
A VERILOG-BASED SIMULATION

METHODOLOGY FOR ESTIMATING

POWER AND AREA

A thesis submitted in partial fulfillment of the requirements for the award of

the degree of

Master of Technology

In

VLSI Design and Embedded Systems

By

RAMESH GUNTUPALLI

Roll No: 209EC2126

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769008

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A VERILOG-BASED SIMULATION

METHODOLOGY FOR ESTIMATING

POWER AND AREA

A thesis submitted in partial fulfillment of the requirements for the award of

the degree of

Master of Technology

In

VLSI Design and Embedded Systems

By

RAMESH GUNTUPALLI

Roll No: 209EC2126

Under the Guidance of

Prof. KAMALAKANTA MAHAPATRA

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769008

2011

i

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the thesis report entitled “A VERILOG-BASED SIMULATION

METHODOLOGY FOR ESTIMATING POWER AND AREA” submitted by

Mr.RAMESH GUNTUPALLI, Roll No: 209EC2126, in partial fulfillment of the

requirements for the award of Master of Technology degree in Electronics and

Communication Engineering Department with specialization in “VLSI Design and

Embedded Systems” at the National Institute of Technology, Rourkela is an authentic

work under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University / Institute for the award of any Degree or Diploma.

Place: NIT Rourkela Prof. K.K.Mahapatra

Date: (Supervisor)

Dept. of Electronics & Communication Engg.

 National Institute of Technology,

Rourkela - 769008.

ii

ACKNOWLEDGEMENTS

This project is by far the most significant accomplishment in my life and it would be

impossible without people (especially my family) who supported me and believed in me.

I express my deep sense of gratitude to Dr. K. K. Mahapatra, Professor in the

department of Electronics and Communication Engineering, NIT Rourkela for giving me

the opportunity to work under him and lending every support at every stage of this

project work. I am indebted to his esteemed guidance, constant encouragement and

fruitful suggestions from the beginning to the end of this thesis. His trust and support

inspired me in the most important moments of making right decisions and I am glad to

work with him.

I am thankful to all my teachers Prof. S.K.Patra, Prof. G.S. Rath, Prof. S.Meher, Prof.

D.P.Acharya and prof. N.V.L.N.Murthy for providing a solid background for my

studies and research thereafter.

 I would like to thank my parents, brother, friends, seniors of VLSI lab-I and classmates

who always encouraged me in the successful completion of my thesis work.

 Ramesh Guntupalli

 Roll No: 209EC2126

iii

Abstract

 Accurate modeling and estimating of the power dissipation in the early stages of

the design flow is becoming more important, as the aggressive scaling of transistors

results in higher leakage currents. New and complex systems are being implemented

using highly advanced Electronic Design Automation (EDA) tools. As the complexity

increases, the dissipation of power has emerged as one of the very significant design

constraints. Low power designs are not only used in small size applications like cell

phones and handheld devices but also in high-performance computing applications.

Numerous tools have emerged in recent years to address this issue of power consumption

and power optimization. With a vast number of these power measurement tools emerging,

analyzing power consumed by digital circuits has not only become easier but also more

effective methods are deployed to optimize digital circuits to dissipate less power.

In this work, we present a Verilog-based technique to estimate an accurate

power dissipation of a design considering the state-dependency of the leakage power and

path dependency of dynamic power. We develop the verilog models of cells which trace

the probability of the static levels of the signals in the course of a simulation. Then, these

data are used to calculate the power dissipation in the overall design. The power

dissipation of some benchmark circuits is estimated using the proposed approach.

iv

Contents

Abstract .. iii

List of Figures .. vi

List of Tables .. vii

List of Acronyms ... viii

CHAPTER 1 ... 1

1 Introduction ... 1

1.1 Overview of the Problem ... 1

1.2 Literature Review... 2

1.3 Out Line of the Thesis .. 5

CHAPTER 2 ... 6

2 Basic Concepts of Power Dissipation ... 6

2.1 Need for Low Power Design .. 6

2.2 Sources of Power Dissipation .. 6

2.2.1 Static Power .. 7

2.2.2 Dynamic Power ... 8

2.2.2.1 Switching power .. 8

2.2.2.2 Internal power .. 9

2.2.3 Short-Circuit Power .. 10

2.2.4 Leakage Power .. 10

CHAPTER 3 ... 11

3 Tools ... 11

3.1. Non Power Tools .. 11

3.1.1. Simulation Tool ... 11

3.1.2. Synthesis Tool .. 14

3.2. Power Tools .. 16

3.2.1. Power Compiler ... 16

3.2.3.1. Power Compiler Methodology .. 17

CHAPTER 4 ... 20

4 Experimental Design ... 20

v

4.1. Basic Synthesis Flow .. 21

4.2. Power Estimation Techniques ... 25

4.3. Power Estimation Methodology.. 26

4.3.1. Capturing Forward and Backward Switching Activity .. 28

4.4. Power Optimization .. 29

CHAPTER 5 ... 30

5 Experimental Results ... 30

5.1. ISCAS 85 benchmark Circuits .. 31

5.2. 74x Series Circuits .. 41

CHAPTER 6 ... 47

6 Conclusion and Future Work .. 47

6.1 Conclusion ... 47

6.2 Future Work ... 48

REFERENCES ... 50

vi

List of Figures

Figure 2.1 Different components of power dissipation 10

Figure 3.1 Modelsim simulation flow 12

Figure 3.2 VCS work flow 13

Figure 3.3 Design Compiler and Design Flow 14

Figure 3.4 Power flow at each of the abstraction level 17

Figure 3.5 Power flow from RTL to Gate level 18

Figure 4.1 Basic Synthesis flow 23

Figure 4.2 Power Estimation Methodology in Power Compiler 27

Figure 5.1 Optimized gate level netlist for C432 31

Figure 5.2 Optimized gate level netlist for C499 32

Figure 5.3 Optimized gate level netlist for C880 33

Figure 5.4 Optimized gate level netlist for C1908 34

Figure 5.5 Optimized gate level netlist for C2670 35

Figure 5.6 Optimized gate level netlist for C3540 36

Figure 5.7 Optimized gate level netlist for C5313 37

Figure 5.8 Optimized gate level netlist for C6288 38

Figure 5.9 Optimized gate level netlist for 74181 41

Figure 5.10 Optimized gate level netlist for 74182 42

Figure 5.11 Optimized gate level netlist for 74283 43

Figure 5.12 Optimized gate level netlist for 74L85 44

vii

List of Tables

Table 5.1 Power Estimation Results for ISCAS benchmark in Typical Corner 39

Table 5.2 Power Estimation results for ISCAS benchmark in Fast Corner 40

Table 5.3 Power Estimation results for 74x Series Circuits in Typical Corner 45

Table 5.4 Power Estimation Results for 74x series Circuits in Fast Corner 46

viii

List of Acronyms

1. EDA - Electronic Design Automation

2. VLSI - Very Large-Scale Integration

3. CMOS - Complementary Metal Oxide Semiconductor

4. RTL - Register Transfer Level

5. VCS - Verilog Compiled Simulator

6. HDL - Hardware Design Language

7. SDF - Standard Delay Format

8. SAIF - Switching Activity Interchange Format

9. VCD - Value Change Dump

10. VHDL - Very High Speed IC Hardware Description Language

11. SPICE - Simulation Program with Integrated Circuit Emphasis

12. TCL - Tool Command Language

1

CHAPTER

1 Introduction

1.1 Overview of the Problem
 With the increase in speed, mobility and miniaturization of current electronic

products, the power consumption of these products has become a major design factor.

Especially for mobile devices, the power consumption determines the battery life-time,

the generated heat and the required heat dispersion measures. Therefore, the designers

and consumers of electronic devices, as well as environmental considerations, demand a

reduction in the power dissipation of digital circuits.

 Digital circuit consists of a number of interconnected logic gates which together

perform a function on one of more input signals. Every time an input signal changes, the

change propagates via the gates through the circuit, causing signal switching activity in

every place where the signal propagates to. This signal switching activity causes a current

to charge or discharge the capacitive load of CMOS gates, which results in power

dissipation. This power dissipation depends on the CMOS fabrication technology,

operating frequency, but most of all on the switching activity per clock cycle within the

digital circuit.

 The increasing in usage of hand-held wireless devices and Internet appliances, there

is a corresponding increased need for employing low-power design methodologies. One

of the important requirements to know during a design process is how much power the

circuit should dissipate considering its application. So after the designer writes the

required code, keeping in mind all the specifications that have been given to him, a power

calculation needs to be done to confirm if the design meets the required specification.

2

This is done prior to sending the chip for fabrication. So it is extremely important to get

accurate power values using power determining tools running them at certain input

conditions.

 Numerous EDA (Electronic Design Automation) tools have been developed to not

only determine power but also help in power reduction. Some of these tools are targeted

pacifically for use in the power domain. The usage of these tools is classified depending

on the layer of abstraction they are used in. The three main layers of abstraction include

the RTL (Register Transfer Level), the gate and the transistor level. Though there are

numerous tools that can be used at each of these levels, this thesis mainly concentrates on

using Synopsys tools. The various power values that can be calculated using one of the

tools is given in brief in the next section with detailed information following in the

subsequent chapter.

1.2 Literature Review

 A. Nourivand, Chunyan Wang and M. Omair Ahmad [1], have proposed Accurate

modeling and estimating of the leakage power dissipation in the early stages of the design

flow is becoming more important, as the aggressive scaling of transistors results in higher

leakage currents. In this work, they present a VHDL-based technique to estimate an

accurate leakage power of a design considering the state-dependency of the leakage

power. They develop the VHDL models of cells which trace the probability of the static

levels of the signals in the course of a simulation. Then, these data are used to calculate

the leakage power in the overall design. The leakage power of some benchmark circuits

is estimated using the proposed approach and the results are compared with those

obtained from SPICE simulation, in order to illustrate the viability of the proposed

technique. It is shown that the values of the leakage power obtained by the proposed

technique are comparable to those obtained by SPICE, with a reduction of about three

orders of magnitude in the simulation time.

3

 They have proposed a VHDL-based technique for dynamic and leakage power

estimation of combinational gate-level circuits. Integrating simulation and power

estimation into an environment is useful for an improved utilization of VHDL for the

power critical deep- submicron VLSI systems design. In this approach, they have

developed power models of cells which trace the state probability as well as the transition

probability of the signals in the course of a simulation. These data are later used to

accurately estimate the state-dependent leakage and path-dependent dynamic power

dissipation of the design. It is demonstrated that the proposed scheme can achieve

accuracy comparable to that of SPICE in leakage power estimation, with about three

orders of magnitude speedup in simulation time. The results also show that the leakage

power contribution to the total power dissipation is not significant for this particular 0.18

μm technology. Therefore, the high accuracy offered by the proposed technique is more

desirable for more advanced technologies which have considerable leakage currents.

 Yibin Ye, Shekhar Borkar and Vivek De [4] have proposed a new standby leakage

control technique, which exploits the leakage reduction offered by transistor stacks with

“more than one „off‟ device”, demonstrates 2X reduction in standby leakage power for a

32-bit static CMOS adder in a low-Vt, sub-IV, and 0.1 μm technology. Leakage reduction

is achieved with minimal overheads in area, power and process technology. The

dynamics of leakage reduction due to transistor stacks, and its influence on the overall

leakage power of large circuits are elucidated for the first time.

 They demonstrated a new standby leakage control technique, which exploits the

leakage reduction offered by transistor stacks with “more than one „off„device”. Up to 2X

reduction in standby leakage power can be achieved by this technique with minimal

overheads in area, power and process technology. We also elucidate the dynamics of

leakage reduction due to transistor stacks, and its influence on overall leakage power of

large circuits.

 Vivek De and Shekhar Borkar [8] discussed key barriers to continued scaling of

supply voltage and technology for microprocessors to achieve low-power and high-

4

performance. In particular, they focus on short-channel effects, device parameter

variations, excessive subthreshold and gate oxide leakage, as the main obstacles dictated

by fundamental device physics. Functionality of special circuits in the presence of high

leakage, SRAM cell stability, bit line delay scaling, and power consumption in clocks &

interconnects, will be the primary design challenges in the future. Soft error rate control

and power delivery pose additional challenges. All of these problems are further

compounded by the rapidly escalating complexity of microprocessor designs. The

excessive leakage problem is particularly severe for battery-operated, high-performance

microprocessors.

 This paper has evaluated past trends in technology. It shows that trends in

performance, density, and power have followed the scaling theory. If these trends

continue, then power delivery and dissipation will be the biggest limiters. To overcome

these limiters, die size growth will have to be constrained, and supply voltage scaling will

have to continue. The threshold voltage will have to scale to meet the performance

demand, resulting in higher subthreshold leakage current, limiting functionality of special

circuits, increasing leakage power, soft error susceptibility, short channel effects, and

device parameter variations. These are some of the major challenges that circuit designers

will face in the future technologies.

 A.Sagahyroon, J. Placer, M. Burmood and Mehran Massoumi [10], have proposed

that recently, power dissipation has become a major design constraint for complex VLSI

circuits. Designers need tools that rapidly, but accurately, estimate power dissipation in a

given design. Two categories of tools are useful for this purpose: one is power

optimization tools and algorithms tightly integrated with logic optimization, and second

is an analysis tool for estimating the power consumption in an existing netlist. This work

addresses the latter issue by employing a VHDL-based approach for analysis of power

consumption in static CMOS combinational logic designs. The circuits under test will be

either the result of logic synthesis with various optimization constraints or hand designs

done through schematic capture. The proposed approach will also be used to analyze

various known architectures of the same network for power consumption, such as various

5

forms of adders. The work presented in this article consists of three phases: (1) Designing

smart VHDL simulation models that first measure transition activity at each node of the

netlist and then estimate the power based on this activity and on fanout at each node, (2)

the generation of smart input stimuli that achieve an upper bound on transition activity

and hence power consumption, and third is an analysis of different topologies of the same

circuit. The estimates produced by this analysis may provide useful feedback to designers

or synthesis tools, allowing for better exploration of the design space.

 Incorporating power-estimation techniques within VHDL is an appreciable step

towards the utilization of VHDL as the basis for an integrated design environment for

VLSI circuits. A critical issue in trying to estimate maximum power dissipation in CMOS

circuits is that power is input-pattern dependent. Hence, the number of simulations that

must be performed in order to find the maximum power dissipation is exponential in the

number of inputs to circuit. In this work they proposed and made use of smart stimuli

generated by utilizing genetic algorithms to develop smart test benches that tend to

maximize the switching activity in structural VHDL models. In some cases the

maximizing vectors have succeeded in producing the maximum possible activity in an

economical CPU time. In addition, different topologies for the same network were

compared for power consumption. Certain topologies exhibited superior power savings

compared to others. Glitching has persistently contributed approximately 30% of the

switching activity, making it a primary concern when designing for reduced power.

1.3 Out Line of the Thesis
 Chapter 2 covers the basic concepts of the work. Chapter 3 discusses the tools used

for the work. Chapter 4 gives experimental design. Chapter 5 presents experimental

results. Chapter 6 shows the conclusion and future work.

6

CHAPTER

2 Basic Concepts of Power Dissipation

2.1 Need for Low Power Design

 In the early 1970‟s designing digital circuits for high speed and minimum area

were the main design constraints. Most of the EDA tools were designed specifically to

meet these criteria. Power consumption was also a part of the design process but not very

visible. The reduction of area of digital circuits is not as big issue today because with new

IC production techniques, many millions of transistors can be fit in a single IC. However,

shrinking sizes of circuits have paved the way for reduced power consumption in order to

have an extended battery life. Also in submicron technologies, there is a limitation on the

proper functioning of circuits due to heat generated by power dissipation. Market forces

are demanding low power for not only better life but also reliability, portability,

performance, cost and time to market. This is very true in the field of personal computing

devices, wireless communications systems, home entertainment systems, which are

becoming popular now-a-days. Devices that are also used for high-performance

computing particularly need to dissipate less power to function correctly and for a long

period of time.

 Keeping all these in mind, low power design has become one of the most important

design parameters for VLSI (Very Large Scale Integration) systems.

2.2 Sources of Power Dissipation

 Generally, power is consumed when capacitors in the circuits are either charged

or discharged due to switching activities. So at higher levels of a system this power

dissipation is conserved by reducing the switching activities which is done by shutting

7

down portions of the system when they are not needed. Large VLSI circuits contain

different components like a processor, a functional unit and controllers. The idea of

power reduction is to stop any of the components of the processor when they are not

needed so that less power will be dissipated when the processor is operating.

The power dissipation of digital CMOS circuits can be described by

Pavg = P dynamic + P short-circuit + P leakage + P static

Pavg is the average power dissipation, P dynamic is the dynamic power dissipation due to

switching of transistors, P short-circuit is the short-circuit current power dissipation when

there is a direct current path from power supply down to ground , P leakage is the power

dissipation due to leakage currents, P static and is the static power dissipation[2]. Fig.1

describes the different components of power dissipation.

2.2.1 Static Power

 Static power is the power dissipated by a gate when it is not switching that is,

when it is inactive or static. Ideally, CMOS (Complementary Metal Oxide

Semiconductor) circuits dissipate no static (DC) power since in the steady state there is

no direct path from Vdd to ground. This scenario can never be realized in practice, since

in reality the MOS transistor is not a perfect switch. There will always be leakage

currents [2], sub threshold currents, and substrate injection currents, which give rise to

the static component of power dissipation. The largest percentage of static power results

from source-to-drain sub threshold voltage, which is caused by reduced threshold

voltages that prevent the gate from completely turning off.

 The diode leakage occurs when a transistor is turned off and another active

transistor charges up or down the drain with respect to the first transistor‟s bulk potential.

The resulting current is proportional to the area of the drain diffusion and the leakage

current density. The diode leakage is typically 1 Pico A for a 1 micro-meter minimum

feature size! The sub threshold leakage current for long channel devices increases linearly

with the ratio of the channel width over channel length and decreases exponentially with

VGS – Vt where VGS is the gate bias and Vt is the threshold voltage. Several hundred

8

millivolts of “off bias” (say, 300-400 mV) typically reduce the sub threshold current to

negligible values. With reduced power supply and device threshold voltages, the sub

threshold current will however become more pronounced. In addition, at short channel

lengths, the sub threshold current also becomes exponentially dependent on drain voltage

instead of being independent of VDS. The sub threshold current will remain 102 - 105

times smaller than the “on current” even at submicron device sizes.

2.2.2 Dynamic Power

 Dynamic power is the power dissipated when the circuit is active. A circuit is

active anytime the voltage on net changes due to some stimulus applied to the circuit. In

other words, dynamic power dissipation is caused by the charging. Because voltage on an

input net can change without necessarily resulting in logic transition in the output,

dynamic power can be dissipated even when an output net doesn‟t change its logic state.

This component of dynamic power dissipation is the result of charging and discharging

parasitic capacitances in the circuit.

Dynamic power of a circuit is composed of

a) Switching power

b) Internal power

2.2.2.1 Switching power

 The switching power of a driving cell is the power dissipated by the charging and

discharging of the load capacitance at the output of the cell. The total load capacitance at

the output of a driving cell is the sum of the net and gate capacitances on the driving

output. The charging and discharging are result of logic transitions. Switching power

increases as logic transitions increase. Therefore, the switching power [2] of a cell is a

function of both the total load capacitance at the cell output and the rate of logic

transitions. Switching power comprises 70-90 percent of the power dissipation of an

active CMOS circuit.

 Dynamic power consumption depends linearly on the physical capacitance being

switched [2]. So, in addition to operating at low voltages, minimizing capacitances offers

9

another technique for minimizing power consumption. In order to consider this

possibility we must first understand what factors contribute to the physical capacitance of

a circuit.

 Power dissipation is dependent on the physical capacitances seen by individual

gates in the circuit. Estimating this capacitance at the behavioral or logical levels of

abstraction is difficult and imprecise as it requires estimation of the load capacitances

from structures which are not yet mapped to gates in a cell library; this calculation can

however be done easily after technology mapping by using the logic and delay

information from the library.

 Interconnect plays an increasing role in determining the total chip area, delay and

power dissipation, and hence, must be accounted for as early as possible during the

design process. The interconnect capacitance estimation is however a difficult task even

after technology mapping due to lack of detailed place and route information.

Approximate estimates can be obtained by using information derived from a companion

placement solution or by using stochastic / procedural interconnect models. Interconnect

capacitance estimation after layout is straight-forward and in general accurate.

2.2.2.2 Internal power

 Internal power is any power dissipated within the boundary of a cell. During

switching, a circuit dissipates internal power by the charging or discharging of any

existing capacitances internal to the cell. Internal power includes power dissipated by a

momentary short circuit between the P and N transistors of a gate, called short-circuit

power. In most simple library cells, internal power is due mostly to short-circuit power.

Library developers can model internal power by using the internal power library group

[2]. The short-circuit (crowbar current) power consumption for an inverter gate is

proportional to the gain of the inverter, the cubic power of supply voltage minus device

threshold, the input rise/fall time, and the operating frequency. The maximum short

circuit current flows when there is no load; this current decreases with the load. If gate

sizes are selected so that the input and output Rise/fall times are about equal, the short-

10

circuit power consumption will be less than 15% of the dynamic power consumption. If,

however, design for high performance is taken to the extreme where large gates are used

to drive relatively small loads, then there will be a stiff penalty in terms of short-circuit

power consumption.

2.2.3 Short-Circuit Power

 The short-circuit power consumption, P short-circuit, is caused by the current flow

through the direct path existing between the power supply and the ground during the

transition phase.

2.2.4 Leakage Power

 The nMOS and PMOS transistors used in a CMOS logic circuit commonly have

non-zero reverse leakage and sub-threshold currents. These currents can contribute to the

total power dissipation even when the transistors are not performing any switching

action. The leakage power dissipation, P leakage is caused by two types of leakage

currents

a) Reverse-bias diode leakage current

b) Sub threshold current through a turned-off transistor channel.

 Rising signal vdd Falling signal

 at IN V at OUT

 V Ilk

 P T

 T IN Isc OUT

 Isw

 N Ilk C load

 GND

Ilk-Leakage Current

Isc- Short Circuit Current

Isw-Switching Current

Fig.1 Different components of power dissipation.

11

CHAPTER

3 Tools

 There has been a variety of tools involved in this thesis. Even though, this thesis is

all about power calculations of circuits which are done using tools; there are other tools

that have been used prior to the usage of power tools to give the required input to the

power tools. More emphasis is given to these tools that are mainly involved in power

estimation. The usage of tools has been classified as Power tools and Non-Power tools.

3.1. Non Power Tools
 Non-power tools include Simulation tools, Synthesis tools and Waveform viewers.

The tools that are discussed in this chapter are some of the non-power tools involved in

the entire design flow. A short description of each of these tools along with their working

flow is given in this chapter to understand their functionality. The subsequent chapter

discusses each of the power tools in detailed manner as most of the thesis involves the

use of these power tools. The following chapter also discusses the design flow from code

writing to spice net-list simulation, clearly explaining the usage of these tools at the

respective level.

3.1.1. Simulation Tool

 Initially, to start with the Verilog or VHDL code for a particular design is written

and tested. Simulation is done using Mentor‟s Modelsim for both VHDL and Verilog or

other Verilog simulators. Modelsim is a simulation and a debugging tool for VHDL,

Verilog, and other mixed-language designs from Mentor Graphics. The basic simulation

12

Fig.3.1 Modelsim simulation flow

flow is as shown in Figure 3.1. To start with a working library is created and the code is

compiled using the commands depending upon whether the code is VHDL or Verilog.

Verilog Compiled Simulator (VCS) from Synopsys is a high-performance, high-capacity

Verilog simulator that incorporates advanced high-level abstraction, verification into an

open platform.

The basic work flow for VCS [15] consists of two basic steps:

a) Compiling source files into executable binary files

b) Running the executable binary file

This two-step approach simulates the design faster and uses less memory than other

interpretive simulators. The basic design flow is given in Figure 3.2.

Creating a Working Library

Compile Design Units

Run Simulation

Debug Results

13

Fig 3.2 VCS work flow

14

3.1.2. Synthesis Tool

 Design Compiler [15] is the core of the Synopsys synthesis software products. It

comprises tools that synthesize HDL designs into optimized technology-dependent, gate-

level designs. It supports a wide range of flat and hierarchical design styles and can

optimize both combinational and sequential designs for speed, area, and power.

Fig.3.3 Design Compiler and Design Flow

HDL

HDL Compiler

Timing

Optimizatio

n

Area

Optimization

Datapath

Optimization

Power

Optimization

Test

synthesis

Timing

Closure

Constraints

(SDC)

IP

DesignWare

Library

Technology

Library

Symbol

Library

SDF

 PDEF

Optimized netllist

Place & Route

Timing &

Power

analysis

Formal

verification

15

 Design Compiler reads and writes design files in all the standard EDA formats,

including Synopsys internal database (.db) and equation (.eqn) formats. In addition,

Design Compiler provides links to EDA tools, such as place and route tools, and to post-

layout resynthesis techniques, such as in-place optimization. Design Compiler products

include DC Professional, DC Expert, DFT Compiler, DC Ultra, and DC Ultra Plus.

The basic Design Compiler [15] design flow is given in Figure 3.3.

You use Design Compiler for logic synthesis, which is the process of converting a design

description written in a hardware description language such as Verilog or VHDL into an

optimized gate-level netlist mapped to a specific technology library. The steps in the

synthesis process are as follows:

1. The input design files for Design Compiler are often written using a hardware

description language (HDL) such as Verilog or VHDL.

2. Design Compiler uses technology libraries, synthetic or DesignWare libraries, and

symbol libraries to implement synthesis and to display synthesis results graphically.

During the synthesis process, Design Compiler translates the HDL description to

components extracted from the generic technology (GTECH) library and DesignWare

library. The GTECH library consists of basic logic gates and flip-flops. The DesignWare

library contains more complex cells such as adders and comparators. Both the GTECH

and DesignWare libraries are technology independent, that is, they are not mapped to a

specific technology library. Design Compiler uses the symbol library to generate the

design schematic.

3. After translating the HDL description to gates, Design Compiler optimizes and maps

the design to a specific technology library, known as the target library. The process is

constraint driven. Constraints are the designer‟s specification of timing and

environmental restrictions under which synthesis is to be performed.

4. After the design is optimized, it is ready for test synthesis. Test synthesis is the process

by which designers can integrate test logic into a design during logic synthesis. Test

synthesis enables designers to ensure that a design is testable and resolve any test issues

early in the design cycle. The result of the logic synthesis process is an optimized gate-

level netlist, which is a list of circuit elements and their interconnections.

16

5. After test synthesis, the design is ready for the place and route tools, which place and

interconnect cells in the design. Based on the physical routing, the designer can back-

annotate the design with actual interconnect delays; Design Compiler can then

resynthesize the design for more accurate timing analysis.

3.2. Power Tools
 This thesis involves the usage of Synopsys power tools. The power products are

tools that comprise a complete methodology for low-power design. Synopsys power tools

offer power analysis and optimization throughout the design cycle, from RTL to the gate

level. Analyzing power early in the design cycle can significantly affect the quality of the

design. Improvements made to the design while it is at RTL level can get even better

results eventually. Not only these power tools do accurate measurements but also can

help in calculating power quicker.

3.2.1. Power Compiler

 Power Compiler [14] is an add-on product to Design Compiler. The Power

Compiler tool optimizes the design for power. Working in conjunction with the Design

Compiler tool, Power Compiler provides simultaneous optimization for timing, power

and area. In addition to the standard inputs to synthesis (RTL or gate-level net-list,

technology library, design constraints, and parasitics), Power Compiler uses two other

inputs: Switching activity of design elements and power constraints. It contains all the

analysis capabilities of DesignPower.

 Power Compiler uses the same power analysis engine as Design Power. This

allows Power Compiler to the use the same switching activity for optimization that

Design Power uses for analysis. It accepts either user-defined switching activity,

switching activity from simulation, or a combination of both. It provides RTL clock

gating and optimizes the circuit based on circuit activity, capacitance, and transition

times. Power Compiler cannot only be used as a standalone product but also can be used

in coordination with Design Compiler, Module Compiler, Physical Compiler and Floor

plan Manager.

17

3.2.3.1. Power Compiler Methodology

 Power Compiler [14] is used at RTL and Gate level to calculate power and do

power optimization depending on the need. At each level of abstraction, simulation,

analysis and optimization can be performed to refine the design before moving to the next

lower level. Simulation and the resultant switching activity gives the analysis and

optimization the necessary information to refine the design before going to next lower

level of abstraction. The higher the level of design abstraction, the greater the power

savings can be achieved. The following Figure3.4 describes the power flow at each of the

abstraction level. Figure 3.5 shows power flow from RTL to Gate level.

 Cell internal power and net toggling directly affect dynamic power of a design.

To report or optimize power, Power Compiler requires toggle information for the design.

This toggle information is called Switching Activity.

 Switching Activity

Fig.3.4 Power flow at each of the abstraction level

Simulation Analysis

Optimization

18

 Register Transfer level

 Gate Level

Fig.3.5 Power flow from RTL to Gate level

Simulation Analysis

Optimization

Simulation Analysis

Optimization

19

 Power Compiler models switching activity in terms of static probability and toggle

rate. Static probability is the probability that a signal is at a certain logic state and is

expressed as a number between 0 and 1. It is calculated during simulation of the design

by comparing the time of a signal at a certain logic state to the total time of the

simulation. Toggle rate is the number of logic-0-to-logic-1 and logic-1-to-logic-0

transitions of a design object per unit of time.

20

CHAPTER

4 Experimental Design

 The following ISCAS benchmark circuits [3] were tested as part of a research project.

The research work involved was to create benchmark circuits for best PA (Power and Area)

by exploring the best possible approach to improve those parameters. This thesis involves

calculating the power of these circuits.

The following are the ISCAS benchmark circuits used in this experiment

a).ISCAS 85 Circuits

1) C432 (27-channel interrupt controller).

2) C499 (32-bit Single-Error-Correcting Circuit).

3) C880 (8-bit ALU).

4) C1908 (16-bit error detector/corrector).

5) C2670 (12-bit ALU and controller).

6) C3540 (8-bit ALU with binary and BCD arithmetic, and logic and shift operations).

7) C5315 (9-bit ALU).

8) C6288 (16x16 Multiplier).

b).74x Series Circuits

1) 74181 (4-Bit ALU/Function).

21

2) 74182 (carry look ahead circuit).

3) 74283 (Fast Adder Circuit).

4) 74L85 (4-Bit Magnitude Comparator).

4.1. Basic Synthesis Flow
 Figure 4.1 shows the basic synthesis flow [15]. You can use this synthesis flow in

both the design exploration and design implementation stages of the high-level design

flow discussed previously.

 Also listed in Figure 4.1 are the basic dc_shell commands that are commonly used

in each step of the basic flow. For example, the commands analyze, elaborate, and read

file are used in the step that reads design files into memory. All the commands shown in

Figure 4.1 can take options, but no options are shown in the figure.

The basic synthesis flow consists of the following steps:

1. Develop HDL Files

 The input design files for Design Compiler are often written using a hardware

description language (HDL) such as Verilog or VHDL. These design descriptions need to

be written carefully to achieve the best synthesis results possible. When writing HDL

code, you need to consider design data management, design partitioning, and your HDL

coding style. Partitioning and coding style directly affect the synthesis and optimization

processes.

Note:

This step is included in the flow, but it is not actually a Design Compiler step. You do not

create HDL files with the Design Compiler tools.

2. Specify Libraries

 You specify the link, target, symbol, and synthetic libraries for Design Compiler by

using the link_library, target_library, symbol_library, and synthetic_library commands.

The link and target libraries are technology libraries that define the semiconductor

22

vendor‟s set of cells and related information, such as cell names, cell pin names, delay

arcs, pin loading, design rules, and operating conditions. The symbol library defines the

symbols for schematic viewing of the design. You need this library if you intend to use

the Design Vision GUI. In addition, you must specify any specially licensed DesignWare

libraries by using the synthetic_library command. (You do not need to specify the

standard Design Ware library.)

3. Read Design

 Design Compiler can read both RTL designs and gate-level netlists. Design

Compiler uses HDL Compiler to read Verilog and VHDL RTL designs. It has a

specialized netlist reader for reading Verilog and VHDL gate-level netlists. The

specialized netlist reader reads netlists faster and uses less memory than HDL Compiler.

Design Compiler provides the following ways to read design files:

• The analyze and elaborate commands

• The read_file command

• The read_vhdl and read_verilog commands.

These commands are derived from the read_file -format VHDL and read_file -format

verilog commands.

4. Define Design Environment

 Design Compiler requires that you model the environment of the design to be

synthesized. This model comprises the external operating conditions (manufacturing

process, temperature, and voltage), loads, drives, fanouts, and wire load models. It

directly influences design synthesis and optimization results. You define the design

environment by using the set commands listed under this step of Figure 4.1.

5. Set Design Constraints

 Design Compiler uses design rules and optimization constraints to control the

synthesis of the design. Design rules are provided in the vendor technology library to

ensure that the product meets specifications and works as intended. Typical design rules

constrain transition times (set_max_transition), fanout loads (set_max_fanout), and

23

 Design rule constraints
 set_max_transition

 set_max_fanout

 set_max_capacitan

 Library Objects
 link_library

 target_library

 symbol_library

 synthetic_library

 analyze

 elaborate

 read_file

 Top down

 Bottom up

 set_operating_condition

 set_wire_load_model

 set_drive

 set_driving_cell Compile

 set_load

 set_fanout_load

 set_min_library

 check_design

 report_area

 report_timing

 write

Fig 4.1 Basic Synthesis flow

Develop HDL Files

Specify libraries

Read Design

Define design

environment

Set design

Constraints

Select Compile

Strategy

Optimize the

Design

Analyze and

resolve design

Problems

Save the Design

Database

Design optimization

 constraints

 create_clock

 set_clock_latency

 set_propagated_clock

 set_clock_uncertainty

 set_clock_transition

 set_input_delay

 set_output_delay

set_max_area

24

capacitances (set_max_capacitance). These rules specify technology requirements that

you cannot violate. (You can, however, specify stricter constraints.) Optimization

constraints define the design goals for timing (clocks, clock skews, input delays, and

output delays) and area (maximum area). In the optimization process, Design Compiler

attempts to meet these goals, but no design rules are violated by the process. You define

these constraints by using commands such as those listed under this step in Figure 4.1. To

optimize a design correctly, you must set realistic constraints.

6. Select Compile Strategy

 The two basic compile strategies that you can use to optimize hierarchical designs

are referred to as top down and bottom up. In the top-down strategy, the top-level design

and all its subdesigns are compiled together. All environment and constraint settings are

defined with respect to the top-level design. Although this strategy automatically takes

care of interblock dependencies, the method is not practical for large designs because all

designs must reside in memory at the same time. In the bottom-up strategy, individual

subdesigns are constrained and compiled separately. After successful compilation, the

designs are assigned the dont_touch attribute to prevent further changes to them during

subsequent compile phases. Then the compiled subdesigns are assembled to compose the

designs of the next higher level of the hierarchy (any higher-level design can also

incorporate unmapped logic), and these designs are compiled. This compilation process is

continued up through the hierarchy until the top-level design is synthesized. This method

lets you compile large designs because Design Compiler does not need to load all the

uncompiled subdesigns into memory at the same time. At each stage, however, you must

estimate the interblock constraints, and typically you must iterate the compilations,

improving these estimates, until all subdesign interfaces are stable. Each strategy has its

advantages and disadvantages, depending on your particular designs and design goals.

You can use either strategy to process the entire design, or you can mix strategies, using

the most appropriate strategy for each subdesign.

25

7. Optimize the Design

 You use the compile command to invoke the Design Compiler synthesis and

optimization processes. Several compile options are available. In particular, the

map_effort option can be set to low, medium, or high. In a preliminary compile, when

you want to get a quick idea of design area and performance, you set map_effort to low.

In a default compile, when you are performing design exploration, you use the medium

map_effort option. Because this option is the default, you do not need to specify

map_effort in the compile command. In a final design implementation compile, you

might want to set map_effort to high. You should use this option judiciously, however,

because the resulting compile process is CPU intensive. Often setting map_effort to

medium is sufficient.

8. Analyze and Resolve Design Problems

 Design Compiler can generate numerous reports on the results of a design synthesis

and optimization, for example, area, constraint, and timing reports. You use reports to

analyze and resolve any design problems or to improve synthesis results. You can use the

check_design command to check the synthesized design for consistency. Other check_

commands are available.

9. Save the Design Database

 You use the write command to save the synthesized designs. Remember that

Design Compiler does not automatically save designs before exiting. You can also save

in a script file the design attributes and constraints used during synthesis. Script files are

ideal for managing your design attributes and constraints.

4.2. Power Estimation Techniques
 Power values for each of these circuits are done using power tools of Synopsys

spread through two levels of abstraction, RTL level and Gate level. Power calculation for

each of the tools at a specific level is done using a different methodology and with other

non-power tools involved. The first method involves using Power Compiler with RTL

level switching activity and the second method involves using Power Compiler with Gate

26

Level switching activity. The accuracy of the power values obtained using these tools

gets better as we move from RTL level to gate level. This is because the information

required for calculating accurate power of a circuit is given in more detail as the level

goes to the lower levels of abstraction and also the tools involved get more complex at

those levels. Finally, a table is made with power values filled for each of the circuit.

4.3. Power Estimation Methodology
 The following Figure 4.2 shows the methodology [14] of power calculation using

the combination of Power Compiler and Design Compiler. The flow of data between the

different steps and tools used are also shown. Before starting to calculate power using

Power Compiler the desired gate-level net-list of the design should be first generated. The

power methodology starts with the RTL design and finishes with a power-optimized gate-

level net-list. Ultimately, Power Compiler is used to calculate power using the gate-level

net-list produced by the Design Compiler or power-optimized gate net-list produced by

Power Compiler itself.

 As seen in the figure most of the processes that take place are using Design

Compiler, but the simulation process that is shown is outside Design Compiler tool and is

done as part of power calculation. The main purpose of simulation is to generate

information about the switching activity of the design and create a file called Back-

annotation.

 This file can contain switching activity from RTL simulation or gate-level

simulation. Initially, the RTL design is given to the HDL compiler to create a technology-

independent format called as GTECH design. This is as a result of analyzing and

elaborating the design by HDL compiler. This formatted design is given as an input to

Design Compiler. Before it is compiled by the Design Compiler, “rtl2saif” command is

used to create forward-annotation file which is later used for simulation. The formatted

design GTECH is later given as input to Design Compiler which produces an output

which is given to Power Compiler.

27

Fig.4.2 Power Estimation Methodology in Power Compiler

RTL Design

HDL Compiler

RTL Clock gating

GTECH

Design Compiler

Power Compiler

Power

Optimized Net-

list

Power Compiler

Technology

Library

RTL Simulation

Forward-annotation

file using rtl2saif

Back-annotation file

Back-annotation

capacitance files

(Optional)

Gate Level

simulation

28

 The Forward-annotation SAIF file is given as an input to do RTL simulation

which gives a back-annotation SAIF file which is used by Power Compiler. This forward

annotated file contains directives that determine which design elements to be traced

during simulation. Gate-level simulation can also use a library forward-annotation file.

 This forward-annotation file used for gate level simulation has different

information compared to RTL forward-annotation file. This file contains information

from the technology library about cells with state and path-dependent power models.

“Lib2saif” command is used to get this forward-annotation file.

 During power analysis, Power Compiler uses the annotated switching activity to

evaluate the power consumption of the design. During power optimization, Power

Compiler uses the annotated switching activity to make decisions about the design.

4.3.1. Capturing Forward and Backward Switching Activity

 Power Compiler [14] requires information about the switching activity of the

design to do power analysis. The forward and back-annotation files are in SAIF format.

SAIF is an ASCII format developed at Synopsys to facilitate the interchange of

information between simulators and Synopsys power tools. Some of the power tools

cannot understand SAIF file so in that case VCD file is used. Depending on the tool,

either RTL level switching activity or Gate-level switching activity is used. Power

Compiler has a methodology that enables the use of switching activity from RTL

simulation as well as from Gate-level simulation. Using gate-level simulation the power

values are much more accurate but doing that is time consuming. During RTL and gate

level simulation the designer can direct the simulator to monitor and write out the

switching activity of certain important elements in the design. For accurate analysis,

synthesis-invariant elements should be closely monitored during RTL simulation. These

are the elements that are not changed during simulation like primary inputs, sequential

elements, black boxes, three-state devices and hierarchical ports.

29

4.4. Power Optimization
 Power optimization achieved at higher levels of abstraction (RTL) has an impact

in reducing power in the final gate-level optimization. Power Compiler performs clock

gating when the design is elaborated using “-gate_clock” option. Design generally has

synchronous load-enable registers. These registers are formed using feedback loops by

Design Compiler.

 These registers maintain the same logic value through multiple cycles and

unnecessarily use power. When the “-gate_clock” option is used HDL compiler

introduces gates in the clock network before Design Compiler does its processing. During

the next step, Design Compiler checks the gated clock introduced by HDL compiler and

uses simple registers without synchronous load-enabled functionality thus saving power.

RTL clock gating is achieved without affecting timing or area of the design.

 At the gate level, Design Compiler and Power Compiler are used to create gate-

level net-list optimized for power. Once the RTL clock gating [14] is done, the next

output is the gate-level net-list which will be optimized for power. First constraints are

set for timing and area. Then the design is compiled using the Design Compiler. This

creates a gate-level design on which the switching activity can be annotated using the

back-annotation file. The back-annotation file is read into Power Compiler using

“read_saif” command. After this power constraints are set to trigger power optimization

by Power Compiler. Then the design is compiled using Power Compiler. Using the

switching activity and power constraints, Power Compiler produces a gate-level net-list

which is optimized for timing, power and area. Switching activity from RTL simulation

provides good power optimization results. However, switching activity from gate level

simulation provides much more accurate analysis and optimization. The power analysis

of the gate-level design can be done at various points in the entire methodology. Once

annotating the switching activity from the back-annotation file, power can be analyzed

before compiling using Power Compiler. This is done before power optimization. Once

doing power optimization the power values can be compared. “report_power” is the

command used to get detailed power results.

30

CHAPTER

5 Experimental Results

 This chapter gives details on the various results that have been obtained using the

different circuits that were discussed earlier. Results are given in tables:

1). Power estimation results for ISCAS 85 bench mark circuits in different Conditions.

2). Power estimation results for 74x series benchmark circuits in different Conditions.

 The following section discusses the different optimized circuits that are obtained

using Design Vision and power estimation results obtained by using power Compiler.

1. Design Vision:

 Design Vision is a GUI and an integrated part of the Design Compiler. The

optimized gate level netlist is obtained by using Design Vision for all the benchmark

circuits.

2. Power Compiler:

 The power value is calculated using Power Compiler at the gate level level. The

inputs to calculate power are Gate-level Net-list, RTL switching activity, obtained from

Design Compiler.

31

5.1. ISCAS 85 benchmark Circuits

Fig.5.1 Optimized gate level netlist for C432

32

Fig.5.2 Optimized gate level netlist for C499

33

Fig.5.3 Optimized gate level netlist for C880

34

Fig.5.4 Optimized gate level netlist for C1908

35

Fig.5.5 Optimized gate level netlist for C2670

36

Fig.5.6 Optimized gate level netlist for C3540

37

Fig.5.7 Optimized gate level netlist for C5313

38

Fig.5.7 Optimized gate level netlist for C6288

39

Table 5.1 Power and Area Estimation Results for ISCAS benchmark in

Typical Corner

Circuit

Function

Typical Corner

Area

(µm
2
)

25
0

C

Leakage Power

(nW)

Dynamic Power

(µW)

C432
27-Channel

Interrupt

Controller

654.85 15.94 199.08

C499
32-Bit Single-

Error-Correcting

Circuit

2368.00 53.51 448.55

C880 8-bit ALU 1187.20 33.92 379.44

C1908
16-bit error

Detector/Corrector

2111.70 50.25 358.20

C2670
12-bit ALU and

controller

3371.40 96.49 650.52

C3540
8-bit ALU with

binary and BCD

arithmetic, and

logic and shift

operations

3803.40 100.99 799.55

C5315 9-bit ALU 7028.10 213.28 1455.11

C6288 16X16 Multiplier 20705.0 512.06 2853.00

40

Table 5.2 Power and Area Estimation results for ISCAS benchmark in Fast

Corner

Circuit

Function

Fast Corner

Area

(µm
2
)

0
0
 C

Leakage Power

(nW)

Dynamic Power

(µW)

C432
27-Channel

Interrupt

Controller

4009.20 26.07 198.36

C499
32-Bit Single-

Error-Correcting

Circuit

1396.56 80.48 448.55

C880 8-bit ALU 7621.50 67.80 378.36

C1908
16-bit error

Detector/Corrector

1021.51 67.27 354.60

C2670
12-bit ALU and

controller

1560.96 150.82 656.28

C3540
8-bit ALU with

binary and BCD

arithmetic, and

logic and shift

operations

1550.50 162.11 802.79

C5315 9-bit ALU 3096.57 353.96 1457.64

C6288 16X16 Multiplier 8549.10 581.43 2624.39

41

5.2. 74x Series Circuits

Fig.5.9 Optimized gate level netlist for 74181

42

Fig.5.10 Optimized gate level netlist for 74182

43

Fig.5.11 Optimized gate level netlist for 74283

44

Fig.5.12 Optimized gate level netlist for 74L85

45

Table 5.3 Power and Area Estimation results for 74x Series Circuits in

Typical Corner

Circuit

Function

Typical Corner

Area

(µm
2
)

25
0
 C

Leakage Power

(nW)

Dynamic power

(µW)

74181 4-bit ALU 341.23 48.93 93.60

74182 4-bit CLA 59.60 1.95 20.16

74283 4-bit Adder 258.74 8.26 37.08

74L85 4-bit

magnitude

Comparator

637.09 8.26 105.48

46

Table 5.4 Power and Area Estimation Results for 74x series Circuits in Fast

Corner

Circuit

Function

Fast Corner

Area

(µm
2
)

0
0
 C

Leakage Power

(nW)

Dynamic power

(µW)

74181 4-bit ALU 1919.80 14.05 90.36

74182 4-bit CLA 345.81 9.63 21.24

74283 4-bit Adder 1341.90 8.96 37.08

74L85 4-bit

magnitude

Comparator

3609.50 10.76 105.84

47

CHAPTER

6 Conclusion and Future Work

6.1 Conclusion

 A VHDL-based technique for dynamic and leakage power estimation of

combinational gate-level circuits is proposed. Integrating simulation and power

estimation into an environment is useful for an improved utilization of VHDL for the

power critical deep-submicron VLSI systems design. In this approach, we have

developed power models of cells which trace the state probability as well as the transition

probability of the signals in the course of a simulation. These data are later used to

accurately estimate the state-dependent leakage and path-dependent dynamic power

dissipation of the design.

 It can be concluded from these power estimations at different operating conditions

of abstraction how inaccurate values at fast corner are compared to Typical Corner. The

difference in the measurement can be seen in the tables for each of the circuit. Power

estimation at that condition is done mainly because we can get faster results and can be

used to decide on optimizing the circuit depending on the specification. The study proves

that the methodology of calculating power is correct taking into example, benchmark

circuit. There had been a lot of experiments conducted while performing power

calculations using Power Compiler. It can be concluded from those experiments that

proper usage of Power Compiler needs to be done keeping in the mind what circuit we

are performing the simulations on, how much of accuracy is needed in the measurement

and how fast we need the results.

48

 Careful understanding of all these are to be deployed to get the best results from the

High-Speed circuit simulator. Since the thesis is about power estimation, it would have

been good to compare the values of circuits than best PA. PA circuits are developed so

they have got the best Power and Area. For bigger circuits this value has proved to be

more than their Default circuit. The power results obtained using Power Compiler using

RTL Switching Activity , Power Compiler using Gate-Level Switching used power

characterized library provided by TSMC 65nm technology library,. Power and Area

being the three major constraints in designing digital circuits there are applications like

tactical missile applications and other defense related projects that would require circuits

to be kept in a smaller area, dissipate power and perform really fast. Keeping this mind

checking power in a best PA circuit is afterall useful to be implemented in these devices.

 Some other conclusions are since power values are dependent not only the circuits

but also on the tools used, versions of the tool, power characterized library used, the input

stimulus used and what the output load is, it would be only valid to compare results from

different EDA power tools only if the above are identical. It would not be possible to get

to any specific conclusion analyzing the results of Power Estimation other than trying to

rewrite the RTL code (VHDL or Verilog) to get lesser power value as much as possible.

The values obtained using Power Compiler are considered to be the true values since all

the inputs given to the tool contain fine information about the circuits and it would be

logical to compare it with the testing of the real chips in the lab. The power values

obtained by the other tools are used only to select the best possible netlist that are capable

of giving less power when realized into real chips.

6.2 Future Work
 As seen in the conclusion, the real power comparison should have been between

operating conditions of the circuits. With the flow of power estimation already developed

as part of this work, Timing analysis for circuits can also be performed. Various values of

power estimation can be reported. Placement and Routing of the circuits can be done

using Synopsys tools as opposed to Cadence tools and power values obtained as the result

of that can be compared. Other comparison like getting net-list using a different

49

extraction tool can also be done. With the use of sophisticated power measuring

equipment, each of the circuit can be tested for power in real time for the same input

vectors used here and values can be compared with the tool‟s estimation.

50

REFERENCES

[1] Nourivand.A, ChunyanWang, Ahmad.M.O “A VHDL-based technique for an

accurate estimation of leakage power in digital CMOS circuits,” in the 3rd

international IEEE-NEWCAS conf., 2005.pp.47-50.

[2] D. Soudris, C. Piguet, and C. Goutis, “Designing CMOS Circuits for Low Power”,

Kluwer Academic Publishers, 2002.

[3] ISCAS bench mark circuits.

 www.eecs.umich.edu/~jhayes/iscas/-UnitedSataes

[4] “TSMC 65 nm core library application note,” Release 1, Jun 2005.

 http://www.tsmc.com/

[5] V.De and S.Borkar “Technology and design challenges for low power and high

performance,” in Int. Symp. Low Power Electronics and Design, Aug.1999,

pp.163-168.

[6] Chandrakasan et.al, “Design considerations and tools for low voltage digital system

design,” in proc. 33rd, Design Automation Conference, pp.113-118,199.

[7] J. Flynn, B. Waldo, “Power management in complex SoC design,”

 http://www.synopsys.com/sps.

[8] Y. Ye, S. Borkar, and V. De, “A new technique for standby leakage reduction in

high-performance circuits,” in Symp. VLSI Circuits Dig. Tech. Papers, 1998, pp.

40–41.

http://www.eecs.umich.edu/~jhayes/iscas/-UnitedSataes
http://www.tsmc.com/
http://www.synopsys.com/sps

51

[9] J. P. Halter and F. Najm, “A gate-level leakage power reduction method for ultra-

low- power CMOS circuits,” in Proc. IEEE Custom Integrated Circuits Conf.,

1997, pp. 475–478.

[10] Sagahyroom.A, Placer.J, Burmood.M, Massoumi.M “A VHDL-based simulation

methodology for estimating switching activity in static CMOS circuits,” in proc.

IEEE SAIC conf. 1988, pp.295-300.

[11] J.Placer, A.Sagahyroon and M. Massoumi, “A Framework for Estimating Maximum

Power Dissipation in CMOS Combinational Circuits Using Genetic Algorithms,”

IEEE Southeastern Symposium on System Theory, pp. 348-352, 1997.

[12] J.Y.Lin et al., “A Cell-Based Power Estimation in CMOS Combinational Circuits,”

Proceedings of the International Conference on Computer-Aided-Design, pp. 304-

309, 1994.

[13] A.P. Chandrakasan et al., “Low-Power CMOS Digital Design,” IEEE Journal of

Solid State Circuits, Vol. 27, No. 4, pp. 473-483, April 1992.

[14] Power Compiler user guide, Version Y-2006.06, June 2006.

[15] Design Compiler user guide, Version Y-2006.06, June 2006.

[16] VCS user guide, Version Y-2006.09, June 2006.

[17] Ashwin Balakrishnan, “An Experimental Study of the Accuracy of Multiple Power

Estimation Methods”, The University of Tennessee, Knoxville, MS thesis, August

2004.

[18] Synopsys‟s Power Compiler

 www.synopsys.com/Tools/Implementation/.../powercompiler_ds.pdf

