible Data-paths between source and destination nodes and assigned new path 

reference numbers to each Data-path.  

After getting new path reference numbers plotted the graph between Q-Factor and new path 

ref number.  From this plot, the best data-path can be selected for a source-destination pair of 

a client based on their required Q-Factor i.e., average Q-Factor.  

For example, if a client has average Q-Factor requirement (AQF) of 82 for the source 

destination pair (1, 6), then in accordance with the proposed algorithm, QFoverall >= AQF, i.e., 

85.99 >= 82, which is approaching the new path reference number 2, which will be the best 

path.  



Simulation Results 

 

[48] 
 

Table 9 Q-Factor with client requirement 

 

Here the above table shows the Q-Factor values for all individual Data-paths existing in 

between source and destination pairs. Here we consider 82 as the client required Q-Factor. 

We can calculate Q-Factor for cent percent also.  

For that case we consider maximum Q-Factor as cent percent remaining cases are taken the 

ratio for cent percent. For example in case of 1 to 3 source destination pair maximum Q-

Factor is 83.7 so we called that path has 100% Q-Factor. Remaining are taken with the ratio 

with respect to 83.7 Q-Factor. 

SN DN PP Path Ref. 

No 

QFoverall BPP 

RN 

AQF BP 

   1 6 1-2-3-6 1 87.07 4 82 2 

1-4-3-6 2 85.99 2 

1-4-6 3 86.05 3 

1-5-6 4 72.56 1 

2 5 2-3-6-5 1 79.8 1 82 3 

2-1-5 2 81.59 2 

2-1-4-6-5 3 82.72 3 

2-3-4-6-5 4 86.86 4 

1 3 1-2-3 1 82.64 3 82 3 

1-4-3 2 74.98 1 

1-5-6-3 3 76.28 2 

1-4-6-3 4 83.7 4 
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Figure 19 : Q-Factor calculation with respect to client requirement for DWDM 

Figure 19, shows the Q-Factor for best possible data-path reference number to Q-

Factor. AQF (m, n, s, d) ≤ QFoverall (Pj(m, n, s, d)), i.e.,  a client has average Q-Factor 

requirement (AQF) of 82 for the source destination pair (1, 3), then in accordance with the 

proposed algorithm, QFoverall >= AQF, i.e., 82.64 >= 82, which is approaching the new path 

reference number 1, which will be the best path.   

5.3 Comparison of PLI based WDM/DWDM Network. 

5.3.1 Power loss  

 

  Due to the individuality of wavelength power loss wont varied.  

5.3.2 Channel capacity 

 

Channel capacity is rapidly change for DWDM with multi mode fiber compare with single 

mode WDM network. Due to the use of multiple wavelengths the capacity of the path will 

increase because the dispersion values depend on wavelengths of the channel. 
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Table 10 comparison of Channel capacity for single wavelength and multi wavelength 

SN DN Path Capacity 

For single λ 

Capacity 

For multiple λ 

1 6 1-2-3-6 0.39 29.1263 

1-4-3-6 0.52 28.6069 

1-4-6 0.41 15.57 

1-5-6 0.3 5.876 

2 5 2-3-6-5 0.25 18.58 

2-1-5 0.6 16.42 

2-1-4-6-5 0.2 32.0122 

2-3-4-6-5 0.22 30.4879 

1 3 1-2-3 0.9 20.8804 

1-4-3 3.3 20.369 

1-5-6-3 0.21 14.1219 

1-4-6-3 0.32 23.82 

 

  

The following figure shows graphical representation of comparison for source node 2 to 

destination node 5 pair.  
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Figure 20: Comparison of Channel capacity for single and multiple wavelengths 

 

5.3.3 Quality Factor  

 

Quality factor also changed for single wavelength and multiple wavelengths due to the 

increase of channel capacity because quality factor is related to channel capacity.  

Table 11 comparison of Q-Factor for single λ and multiple λ 

 

SN  DN  Path  Q-F actor for 

Multiple λ  

Q-F actor for Single 

wavelength  

1  6  1-2-3-6  87.07 22.95 

1-4-3-6  85.99 24.9 

1-4-6  86.05 26.2 

1-5-6  72.56 20.99 

 

Here for Q-Factor case we consider only one source and destination pair if we compare 

remaining pairs also we will get same type of results. 



Simulation Results 

 

[52] 
 

 So in this case we consider only (1,6) source and destination pair. The following figure 

shows the graphical representation.  

 

Figure 21: Comparison of Q-Factor  
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6.1 Conclusion 

 

               In our simulation, we have considered three scenarios based on power loss, channel 

capacity and Q-Factor for a given source-destination pair. Our proposed algorithm helps to 

analyze those constraints and determines the best possible data-path in between source-

destination pair. The result shows the variations of power losses, channel capacity and quality 

factor for all possible data-paths for the clients. Among those three scenarios, we more focus 

on data-path selection based on Q-Factor, which is very effective due to the combination of 

other two scenarios data-path selection based on power loss and channel capacity. The Q-

Factor is calculated in percentage, which is to be notified to the client through the traffic 

control manager. The Q-Factor requirement from the client again will be in the range of 1 to 

100 %. Finally the best data-path has been selected based on Q-Factor requirements of the 

client in percentage. The reason, we provide the     Q-Factor of all possible paths is to have an 

option for any client to choose the best suitable path based on their requirements only. It 

helps to utilize the resources among the clients in an efficient way. 

 

 

6.2 Scope of Future work 

Our proposed work is an centralized algorithm so we can give an user interface 

through .net or java to the user to choose best path with respect to their requirements.  
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