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ABSTRACT

Electrocardiogram (ECG), a noninvasive techniquasisd as a primary diagnostic tool for cardioveacdiseases.
A cleaned ECG signal provides necessary informatibout the electrophysiology of the heart diseames
ischemic changes that may occur. It provides vdduaitformation about the functional aspects of Heart and
cardiovascular system. The objective of the thisst® automatic detection of cardiac arrhythmiaE®@G signal.
Recently developed digital signal processing arttepareorganization technique is used in thisithis detection
of cardiac arrhythmias. The detection of cardiadyhmias in the ECG signal consists of followingges:
detection of QRS complex in ECG signal; featureastion from detected QRS complexes; classificatibbeats
using extracted feature set from QRS complexestuin automatic classification of heartbeats represehe
automatic detection of cardiac arrhythmias in EAQ@hal. Hence, in this thesis, we developed the raat@

algorithms for classification of heartbeats to detardiac arrhythmias in ECG signal.

QRS complex detection is the first step towardsmatic detection of cardiac arrhythmias in ECG algm novel
algorithm for accurate detection of QRS complek@G signal is proposed in chapter 2 of this thédie detection
of QRS complex from continuous ECG signal is coradutising autocorrelation and Hilbert transform Hase
technique. The first differential of the ECG sigmald its Hilbert transformed is used to locate Rhpeaks in the
ECG waveform. The autocorrelation based methodésl tio find out the period of one cardiac cycl&@G signal.
The advantage of proposed method is to minimizdaige peak of P-wave and T-wave, which helps éntidy the
R-peaks more accurately. Massachusetts Institutdeghnology Beth Israel Hospital (MIT-BIH) arrhytles
database has been used for performance analysisexXfrerimental result shows that the proposed rdethows
better performance as compared to the other twabksited techniques like Pan-Tompkins (PT) method the
technique which uses the difference operation nie(B®@M).

For detection of cardiac arrhythmias, the extradezdures in the ECG signal will be input to thasslifier. The
extracted features contain both morphological angpbral features of each heartbeat in the ECG kifjneenty six
dimension feature vector is extracted for eachtheat in the ECG signal which consist of four tenapdeatures,

three heartbeat interval features, ten QRS morpglydieatures and nine T-wave morphology features.

Automatic classification of cardiac arrhythmiamecessary for clinical diagnosis of heart diselsy researchers
recommended Association for the Advancement of Ehdinstrumentation (AAMI) standard for automatic
classification of heartbeats into following fivedis: normal beat (N), supraventricular ectopic 8t ventricular
ectopic beat (V), fusion beat (F) and unknown §€gt The beat classifier system is adopted in tiésis by first
training a local-classifier using the annotatedtbesmnd combines this with the global-classifierpimduce an
adopted classification system. The Multilayer pptoen back propagation (MLP-BP) neural network aadial
basis function (RBF) neural network are used tesifg the cardiac arrhythmias. Several experimargsperformed
on the test dataset and it is observed that MLm&Ral network classifies ECG beats better as coedpa RBF

neural network.
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1.1 Electrocardiogram

Electrocardiogram (ECG) is a diagnosis tool tlegiorted the electrical activity of
heart recorded by skin electrode. The morpholagy lzeart rate reflects the cardiac health of
human heart beat [1]. It is a noninvasive technitha# means this signal is measured on the
surface of human body, which is used in identifmabf the heart diseases [2]. Any disorder of
heart rate or rhythm, or change in the morpholdgmatern, is an indication of cardiac
arrhythmia, which could be detected by analysithefrecorded ECG waveform. The amplitude
and duration of the P-QRS-T wave contains useffdrimation about the nature of disease
afflicting the heart. The electrical wave is dual&polarization and re polarization of Nand k
ions in the blood [2].The ECG signal provides tbkofving information of a human heart [3]:

» heart position and its relative chamber size
* impulse origin and propagation

» heart rhythm and conduction disturbances
» extent and location of myocardial ischemia
» changes in electrolyte concentrations

» drug effects on the heart.

ECG does not afford data on cardiac contractigouonping function.

1.2 The heart anatomy
The heart contains four chambers that is righumtr left atrium, right ventricle, left

ventricle and several atrioventricular and sin@htriode as shown in the figl.1 [1]. The two
upper chambers are called the left and right alale the lower two chambers are called the
left and right ventricles. The atria are attachethe ventricles by fibrous, non-conductive tissue
that keeps the ventricles electrically isolatednfrthe atria. The right atrium and the right
ventricle together form a pump to the circulateddldo the lungs. Oxygen-poor blood is received
through large veins called the superior and infeviena cava and flows into the right atrium.
The right atrium contracts and forces blood inte tight ventricle, stretching the ventricle and
maximizing its pumping (contraction) efficiency. @ ight ventricle then pumps the blood to the
lungs where the blood is oxygenated. Similarly, ligfé atrium and the left ventricle together



form a pump to circulate oxygen-enriched blood ired from the lungs (via the pulmonary

veins) to the rest of the body [4].

Sinoatrial node Left atrium

Right atrium

Atrioventricular \

node Left ventricle

Right ventricle

Fig. 1.1 The Heart conduction system [1].

In heart Sino-atrial (S-A) node spontaneously gates regular electrical impulses,
which then spread through the conduction systerthefheart and initiate contraction of the
myocardium. Propagation of an electrical impuls®tigh excitable tissue is achieved through a
process called depolarization. Depolarization eftieart muscles collectively generates a strong
ionic current [1]. This current flows through thesistive body tissue generating a voltage drop.
The magnitude of the voltage drop is sufficientlyge to be detected by electrodes attached to
the skin. ECGs are thus recordings of voltage dempsss the skin caused by ionic current flow
generated from myocardial depolarisations[5]. Atdapolarisation results in the spreading of
the electrical impulse through the atrial myocamdiand appears as the P-wave. Similarly,
ventricular depolarisation results in the spreadoigthe electrical impulse throughout the

ventricular myocardium.

1.3 Leads in ECG

The standard ECG has 12 leads: which includedipolar leads, 3 - augmented unipolar
leads and 3 - chest (precordial) leads. A lead paiaof electrodes (+ve & -ve) placed on the
body in designated anatomical locations & connetitezh ECG recorde [3].
Bipolar leads: record the potential difference ledwtwo points (+ve & -ve poles).
Unipolar leads: record the electrical potentigh gtarticular point by means of a single exploring

electrode.



Leads I, Il and Ill are commonly referred to bipoleads as they use only two electrodes to
derive a view. One electrode acts as the positleetrede while the other as the negative

electrode (hence bipolar) [1].
Table 1.1 Types of leads used in ECG monitoring

Standard Limb Leads Chest Leads
Leads
Bipolar leads Unipolar leads  Unipolar leads
V1
Lead | AVR V2
Lead Il AVL V3
Lead IlI AVF V4
V5

Einthoven leads:

Lead I: records potentials between the left andtragm,

Lead II: between the right arm and left leg, and

Lead lll: those between the left arm and left leg

Goldberger leads are unipolar augmented limb |legatle frontal plane.

Unipolar Limb leads: (when the +ve terminal istba right arm: aVR, left arm aVL, or left leg,
aVvF)

One lead connected to +ve terminal acts as therdiit electrode, while the other two limbs are
connected to the —ve terminal serve as the inéiffe(reference) electrode [5]. Wilson leads
(V1-V6) are unipolar chest leads positioned onlé¢fieside of the thorax in a nearly horizontal
plane. The indifferent electrode is obtained byrmmting the 3 standard limb leads. When used
in combination with the unipolar limb leads in theontal plane, they provide a three-

dimensional view of the integral vector.

Mid-clavicular Line
Anterior Auxillary Line

j [ | Mid-Auxillary Line
RA o Laaal;iz\%:r'_‘n%\ LA
NS 2%sud]

Fig. 1.2 Precordial chest electrodes are normddlggal on the left side of the chest [1].
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Chest (precordial) leads

V1: 4th intercostal space, right sternal edge.
V2: 4th intercostal space, left sternal edge.

V3: between the 2nd and 4th electrodes.

V4: 5th intercostal space in the midclaviculaelin
V5: on 5th rib, anterior axillary line.

V6: in the midaxillary line.

To make recordings with the chest leads (differeleictrode), the three limb leads are
connected to form an indifferent electrode withhhigsistances. The chest leads mainly detect
potential vectors directed towards the back. Thesgors are hardly detectable in the frontal
plane [1]. Since the mean QRS vector is usualigatied downwards and towards the left back
region, the QRS vectors recorded by leads V1-Vauaually negative, while those detected by
V5 and V6 are positive [5]. In leads V1 and V2, QRS/e because, the chest electrode in these
leads is nearer to the base of the heart, whitieiglirection of electronegativity during most of
the ventricular depolarization process. In leads V8, V6, QRS = +ve because the chest
electrode in these leads is nearer the heart agesh is the direction of electropositivity during
most of depolarization [3].

1.4 ECG waves and interval

10 [ AN e N
: 'R :
- ' QRS cumplefx
E E E :
EU.S -------- oo ¥ | B A R
é PR segment : ST segme:nt
=" : ' T
E . P
- :
0 -— -------------
« w2 Vst intervil
05 PR intervalll QT interval @~
0 0.2 04 06
Time (5)

Fig. 1.3 Schematic representation of normal ECGefiam.
5



Waves

P wave

QRS complex

T wave

Representation
the amplitude level of this voltage signalves is low (approximately 1

mV) and represent depolarization and contractiothefright and left atria
[2].

A clear P wave before the QRS complex represents shythm.
Absence of P waves may suggest atrial fibrillatipmctional rhythm or
ventricular rhythm.

It is very difficult to analyze P waves with a higlgnal-to-noise ratio in
ECG signal.

The QRS complex is the largest voltgfection of approximately 10—
20 mV but may vary in size depending on age, andlge The voltage
amplitude of QRS complex may also give informataout the cardiac
disease [6].

Duration of the QRS complex indicates the time floe ventricles to
depolarize and may give information about conduciiwoblems in the

ventricles such as bundle branch block.
Represents ventricular repolarization [3]

Large T waves may represent ischemia, and Hyperkaia

Table 1.2 Amplitude and duration of waves, intesvethd segments [6], [7], [8] of ECG signal.

SI. no. Features Amplitude (mV) Duration (ms)

1 P wave 0.1-0.2 60-80

2 PR-segment - 50-120

3 PR- interval - 120-200
4 QRS complex 1 80-120

5 ST-segment - 100-120

6 T —wave 0.1-0.3 120-160
7 ST-interval - 320

8 RR-interval - (0.4-1.2)s




The Tablel.2 shows features of P-wave, QRS complex T wave in maximum
amplitude and its duration. According to medicdirdgon [7], the duration of each RR-interval
is about 0.4-1.2s.

1.5 Noise in ECG Signal

Generally the recorded ECG signal is often comaieid by different types of noises and
artifacts that can be within the frequency band E&G signal, which may change the
characteristics of ECG signal. Hence it is difftdnl extract useful information of the signal. The

corruption of ECG signal is due to following majaises:

1.5.1 Power line interferences

Power line interferences contains 60 Hz pickup Wu$.) or 50 Hz pickup (in India)
because of improper grounding [9]. It is indicatesl an impulse or spike at 60 Hz/50 Hz
harmonics, and will appear as additional spikesingggral multiples of the fundamental
frequency. Its frequency content is 60 Hz/50 Hz ismtharmonics, amplitude is up to 50 percent
of peak-to-peak ECG signal amplitude [9]. A 60 Hxtah filter can be used remove the power

line interferences [7].

&0 Hz Fower Line Interference
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Fig. 1.4 60 Hz Power line interference [6].
1.5.2 Baseline drift
Base-line drift may be caused in chest-lead EQfaats by coughing or breathing with
large movement of the chest, or when an arm ondemoved in the case of limb-lead ECG
acquisition [10]. Base-line drift can sometimessmi by variations in temperature and bias in
the instrumentation and amplifiers. Its frequenagyge generally bellows 0.5 Hz. To remove
baseline drift a high pass filter with cut-off fteency 0.5 Hz is used [7].
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Fig. 1.5 Baseline drifts in ECG signal.

1.5.3 Motion artifacts

Motion artifacts are transient baseline change wuelectrode skin impedance with
electrode motion. It can generate larger amplitsgmal in ECG waveform [7]. The peak
amplitude of this artifact is 500 percent of PealPeak ECG amplitude and its duration is about
100 — 500 ms [9]. An adaptive filter can be usetetaove the interference of motion artifacts.
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Fig. 1.6 Motion artifacts in ECG signal [6].

1.5.4 Muscle contraction (EMG)

Generally muscle contraction is produced due tsateuelectrical activity. The signals
resulting from muscle contraction is assumed tdramesient bursts of zero-mean band-limited
Gaussian noise [9]. Elecrtomyogram (EMG) interfeemngenerate rapid fluctuation which is
very faster than ECG wave. Its frequency contendiso 10 KHz and duration is 50 ms [9]. To
remove the interference of due to EMG a morphoklditter of a unit square-wave structuring
(best width is 0.07 s) is used [7].



- Muscle Contraction (ENG)

Fig. 1.7 Muscle contraction.

1.6 Arrhythmias in ECG signal

The normal rhythm of the heart where there is isease or disorder in the morphology
of ECG signal is called Normal sinus rhythm (NSRhe heart rate of NSR is generally
characterized by 60 to 100 beats per minute. Theladty of the R-R interval varies slightly
with the breathing cycle.

When the heart rate increases above 100 beatwipate, the rhythm is known as sinus
tachycardia. This is not an arrhythmia but a norregponse of the heart which demand for
higher blood circulation [1]. If the heart ratet@® slow then this is known as bradycardia and
this can adversely affect vital organs. When thartheate is too fast, the ventricles are not
completely filled before contraction for which puimg efficiency drops, adversely affecting

perfusion.

0] -
B

B

Fig. 1.8 (A) Normal sinus rhythm, (B) Sinus tachytia

Arrhythmias are may be categories in the followimgnner:



1.6.1 Sinus Node Arrhythmias

This type of arrhythmia arises from the S-A nodéeart. As the electrical impulse is
generated from the normal pacemaker, the charsiitefeature of these arrhythmias is that P-
wave morphology of the ECG is normal. These arnmgis are the following types: Sinus

arrhythmia, Sinus bradycardia, and Sinus arrest etc

1.6.2 Atrial Arrhythmias
Atrial arrhythmias originate outside the S-A ndol& within the atria in the form of

electrical impulses. These arrhythmias types arergbellow,

Premature Atrial Contractions (PAC)

This arrhythmias results an abnormal P-wave mdggyofollowed by a normal QRS-
complex and a T-wave. This happens because of @piegacemaker firing before the S-A
node. PACs may occur as a couplet where two PA€geamerated consecutively. When three or

more consecutive PACs occur, the rhythm is consdi&y be atrial tachycardia.

Atrial Tachycardia

The heart rate atrial tachycardia is fast and rarfgem 160 to 240 beats per minute in
atrial tachycardia. Frequently atrial tachycardsaaiccompanied by feelings of palpitations,

nervousness, or anxiety.

Atrial Flutter

In atrial flutter, the atrial rate is very fasgnging from 240 to 360 per minute. The
abnormal P-waves occur regularly and so quicklyt thay take morphology of saw-tooth

waveform which is called flutter (F) waves.

Atrial Fibrillation

The atrial rate exceeds 350 beats per minuteisntype of arrhythmias. This arrhythmia
occurs because of uncoordinated activation andractan of different parts of the atria. The
higher atria rate and uncoordinated contractionde@a ineffective pumping of blood into the
ventricles. Atrial fibrillation may be intermittentoccurring in paroxysms (short bursts) or
chronic [1].
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Fig. 1.9 Artial arrhythmias, (A) Premature Atriab@ractions, (B) atrial tachycardia, (C) Atrial Ekr, (D) atrial
fibrillation

1.6.3 Junctional Arrhythmias

Junctional arrhythmias are originated within th&/Aunction in the form of the impulse
comprising the A-V node and it's Bundle. The abnalrnm P wave morphology occurs because
of this arrhythmias [1]. The polarity of the abmal P-wave would be opposite to that of the
normal sinus P-wave since depolarisation is projeagia the opposite direction — from the A-V

node towards the atria.

Premature Junctional Contractions (PJC)

It is a ventricular contraction initiated by artgggc pacemaker in the atrioventricular (A-
V) node. In premature junctional escape contragtian normal-looking QRS complex

prematurely appears, but without a preceding P-whaethe morphology of T-wave is normal

[1].

Fig. 1.10 Junctional arrhythmias.
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1.6.4 Ventricular arrhythmias

In this type of arrhythmias, the impulses origgntom the ventricles and move outwards
to the rest of the heart. In Ventricular arrhythsnithe QRS-complex is wide and bizarre in
shape.

Premature Ventricular Contractions (PVC)

In PVC the abnormality is originated from venteigl PVCs usually do not depolarise the
atria or the S-A node and hence the morphology-afaPes maintain their underlying rhythm
and occur at the expected time. PVCs may occur hesavin the heart beat cycle. PVCs are

described as isolated if they occur singly, andaglets if two consecutive PVCs occur.

Fig. 1.11 Junctional arrhythmias (A) Premature VYientar Contractions, (B) Ventricular Tachycardi&)
Ventricular Fibrillation [1].

Ventricular Tachycardia (VT)
The heart rate of ventricular tachycardia is 1d@%0 beats per minute. In VT the QRS
complex is abnormally wide, out of the ordinarysimape, and of a different direction from the

normal QRS complex. VT is considered life-threatgnas the rapid rate may prevent effective
ventricular filling and result in a drop in cardiaatput.

12



Ventricular Fibrillation

Ventricular fibrillation occurs when numerous gutopacemakers in the ventricles cause
different parts of the myocardium to contract dfedent times in a non-synchronised fashion.

Ventricular flutter exhibits a very rapid ventrianlrate with a saw-tooth like ECG waveform.

1.6.5 Atrioventricular Blocks
It is the normal propagation of the electrical utge along the conduction pathways to

the ventricles, but the block may delay or compyepeevent propagation of the impulse to the
rest of the conduction system.

A first-degree AV block is occurred when all thevBves are conducted to the ventricles,
but the PR-interval is prolonged. Second-degreeb¥d¢ks are occurred when some of the P-
waves fail to conduct to the ventricles. In thirelgdee AV block, the rhythm of the P-waves is

completely dissociated from the rhythm of the QR&plexes. Each beat at their own rate [1].

(=5

Fig. 0.12 Atrioventricular Blocks (A) first degrée/ block, (B) Second degree AV block, (C) Third deg AV
blocks.

1.6.6 Bundle Branch blocks

Bundle branch block, cease in the conduction efithpulse from the AV-node to the

whole conduction system. Due to this block therey mecur myocardial infarction or cardiac

: { | \/~‘-/1r\F '/—\ .t o o
1 ; !
| T} |

Fig. 1.13 Bundle Branch blocks.
13

surgery [1].




The bundle branch block beat is categories intotiypes. These are Left bundle branch
block beat (LBBB) and Right bundle branch blocktd&BBB). In LBBB the left bundle branch
will prevent the electrical impulses from the A-\bde from depolarising the left ventricular
myocardium in the normal way. When the right buratiench is blocked, the electrical impulse
from the AV node is not able propagate to the ceotidn network to depolarise the right

ventricular myocardium.

1.7 ECG Database
1.7.1 MIT-BIH Arrhythmias database

The MIT/BIH arrhythmia database [10] is used in giedy for performance evaluation.
The database contains 48 records, each contaiwmghannel ECG signals for 30 min duration
selected from 24-hr recordings of 47 individualkefie are 116,137 numbers of QRS complexes
in the database [11].The subjects were taken f&@5men aged 32 to 89 years, and 22 women
aged 23 to 89 years and the records 201 and 202 ¢am the same male subject. Each
recording includes two leads; the modified limbddbhand one of the modified leads V1, V2,
V4 or V5. Continuous ECG signals are band passréitt at 0.1-100 Hz and then digitized at
360 Hz. Twenty-three of the recordings (numberedhim range of 100-124) are intended to
serve as a representative sample of routine clinezrdings and 25 recordings (numbered in
the range of 200-234) contain complex ventricylarctional, and supraventricular arrhythmias.
The database contains annotation for both timifgrimation and beat class information verified

by independent experts [12].

1.7.2 AAMI Standard
MIT-BIH heartbeat types are combined according gsd@tiation for the Advancement of

Medical Instrumentation (AAMI) recommendation [13JAMI standard emphasize the problem
of classifying ventricular ectopic beats (VEBs)nradhe non- ventricular ectopic beats [14].
AAMI also recommends that each ECG beat can besitilss into the following five heartbeat
types [15]:

I. N (Normal beat)

ii. S (supraventricular ectopic beats (SVEBS))

iii. 'V (ventricular ectopic beats (VEBS) )
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iv. F(fusion beats)
V. Q (unclassifiable beats)

Each class includes heartbeats of one or more ggstown in Table 1.2. Class N contains
normal and bundle branch block beat types and esbapt, class S contains supraventricular
ectopic beats (SVEBSs), class V contain Prematurgrieelar contraction beats and ventricular
escape beat, class F contains beats that resmitficing normal and VEBs, and class Q contains

unknown beats including paced beats.
Table 1.3 Mapping the MIT-BIH arrhythmia databasartbeat types to the AAMI heartbeat classes [15]

AAMI Normal Supraventricular ventricular Fusion Unknown
beat class beat ect%pic beat (S) ectopic beat (F) beat (Q)
description (N) beat(V)
Premature | Fusion of
Normal beat| Atrial premature | ventricular | ventricular| Paced beat
(N) beat (A) contraction | and normal )
(V) beat (F)
. Fusion of
bLeft bundle Aberrated atrial ventricular paced and
ranch block escape beat
beat (L) premature beat (a (E) normal beat
MIT-BIH ()
heart beat | Right bundle| Nodal ( junctional Unclassified
types branch block ) premature beat beat (Q)
beat (R) (J)
Atrial escapg Supraventricular
beat (e) | premature beat (S
Nodal
(junctional )
escape beat
0)

1.8 Motivation

The state of cardiac heart is generally reflectetthé shape of ECG waveform and heart rate.
ECG, if properly analyzed, can provide informati@garding various diseases related to heart.
However, ECG being a non-stationary signal, thegutarities may not be periodic and may not
show up all the time, but would manifest at certiaiagular intervals during the day. Clinical
observation of ECG can hence take long hours amdbeavery tedious. Moreover, visual
analysis cannot be relied upon and the possilfitthe analyst missing the vital information is
high. Hence, computer based analysis and clagsificaf diseases can be very helpful in
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diagnosis. Various contributions have been maddt@nature regarding beat detection and
classification of ECG signal. Most of them use eithime or frequency domain representation of
the ECG waveforms, on the basis of which many $igef@atures are defined, allowing the
recognition between the beats belonging to diffectasses. The most difficult problem faced by
today’s automatic ECG analysis is the large vamain the morphologies of ECG waveforms.
Moreover, we have to consider the time constraastsvell. Thus our basic objective is to come
up with a simple method having less computatiomale t without compromising with the
efficiency. This objective has motivated me to shand experiment with various techniques. In
this thesis, R-peak detection of ECG signal is enmnted using the properties of
autocorrelation and Hilbert transform and clasatitn has been done using multilayer
perceptron (MLP) and radial basis function (RBEKing the features as temporal features, heart

beat interval features and ECG morphological fesstur

1.9 Thesis Outline

The Chapter 1 of the thesis explains the basic @GEand ECG morphology. Different
modes of lead placement and the MIT-BIH arrhythntiatabase are discussed. This chapter also
explains the different types of arrhythmias in ESIgnal.

In Chapter 2 a new method is developed using augeation and Hilbert transform for
detection of QRS complex in ECG signal which isfitet step of ECG signal analysis.

The various characteristics features of ECG armetdd, which contains both temporal and
morphological features of each heart beat. In Glrepfeature extraction methodology of above
features are discussed.

ECG arrhythmias beat classification using multitagerceptron (MLP) neural network and
Radial basis function neural network (RBF) are assed in Chapter 4

Chapter 5 gives the conclusion and future workefthesis.
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CHAPTER 2

QRS Complex Detection

18



2.1 Introduction

The detection of QRS complex is the first step tasaautomated computer-based ECG
signal analysis. To detect the QRS complex morerately it is necessary to identify the exact
R-peak location from the recorded data. Morpholaigidifferences in the ECG waveform
increase the complexity of QRS detection, due &high degree of heterogeneity in the QRS
waveform and the difficulty in differentiating th@RS complex from tall peaked P or T waves

[1].

Several techniques are reported to improve theracgwf QRS complex detection from
ECG signal because the exact detection of QRS @mgldifficult, as the ECG signal is added
with different types of noise like electrode motigrower-line interferences, baseline wander,
muscles noise etc. [2]. Pan and Tompkins [3] regubet technique where, the detection of QRS
complex was achieved by linear filtering, non-lineansformation and decision rule algorithm.
In another method [4] the QRS complex of ECG sigma$ found out using multi rate signal
processing and filter banks. As reported in [3] @RS complex can be found after finding the
R-peak by differential operation in ECG signal. Tist differentiation of ECG signal and its
Hilbert transform is used to find the location epRak in the ECG signal [5].

2.2 Hilbert transform

The Hilbert transform of a real functioqyis defined as

()= HLJ= [ ) ror= K o

The Hilbert Transform can be interpreted from tf@kation as a convolution betweegy an

1 . Applying the Fourier transforms to the equ.2.&,hvave
mt

(2.2)

Since,

T

{1-}: J‘_le—jzzszak - jnsgnf
t 2k (2.3)

Where
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+1;f >0
sgn f = o;f =0
-1;f <0

then the Fourier transform of (2.2) can be writsn
F{k(t)} =-isgnt F{k(1)} 2.4)
In the frequency domain, the result is then obthimg multiplying the spectrum of the) by
] (+90) for negative frequencies and —j (-90) fospive frequencies. The time domain result can
be obtained after performing an inverse Fouriengiam. The Hilbert transform of the original
function represents its harmonic conjugate.
The pre-envelope of a real signal can be deschlyatle expression:
e(t) = k(t)+ jk(1) (2.5)
Where, k1= real value signal
k(t) = complex value function which is the Hilbert tséorms pair ofk(t)

The envelopekE(t) of &) is defined by

(2.6)
The envelope determined using (2.6) will have thees slope and magnitude of the

original signalk(t) at or near its local maxima. From (2.6) it can bsayved thag(t) is always a
positive function. Hence the maximum contributiorett) at points wherek(®)=0 is given by the

Hilbert transform.

2.3Methodology

Criginal Differentiation
EGC [d/dn]
signal
Period calculation |
using autocorrelation _J

Sub window
creation

[ Hilbert transform

[ Adaptwethreshold ]
Real R-peak T-wave PrDbabIeR peak
detection discrimination detection
¥

QRS complex detection

Fig. 2.1 Block diagram representation of the psmggbmethod for detection of QRS complex.
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A new approach to QRS detection using the Hillraridform and autocorrelation function is

proposed. The block diagram of the proposed meikosghown in the fig.2.1. The detall

description of the proposed method is given bellow

2.3.1 Filtering

The main function of the stage is to increase flgaa to noise ratio of ECG signal by
emphasizing the QRS complex. A band pass FIR Butigh filter of pass band frequencies of
5-15 Hz is used to remove the power-line interfeeeand high frequency noises from the

original signal. The approximate popular pass dandaximize the QRS energy is 5-15Hz [3].
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Fig. 2.2 ECG signal in the database MIT-BIH tap8G@th the range (0-1000) samples. (a) channel-Lloutp)
channel-2output, (c) band pass filter output.

2.3.2 Differentiation
The first order differentiation of filtered ECG 8@ is taken to remove motion artifacts and

baseline drifts [18]. The main function of firstder differentiation is to indicate high slope
points which show that the rising of signal fromdJR is the maximum slope and the falling of
signal from R to S is the minimum slope of ECG saigTherefore R peak is the zero crossing

between these two positive and negative peaks hwhishown in fig.2.3.
The first differential of the given ECG signal irsckrete domain can be obtained by,

z(n):i[k( n+1)- K n-1)]
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where,n=2,3 ... ,m-1
m s the total number of samples adit is the sampling time.
The first order differentiation given by (2.7) dkithe sample by one unit.
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Fig. 2.3 Sample beats from ECG signal of tape #000IT-BIH database (a) band pass filter outpuj,derivative
output.

2.3.4 Period calculation using autocorrelation

In the proposed method 3s duration of ECG signeakisacted from the filtered ECG signal
to find the exact duration of one cardiac cyclé¢hiat particular ECG signal. The approximate R-
R interval between two cardiac cycles is 0.4s &s 14], [7]. So an arralag_secis created by
taking a fixed length signal of 3s duration whoaengling frequencyf{) =360 Hz. The array
length is lies in between the range 0.4s to 1.2k witime lag 0.02s. The number of samples
corresponding to eadhg_secis found out by multiplying the sampling frequen(ty and store
these values in an arrtag_indexas illustrated in (2.8).

lag _index(i) = floor(lag_sec(i)*f) (2.8)

Then the autocorrelation of ECG signal is deterhilog the algorithm-1

N —f»\\J\ﬂf—v%%/\\/\ff\/g—ﬂvJ\,f
6= f\‘\/\PN—q\\[\,.MJ\,\/
A

\step size
0.0Z2s

Fig. 2.4 ( a) filtered signal in the database MIIHBape #100 in range 0-3s, (b) shifted versioalwdve signal
with a time lag (step size) of 0.02s.
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Algorithm-1: Period calculation of one cardiac leym ECG signal using
autocorrelation

Take an ECG signal of length 3s and denote X(8s

Assign an arrajag_sedn the range 0.4s to 1.2s with step size 0.02s
lag_index = lag_sectf;

Find autocorrelation

Forj=1:lengthlag_index do:

pPwbdE

Fori=1:(length¥)-lag_indexj)) do:
sum()=sun(j)+absi(i))*absX(i+lag_indexj)));
End for.
sum(jFsum(j)((length(x))-(lag_indexj)));

End for.

5. The position where theumis maximum indicate the period of one
cardiac cycle

2500

Auntocorrelation outpuat
b Marimum amplitade H H H B
2000 |- - - Ed Period in sec R 444 _____

1500

Amplitnde(m¥)

1000

500

0.3 0.4 0.5 0.6 o7 L1 &4 ) 1 1.1 1.2 1.3
Time (=)

Fig. 2.5 Autocorrelation output between the sigrilfig. 2.4. (a) and (b). The maximum amplitutiews where
two signals are correlated. The position where #og# is maximum shows the period of one cardiatecy

2.3.5 Sub window creation
The filtered ECG signal is divided into several suihdows whose length equal to the one
cardiac cycle duration. The one cardiac cycle domas obtained from the section 2.3.3. The sub

window creation helps to calculate the exact nunab&-peak and its position.

2.3.6 High slope point detection using Hilbert trasform

For the time varying analytic signal the Hilbedrisform is used for envelope detection. The
maximum peak in the envelope of Hilbert transforotpat is the zero crossing point of
differentiation output as shown in fig. 2.6. The@erossing point of differentiation output is the
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R-peak point in the QRS complex of ECG signal [IBje Hilbert transform of one cardiac
cycle duration length signal is calculated. The mmaxn value of the signal after taking HT in a
particular window represents the probable R-pe&kisTit shows that these peaks are not the real

peaks and these peaks differ from the true R- peakion by a few milliseconds.

Differentiation output |

L L L . . . . . .
50 100 150 200 250 300 350 400 as0 s00
Time (s)

Hilbert transform output

L |
[ 50 100 150 200 250 300 350 400 450 500
Time (=)

Fig. 2.6 The maximum peak of Hilbert transform auttis the zero crossing of differentiation output.

2.3.7 Adaptive threshold for noise removing
The adaptive threshold technique is used to rertitey@oise level from the output of HT,

which is describing the algorithm-2.

Algorithm-2: Adaptive threshold technique for rerimg noise in HT
output

Lo

Find equivalent RMS value of HT output

Find number of window and assign it with varialiidéxw

3. Find maximum amplitude in a particular window assign it as
variable index max

4. Fori=1:no. of window do:

5. If(RMSi)>0.18*max()) then do:

If((RMSi)>max())&&( RMSi)<max(-1))) then do:

n

Thr(i)=0.39*max();
Else If(RMSi)>max())&&( RMSi)>max(-1)))
Thr(i)=0.39*max{-1);

End if.

6. Else IfRMJi)<0.18*max()) then do:
Thr(i=1.6*RMSi);

End if.
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2.3.8 T wave discrimination
After finding the probable R-peaks search backnegre is used to discriminate the T
wave. The maximum amplitude within a 200ms windewngth is set to find the real R-peaks

from probable R-peaks.

2.3.9 Second stage detector to find Q and S point
A second stage detector is used to locate the Qp&i& in ECG. A window containing
+10 sample from the location of the R-peak is gelkdn the original ECG waveform to

locate these points.

2.4 Result and discussion
In order to evaluate the performance, the propadgdrithm was tested using MIT-BIH
Arrhythmia database [8]. The algorithm is able &tedt the QRS complex more accurately as
shown in the Fig.7. The total performance is shawthe form of tabulation in Table 2.1.
The performance is analyzed using the followingpaeters
1. Sensitivity (Se): This indicates the percentagetraé beats that were correctly
detected by the algorithm.

TP

Sensitivity %) = ————
TP+ FN (2.8)

1. Positive Predictivity (+p): It gives the percentagfeheart beat detection which are

reality true beats.

Positive predictivé%) = ™
TP+ FP (2.9)
2. Detection error rate (%):
Detection error ratg%) = FP+FN
Totalnumber of QRS comple (2.10)

Where, TP=Number of true positive beat detected
FP= Number of false positive beat
FN= Number of false negative beat
TN=Number of true negative beat
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Table 2.1 The result of the proposed method fostgeals in MIT-BIH database

MIT-BIH Tn_J_e Fal_s_e Falsg Faile_d Sensitivity Po:_;iti_ve Detection
records Positive Positive Negative detection (Se) predictivity error rate
Beat (TP) Beat (FP) Beat (FN) (FP+FN) (%) (%)
10C 227% 0 0 0 100.0( 100.0( 0.0C
101 1865 2 1 3 99.95 99.89 0.16
10z 2187 3 1 4 99.9¢ 99.8¢ 0.1¢€
103 2084 0 0 0 100.00 100.00 0.00
104 223( 2 1 3 99.9¢ 99.91 0.1z
105 2572 3 7 10 99.73 99.88 0.39
106 2027 2 2 4 99.90 99.90 0.20
107 2137 2 4 6 99.81 99.91 0.2¢
108 1763 6 0 6 100.00 99.66 0.34
10¢ 2532 2 3 5 99.8¢ 99.9: 0.2C
111 2124 0 1 1 99.95 100.00 0.05
112 253¢ 0 0 0 100.0( 100.0( 0.0C
113 1795 0 0 0 100.00 100.00 0.00
114 1879 2 1 3 99.95 99.89 0.16
11¢ 1952 0 0 0 100.0( 100.0( 0.0c
116 2412 5 1 6 99.96 99.79 0.25
117 1535 0 1 1 99.93 100.00 0.07
118 2275 0 1 1 99.96 100.00 0.04
11¢ 1987 1 0 1 100.0( 99.9¢ 0.0t
121 1863 0 1 1 99.95 100.00 0.05
122 2476 0 0 0 100.00 100.00 0.00
12z 151¢ 0 0 0 100.0( 100.0( 0.0C
124 1619 0 0 0 100.00 100.00 0.00
20C 2607 0 1 1 99.9¢ 100.0( 0.04
201 1963 0 4 4 99.80 100.00 0.20
20z 213¢ 0 5 5 99.7% 100.0( 0.2z
203 2982 0 2 2 99.93 100.00 0.07
205 2656 4 2 6 99.92 99.85 0.23
207 1862 0 2 2 99.8¢ 100.0( 0.11
208 2956 3 2 5 99.93 99.90 0.17
20¢ 300¢ 0 0 0 100.0( 100.0( 0.0C
210 2647 1 3 4 99.89 99.96 0.15
21z 274¢ 0 0 0 100.0( 100.0( 0.0C
213 3251 1 6 7 99.82 99.97 0.22
214 2262 3 1 4 99.96 99.87 0.18
21¢& 3362 2 0 2 100.0( 99.9¢ 0.0¢
217 2208 1 3 4 99.86 99.95 0.18
21¢ 215¢ 2 0 2 100.0( 99.91 0.0¢
220 2048 0 1 1 99.95 100.00 0.05
221 2427 0 5 5 99.7¢ 100.0( 0.21
222 248¢ 2 5 7 99.8( 99.92 0.2¢
223 2605 0 4 4 99.85 100.00 0.15
22¢ 2052 0 3 3 99.8¢ 100.0( 0.1¢
230 2256 3 0 3 100.00 99.87 0.13
231 118¢ 2 0 2 100.0( 99.8: 0.17
232 1780 1 4 5 99.78 99.94 0.28
233 3079 0 5 5 99.84 100.00 0.16
234 2735 0 0 0 100.00 100.00 0.00
48 116,137 55 83 138 99.93 99.95 0.12
patient:
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Table 2.2 The comparison of the proposed methdd thvé Pan-Tompkins (PT) method and difference djpera
method (DOM).

PT methoc DOM methot Proposed methc
Total . . Failed
Tape # beats | FP FN d Fa”.Gd FP FN Fa"?d FP FN detection
etection % detection % %
100 2273 0 0 0.00 0 1 0.04 0 0 0.00
101 186¢ 5 3 0.4z 0 1 0.0t 2 1 0.1¢€
10z 218i 0 0 0.0C 0 1 0.0t 3 1 0.1¢€
103 2084 0 0 0.00 0 0 0.00 0 0 0.00
104 223( 1 0 0.04 2 0 0.0¢ 2 1 0.1z
105 2572 67 22 3.46 0 17 0.66 3 7 0.39
10¢€ 2027 5 2 0.3t 0 6 0.3C 2 2 0.2C
107 2137 0 2 0.09 0 3 0.14 2 4 0.28
10¢€ 1762 | 19¢ 22 12.5¢ 6 0 0.34 6 0 0.3¢
10¢ 2532 0 1 0.04 0 3 0.1z 2 3 0.2C
111 2124 1 0 0.05 0 1 0.05 0 1 0.05
112 2539 0 1 0.04 1 0 0.04 0 0 0.00
113 1795 0 0 0.00 9 0 0.50 0 0 0.00
114 187¢ 3 17 1.0¢ 0 1 0.0t 2 1 0.1¢€
115 1953 0 0 0.00 0 0 0.00 0 0 0.00
11¢€ 241z 3 22 1.04 0 17 0.7C 5 1 0.2t
117 153¢ 1 1 0.1z 2 0 0.12 0 1 0.07
118 2275 1 0 0.04 10 0 0.44 0 1 0.04
11¢ 1987 1 0 0.0t 0 0 0.0C 1 0 0.0t
121 1863 4 7 0.59 0 2 0.11 0 1 0.05
122 247¢ 1 1 0.0¢ 0 0 0.0C 0 0 0.0c
123 1518 0 0 0.00 0 0 0.00 0 0 0.00
124 161¢ 0 0 0.0C 1 0 0.0€ 0 0 0.0C
20C 2607 6 3 0.3t 5 0 0.1¢ 0 1 0.04
201 1963 0 10 0.51 0 20 1.02 0 4 0.20
20z 213¢ 0 4 0.1¢ 1 0 0.0t 0 5 0.2z
203 2982 53 30 2.78 16 2 0.60 0 2 0.07
20& 265¢ 0 2 0.0¢ 0 1€ 0.6C 4 2 0.2:
207 1862 4 4 0.43 0 1 0.05 0 2 0.11
20¢ 295¢ 4 14 0.6C 0 14 0.47 3 2 0.17
20¢ 300« 3 0 0.1C 1 0 0.0z 0 0 0.0C
210 2647 2 8 0.38 0 14 0.53 1 3 0.15
21z 274¢ 0 0 0.0C 1 0 0.04 0 0 0.0C
213 3251 1 2 0.09 0 3 0.09 1 6 0.22
214 2262 2 4 0.2¢ 0 4 0.1¢ 3 1 0.1¢€
215 3363 0 1 0.03 0 4 0.12 2 0 0.06
217 220¢ 4 6 0.4t 0 2 0.0¢ 1 3 0.1¢€
21¢ 215¢ 0 0 0.0C 0 0 0.0C 2 0 0.0¢
220 2048 0 0 0.00 0 0 0.00 0 1 0.05
221 2427 2 0 0.0¢ 0 1 0.04 0 5 0.21
222 2484 | 101 81 7.33 0 5 0.20 2 5 0.29
22% 260¢ 1 0 0.0¢4 1 0 0.04 0 4 0.1¢
228 2053 25 5 1.46 0 2 0.10 0 3 0.15
23C 225¢ 1 0 0.04 2 0 0.0¢ 3 0 0.1z
231 118¢ 0 0 0.0C 0 15 0.8C 2 0 0.17
232 1780 6 1 0.39 0 0 0.00 1 4 0.28
23: 307¢ 0 1 0.0z 0 9 0.2¢ 0 5 0.1¢€
234 2735 0 0 0.00 0 1 0.04 0 0 0.00
Total 11%;; 507 277 0.68 58 166 0.19 55 83 0.12
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Fig. 2.7 The detected QRS point of signal tape #100

The detector achieves very good performance orstigied MIT-BIH arrhythmia database
for signal with noise even in the presence of pumeed muscular noise and baseline artifacts.
The QRS detector attains Se=99.93%, +P=99.95%, datelction error rate of 0.12%. The
proposed method is compared with difference oparatiethod and Pan-Tompkins method as
shown in Table 2.2. The proposed algorithm deplpyamtocorrelation and Hilbert transform
works better than the earlier reported techniquéchvis based on DOM method [4] and PT
method [3].

2.5 Conclusion

This chapter proposes a novel QRS detection aklgoriin ECG signal, based on the
properties of autocorrelation and Hilbert transforithe result of the proposed method is
compared with the Pan-Tompkins (PT) method andedifice operation method (DOM). In
evaluating detection method for the MIT/BIH arrhytla database, the algorithm shows the
accuracy over 99.88% even in the presence of ggnif noise contamination. The experimental
result shows that the proposed method performgrast compared to above two methods and

allows a reliable and accurate detection of the Q&8plexes.

References

[1] N.V. Thakor, J.G. Webster and W.J.Thompkins , ‘fBation of QRS complex power spectra for design of a
QRS filter,”IEEE Trans. Biomed. Engvol. 31, pp. 702—-705, 1984.

[2] Y.C. Yeha, and W. J. Wang, “QRS complexes detediiwrECG signals The Difference Operation Method
(DOM),” Computermethods and programs in biomedigirel. 9, pp. 245-254, 2008.

[3] J. Pan, W. J. Tompkins, “A real time QRS detecttgorithm,”|[EEE Trans. Biomed. Engvol. 32, pp. 230-
236, 1985.

28



[4] X. Afonso, W.J. Tompkins, T. Nguyen, S. Luo, “EC@&alb detection using filter bankdEEE Trans. Biomed.
Eng, vol. 46, pp. 230-236, 1999.

[5] D. Beniteza, P.A. Gaydeckia, A. Zaidib, and A.Rzpatrick, “The use of the Hilbert transform il€& signal
analysis,"Computers in Biology and Medicineol. 31, pp.399-406, 2001.

[6] S.Ari, K. Sensharma, and G. Saha, “DSP implemiemtatof a heart valve disorder detection systeomfia
phonocardiogram signalJournal of Medical Engineering & Technolggxol. 32, no. 2, pp.122 — 132, 2008.

[71 R.M. Rangayyan, Biomedical Signal Analysis: A Gatedy Approach, Wiley—Interscience, New York, (.1
28, 2001.

[8] MIT-BIH Database distribution, Massachusetts Ingtitof Technology, 77 Massachusetts Avenue, Caméyid
MA 02139,1998.http://www.physionet.org/physiobardtabase/mitdb/

[9] American National Standard for Ambulatory Electnoliagraphs, publication ANSI/AAMI EC38-1994,
Assaociation for the Advancement of Medical Instrumtagion, 1994.

[LO]N.M. Arzeno, Z. Deng and C.S. Poon, “Analysis ofsEi-Derivative base QRS detection algorithmEEE
Trans. Biomed. Engvol. 55, pp. 478-484, 2008.

[11] B.U. Kohler, C. Henning, and R. Orglmeister, “Thenpiples of software QRS detectionEEE Eng. Med.
Biol. Vol. 21, pp. 42-57, 2002.

[12]Y.H. Hu, J. Tompkins, J.L. Urrusti, and V.X. Afons@pplication of artificial neural networks for E&Z signal
detection and classificationJornal of Electrocardiologyyol. 26, pp. 66—73, 1993.

[13] R.J. Bolton, L.C. Westphal, “Hilbert transform pessing of ECG’s,” 1981IREECON International
Convention Diges IREE, Melbourne, pp. 281-283,1981.

[14]Q. Xue, Y.H. Hu, W.J. Tompkins, “Neural-network-bdsadaptive matched filtering for QRS detectiolgEE
Trans. Biomed. Eng. 39, pp.315-329, 1992.

[15]Kleydis V. Suarez, Jesus C. Silva, Yannick BerthimumPedro Gomis, and Mohamed Najim, “ECG Beat
Detection using a Geometrical Matching ApproacBEE Transactions Biomed. Engg., vol. 54, no. 4,7200

[16]R.J. Bolton, L.C. Westphal, “On the use of the HitbTransform for ECG waveform processing, in:
Computers in Cardiology,” IEEE Computer Societyy&i Spring, MD, pp. 533-536, 1984.

[17]S. G. Guillen, M. T. Arredondo, G. Martin, and J.. M. Corral, “Ventricular fibrillation detection by
autocorrelation function peak analysis,” J. Elecairdliol., vol. 22, pp. 253—-262, 1989.

29



CHAPTER 3

Feature Extraction of ECG Signal
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3.1 Introduction

The classification of cardiac arrhythmias can b@ee after extracting the features of each
heart beat in the ECG signal. A good feature etith methodology can accurately classify
cardiac abnormalities. Several methods have bemoped for extracting features of one cardiac
cycle. The features of one cardiac cycle may bes tdomain features or frequency domain
features. In [1] Inaret al. found that morphological information along witimthg information
can provide high classification accuracy for largataset. The combining of wavelet domain
feature with RR- interval features can achieve hitgissification accuracy as reported in [2] .
The morphological feature along with the tempoedtdire of each patient specific data can give
high classification accuracy [3]. Khazaee al. [4] extracted power spectral density (PSD)
features of each heart beat with three timing watefeatures classifying cardiac abnormalities in
MIT-BIH database. The Hermit basis function can vate an effective approach for
characterizing ECG heart beat and have been wigsdy in ECG signal classification [5]. As
reported in [6], the authors Dutkt al. has proposed cross-correlation based feature for
classifying PVC beats from non-PVC beats. They hased cross-correlation between each

ECG heart beat signal with the normal heart begitadiwhich is chosen as reference signal.

In the study the time domain features of each Hesat have been extracted for classifying
SVEBs and VEBs from non-SVEBs and non- VEBs folldwsy AAMI standard. The feature
vector contains four temporal features; three hba#dt interval features and nineteen fixed
interval morphological features. Hence in totalréhare twenty six feature vectors are extracted
for each heart beats which can be used for claatign of cardiac arrhythmias using different
classifiers. All the features are considered forgle channel in the MIT-BIH arrhythmias
database.

3.2 Methodology

Automatic classification ECG signal consist of di#fint features of ECG in one cardiac
cycle. Features relating to fiducial point intesvalere considered for each heartbeat. Features
relating to heartbeat intervals and ECG morpholagye also calculated separately for each

heartbeat in the ECG signals. The features araagtt for one cardiac cycle [7] as follows:
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Table 3.1 Feature groups considered in this study

Group label Features

Pre-RR interval

Post-RR interval

Temporal
Average RR-interval

Local average RR-interval

QRS duration (QRS on and QRS off)

Heart beat interval | T-Wave duration (T-Wave on and T-Wave off)

Presence and absent of P-wave

Normalized ECG morphology (10 sample)

between QRS onset and QRS off set
Morphology

Normalized ECG morphology (9 sample)
between T-Wave onset and T-Wave offset

3.2.1 RR-Interval Features

RR-interval is defined as the interval between sasive heartbeat fiducial points. Four
features (see Table 3.1: RR-intervals) are extdaftem the RR sequence [7]. The pre-RR-
interval is defined as the RR-interval between\eegiheartbeat and the previous heartbeat. The
RR-interval between a given heartbeat and thevatig heartbeat is known as post-RR-interval.
The average RR-interval is the mean of the RRmalsrfor a recording and is considered as the
same value for all heartbeats in a recording. Bintie local average RR-interval is determined

by averaging the RR-intervals of the ten RR-intergairrounding a heartbeat.

3.2.2 Heartbeat Interval Features

Three heartbeat interval features for each singEneel ECG recording (see Table 3.1:
heartbeat intervals) relating to heartbeat intaraaé calculated after heartbeat segmentation [7].
The time interval between the QRS onset and the QfR8t is known as QRS duration. The T-
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wave duration is defined as the time period betwbenQRS offset and the T-wave offset. The
third feature is the presence or absence of a R-wénch is indicated by a Boolean variable that
means the Boolean variable ‘1’ implies the presesfcB-wave and the variable ‘0’ shows the

absence of P-wave.
3.2.3 ECG Morphology Features

Two types of ECG morphology features are taken dach heart beat (see Table 3.1:
morphology). Ten features from QRS complex and méaures from T wave morphology are
chosen from the selected heart beat after findmegfiducial point [7]. The above features are
selected as shown in fig. 3.1. A fixed sample ratesed for extracting the morphology feature
and the sampling windows are located by after diee¢he heartbeat fiducial point (FP). Fig.
3.1 (b) shows the sampling process. Two samplinglows were formed based on R-peak. The
window between FP-50 ms and 100 ms is considerechvdovers the contain of QRS-complex
morphology as the portion of the ECG. A 60-Hz sangptate is applied to the above window of
the QRS-complex resulting in ten features. The s@&awindow approximately contains the T-
wave morphology in between the time duration FP+&&0and FP+500 ms. The ECG signal
amplitude is sampled at 20 Hz in this window, réaglin nine features for T-wave morphology.
Lower sampling rates is chosen for T-wave samplmglows as the frequency content of this

wave is lower than the frequency content of the @B@plex.

QRS FP QRS FP
onset offset -50ms | +100ms
f f
il |
(a) I (b) . ‘l
| ‘ |
? c'la T-wave |
! offset oo [+150ms +500ms
‘ | - I
a8 ° G\‘n [ l‘ AN
@ . . o o,
- P R . i o —
= o T~ o9
"‘P'r ‘. ;
9 1y

Fig. 3.1 (a) after getting fudicial point (FP), t&kS onset and offset and t-wave offset pointdared, b) after
determining the FP nine samples of the ECG betw#eB0 ms and FP + 100 ms and nine samples betvwe&lbb
ms and FP+500 ms are extracted [7]

33



3.4 Simulation result

The experimental results are found out after MABLAImulation. The visualization
results of ten QRS morphology features and nineaVevmorphology feature features of the
#tape 100 in the MIT-BIH database is shown in fi3.3The tabulation result (see table 3.2)
shows the visualization result which indicates tb&al number of arrhythmias present in the
MIT-BIH arrhythmia database. The result implies ghetorial representation of each beat types,
one cardiac feature and the corresponding twentyfesiture waveform. It also indicates the
#tape number as well as the beat position of withehfeature is taken from the MIT-BIH

arrhythmia database after reference from annotéitean
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Fig. 3.2 Ten fixed interval morphology featuresQRRS complex (left) and nine fixed interval morphmtdeatures
of T-wave (right) of tape#100 in MIT/BIH database

Table 3.2 Cardiac arrhythmia beat types in MIT/Rlatabase

. MIT-
Sl. Cardlag BIH One cardiac Feature QRS featurg (10 26 feature Beat
arrhythmia morphological i
No. Tape (271 sample) Waveform position
type NoO feature)
1 Normal beat #100 2998
(N)
Premature P
5 ventricular #100 . 546789
contraction L
beat (V) -




Left bundle
branch block
beat

(L)

#111

1A btk s A ]

4195

Right bundle
branch block
beat

(R)

#118

s e bk 3

12595

Paced beat

0]

#104

u——

Ny

o, of snphs

— it

4407

Supravent-
ricular
premature
beat (S)

#208

—— Sogprrncstar premane bess o e 2301 { 88

- o W @ oW % oW

385989

Nodal
(Junctional)
premature
beat (J)

#114

89345

Nodal
(Junctional)
escape beat

)

#124

220482

Atrial
premature
beat
(A)

#117

Aplitude @n¥)

261539

10

Aberrated
atrial
Premature
beat

@)

#223

Ho.of samples

415709

11

Fusion of
ventricular
and normal

beat

(F)

#109

11310
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12

Fusion of
paced
and normal
beat

(f)

#104

e ——r -

47033

13

Atrial escape
Beat

(e)

#223

5
No.of sampls

43415

14

Ventricular
escape
beat

(E)

#207

—— Ebeat oftae 4207 (619542)

619542

15

Unclassified
beat

Q)

#104

11269

16

Ventricular
flutter beat

®

207

I N )

vowm U a1

16498

table 3.3 indicates patient by patient total nundideatures and their corresponding class which
are separated according to AAMI standard. The pdeads in the database having the #tape
number 102, 104, 107 and 217 are not considerethig study as these beats are not
recommended by AAMI standard. The total numberardiythmia type present in the database
and their comparison result with references to tatiom file is given away in table 3.4. The
total number of extracted features (1, 08,981kss lin comparison to annotation (1, 09,963)
because of the following reasomsj6 some #tape the T-wave features is not presietite end

of the #tape which is a cardiac feature anxdtliere are some false negative beats presentgdurin

The total features are divided in to five classesording to AAMI recommendation. The

the R-peak detection.
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Table 3.3 Patient by patient report of each taperaing to AAMI recommendation excluding the tapatains

paced beat
AAMI standard
MIT-BIH N S \% F Q Total
recorc
100 2238 33 1 2272
101 185¢ 3 1 1867
103 2080 2 2082
10E 2517 41 5 256:
106 1507 505 2012
10€ 170z 4 17 2 172¢
10¢ 249( 35 2 2527
111 2119 1 2120
112 253¢€ 2 253¢
113 1788 6 1794
114 1817 12 43 4 187¢
115 1952 1952
11€ 227¢ 1 10€ 2387
117 1532 1 1537
118 2166 95 16 2277
11¢ 1542 445 198¢
121 1858 1 1 1860
122 247¢ 247¢
123 1514 3 1517
124 1535 31 45 5 1616
total norma 3950¢ 191 125¢ 13 6 4097+
20C 1742 30 817 1 2587
201 1632 11¢ 19¢ 2 1947
202 2061 48 17 1 2127
207 251z 2 40¢ 1 1 292¢
205 2569 3 10 2582
207 154¢ 107 207 185¢
208 1586 2 961 368 2919
20¢ 2621 374 1 299¢
21C 237¢ 16 144 6 254¢
212 2741 2741
217 263¢ 28 7€ 347 308¢
214 2003 245 1 1 2250
21¢F 3187 3 14¢ 333¢
219 2080 7 2087
22C 1952 94 2047
221 2031 374 240¢
222 2268 207 2475
22¢ 203¢ 68 404 14 252(
228 1680 3 360 2043
23C 225¢ 1 225¢
231 1567 1 2 1570
232 39¢ 1381 177¢
237 222: 7 80¢ 11 304¢
234 2695 50 2745
total 50396 2541 5169 762 58872
abnormal
Total 8990: 273: 642¢ 77¢ 10 9984¢
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Table 3.4 Beat summery of MIT-BIH heartbeat types

Sl. No.| Symbols Symbol type Annotation Feature
taken
1 N Normal beat 75053 74846
2 L left bundle branch block 8074 8068
3 R Right bundle branch block 7259 7249
4 A Atrial premature beat 2544 2525
5 a Abberated Atrial premature beg 150 123
6 J Nodal (Junctional) premature be 83 83
7 S Supraventricular premature be 2 2
8 \Y Ventricular premature beat 7129 6666
9 e Fusion of Ventricular and normal 803 175
beat
10 ! Ventricular flutter wave 472 280
11 e Atrial escape beat 16 15
12 j Nodal (Junctional) escape beat 229 229
13 E ventricular escape beat 106 105
14 / Paced beat 7028 7017
15 f Fusion of paced and normal beat 982 971
16 Q Unclassified beat 33 27
Total (48 tape) 109963 108981

2.5 Conclusion

The feature extraction process has been carriecftert automatic detection of R-peak in
ECG signal using autocorrelation and Hilbert transf method. A total of 26 feature vector for
each cardiac cycle has been extracted, and is fosezhrdiac abnormality classification. The

annotation file helps to categories the extractedure in the respective particular classes.
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CHAPTER 4

Classification of Cardiac Arrhythmias
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4.1 Introduction

Automatic ECG beat classification is essentialitoety dangerous heart condition. It is a
very time consuming job for doctors to analyze |I&@G records. Therefore, many computer
based methods have been proposed for automatttialiyosis of the ECG beat abnormalities.

The main principles of such methods are based tiarpaecognition techniques.

Several techniques have been proposed for cardiagtlamias classification. Among them
the most recently published work are presentedqfL]inanet al. [1] presented an approach for
classifying beats of a large dataset by trainimgaral network (NN) classifier using wavelet and
timing features. Inaret al. found that the fourth scale of a dyadic wavelanhsform with a
guadratic spline wavelet together with the predp&R-interval ratio is effective for
distinguishing normal and premature ventriculartcaetion (PVC) from other beats. In [2], an
approach for personalized ECG heartbeat pattessitilzation is presented. It is based on block-
based NNs, where a 2-D array of modular componéig ith flexible structures and internal
configurations is implemented using reconfiguradigital hardware. Network structure and
connection weights are optimized using local gnaidimsed search and evolutionary operators
with the rates changing adaptively according tartbfectiveness in the earlier evolution period.
Two classification systems based on the suppotbwesachine (SVM) approach has been found
in literature [3]. The first system exploits theaferes based on high-order statistics, while the
second uses the coefficients of Hermite polynomi#is [4], a patient-adapting heartbeat
classifier system based on linear discriminantprigposed. The system then adapts by first
training a local classifier using the newly annethbeats, and combines both local and global
classifiers to form an adapted classification syste [5] Huet al. combined a local classifier as

well as a global classifier using a mixture of exp€MOE) approach.

The performance result of cardiac arrhythmias baassification algorithm has been
standardized by the AAMI standard [9]. The AAMI tiard emphasize on classifying VEB
from non-VEBs and SVEB from non- SVEBs. MIT-BIH laygthmias [8] database has been used

for performance analysis.
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4.2 Multilayer perception back propagation (MLP-BP) neural network

The Multilayer Perceptron (MLP) is one of the mastely implemented neural network
topologies. The basic connectionist structure lmsva in fig.4.1, a feed forward NN, having
single input layer, one hidden layer, and one aulgyer. The input layer connect the network
structure to the environment and output layer gigsoutput to the environment through output
nodes. Hence the number of nodes in input layeroaput layer is fixed by the problem. MLPs
are normally trained with the back propagation atbm. The back propagation rule propagates
the errors through the network and allows adaptatib the hidden nodes. Two important
characteristics of the multilayer perceptron ate:nionlinear processing elements (PEs) which
have a nonlinearity (the logistic function, lindaanh function and the hyperbolic tangent are the
most widely used); and their massive interconnégt{i.e. any element of a given layer feeds all
the elements of the next layer). The multilayercpptron is a supervised neural network that
means the network is trained trained with therdddarget response. The MLPs mainly operate
with error correction learning, which means that tietwork output is always compared with the
desired response of the system [7]. In patterngm®ition this is normally the case, since we have

our input and desired data labeled. Error corrack@arning works in the following way: From

the system response at P&t iterationn, y,(n), and the desired respondén) for a given input

pattern an instantaneous ere{n)is defined by
e (n)=d (M- y(n (4.1)

Using the theory of gradient descent learning, eeeight in the network can be modified by
correcting the present value of the weight witlkerantthat is proportional to the present input and
error at the weight, i.e.

wy (n+1)=w, (n)+n74 (n)x(n) (4.2)

The local errorg(n)can be directly computed frogyr) at the output PE or can be computed

as a weighted sum of errors at the internal PEs.chmstany; is called the learning rate. Lower
the value ofy more accurately the system is trained. This proeeds called the back
propagation algorithm. Back propagation computes ghnsitivity of a cost functional with

respect to each weight in the network, and updedeb weight according to the sensitivity. The
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beauty of the network structure is that it canraplemented with local information and requires
just a few multiplications per weight, which is yesfficient [7]. As this is a gradient descent
procedure, it only uses the local information st thcan caught local minima easily. Moreover,
the procedure is inherently noisy since we areguaipoor estimate of the gradient, causing slow
convergence. Momentum learning is an improvemetitécstraight gradient descent in the sense
that a memory term (the past increment to the wgigh used to speed up and stabilize
convergence. The momentum facte@y i normally lies between 0.1 and 0.9.

Input layer Hidden layer Output layer

Fig. 4.1 General Structure of multilayer neuralwaak.
4.3 Radial basis function neural network (RBFNN)

Radial basis function neural network (RBFNN) isidely used pattern recognition tasks
due to its fast learning algorithms. RBFNNs arelimear hybrid network which is a three layer
structure. Generally the RBF network contains oideldn layer only. Fig. 2 shows the general
structure of the RBFNN. The input layer provides thformation from the input vector to each
of the nodes in the hidden layer. Each node irhtdlden layer then find out the radial distance
from center to each point on the associated ré&disis function. Finally, each node in the output
layer computes a linear combination of the actorsi of the hidden nodes [23]. The general

mathematical form of the output nodes in an RBFHId follows:

c ()= w,llx-u llio, (4.3)

i=1
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where c,(x)is the function corresponding to th& output unit (clas$y and is a linear
combination ofk radial basis functiongg.) with centegfand bandwidthg. Also, w; is the

weight vector of clasgand w; is the weight corresponding to tieclass and™ center.

In pattern recognition problems usually a Gaus$isetion is used as the basis function of
the RBFNN [23]. So, the Eqg. (4.3) becomes:

¢, (0= wj.exp[—”x'”i ”ZJ (4.4)

2
=1 20,

From the Eq. (4.4) it can be clearly seen thataimput of the RBFNN is dependent to the
total number of neurong the weights between the output and the hiddeerlafthe network

w. , centers of the each neurggand finally bandwidth of the each neumn So the

ji !

classification performance of the RBFNN lies inatatining the correct parameters for the

network that means (center and spread).

Input layer Hidden layer Output layer

Fig. 4.2 General structure of the radial basicfiom neural network.

The centers and widths of the RBFNN are the twoamaters which can affect the
classification performanceSeveral methods have been proposed to find theerseiff the
RBFNN. This are usually clustering based methods find center locations between the input
feature vector locations or some of the input feattectors directly can be used as the centers of

the neurons. Hence it has been confirmed that ¢isé denter locations may not be necessarily
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located inside the input feature vectors. The nsosaimon algorithm to determine the neuron

centers of the RBFNN are the K-Means algorithm.

Feature extraction  Feature clagsifier
—

Temporal -
feature MLP-BP NN o
Lo Preprocessing [—* Repeak | | peart beat . ’EI
Sigual - detection mterval feature -
— RBF NN
Morphological | F
feature
—{<]

Fig. 4.3 Block diagram representation of ECG béasifier.

4.4 Performance matrix

The performance of the classifier is estimated fstatistical indices [22]: classification
accuracy (Acc), sensitivity (Se), specificity (S@nd positive predictivity (Pp), which are
defined in the following Egs. (4.5) — (4.8), respesly.

1. Classification AccuracyAco

Classification accuracy measures the overall sygteniormance over all classes of
beats. It is the ratio of correctly classified pats to the total number of pattern classified.
TP+ TN

Acc(%) = x100
TP+ TN+ FP+ FN (4.5)

2. Sensitivity 8¢
It is the ratio of correctly classified event amalgevents.
TP

Se(%)=————x100
TP+ FN (4.6)

3. Specificity Spg
The specificity is the ratio of the number of cothg rejected nonevents, TN (true
negatives), to the total number of nonevents angi/en by

TP
S %)= —x100
pe( 0) TN+ FP 4.7)

4. Positive predictivity Ppr)
Positive predictivity is the ratio of the number adrrectly detected events, TP, to the

total number of events detected by the analyzelisagiven by
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Ppr(%) - ™ 100
TP+ FP (4.8)

Where, TP =Number of true positive beat detected
FP = Number of false positive beat
FN = Number of false negative beat
TN = Number of true negative beat

4.5 Classification Performance
The classification performance are analyzed on éebrds of the MIT/BIH arrhythmia

database, which includes a total of 49473 beatbeoclassified into five heartbeat types
following the AAMI convention. The 24 records aekén from the #tape numbered in the range
of 200-234 which contain complex ventricular, jumcal, and supraventricular arrhythmias. For
the classification experiments, the common parthef training dataset contains a total of 244
representative beats, including 75 from each typeSiNand -V beats, and all (13) type-F and (6)
type-Q beats, randomly sampled from each class fhenfirst 20 records (picked from the range
100-124) of the MIT/BIH database. The patient-djetiaining data include the beats from the
first 5 min of the corresponding patient's ECG mecddence Patient specific feed forward MLP
networks and radial basis function neural netwaks trained with a total of 244 common
training beats and along with first 5 min of therregponding patient's ECG record. The
remaining beats (25 min) of 24 records, which cmstpathological cases are completely new to
the classifier, and are used as test patternseidoqmance evaluation. The neural network target

output is set according to table 4.1.

Table 4.1ECG classes and representation of deséechl network output

Classes ECG beat description Neural network output
1 Normal beat (N) 0 0 0 0 1
2 Supraventricular ectopic beat (5) 0 0 0 1 C
3 ventricular ectopic beat (V) 0 0 1 0 0
4 Fusion beat (F) 0 1 0 0 0
5 Unknown beat (Q) 1 0 0 0 0
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Table 4.2 Comprehensive results for testing file4orecords in MIT/BIH arrhythmia database

No. of beats used in

Supraventricular

ventricular ectopic be

Supraventricular ectopic be

ventricular ectopic

beat (

MIT- testing ectopic beat (S) V) (S)

BIH

' N s v F QTP FPEN TN[TP FPEN TN 22‘): Se (%)Spe (%)Ppr (% 22‘): Se (%)Spe (%)Ppr (%
200* | 1431 26 693 1 0| 18 21 8 2075655 11 38 1146 | 98.6 69.2 990 462| 97.4 945 990 98
201 | 1193 108198 2 O 6 71 1021323106119 92 1186 |885 56 949 78| 860 535 909 47,
202*| 1800 47 10 1 D8 13639 1675 5 51 5 1802 | 90617.0 925 56| 97.0 500 972 8.
203 | 2092 2 4011 1| O 18 2 24771257 14 144 2083 |99.2 0.0 993 00| 937 641 993 94|
2052070 2 64 100l 2 6 O 213455 4 9 2078 | 9971000 99.7 250| 994 859 998  93.
207 | 1375 107109 0 O 58 11 49 1473 8 27 101 1455 962 542 99.3 841 920 73 982 22
208 | 1310 2 8042972| 1 25 1 238978423 20 1500 [98.9 500 99.0 38| 982 97.5 986 97
200 | 2148 374 1 0 0216 13 1582151 0 8 1 2522 | 93357.8 994 94.3| 996 00 997 0.
210+ | 1966 15 122 6 0 4 11 11 2086(90 10 32 1978 |99.0 26.7 995 26.7| 980 738 995 90
212* | 2567 O 0 opoO O O OfO0O O O 0 NaNNaN NaN NaN| NaN NaN NaN  NaN
213+ | 2211 27 69 258| 7 15 20 252326 31 43 2465 | 98.6 259 994 318| 97.1 37.7 988 45
214* | 1667 0 2071 1) 0 O 0 0 (1897 18 1661 |[NaNNaN NaN NaN| 987 913 996  96.
215 | 2666 2 1190 0f 2 5 0 2780110 6 9 2662 | 99.8100.0 99.8 286| 995 924 998 94,
219* | 1714 7 51 0 DO 0 7 176345 7 6 1714 | 99.6 0.0 1000 NaN| 99.3 882 996 86
2201600 93 0 O P66 7 271593 0 O O O [980710 996 90.4| NaN NaN NaN Nal
221* 1701 0 3040 0 0O O O O [2914 13 1697 |[NaNNaN NaN NaN| 992 957 99.8 986
222+ 1900 207 O 0 014531262 158200 0 O 0 |82270.0 835 317| NaN NaN NaN Nal
223 | 1650 61 3868 O 52 90 9 1963234102152 1728 953 852 956 36.6| 885 606 944 69
2281395 3 3520 0 1 8 2 1739330 5 22 1393 | 99.4333 995 111| 985 938 996 98
230 (1858 0 1 0 PO 0 O 0| 0O 1 1 187 NaWaN NaN NaN| 999 00 999 04
231*[1277 1 2 000 0 1 12792 0 O 1278|999 00 1000 NaN| 100.0100.0 100.0 100.0
232*| 319 1165 0 0 01157 8 8 311/0 0 0 0 [98999.3 975 99.3] NaN NaN NaN Nal
233+ 1853 4 6736 0 4 8 0 252465513 18 1850 |99.7100.0 99.7 33.3| 988 073 993 98,
234* [ 2237 50 0 0 P11 0 39223700 0 O 0 |983220 1000 1000 NaN NaN NaN Na
Total | 42009 2303 4566 591 4 Average[96.7 49.4 979 420| 969 67.6 986 70
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Table 4.3 Summary table of beat-by-beat classifioatf 24 records in MIT/BIH arrhythmia database

Table 4.4 Classification performance of 24 recandsll T/BIH arrhythmia database

ALGOTITHM
n S Y f q
N | 40613 596 357 421 22
S 373 1758 155 11 6
TRUTH Vv 448 162 3842 109 5
F 94 9 38 450 O
Q 1 1 1 1 0

Acc Se Spe Ppr

TP FP FN ™ o (%) ((ypo) (0/‘3)
40613 916 1759 6549 | 94.6 958 87.7 97.8
1758 768 545 46402 | 97.3 763 984 69.6
3842 551 724 44356 | 97.4 841  98.8 87.5
450 542 141 48340 | 986 76.1  98.9 45.4
0 33 4 49436 | 99.9 0.0 99.9 0.0

| Average| 976 665  96.7 60.0

Table4.5 SVEB result for testing files of 14 recond MIT/BIH arrhythmia database using MLP

NaN: Not a Number

. . Supraventricular ectopic beat Supraventricular ectopic beat

MIT- No. of beats used in testing
(S) (S)
BIH
Acc Spe
record| N S \% F Q TP FP FN TN Se (%) Ppr (%
(%) (%)
200* | 1431 26 693 0 18 21 8 2076 98.6 69.2 99.0 .246
202* | 1800 47 10 0 8 136 39 1676 90.6 170 9256 b.
210* | 1966 15 122 0 4 11 11 2086 99.0 26.7 99.5.726
213* | 2211 27 69 258 0 7 15 20 2523 98.6 25.9 99.41.81
214* | 1667 0 207 1 1 0 0 0 0 NaN NaN NaN NaN
219* | 1714 7 51 0 0 0 0 7 176% 99.6 0.0 100.0 NaN
221* | 1701 0 304 0 0 0 0 0 0 NaN NaN NaN NaN
228* | 1395 3 352 0 0 1 8 2 1739 994 33.3 995 111
231* | 1277 1 2 0 0 0 0 1 1279  99.9 0.0 100.0 NaN
233* | 1853 4 673 6 0 4 8 0 2524 99.7 100.0 99.7 33.3
234* | 2237 50 0 0 0 11 0 39 2237y 98.3 22.0 100.0 .a00
212* | 2567 0 0 0 0 0 0 0 0 NaN NaN NaN NaN
222* | 1900 207 0 0 0 145 312 62 1582 82.2 70 83.5.7 31
232* | 319 1165 0 0 0 1157 8 8 311 98.9 99.3 97.5 399.
Averagg 96.8 421 97.3 42.8
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Table 4.6 VEB result for testing files of 11 recoid MIT/BIH arrhythmia database using MLP

MIT-1 No. of beats used in testing Ventricular ectopic Ventricular ectopic
3 beat (V) beat (V)

BIH Acc Se Spe Ppr
record N S V F Q| TP FP FN TN %) (%) (%) (%)
200* 1431 26 693 1 0 655 11 38 1146 97.4 94.5 99.098.3
202* 180(¢ 47 10 1 0 5 51 5 180z 97.C 50.C 97.2 8.¢
210* 196¢ 15 122 6 0 90 10 32 197¢ 98.C 73.¢ 99.t 90.C
213* 2211 27 69 25€ 0 26 31 43 246¢ 97.1 37.1 98.¢ 45.¢€
214* 1667 0 207 1 1 18¢ 7 18 1661 98.7 91.c 99.€ 96.4
219* 1714 7 51 0 0 45 7 6 1714 99.: 88.2 99.€ 86.5
221* 1701 0 304 0 0 291 4 13 1697 99.2 95.7 99.¢ 98.¢
228* 139t 3 352 0 0 33C 5 22 139: 98.t 93.¢ 99.€ 98.t
231* 1271 1 2 0 0 2 0 0 127¢ 100.C  100.C  100.C 100.C
233* 185: 4 673 6 0 65E 13 18 185C 98.¢ 97.c 99.2 98.1
234* 2231 50 0 0 0 0 0 0 0 NaN NaN NaN NaN

Average| 98.4 82.2 99.2 82.1

Table 4.7 SVEB result for testing files of 14 ret®in MIT/BIH arrhythmia database using RBF

o

DO

DO

MIT- No. of beats used in testing Supraventnc(:gl)ar ectopic beat Supraventricular ectopic beat (S
BIH
record] N | s | v]| F| Q| TP| FP| FN TN @Zl): Se(%) | Spe(%)| Ppr(%
200* | 1431 26 693 1 0 14 71 12 2054 96.14 53.85 0.6616.47
202* | 1800 47 10 1 0 37 540 10 1271 70.40 78.72 2.046.41
210* | 1966 15 122 6 0 6 76 9 2019 95.97 40.00 0.29 327
212* | 2567 0 0 0 0 0 233 0 2334 90.92 NaN 0.00 0.
213* | 2211 27 69 258 ( 16 142 11 2396 59.26 59.26 63 0. 10.13
214* | 1667 0 207 1 1 0 86 0 179(¢ NaN NaN 0.00 0.
219* | 1714 7 51 0 0 3 9% 4 1669 42.86 42.86 0.17 33,
221* | 1701 0 304 O 0 0 96 0 1909 NaN NaN 0.00 0.
222* | 1900 207 0 0 0 195 83 12 1817 94.20 94.20 610.270.14
228* | 1395 3 352 O 0 3 10 0 1737 100.00 100.00 0.1723.08
231* | 1277 1 2 0 0 1 17 0 1262 100.00 100.00 0.08 565
232* 319 1165 O 0 0 1026 20 139 299 88.07 88.07 .e®1 98.09
233* | 1853 4 673 6 0 4 157 0 2375 100.00 100.00 0.162.48
234* | 2237 50 0 0 0 26 81 24 21564 52.00 52.00 1.16 4.3@
Average| 82.49 7354 30.66 24.27

4
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Table 4.8 VEB result for testing files of 11 receid MIT/BIH arrhythmia database using RBF

MIT- No. of beats used in testing Ventnculag/()actopm bea Ventricular ectopic beat (V)
BIH Acc Se Spe Ppr

record N S| V F |Q| TP | FP | FN TN (%) (%) (%) (%)
200¢* 1431 26 693 1 0|606 6 87 1452 | 9568 87.45 4156 99.0
202* 1800 47 10 1 0| 8 44 2 1804 | 97.52 80.00 0.43 154
210* 1966 15 122 6 0| 94 110 8 1897 | 94.40 92.16 4.68 46.1
213* 2211 27 69 258 0| 34 131 35 2365 | 93.53 49.28 136 20.6
214* 1667 O 207 1 1119 3 88 1666 | 9515 57.49 7.13 975
219* 1714 7 51 0O 0|49 27 2 1694 | 98.36 96.08 2.85 645
221* 1700 0 304 O 0252 2 52 1699 | 97.31 82.89 14.81 99.2
228* 1395 3 352 0 0|33 3 13 1395 | 99.09 96.31 24.25 99.1
231* 1277 1 2 0O 0| O 1 2 1277 | 99.77 0.00 0.00 0.0
233* 1853 4 673 6 0|516 7 157 1856 | 93.53 76.67 27.70 98.7
234* 2237 50 O 0O 0| 0 13 O 2274 | 99.43 NaN NaN NaN
Average| 96.7 71.8 125 64.0

Table 4.9 SVEB and VEB comparison result are baset¥4d and 11 common testing records respectively

Supravggte:;c?lsa;r ectop ventricular ectopic beat (V
Methods Acc Se Spe Ppr| Acc Se Spe Ppr
(%) (%) () () | () () (N (%)
g'lu[;t N/A NA NA NA | 948 789 968 758
Chazal | o) 4, 764 932 387| 964 775 98.9 90.6
et al. [4]
Jiang
and
975 749 988 78.8| 988 943 994 958
Kong
[2]
'QICTl?t 96.1 81.8 985 63.4| 979 90.3 98.8 922
MLP
BP NN | 982 32.7 988 36.4| 984 822 99.2 821
method
RBF
detected| 82.5 735 30.7 243| 967 71.8 125 64.0
method
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N/A: Not Analyzed
Table 4.10 VEB and SVEB comparison result are base24 common testing records

Supraventricular ectopic beat (S) ventricular picteat (V)
MethOdS ACC

(%) Se(%) Spe(%) Ppr(%) Acc (%) Se(%) Spe(%) Ppr(%
Jangand| o0 0 ghs ggg 67.9 981 866  99.3 93.3
Kong [2]
'”Cﬁl]eta" 96.1 622 985 56.7 97.6 834 981 87.4
ANN
detected | 96.7 49.4 97.9 42 96.9 67.6 98.6 70.6
method

Table 4.2 summarizes beat-by-beat classificagsults of ECG heartbeat patterns for 24
test records. Classification performance is measuusing the four standard metrics:
classification accuracyACo), sensitivity Ser), specificity Spg, and positive predictivityRpr).
The MLP neural network and RBF neural network ammgared with three existing algorithms,
[1], [2], [3] and [5], which comply with the AAMI tandards and use all records from the
MIT/BIH arrhythmia database. For comparing the perfance results, the problem of VEB and
SVEB detection is considered individually. Thefpanance results for VEB detection in the
first four rows of Table 4.9 are based on 11 tesbrdings (200, 202, 210, 213, 214, 219, 221,
228, 231, 233, and 234) that are common to all foethods. For SVEB detection, comparison
results are based on 14 common recordings (wittadadéion of records 212, 222, and 232). It
is observed that the MLP neural network classifielhieves comparable performance over the
training and testing set of patient records as @nigal to existing method [1] and [2]. It is worth
noting that the number of training beats used &mwhepatient’s classifier was less than 2% of all
beats in the training dataset. Experimental reshtws that the MLP —BP neural network

achieves better result as compared to RBF network.

4.6 Conclusion

The ECG signal can be used as a reliable indiaztdreart diseases. The MLP neural

network and RBF neural network classifiers are gme=d as the diagnostic tool to aid the
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physician in the analysis of cardiac abnormalitiEse most important factor in determining

whether an automatic ECG diagnosis system is ssitdesr not is the accuracy of event

detection. The accuracy of the tools depends oarakfactors, such as the size and quality of

the training set, the efficient extracted featwetand also the parameters chosen to represent the

input. The experimental result shows that the MLIP BN achieves sensitivity of 98.2% and
98.4% for SVEBs and VEBs respectively. For the sammmber of test set the RBF NN shows
sensitivity 82.5% and 96.7% for SVEBs and VEBs eetipely. Hence the MLP neural network

shows better result as compared to RBF neural mktwo
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5.1 Conclusion

This thesis provides an algorithm for accurate dete of QRS complex and automatic

classification of cardiac arrhythmias recommendgdAssociation for the Advancement of

Medical Instrumentation (AAMI). Feature extractiomethodology proves an essential process

for reducing the inputs to the classifier drasticalhe automatic classification of arrhythmias

helps in recognizing the diseases more accuratighyl@ess time.

Chapter 2 of this thesis represents a novel alyorior detection of QRS complex
in ECG signal. Accurate detection of QRS complethesfirst and most important
part of ECG signal analysis. A novel approach udimg properties of Hilbert

transform and autocorrelation function is develop&tde autocorrelation based
method is used to find out the period of one cardile. The high slope point that
means R-peak in ECG signal is identified from theedope of Hilbert transform

output. The adaptive threshold technique is useidhwhelps in distinguish the R-
peaks from P-wave and T-wave. The beat detectgori#thm is compared with the
two existing techniques like Pan-Tompkins [1], €iffnce operation method
(DOM) [2]. The experimental result shows that thepgmsed method performs
better result as compared to PT- method and DOMhoade

Chapter 3 of this thesis represents the featurea@idn methodology for each
heartbeat of one cardiac cycle. The morphologiealures combined with temporal
features of each heartbeat are extracted to prdweder classification accuracy.
The feature extraction methodology extracts théufea of each heartbeat after
automatic detection of R-peak. This method doedailaiw the beat annotation file
provided by the exports as references of findingeldks. Hence it can also be
applicable in real time application. Thus the feataxtraction techniques play a

vital role in the performance of classifying betengithmias using the classifiers.

Chapter 4 of this thesis represents the automassification of cardiac
arrhythmias heartbeats into five classes: normatd)e/EBs, SVEBSs, fusion beats

and unclassified beats. The combination of locasgifier of each patient with the
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global classifier performs better classificationsu¢ than individual. The

classification performance of 11 #tapes contain ¥EBd 14 #tapes hold SVEBs
are compared with the earlier existing methods[§R]-The performance also
analyzed using 24 #tapes of MIT-BIH arrhythmiasabbase and compared with
methods [4], [5]. The comparative study of ECG bdassifier using multilayer

perceptron neural network and radial basis functiearal network has done and
the result shows MLP neural network achieve highassification accuracy than
RBF neural network.

5.2 Future scope

Automatic cardiac abnormality classification is esesary for real time application. The

classification accuracy can improve by extracting better features of ECG signal. Future

developments can be made as follows

To design better feature extraction methodologycWiean improve the classification

result of cardiac arrhythmias in ECG signal.

To analyze the classification accuracy using daiferclassifier such that it can classify

the beat arrhythmias in the approved manner.

To modify the network structure according to castdtion of multilayer neural network

so that it can achieve better classification acyu@s compared to existing ECG beat

classifier.

Real time operation for recognizing the cardiahghimias can also be done since the

methodology uses the automatic detection of R-paalideature extraction techniques.
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