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Abstract 
 

 

 Accurate modeling and estimating of the power dissipation in the early stages of 

the design flow is becoming more important, as the aggressive scaling of transistors 

results in higher leakage currents. New and complex systems are being implemented 

using highly advanced Electronic Design Automation (EDA) tools. As the complexity 

increases, the dissipation of power has emerged as one of the very significant design 

constraints. Low power designs are not only used in small size applications like cell 

phones and handheld devices but also in high-performance computing applications. 

Numerous tools have emerged in recent years to address this issue of power consumption 

and power optimization. With a vast number of these power measurement tools emerging, 

analyzing power consumed by digital circuits has not only become easier but also more 

effective methods are deployed to optimize digital circuits to dissipate less power.  

In this work, we present a Verilog-based technique to estimate an accurate 

power dissipation of a design considering the state-dependency of the leakage power and 

path dependency of dynamic power. We develop the verilog models of cells which trace 

the probability of the static levels of the signals in the course of a simulation. Then, these 

data are used to calculate the power dissipation in the overall design. The power 

dissipation of some benchmark circuits is estimated using the proposed approach. 
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CHAPTER 

1   Introduction 

           

 

1.1 Overview of the Problem 
          With the increase in speed, mobility and miniaturization of current electronic 

products, the power consumption of these products has become a major design factor. 

Especially for mobile devices, the power consumption determines the battery life-time, 

the generated heat and the required heat dispersion measures. Therefore, the designers 

and consumers of electronic devices, as well as environmental considerations, demand a 

reduction in the power dissipation of digital circuits.  

 

        Digital circuit consists of a number of interconnected logic gates which together 

perform a function on one of more input signals. Every time an input signal changes, the 

change propagates via the gates through the circuit, causing signal switching activity in 

every place where the signal propagates to. This signal switching activity causes a current 

to charge or discharge the capacitive load of CMOS gates, which results in power 

dissipation. This power dissipation depends on the CMOS fabrication technology, 

operating frequency, but most of all on the switching activity per clock cycle within the 

digital circuit. 

 

         The increasing in usage of hand-held wireless devices and Internet appliances, there 

is a corresponding increased need for employing low-power design methodologies. One 

of the important requirements to know during a design process is how much power the 

circuit should dissipate considering its application. So after the designer writes the 

required code, keeping in mind all the specifications that have been given to him, a power 

calculation needs to be done to confirm if the design meets the required specification. 
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This is done prior to sending the chip for fabrication. So it is extremely important to get 

accurate power values using power determining tools running them at certain input 

conditions. 

 

          Numerous EDA (Electronic Design Automation) tools have been developed to not 

only determine power but also help in power reduction. Some of these tools are targeted 

pacifically for use in the power domain. The usage of these tools is classified depending 

on the layer of abstraction they are used in. The three main layers of abstraction include 

the RTL (Register Transfer Level), the gate and the transistor level. Though there are 

numerous tools that can be used at each of these levels, this thesis mainly concentrates on 

using Synopsys tools. The various power values that can be calculated using one of the  

tools is given in brief in the next section with detailed information following in the 

subsequent chapter. 

 

1.2 Literature Review 

         A. Nourivand, Chunyan Wang and M. Omair Ahmad [1], have proposed Accurate 

modeling and estimating of the leakage power dissipation in the early stages of the design 

flow is becoming more important, as the aggressive scaling of transistors results in higher 

leakage currents. In this work, they present a VHDL-based technique to estimate an 

accurate leakage power of a design considering the state-dependency of the leakage 

power. They develop the VHDL models of cells which trace the probability of the static 

levels of the signals in the course of a simulation. Then, these data are used to calculate 

the leakage power in the overall design. The leakage power of some benchmark circuits 

is estimated using the proposed approach and the results are compared with those 

obtained from SPICE simulation, in order to illustrate the viability of the proposed 

technique. It is shown that the values of the leakage power obtained by the proposed 

technique are comparable to those obtained by SPICE, with a reduction of about three 

orders of magnitude in the simulation time.  
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         They have proposed a VHDL-based technique for dynamic and leakage power 

estimation of combinational gate-level circuits. Integrating simulation and power 

estimation into an environment is useful for an improved utilization of VHDL for the 

power critical deep- submicron VLSI systems design. In this approach, they have 

developed power models of cells which trace the state probability as well as the transition 

probability of the signals in the course of a simulation. These data are later used to 

accurately estimate the state-dependent leakage and path-dependent dynamic power 

dissipation of the design. It is demonstrated that the proposed scheme can achieve 

accuracy comparable to that of SPICE in leakage power estimation, with about three 

orders of magnitude speedup in simulation time. The results also show that the leakage 

power contribution to the total power dissipation is not significant for this particular 0.18 

μm technology. Therefore, the high accuracy offered by the proposed technique is more 

desirable for more advanced technologies which have considerable leakage currents. 

 

         Yibin Ye, Shekhar Borkar and Vivek De [4] have proposed a new standby leakage 

control technique, which exploits the leakage reduction offered by transistor stacks with 

“more than one „off‟ device”, demonstrates 2X reduction in standby leakage power for a 

32-bit static CMOS adder in a low-Vt, sub-IV, and 0.1 μm technology. Leakage reduction 

is achieved with minimal overheads in area, power and process technology. The 

dynamics of leakage reduction due to transistor stacks, and its influence on the overall 

leakage power of large circuits are elucidated for the first time. 

 

          They demonstrated a new standby leakage control technique, which exploits the 

leakage reduction offered by transistor stacks with “more than one „off„device”. Up to 2X 

reduction in standby leakage power can be achieved by this technique with minimal 

overheads in area, power and process technology. We also elucidate the dynamics of 

leakage reduction due to transistor stacks, and its influence on overall leakage power of 

large circuits. 

 

         Vivek De and Shekhar Borkar [8] discussed key barriers to continued scaling of 

supply voltage and technology for microprocessors to achieve low-power and high-
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performance. In particular, they focus on short-channel effects, device parameter 

variations, excessive subthreshold and gate oxide leakage, as the main obstacles dictated 

by fundamental device physics. Functionality of special circuits in the presence of high 

leakage, SRAM cell stability, bit line delay scaling, and power consumption in clocks & 

interconnects, will be the primary design challenges in the future. Soft error rate control 

and power delivery pose additional challenges. All of these problems are further 

compounded by the rapidly escalating complexity of microprocessor designs. The 

excessive leakage problem is particularly severe for battery-operated, high-performance 

microprocessors. 

 

         This paper has evaluated past trends in technology. It shows that trends in 

performance, density, and power have followed the scaling theory. If these trends 

continue, then power delivery and dissipation will be the biggest limiters. To overcome 

these limiters, die size growth will have to be constrained, and supply voltage scaling will 

have to continue. The threshold voltage will have to scale to meet the performance 

demand, resulting in higher subthreshold leakage current, limiting functionality of special 

circuits, increasing leakage power, soft error susceptibility, short channel effects, and 

device parameter variations. These are some of the major challenges that circuit designers 

will face in the future technologies. 

 

        A.Sagahyroon, J. Placer, M. Burmood and Mehran Massoumi [10], have proposed 

that recently, power dissipation has become a major design constraint for complex VLSI 

circuits. Designers need tools that rapidly, but accurately, estimate power dissipation in a 

given design. Two categories of tools are useful for this purpose: one is power 

optimization tools and algorithms tightly integrated with logic optimization, and second 

is an analysis tool for estimating the power consumption in an existing netlist. This work 

addresses the latter issue by employing a VHDL-based approach for analysis of power 

consumption in static CMOS combinational logic designs. The circuits under test will be 

either the result of logic synthesis with various optimization constraints or hand designs 

done through schematic capture. The proposed approach will also be used to analyze 

various known architectures of the same network for power consumption, such as various 
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forms of adders. The work presented in this article consists of three phases: (1) Designing 

smart VHDL simulation models that first measure transition activity at each node of the 

netlist and then estimate the power based on this activity and on fanout at each node, (2) 

the generation of smart input stimuli that achieve an upper bound on transition activity 

and hence power consumption, and third is an analysis of different topologies of the same 

circuit. The estimates produced by this analysis may provide useful feedback to designers 

or synthesis tools, allowing for better exploration of the design space.  

 

         Incorporating power-estimation techniques within VHDL is an appreciable step 

towards the utilization of VHDL as the basis for an integrated design environment for 

VLSI circuits. A critical issue in trying to estimate maximum power dissipation in CMOS 

circuits is that power is input-pattern dependent. Hence, the number of simulations that 

must be performed in order to find the maximum power dissipation is exponential in the 

number of inputs to circuit. In this work they proposed and made use of smart stimuli 

generated by utilizing genetic algorithms to develop smart test benches that tend to 

maximize the switching activity in structural VHDL models. In some cases the 

maximizing vectors have succeeded in producing the maximum possible activity in an 

economical CPU time. In addition, different topologies for the same network were 

compared for power consumption. Certain topologies exhibited superior power savings 

compared to others. Glitching has persistently contributed approximately 30% of the 

switching activity, making it a primary concern when designing for reduced power. 

 

1.3 Out Line of the Thesis 
        Chapter 2 covers the basic concepts of the work. Chapter 3 discusses the tools used 

for the work. Chapter 4 gives experimental design. Chapter 5 presents experimental 

results. Chapter 6 shows the conclusion and future work.  
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CHAPTER 

2   Basic Concepts of Power Dissipation 

 

2.1 Need for Low Power Design  

          In the early 1970‟s designing digital circuits for high speed and minimum area 

were the main design constraints. Most of the EDA tools were designed specifically to 

meet these criteria. Power consumption was also a part of the design process but not very 

visible. The reduction of area of digital circuits is not as big issue today because with new 

IC production techniques, many millions of transistors can be fit in a single IC. However, 

shrinking sizes of circuits have paved the way for reduced power consumption in order to 

have an extended battery life. Also in submicron technologies, there is a limitation on the 

proper functioning of circuits due to heat generated by power dissipation. Market forces 

are demanding low power for not only better life but also reliability, portability, 

performance, cost and time to market. This is very true in the field of personal computing 

devices, wireless communications systems, home entertainment systems, which are 

becoming popular now-a-days. Devices that are also used for high-performance 

computing particularly need to dissipate less power to function correctly and for a long 

period of time.  

          Keeping all these in mind, low power design has become one of the most important 

design parameters for VLSI (Very Large Scale Integration) systems.  

 

2.2 Sources of Power Dissipation 

             Generally, power is consumed when capacitors in the circuits are either charged 

or discharged due to switching activities. So at higher levels of a system this power 

dissipation is conserved by reducing the switching activities which is done by shutting 
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down portions of the system when they are not needed. Large VLSI circuits contain 

different components like a processor, a functional unit and controllers. The idea of 

power reduction is to stop any of the components of the processor when they are not 

needed so that less power will be dissipated when the processor is operating.  

The power dissipation of digital CMOS circuits can be described by  

Pavg = P dynamic + P short-circuit + P leakage + P static 

Pavg is the average power dissipation, P dynamic is the dynamic power dissipation due to 

switching of transistors, P short-circuit is the short-circuit current power dissipation when 

there is a direct current path from power supply down to ground , P leakage is the power 

dissipation due to leakage currents, P static and is the static power dissipation[2]. Fig.1 

describes the different components of power dissipation. 

 

2.2.1 Static Power  

           Static power is the power dissipated by a gate when it is not switching that is, 

when it is inactive or static. Ideally, CMOS (Complementary Metal Oxide 

Semiconductor) circuits dissipate no static (DC) power since in the steady state there is 

no direct path from Vdd to ground. This scenario can never be realized in practice, since 

in reality the MOS transistor is not a perfect switch. There will always be leakage 

currents [2], sub threshold currents, and substrate injection currents, which give rise to 

the static component of power dissipation. The largest percentage of static power results 

from source-to-drain sub threshold voltage, which is caused by reduced threshold 

voltages that prevent the gate from completely turning off.  

 

             The diode leakage occurs when a transistor is turned off and another active 

transistor charges up or down the drain with respect to the first transistor‟s bulk potential. 

The resulting current is proportional to the area of the drain diffusion and the leakage 

current density. The diode leakage is typically 1 Pico A for a 1 micro-meter minimum 

feature size! The sub threshold leakage current for long channel devices increases linearly 

with the ratio of the channel width over channel length and decreases exponentially with 

VGS – Vt where VGS is the gate bias and Vt is the threshold voltage. Several hundred 
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millivolts of “off bias” (say, 300-400 mV) typically reduce the sub threshold current to 

negligible values. With reduced power supply and device threshold voltages, the sub 

threshold current will however become more pronounced. In addition, at short channel 

lengths, the sub threshold current also becomes exponentially dependent on drain voltage 

instead of being independent of VDS. The sub threshold current will remain 102 - 105 

times smaller than the “on current” even at submicron device sizes. 

 

2.2.2 Dynamic Power 

          Dynamic power is the power dissipated when the circuit is active. A circuit is 

active anytime the voltage on net changes due to some stimulus applied to the circuit. In 

other words, dynamic power dissipation is caused by the charging. Because voltage on an 

input net can change without necessarily resulting in logic transition in the output, 

dynamic power can be dissipated even when an output net doesn‟t change its logic state. 

This component of dynamic power dissipation is the result of charging and discharging 

parasitic capacitances in the circuit.  

Dynamic power of a circuit is composed of  

a) Switching power  

b) Internal power  

 

2.2.2.1 Switching power  

            The switching power of a driving cell is the power dissipated by the charging and 

discharging of the load capacitance at the output of the cell. The total load capacitance at 

the output of a driving cell is the sum of the net and gate capacitances on the driving 

output. The charging and discharging are result of logic transitions. Switching power 

increases as logic transitions increase. Therefore, the switching power [2] of a cell is a 

function of both the total load capacitance at the cell output and the rate of logic 

transitions. Switching power comprises 70-90 percent of the power dissipation of an 

active CMOS circuit.  

             Dynamic power consumption depends linearly on the physical capacitance being 

switched [2]. So, in addition to operating at low voltages, minimizing capacitances offers 
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another technique for minimizing power consumption. In order to consider this 

possibility we must first understand what factors contribute to the physical capacitance of 

a circuit.  

 

             Power dissipation is dependent on the physical capacitances seen by individual 

gates in the circuit. Estimating this capacitance at the behavioral or logical levels of 

abstraction is difficult and imprecise as it requires estimation of the load capacitances 

from structures which are not yet mapped to gates in a cell library; this calculation can 

however be done easily after technology mapping by using the logic and delay 

information from the library.  

 

             Interconnect plays an increasing role in determining the total chip area, delay and 

power dissipation, and hence, must be accounted for as early as possible during the 

design process. The interconnect capacitance estimation is however a difficult task even 

after technology mapping due to lack of detailed place and route information. 

Approximate estimates can be obtained by using information derived from a companion 

placement solution or by using stochastic / procedural interconnect models. Interconnect 

capacitance estimation after layout is straight-forward and in general accurate.  

 

2.2.2.2 Internal power  

             Internal power is any power dissipated within the boundary of a cell. During 

switching, a circuit dissipates internal power by the charging or discharging of any 

existing capacitances internal to the cell. Internal power includes power dissipated by a 

momentary short circuit between the P and N transistors of a gate, called short-circuit 

power. In most simple library cells, internal power is due mostly to short-circuit power. 

Library developers can model internal power by using the internal power library group 

[2]. The short-circuit (crowbar current) power consumption for an inverter gate is 

proportional to the gain of the inverter, the cubic power of supply voltage minus device 

threshold, the input rise/fall time, and the operating frequency. The maximum short 

circuit current flows when there is no load; this current decreases with the load. If gate 

sizes are selected so that the input and output Rise/fall times are about equal, the short-
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circuit power consumption will be less than 15% of the dynamic power consumption. If, 

however, design for high performance is taken to the extreme where large gates are used 

to drive relatively small loads, then there will be a stiff penalty in terms of short-circuit 

power consumption.  

 

2.2.3 Short-Circuit Power 

          The short-circuit power consumption, P short-circuit, is caused by the current flow 

through the direct path existing between the power supply and the ground during the 

transition phase.  

 

2.2.4 Leakage Power  

            The nMOS and PMOS transistors used in a CMOS logic circuit commonly have 

non-zero reverse leakage and sub-threshold currents. These currents can contribute to the 

total power dissipation even when the transistors are not performing any switching 

action. The leakage power dissipation, P leakage is caused by two types of leakage 

currents  

a) Reverse-bias diode leakage current  

b) Sub threshold current through a turned-off transistor channel. 

   

    Rising signal                                      vdd                                                  Falling signal 

           at IN                                                                            V                          at OUT                                                                        

  V                                               Ilk  

                                     P       T 

                 T    IN                        Isc                                                   OUT 

                  Isw          

                       N   Ilk                                                 C load 

 

 GND   

 

Ilk-Leakage Current 

Isc- Short Circuit Current 

Isw-Switching Current 

Fig.1 Different components of power dissipation. 
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CHAPTER 

3   Tools 

       There has been a variety of tools involved in this thesis. Even though, this thesis is 

all about power calculations of circuits which are done using tools; there are other tools 

that have been used prior to the usage of power tools to give the required input to the 

power tools. More emphasis is given to these tools that are mainly involved in power 

estimation. The usage of tools has been classified as Power tools and Non-Power tools. 

 

3.1. Non Power Tools 
          Non-power tools include Simulation tools, Synthesis tools and Waveform viewers. 

The tools that are discussed in this chapter are some of the non-power tools involved in 

the entire design flow. A short description of each of these tools along with their working 

flow is given in this chapter to understand their functionality. The subsequent chapter 

discusses each of the power tools in detailed manner as most of the thesis involves the 

use of these power tools. The following chapter also discusses the design flow from code 

writing to spice net-list simulation, clearly explaining the usage of these tools at the 

respective level. 

 

3.1.1. Simulation Tool 

          Initially, to start with the Verilog or VHDL code for a particular design is written 

and tested. Simulation is done using Mentor‟s Modelsim for both VHDL and Verilog or 

other Verilog simulators. Modelsim is a simulation and a debugging tool for VHDL, 

Verilog, and other mixed-language designs from Mentor Graphics. The basic simulation  
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Fig.3.1 Modelsim simulation flow 

flow is as shown in Figure 3.1. To start with a working library is created and the code is 

compiled using the commands depending upon whether the code is VHDL or Verilog.                

Verilog Compiled Simulator (VCS) from Synopsys is a high-performance, high-capacity 

Verilog simulator that incorporates advanced high-level abstraction, verification into an 

open platform.  

The basic work flow for VCS [15] consists of two basic steps:  

a) Compiling source files into executable binary files  

b) Running the executable binary file  

This two-step approach simulates the design faster and uses less memory than other 

interpretive simulators. The basic design flow is given in Figure 3.2. 

Creating a Working Library 

Compile Design Units 

Run Simulation 

Debug Results 



13 
 

 

Fig 3.2 VCS work flow 
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3.1.2. Synthesis Tool 

          Design Compiler [15] is the core of the Synopsys synthesis software products. It 

comprises tools that synthesize HDL designs into optimized technology-dependent, gate-

level designs. It supports a wide range of flat and hierarchical design styles and can 

optimize both combinational and sequential designs for speed, area, and power.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3 Design Compiler and Design Flow 
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          Design Compiler reads and writes design files in all the standard EDA formats, 

including Synopsys internal database (.db) and equation (.eqn) formats. In addition, 

Design Compiler provides links to EDA tools, such as place and route tools, and to post-

layout resynthesis techniques, such as in-place optimization. Design Compiler products 

include DC Professional, DC Expert, DFT Compiler, DC Ultra, and DC Ultra Plus. 

The basic Design Compiler [15] design flow is given in Figure 3.3. 

You use Design Compiler for logic synthesis, which is the process of converting a design 

description written in a hardware description language such as Verilog or VHDL into an 

optimized gate-level netlist mapped to a specific technology library. The steps in the 

synthesis process are as follows: 

1. The input design files for Design Compiler are often written using a hardware 

description language (HDL) such as Verilog or VHDL. 

2. Design Compiler uses technology libraries, synthetic or DesignWare libraries, and 

symbol libraries to implement synthesis and to display synthesis results graphically. 

During the synthesis process, Design Compiler translates the HDL description to 

components extracted from the generic technology (GTECH) library and DesignWare 

library. The GTECH library consists of basic logic gates and flip-flops. The DesignWare 

library contains more complex cells such as adders and comparators. Both the GTECH 

and DesignWare libraries are technology independent, that is, they are not mapped to a 

specific technology library. Design Compiler uses the symbol library to generate the 

design schematic. 

3. After translating the HDL description to gates, Design Compiler optimizes and maps 

the design to a specific technology library, known as the target library. The process is 

constraint driven. Constraints are the designer‟s specification of timing and 

environmental restrictions under which synthesis is to be performed.  

4. After the design is optimized, it is ready for test synthesis. Test synthesis is the process 

by which designers can integrate test logic into a design during logic synthesis. Test 

synthesis enables designers to ensure that a design is testable and resolve any test issues 

early in the design cycle. The result of the logic synthesis process is an optimized gate-

level netlist, which is a list of circuit elements and their interconnections. 
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5. After test synthesis, the design is ready for the place and route tools, which place and 

interconnect cells in the design. Based on the physical routing, the designer can back-

annotate the design with actual interconnect delays; Design Compiler can then 

resynthesize the design for more accurate timing analysis. 

 

3.2. Power Tools 
             This thesis involves the usage of Synopsys power tools. The power products are 

tools that comprise a complete methodology for low-power design. Synopsys power tools 

offer power analysis and optimization throughout the design cycle, from RTL to the gate 

level. Analyzing power early in the design cycle can significantly affect the quality of the 

design. Improvements made to the design while it is at RTL level can get even better 

results eventually. Not only these power tools do accurate measurements but also can 

help in calculating power quicker. 

 

3.2.1. Power Compiler 

 Power Compiler [14] is an add-on product to Design Compiler. The Power 

Compiler tool optimizes the design for power. Working in conjunction with the Design 

Compiler tool, Power Compiler provides simultaneous optimization for timing, power 

and area. In addition to the standard inputs to synthesis (RTL or gate-level net-list, 

technology library, design constraints, and parasitics), Power Compiler uses two other 

inputs: Switching activity of design elements and power constraints. It contains all the 

analysis capabilities of DesignPower.  

            Power Compiler uses the same power analysis engine as Design Power. This 

allows Power Compiler to the use the same switching activity for optimization that 

Design Power uses for analysis. It accepts either user-defined switching activity, 

switching activity from simulation, or a combination of both. It provides RTL clock 

gating and optimizes the circuit based on circuit activity, capacitance, and transition 

times. Power Compiler cannot only be used as a standalone product but also can be used 

in coordination with Design Compiler, Module Compiler, Physical Compiler and Floor 

plan Manager. 
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3.2.3.1. Power Compiler Methodology 

           Power Compiler [14] is used at RTL and Gate level to calculate power and do 

power optimization depending on the need. At each level of abstraction, simulation, 

analysis and optimization can be performed to refine the design before moving to the next 

lower level. Simulation and the resultant switching activity gives the analysis and 

optimization the necessary information to refine the design before going to next lower 

level of abstraction. The higher the level of design abstraction, the greater the power 

savings can be achieved. The following Figure3.4 describes the power flow at each of the 

abstraction level. Figure 3.5 shows power flow from RTL to Gate level.  

 

          Cell internal power and net toggling directly affect dynamic power of a design.  

To report or optimize power, Power Compiler requires toggle information for the design. 

This toggle information is called Switching Activity. 

 

 

 

 

 

 

                      Switching Activity 

 

 

 

 

 

 

 

 

Fig.3.4 Power flow at each of the abstraction level 
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Fig.3.5 Power flow from RTL to Gate level 
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          Power Compiler models switching activity in terms of static probability and toggle 

rate. Static probability is the probability that a signal is at a certain logic state and is 

expressed as a number between 0 and 1. It is calculated during simulation of the design 

by comparing the time of a signal at a certain logic state to the total time of the 

simulation. Toggle rate is the number of logic-0-to-logic-1 and logic-1-to-logic-0 

transitions of a design object per unit of time. 
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CHAPTER 

4   Experimental Design 

           

         The following ISCAS benchmark circuits [3] were tested as part of a research project. 

The research work involved was to create benchmark circuits for best PA (Power and Area) 

by exploring the best possible approach to improve those parameters. This thesis involves 

calculating the power of these circuits.  

 

The following are the ISCAS benchmark circuits used in this experiment 

a).ISCAS 85 Circuits 

1) C432 (27-channel interrupt controller). 

2) C499 (32-bit Single-Error-Correcting Circuit). 

3) C880 (8-bit ALU). 

4) C1908 (16-bit error detector/corrector). 

5) C2670 (12-bit ALU and controller). 

6) C3540 (8-bit ALU with binary and BCD arithmetic, and logic and shift operations). 

7) C5315 (9-bit ALU). 

8) C6288 (16x16 Multiplier). 

b).74x Series Circuits 

1) 74181 (4-Bit ALU/Function). 
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2) 74182 (carry look ahead circuit). 

3) 74283 (Fast Adder Circuit). 

4) 74L85 (4-Bit Magnitude Comparator). 

 

4.1. Basic Synthesis Flow 
           Figure 4.1 shows the basic synthesis flow [15]. You can use this synthesis flow in 

both the design exploration and design implementation stages of the high-level design 

flow discussed previously. 

 

           Also listed in Figure 4.1 are the basic dc_shell commands that are commonly used 

in each step of the basic flow. For example, the commands analyze, elaborate, and read 

file are used in the step that reads design files into memory. All the commands shown in 

Figure 4.1 can take options, but no options are shown in the figure. 

The basic synthesis flow consists of the following steps: 

 

1. Develop HDL Files 

          The input design files for Design Compiler are often written using a hardware 

description language (HDL) such as Verilog or VHDL. These design descriptions need to 

be written carefully to achieve the best synthesis results possible. When writing HDL 

code, you need to consider design data management, design partitioning, and your HDL 

coding style. Partitioning and coding style directly affect the synthesis and optimization 

processes. 

Note: 

This step is included in the flow, but it is not actually a Design Compiler step. You do not 

create HDL files with the Design Compiler tools. 

 

2. Specify Libraries 

          You specify the link, target, symbol, and synthetic libraries for Design Compiler by 

using the link_library, target_library, symbol_library, and synthetic_library commands. 

The link and target libraries are technology libraries that define the semiconductor 
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vendor‟s set of cells and related information, such as cell names, cell pin names, delay 

arcs, pin loading, design rules, and operating conditions. The symbol library defines the 

symbols for schematic viewing of the design. You need this library if you intend to use 

the Design Vision GUI. In addition, you must specify any specially licensed DesignWare 

libraries by using the synthetic_library command. (You do not need to specify the 

standard Design Ware library.) 

 

3. Read Design 

          Design Compiler can read both RTL designs and gate-level netlists. Design 

Compiler uses HDL Compiler to read Verilog and VHDL RTL designs. It has a 

specialized netlist reader for reading Verilog and VHDL gate-level netlists. The 

specialized netlist reader reads netlists faster and uses less memory than HDL Compiler. 

Design Compiler provides the following ways to read design files:  

• The analyze and elaborate commands 

• The read_file command 

• The read_vhdl and read_verilog commands.  

These commands are derived from the read_file -format VHDL and read_file -format 

verilog commands.  

 

4. Define Design Environment 

          Design Compiler requires that you model the environment of the design to be 

synthesized. This model comprises the external operating conditions (manufacturing 

process, temperature, and voltage), loads, drives, fanouts, and wire load models. It 

directly influences design synthesis and optimization results. You define the design 

environment by using the set commands listed under this step of Figure 4.1.  

 

5. Set Design Constraints 

          Design Compiler uses design rules and optimization constraints to control the 

synthesis of the design. Design rules are provided in the vendor technology library to 

ensure that the product meets specifications and works as intended. Typical design rules 

constrain transition times (set_max_transition), fanout loads (set_max_fanout), and  
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capacitances (set_max_capacitance). These rules specify technology requirements that 

you cannot violate. (You can, however, specify stricter constraints.) Optimization  

constraints define the design goals for timing (clocks, clock skews, input delays, and 

output delays) and area (maximum area). In the optimization process, Design Compiler 

attempts to meet these goals, but no design rules are violated by the process. You define 

these constraints by using commands such as those listed under this step in Figure 4.1. To 

optimize a design correctly, you must set realistic constraints. 

 

6. Select Compile Strategy 

          The two basic compile strategies that you can use to optimize hierarchical designs 

are referred to as top down and bottom up. In the top-down strategy, the top-level design 

and all its subdesigns are compiled together. All environment and constraint settings are 

defined with respect to the top-level design. Although this strategy automatically takes 

care of interblock dependencies, the method is not practical for large designs because all 

designs must reside in memory at the same time. In the bottom-up strategy, individual 

subdesigns are constrained and compiled separately. After successful compilation, the 

designs are assigned the dont_touch attribute to prevent further changes to them during 

subsequent compile phases. Then the compiled subdesigns are assembled to compose the 

designs of the next higher level of the hierarchy (any higher-level design can also 

incorporate unmapped logic), and these designs are compiled. This compilation process is 

continued up through the hierarchy until the top-level design is synthesized. This method 

lets you compile large designs because Design Compiler does not need to load all the 

uncompiled subdesigns into memory at the same time. At each stage, however, you must 

estimate the interblock constraints, and typically you must iterate the compilations, 

improving these estimates, until all subdesign interfaces are stable. Each strategy has its 

advantages and disadvantages, depending on your particular designs and design goals. 

You can use either strategy to process the entire design, or you can mix strategies, using 

the most appropriate strategy for each subdesign.  
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7. Optimize the Design 

          You use the compile command to invoke the Design Compiler synthesis and 

optimization processes. Several compile options are available. In particular, the 

map_effort option can be set to low, medium, or high. In a preliminary compile, when 

you want to get a quick idea of design area and performance, you set map_effort to low. 

In a default compile, when you are performing design exploration, you use the medium 

map_effort option. Because this option is the default, you do not need to specify 

map_effort in the compile command. In a final design implementation compile, you 

might want to set map_effort to high. You should use this option judiciously, however, 

because the resulting compile process is CPU intensive. Often setting map_effort to 

medium is sufficient. 

 

8. Analyze and Resolve Design Problems 

          Design Compiler can generate numerous reports on the results of a design synthesis 

and optimization, for example, area, constraint, and timing reports. You use reports to 

analyze and resolve any design problems or to improve synthesis results. You can use the 

check_design command to check the synthesized design for consistency. Other check_ 

commands are available. 

 

9. Save the Design Database 

          You use the write command to save the synthesized designs. Remember that 

Design Compiler does not automatically save designs before exiting. You can also save 

in a script file the design attributes and constraints used during synthesis. Script files are 

ideal for managing your design attributes and constraints. 

 

4.2. Power Estimation Techniques 
          Power values for each of these circuits are done using power tools of Synopsys 

spread through two levels of abstraction, RTL level and Gate level. Power calculation for 

each of the tools at a specific level is done using a different methodology and with other 

non-power tools involved. The first method involves using Power Compiler with RTL 

level switching activity and the second method involves using Power Compiler with Gate 
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Level switching activity. The accuracy of the power values obtained using these tools 

gets better as we move from RTL level to gate level. This is because the information 

required for calculating accurate power of a circuit is given in more detail as the level 

goes to the lower levels of abstraction and also the tools involved get more complex at 

those levels. Finally, a table is made with power values filled for each of the circuit. 

 

4.3. Power Estimation Methodology  
          The following Figure 4.2 shows the methodology [14] of power calculation using 

the combination of Power Compiler and Design Compiler. The flow of data between the 

different steps and tools used are also shown. Before starting to calculate power using 

Power Compiler the desired gate-level net-list of the design should be first generated. The 

power methodology starts with the RTL design and finishes with a power-optimized gate-

level net-list. Ultimately, Power Compiler is used to calculate power using the gate-level 

net-list produced by the Design Compiler or power-optimized gate net-list produced by 

Power Compiler itself.  

 

         As seen in the figure most of the processes that take place are using Design 

Compiler, but the simulation process that is shown is outside Design Compiler tool and is 

done as part of power calculation. The main purpose of simulation is to generate 

information about the switching activity of the design and create a file called Back-

annotation. 

 

        This file can contain switching activity from RTL simulation or gate-level 

simulation. Initially, the RTL design is given to the HDL compiler to create a technology-

independent format called as GTECH design. This is as a result of analyzing and 

elaborating the design by HDL compiler. This formatted design is given as an input to 

Design Compiler. Before it is compiled by the Design Compiler, “rtl2saif” command is 

used to create forward-annotation file which is later used for simulation. The formatted 

design GTECH is later given as input to Design Compiler which produces an output 

which is given to Power Compiler.  
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Fig.4.2 Power Estimation Methodology in Power Compiler 
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             The Forward-annotation SAIF file is given as an input to do RTL simulation 

which gives a back-annotation SAIF file which is used by Power Compiler. This forward 

annotated file contains directives that determine which design elements to be traced 

during simulation. Gate-level simulation can also use a library forward-annotation file. 

 

            This forward-annotation file used for gate level simulation has different 

information compared to RTL forward-annotation file. This file contains information 

from the technology library about cells with state and path-dependent power models. 

“Lib2saif” command is used to get this forward-annotation file. 

 

          During power analysis, Power Compiler uses the annotated switching activity to 

evaluate the power consumption of the design. During power optimization, Power 

Compiler uses the annotated switching activity to make decisions about the design. 

 

4.3.1. Capturing Forward and Backward Switching Activity  

          Power Compiler [14] requires information about the switching activity of the 

design to do power analysis. The forward and back-annotation files are in SAIF format. 

SAIF is an ASCII format developed at Synopsys to facilitate the interchange of 

information between simulators and Synopsys power tools. Some of the power tools 

cannot understand SAIF file so in that case VCD file is used. Depending on the tool, 

either RTL level switching activity or Gate-level switching activity is used. Power 

Compiler has a methodology that enables the use of switching activity from RTL 

simulation as well as from Gate-level simulation. Using gate-level simulation the power 

values are much more accurate but doing that is time consuming. During RTL and gate 

level simulation the designer can direct the simulator to monitor and write out the 

switching activity of certain important elements in the design. For accurate analysis, 

synthesis-invariant elements should be closely monitored during RTL simulation. These 

are the elements that are not changed during simulation like primary inputs, sequential 

elements, black boxes, three-state devices and hierarchical ports. 
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4.4. Power Optimization  
           Power optimization achieved at higher levels of abstraction (RTL) has an impact 

in reducing power in the final gate-level optimization. Power Compiler performs clock 

gating when the design is elaborated using “-gate_clock” option. Design generally has 

synchronous load-enable registers. These registers are formed using feedback loops by 

Design Compiler.  

 

          These registers maintain the same logic value through multiple cycles and 

unnecessarily use power. When the “-gate_clock” option is used HDL compiler 

introduces gates in the clock network before Design Compiler does its processing. During 

the next step, Design Compiler checks the gated clock introduced by HDL compiler and 

uses simple registers without synchronous load-enabled functionality thus saving power. 

RTL clock gating is achieved without affecting timing or area of the design.  

 

          At the gate level, Design Compiler and Power Compiler are used to create gate-

level net-list optimized for power. Once the RTL clock gating [14] is done, the next 

output is the gate-level net-list which will be optimized for power. First constraints are 

set for timing and area. Then the design is compiled using the Design Compiler. This 

creates a gate-level design on which the switching activity can be annotated using the 

back-annotation file. The back-annotation file is read into Power Compiler using 

“read_saif” command. After this power constraints are set to trigger power optimization 

by Power Compiler. Then the design is compiled using Power Compiler. Using the 

switching activity and power constraints, Power Compiler produces a gate-level net-list 

which is optimized for timing, power and area. Switching activity from RTL simulation 

provides good power optimization results. However, switching activity from gate level 

simulation provides much more accurate analysis and optimization. The power analysis 

of the gate-level design can be done at various points in the entire methodology. Once 

annotating the switching activity from the back-annotation file, power can be analyzed 

before compiling using Power Compiler. This is done before power optimization. Once 

doing power optimization the power values can be compared. “report_power” is the 

command used to get detailed power results. 
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CHAPTER 

5      Experimental Results  

           

 

          This chapter gives details on the various results that have been obtained using the 

different circuits that were discussed earlier. Results are given in tables: 

1). Power estimation results for ISCAS 85 bench mark circuits in different Conditions. 

2). Power estimation results for 74x series benchmark circuits in different Conditions. 

         The following section discusses the different optimized circuits that are obtained 

using Design Vision and power estimation results obtained by using power Compiler. 

 

1. Design Vision: 

         Design Vision is a GUI and an integrated part of the Design Compiler. The 

optimized gate level netlist is obtained by using Design Vision for all the benchmark 

circuits. 

 

2. Power Compiler:  

        The power value is calculated using Power Compiler at the gate level level. The 

inputs to calculate power are Gate-level Net-list, RTL switching activity, obtained from 

Design Compiler. 

 

 

 

 



31 
 

5.1. ISCAS 85 benchmark Circuits 

 

 

 

Fig.5.1 Optimized gate level netlist for C432 
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Fig.5.2 Optimized gate level netlist for C499 
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Fig.5.3 Optimized gate level netlist for C880 
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Fig.5.4 Optimized gate level netlist for C1908 
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Fig.5.5 Optimized gate level netlist for C2670 
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Fig.5.6 Optimized gate level netlist for C3540 
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Fig.5.7 Optimized gate level netlist for C5313 
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Fig.5.7 Optimized gate level netlist for C6288 
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Table 5.1 Power and Area Estimation Results for ISCAS benchmark in 

Typical Corner 
 

 

 

Circuit 

 

 

 

Function 

 

Typical Corner 

 

 

 

Area 

(µm
2
) 

25
0 

C 

 

Leakage Power 

(nW) 

 

Dynamic Power 

(µW) 

C432 
27-Channel 

Interrupt 

Controller 

654.85 15.94 199.08 

C499 
32-Bit Single-

Error-Correcting 

Circuit 

2368.00 53.51 448.55 

C880 8-bit ALU 1187.20 33.92 379.44 

C1908 
16-bit error 

Detector/Corrector 

2111.70 50.25 358.20 

C2670 
12-bit ALU and 

controller 

3371.40 96.49 650.52 

C3540 
8-bit ALU with 

binary and BCD 

arithmetic, and 

logic and shift 

operations 

3803.40 100.99 799.55 

C5315 9-bit ALU 7028.10 213.28 1455.11 

C6288 16X16 Multiplier 20705.0 512.06 2853.00 
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Table 5.2 Power and Area Estimation results for ISCAS benchmark in Fast 

Corner 

 

 

 

Circuit 

 

 

 

Function 

 

Fast Corner 

 

 

 

Area 

(µm
2
)
  

0
0
 C 

 

Leakage Power 

(nW) 

 

Dynamic Power 

(µW) 

C432 
27-Channel 

Interrupt 

Controller 

4009.20 26.07 198.36 

C499 
32-Bit Single-

Error-Correcting 

Circuit 

1396.56 80.48 448.55 

C880 8-bit ALU 7621.50 67.80 378.36 

C1908 
16-bit error 

Detector/Corrector 

1021.51 67.27 354.60 

C2670 
12-bit ALU and 

controller 

1560.96 150.82 656.28 

C3540 
8-bit ALU with 

binary and BCD 

arithmetic, and 

logic and shift 

operations 

1550.50 162.11 802.79 

C5315 9-bit ALU 3096.57 353.96 1457.64 

C6288 16X16 Multiplier 8549.10 581.43 2624.39 
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5.2. 74x Series Circuits 

 

 

 

Fig.5.9 Optimized gate level netlist for 74181 
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Fig.5.10 Optimized gate level netlist for 74182 
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Fig.5.11 Optimized gate level netlist for 74283 
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Fig.5.12 Optimized gate level netlist for 74L85 
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Table 5.3 Power and Area Estimation results for 74x Series Circuits in 

Typical Corner 

 

 

 

Circuit 

 

 

Function 

Typical Corner  

 

Area 

(µm
2
) 

25
0
 C 

Leakage Power 

(nW) 

Dynamic power 

(µW) 

74181 4-bit ALU 341.23 48.93 93.60 

74182 4-bit CLA 59.60 1.95 20.16 

74283 4-bit Adder 258.74 8.26 37.08 

74L85 4-bit 

magnitude 

Comparator 

637.09 8.26 105.48 
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Table 5.4 Power and Area Estimation Results for 74x series Circuits in Fast 

Corner 

 

 

 

Circuit 

 

 

Function 

Fast  Corner  

 

Area 

(µm
2
) 

0
0
 C 

Leakage Power 

(nW) 

Dynamic power 

(µW) 

74181 4-bit ALU 1919.80 14.05 90.36 

74182 4-bit CLA 345.81 9.63 21.24 

74283 4-bit Adder 1341.90 8.96 37.08 

74L85 4-bit 

magnitude 

Comparator 

3609.50 10.76 105.84 
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CHAPTER 

6   Conclusion and Future Work 

 

6.1 Conclusion 
           

          A VHDL-based technique for dynamic and leakage power estimation of 

combinational gate-level circuits is proposed. Integrating simulation and power 

estimation into an environment is useful for an improved utilization of VHDL for the 

power critical deep-submicron VLSI systems design. In this approach, we have 

developed power models of cells which trace the state probability as well as the transition 

probability of the signals in the course of a simulation. These data are later used to 

accurately estimate the state-dependent leakage and path-dependent dynamic power 

dissipation of the design.  

 

             It can be concluded from these power estimations at different operating conditions 

of abstraction how inaccurate values at fast corner are compared to Typical Corner. The 

difference in the measurement can be seen in the tables for each of the circuit. Power 

estimation at that condition is done mainly because we can get faster results and can be 

used to decide on optimizing the circuit depending on the specification. The study proves 

that the methodology of calculating power is correct taking into example, benchmark 

circuit. There had been a lot of experiments conducted while performing power 

calculations using Power Compiler. It can be concluded from those experiments that 

proper usage of Power Compiler needs to be done keeping in the mind what circuit we 

are performing the simulations on, how much of accuracy is needed in the measurement 

and how fast we need the results.  
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         Careful understanding of all these are to be deployed to get the best results from the 

High-Speed circuit simulator. Since the thesis is about power estimation, it would have 

been good to compare the values of circuits than best PA. PA circuits are developed so 

they have got the best Power and Area. For bigger circuits this value has proved to be 

more than their Default circuit. The power results obtained using Power Compiler using 

RTL Switching Activity , Power Compiler using Gate-Level Switching used power 

characterized library provided by TSMC 65nm technology library,. Power and Area 

being the three major constraints in designing digital circuits there are applications like 

tactical missile applications and other defense related projects that would require circuits 

to be kept in a smaller area, dissipate power and perform really fast. Keeping this mind 

checking power in a best PA circuit is afterall useful to be implemented in these devices.  

 

         Some other conclusions are since power values are dependent not only the circuits 

but also on the tools used, versions of the tool, power characterized library used, the input 

stimulus used and what the output load is, it would be only valid to compare results from 

different EDA power tools only if the above are identical. It would not be possible to get 

to any specific conclusion analyzing the results of Power Estimation other than trying to 

rewrite the RTL code (VHDL or Verilog) to get lesser power value as much as possible. 

The values obtained using Power Compiler are considered to be the true values since all 

the inputs given to the tool contain fine information about the circuits and it would be 

logical to compare it with the testing of the real chips in the lab. The power values 

obtained by the other tools are used only to select the best possible netlist that are capable 

of giving less power when realized into real chips. 

 

6.2 Future Work 
           As seen in the conclusion, the real power comparison should have been between 

operating conditions of the circuits. With the flow of power estimation already developed 

as part of this work, Timing analysis for circuits can also be performed. Various values of 

power estimation can be reported. Placement and Routing of the circuits can be done 

using Synopsys tools as opposed to Cadence tools and power values obtained as the result 

of that can be compared. Other comparison like getting net-list using a different 
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extraction tool can also be done. With the use of sophisticated power measuring 

equipment, each of the circuit can be tested for power in real time for the same input 

vectors used here and values can be compared with the tool‟s estimation.  
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