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ABSTRACT 

Fatigue performance of structures is greatly affected by the presence of stress 

raisers such as fastener holes, manufacturing errors, corrosion pits, and maintenance 

damage which serve as nucleation sites for fatigue cracking. During service, sub-critical 

cracks nucleate from these sites and grow till catastrophic failure takes place when the 

crack length reaches a critical dimension. A structure can not be retired from service 

simply on detecting a fatigue crack. Hence, proper evaluation of fatigue crack propagation 

and residual life prediction of structures (aircraft, ship, railways, bridges, gas and oil 

transmission pipelines, etc.) are important to ensure the public safety, environmental 

protection, and economical consideration.  

 In this research a new methodology, based on ‘exponential model’ has been 

developed to determine the crack growth rate from raw laboratory crack length and number 

of cycle data. That concept has been subsequently extended to estimate the fatigue life of 

7020-T7 and 2024-T3 aluminium alloys under different loading conditions, i.e. constant 

amplitude loading, and constant amplitude loading interspersed with mode-I and mixed-

mode (I and II) spike overload. The exponential index of the proposed model has been 

correlated with various crack driving forces and material properties such that the 

differential form of the equation conforms to dimensional analysis concept. It has been 

observed that the methodology under predicts the fatigue life but, nonetheless, captured the 

measured life within a %025.0± error band. 

 Furthermore, two soft-computing methods, i.e. ANN and ANFIS, have been 

formulated and applied to predict the fatigue life under the same loading conditions in 

order to compare the relative performances of all the models. From the evaluation of 

results, it is seen that the fatigue life predicted from ‘exponential model’ gives reliable and 

conservative results in comparison to soft-computing methods which over-predict the life.  
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CHAPTER I  

INTRODUCTION 

1.1  Background  

Realistic fatigue life prediction of engineering structures and components is of 

prime importance from economic and safety point of view.  Conventional life prediction 

procedures are generally based on the safe-life approach. In this approach, components of a 

structure are replaced when the probability of failure reaches a prescribed level, even 

though some of them may have a significant residual life. Hence, it is a highly conservative 

approach coupled with a penalty on economy. To avoid this, the damage-tolerant approach 

is often a suitable alternative for life predictions. 

 Most load bearing structures and components are subjected to variable amplitude 

loading (VAL) rather than constant amplitude loading (CAL) during their service. The 

simplest type of VAL is the occurrence of high peak loads interspersed in constant 

amplitude loading (CAL). An aircraft experiences overload cycles during gust. Ships and 

offshore structures come under high load cycles during certain period. An overload induces 

retardation and significantly enhances the fatigue life.  

 During the growth of a fatigue crack, load excursion in the form of a single tensile 

overload may occur either in mode I or mixed-mode (mode I and II). Mixed-mode 

overloads are common in case of aircraft structures, turbine shafts, railroads, angled cracks 

in pressure vessels, pressure cabins, welds etc. It has been verified [1, 2] that a pure mode-I 

overload leads to maximum retardation, while mode-II overload has least effect on 

retardation.   

Several interaction and non-interaction life prediction models have been proposed 

based on different loading conditions. Most of the deterministic crack growth models relate 

the crack growth rate information with fracture mechanics parameters. Once the model 

equation is formulated, the next step is to estimate the cyclic life using cycle-by-cycle 

integration. It complicates the calculation process because of the involvement of a robust 

numerical integration scheme. The integration approach adopted should be able to 

accommodate the evaluation of arbitrary crack shape as well as take into account the 

effects of load interactions. Before formulating any crack growth model, it is necessary to 

1 



determine the fatigue crack growth rate (da/dN) from the experimental a-N data, which has 

large scatter.  

Therefore, the first objective of the present work is to evolve a methodology to 

determine the fatigue crack growth rate from the generated a-N data and subsequently to 

formulate a model for predicting the remaining fatigue life without any complex 

integration scheme. This has been achieved by fitting an exponential equation to the raw a-

N data which facilitates in determining the fatigue crack growth rate. The second objective 

has been accomplished by proposing an exponential model to estimate the fatigue life 

under both constant amplitude loading, and constant amplitude loading interspersed with 

mode-I and mixed-mode (I and II) spike overload. Further, two soft-computing techniques, 

i.e. Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS), have been formulated and their predicted results have been compared 

quantitatively with that of the proposed exponential model. 

 

1.2  Objectives  

The objectives of the present work are: 

• To conduct crack growth tests of two  aluminum alloys (7020-T7 and 2024-

T3) under the following loading conditions: 

(a) Constant amplitude loading with and without load ratio effect 

(b) Constant amplitude loading interspersed with spike overload in mode-I 

(c) Constant amplitude loading interspersed with spike overload in mixed-mode (I 

and II) 

• To evolve a method of smoothening and reducing the scatter of experimental 

a-N data thereby simplifying the calculation of crack growth rate. 

• To propose an exponential model (with physical interpretation) to estimate the 

residual fatigue life under the above mentioned loading conditions. 

• To implement two soft-computing techniques (ANN and ANFIS) for fatigue 

life prediction and compare the predicted life estimates by exponential model 

with these predicted results.  

The overall plan of the work can be visualized from Fig. 1.1. 
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Fig. 1.1– Plan of the work 

1.3  Thesis structure  

 The contents of this investigation are presented through nine chapters whose 

overall structure has been diagrammatically represented in Fig. 1.2. The first two chapters 

present an introduction and a brief review of literature. Chapter-3 and 4 describes the 

details of experimental procedure and their results respectively. Chapter-5 presents the 

formulation of the proposed exponential model along with the model results under 

different loading conditions. Chapter-6 and 7 are respectively devoted to the formulation of 

two soft-computing models (i.e. ANN and ANFIS) and the model results. Chapter-8 

quantitatively compares the different model results with the experimental data presented in 

Chapter-3. A general discussion has also been presented in this chapter along with the 

relative merits and demerits of various models. Finally, concluding remarks and a 

discussion of possible future work is given in Chapter-9. 
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CHAPTER II  

LITERATURE SURVEY 

2.1 Introduction 

 Several models have been proposed till date in order to predict fatigue crack 

propagation life under different loading conditions. This chapter briefly reviews the types 

of conventional and non-conventional life prediction models under three loading 

conditions: (i) constant amplitude loading with and without load ratio effect, (ii) constant 

amplitude loading interspersed with spike overload in mode-I and (iii) constant amplitude 

loading interspersed with spike overload in mixed-mode (I and II). The advantages and 

limitations of the models have been briefly discussed alongwith a comprehensive summary 

of the previous work done. 

 

2.2 Life prediction models 

Reliable estimation of fatigue crack propagation and residual life prediction are 

important for designing structures against fatigue. Numerous attempts have been made in 

developing fatigue crack growth models for constant amplitude loading (CAL) as well as 

variable amplitude loading (VAL). Every model has its own merits and demerits and 

applies to specific loading conditions. However, no model has yet been proposed which 

could fit all the situations. Further, most of the prediction models are based on integration 

of a crack growth rate equation in order to determine the fatigue life. It limits their 

applicability because of the involvement of robust and complicated integration scheme. 

Despite of various shortcomings, the research on fatigue is under constant improvement in 

developing life prediction models to avoid accidental failures of structures and machine 

components.  

 

2.2.1 Life prediction models under constant amplitude loading 

 Many investigators have put forth different life prediction models to predict 

residual life in case of constant amplitude loading. These models are mainly based on 

following four approaches [3]: 
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• a simplified approach that involves one estimate for long life, one for short life, and 

interpolation between these two 

• a simplified approach to low cycle fatigue 

• a two stage approach in which the life to the appearance of visible cracks is 

estimated from local strain considerations and the life from appearance of small 

cracks to final fracture is estimated from crack growth considerations 

• a pre-existing crack, and therefore only crack growth is considered 

 

The existence of a fatigue crack growth threshold was first postulated by 

McClintock [4]. He mentioned that fatigue crack growth occurs when a critical value of 

local strain or accumulated damage over certain characteristic distance ahead of the crack-

tip reaches a critical value. Frost [5] exhibited experimental evidence supporting the 

existence of a fatigue threshold when the value of the empirical characterization parameter, 

a
3

aσ (where, ‘ aσ ’is the stress amplitude and ‘a’ is the crack length) attained a critical 

value. With the advent of fracture mechanics and its application to characterize fatigue 

crack growth, it soon became apparent, particularly with the work of Paris et.al. [6] and 

Schmidth and Paris [7], that the threshold for the non-propagating long fatigue cracks can 

be associated with a critical stress intensity factor range, ∆Kth. Sadananda and Shahinian 

[8] proposed that the threshold for crack growth is reached when the shear stress, τ 

required to nucleate and move a dislocation from the crack-tip reaches a critical value. This 

criterion led to the result that  

bK τ∝∆ th           (2.1) 

where. ‘b’ is the magnitude of the burger vector. 

The Region-I crack propagation occurs along the plane of maximum shear stress. 

However, in Region-II it follows along the plane of maximum tensile stress. 

 Most of the current application of LEFM concepts to describe crack growth 

behavior is associated with Region-II. In this region the slope of the log (da/dN) versus log 

(∆K) curve is approximately linear. The most notable and basic model proposed by Paris in 

the early 1960’s, is 
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d
          (2.2)  

where C and n are material constants, and ∆K is the stress intensity factor range given by 

Kmax -Kmin 

  Several other models are also available in the literature. They can be broadly 

classified into two categories; (i) geometrical models [9-11] based on the crack-tip 

displacement, and (ii) damage accumulation models [4, 12] based on strains or plastic 

work at the crack tip. 

In Region-III, unstable crack growth occurs which is sensitive to both 

microstructures and mean stresses due to the occurrence of static fracture modes such as 

cleavage, inter-granular fracture etc. In many practical engineering situations this region 

may be ignored because it does not significantly affect the total crack propagation life. The 

point of transition from Region-II to Region-III behavior depends on the yield strength of 

the material. Many semi-empirical and empirical models have been proposed to take into 

account the load ratio effects and also the growth behavior in the final failure regions. The 

most widely used models are proposed by Forman et al. [13] and Walker [14]. These two 

models are expressed as follows: 
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 (Forman et al. model)     (2.3) 

and [ ] b
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c

b )1(
d

d
KRC

N

a
−=   (Walker model)    (2.4) 

This stage of crack extension accounts for a small fraction of the fatigue life.  

From the above discussion it is evident that Region-II has received the maximum attention 

as it involves considerable proportion of the life in a cracked body. 

 

2.2.2 Life prediction models under variable amplitude loading 

 Most load bearing structural components are subjected to variable amplitude 

loading (VAL) rather than constant amplitude loading (CAL) during their service. The 

simplest type of VAL is the occurrence of high peak loads interspersed on constant 

amplitude loading. An aircraft experiences overload cycles during gust. Ships and offshore 
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structures come under high load cycles during certain period. An overload induces 

retardation and significantly enhances the life of the structures.  

Interspersed mode-I spike overload    

 Several attempts have been made in developing fatigue crack growth models for 

variable amplitude loading particularly in case of single spike mode-I overload. These 

models are mainly divided into two major groups, namely the characteristic methods and 

the cycle-by-cycle methods. 

 The models of the first group are based on the similitude concept of the crack-tip 

field being describable in terms of the root-mean-square value of the stress intensity factor. 

It assumes that the average crack growth rate in variable amplitude fatigue can be predicted 

from constant amplitude fatigue data. Barsom’s model [15] is an example which is given 

by the equation: 

( ) cn

rmsc
d

d
KC

N

a
∆=          (2.5) 

where, 
2

1

1

2

irms

1
∆ 








∆= ∑

=i

K
n

K  

 In the second group of models, consequences of each cycle are added together to 

predict the overall fatigue life. They may be divided into three main categories namely: 

• Yield zone model 

• Strip yield model 

• Crack closure model 

Yield zone model 

 The basic examples of yield zone models are those proposed by Wheeler and 

Willenborg. Newman has discussed merits and demerits of some popular yield zone 

models in his review paper [16]. The retardation model proposed by Wheeler [17] predicts 

the overload induced crack growth rate by incorporating a factor in the constant amplitude 

crack growth rate. The Willenborg models [18-22] on the other hand are based on effective 

stress intensity factor (being reduced by residual compressive stress) without considering 

any empirical parameters. However, these models do not consider crack growth 

acceleration due to underloads or immediately following an overload. The yield-zone 
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models proposed by Chang and Hudson [23], Gallagher [24], Chang et.al. [25] and 

Johnson [26] took care of both retardation and acceleration. In addition to these, there are 

other yield zone models which are modifications of original Wheeler and Willenborg 

models. The details of their merits and limitations have been discussed by Yuen and Taheri 

[27]. 

Strip yield model 

 The strip yield model was initially proposed by Dugdale [28]. The basic 

assumptions are that for a thin sheet in tension. The plastic region is envisioned as a 

narrow strip of a non-zero height lying along the crack line and the plastic yielding in the 

crack-tip together with the residual deformations in the wake influence the crack surface 

displacements that are used to calculate the closure stresses. The modifications to 

Dugdale’s model include the addition of plastically deformed material in the wake of the 

crack to account for the crack closure. Strip yield models use discretised elements in order 

to analyze the effects of individual load and therefore, do require extensive computational 

capacity for cycle-by-cycle computing. Various strip yield models with their merits and 

limitations have been discussed by Newman [16]. 

 Crack closure models  

 The crack closure models are based on closure mechanism proposed by Elber [29]. 

He suggested that a fatigue crack can only grow if it is fully open. As the crack grows a 

tensile plastic deformation left in the wake of crack reduces the range of the applied stress 

for crack propagation. The important task of these models is the determination of crack 

opening stress required in calculating the effective stress intensity factor (∆Keff). The 

accuracy of the models depends on the measurement of crack opening stress, which can be 

obtained either experimentally [30-32] or by finite element method [33, 34]. There are 

other crack closure models, where crack opening stress intensity factor (Kop) is determined 

analytically cycle-by-cycle. These models include PREFAS-model [35, 36], the ONERA-

model [36, 37] and the CORPUS-model [36, 38].   

 Although the concept of crack closure was widely used in modeling fatigue life but 

it was later criticized by several investigators [39, 40] one of the limitations being closure 

solely depends upon the R-ratio and there is no single equation that could describe closure 
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in all the three regions. Further, in case of overloads, Sadananda et al. [41] critically 

examined the closure phenomenon in the context of Unified Approach and suggested that 

it has negligible contribution behind the crack tip.  

Interspersed mixed-mode (I and II) spike overload    

 Before going further into the content of life prediction models under mixed-mode (I 

and II) spike overload, it is worth to give some insight to general mixed-mode crack 

growth both in monotonic as well as cyclic loading. Several structures and components 

contain randomly located cracks which are in mixed-mode due to their orientation with 

respect to the loading axis. Sometimes the direction of loading axis may change with 

respect to the crack geometry leading to mixed-mode condition. A number of mixed-mode 

situations include aircraft structures, cracked bars in torsion and bending, welds containing 

defects, pressure vessel nozzles, cracked rotating turbine blades, angled cracks in pressure 

cabins, rolling contact problem in high speed rotating bearing etc. In mode-I, the direction 

of crack propagation is perpendicular to the loading axis and it propagates in a self-similar 

manner due to symmetry, whereas in mixed-mode cases, a fatigue crack tends to grow in a 

non-self similar manner resulting in changes in the direction of crack propagation during 

the loading period. 

 Mixed-mode cracks may be subjected to monotonic or cyclic (fatigue) loading. 

Qian and Fatemi [42] in their review paper have discussed various criteria and parameters 

for mixed-mode crack growth directions and rates. The mixed-mode (I and II) fatigue was 

primarily studied by Iida and Kobayashi [43]. Later Roberts and Kibler [44] proposed the 

empirical relations for mixed-mode loading. Tanaka [45] put forward an effective stress 

intensity factor (∆Keff) to correlate with fatigue crack growth rate (da/dN) in case of mode-

I and II loading. Richard [46, 47] has proposed another effective stress intensity factor 

considering fracture toughness in case of mixed-mode (I and II) loading. Patel and Pandey 

[48] suggested that the stress intensity factor, the crack-tip opening displacement (CTOD) 

and the J-integral are not suitable to handle the mixed-mode crack growth problems. They 

have correlated fatigue crack growth rate with strain energy density factor range for mixed-

mode loading. In another development, an equivalent strain energy density factor range has 

been proposed by Socie [49] to correlate the small crack growth data for SAE 1045 steel 
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and Inconel 718 under mixed-mode loading. Reddy and Fatemi [50] have suggested 

another form of effective strain based intensity factor range to correlate the small fatigue 

crack growth data of same materials under bi-axial loading conditions. Chen and Keer [51] 

have given an alternative prediction method based on Dugdale’s model. The details of 

different methods have been presented by Tamilselvan et al. [52] and Kim et al. [53]. 

 In addition to the determination of effective stress intensity factor and strain energy 

density factor to model mixed-mode fatigue crack growth, some other aspects of mixed-

mode fatigue have been discussed by different investigators [54-57]. Borrego et al. [54] 

have analyzed the closure effects on loading angle and III KK ratio experimentally as well 

as using a finite element method on Al MgSil – T6 Al-alloy. Bemrahou et al. [55] have 

estimated the size of plastic zone at the crack-tip under mode-I, mode-II and mixed-mode 

(I & II) both experimentally and analytically in accordance with Von Mises and Tresca 

criteria. Ma et al. [56] have investigated the effect of loading angle on crack growth rate 

under mixed-mode loading and developed a numerical model by considering the loading 

mode and the residual stresses developed during welding. Dahlin and Olsson [57] have 

observed that there is a reduction of mode-I crack growth rate after a mode-II load cycle 

mainly due to mode-II induced roughness crack closure. 

 Srinivas and Vasudevan [58] studied the effect of mixed-mode overload on 

subsequent mode-I fatigue crack growth of D16AT Al-alloy and concluded that retardation 

following a mode-I overload was found to be of considerable effect compared to mode-II 

or mixed-mode (I & II) overloads. Biner [59] in his mixed-mode fatigue crack growth 

investigation observed that overload crack closure concept was found to be inadequate to 

fully describe the observed growth behavior under mixed-mode loading. Sander and 

Rechard [1, 2] have given intensive investigation on the effects of mixed-mode (I & II) 

overloads on subsequent mode-I fatigue crack growth both experimentally and 

numerically. They found experimentally that the retardation effect decreased with an 

increasing amount of mode-II component. Although several investigations have been done 

in this area, no serious attempt has been made to predict crack growth rate and end life of 

the components subjected to interspersed mixed-mode (I and II) overload on subsequent 

mode-I fatigue crack growth. 
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2.2.3 Non-conventional life prediction models  

 Problems associated with fatigue are difficult to solve using conventional 

mathematical models because of non-linearity, noise, cost, time constraint and above all 

the associated micro-mechanisms. Soft-computing is a good alternative for handling those 

complex problems as it is tolerant of imprecision, uncertainty and partial truth. The soft-

computing methods are always appreciated when the methods based on traditional 

mathematical models have not produced satisfactory results or their application is too 

complex and expensive. Soft-computing techniques provide rich knowledge 

representation, flexible knowledge acquisition, and knowledge processing which enable 

intelligent process control systems to be constructed at low cost. The application of soft-

computing techniques in solving non-linear complex problems, particularly in material 

diagnosis and life assessment for critical components and nuclear applications has been 

increasing during the last few years. The main techniques in soft-computing are artificial 

neural network (ANN), genetic algorithm (GA), fuzzy logic and adaptive neuro-fuzzy 

inference system (ANFIS).  

Prediction of fatigue life by Artificial Neural Network (ANN) 

 Artificial neural network (ANN) is a class of computational intelligence system, 

useful to handle various complex problems with a capacity to learn by examples. The first 

ANN concept was adopted by McCulloch and Pits [60] in 1943, who suggested the cell 

model. Although some pioneer work was undertaken in 1949 [61] by focusing attention on 

the learning system of human brain, the actual development on ANN concept started 

towards 1980 through various studies [62]. It has emerged as a new field of soft-computing 

to deal with many multivariate complex problems for which an accurate analytical model 

does not exist [63-65]. Artificial neural networks (ANN) have proved to be a powerful and 

versatile soft-computing method which is quite efficient in modeling complex linear and 

non-linear relationships in a number of engineering fields [66-71]. In recent years, ANN 

finds its application in the field of fatigue for various purposes [72-79].  

 Genel [80] applied ANN for predicting the strain-life fatigue properties using 

tensile material data of steels. Satisfactory results with ANN were obtained to estimate S-N 

curves (constant amplitude loading) for the nominal stress concept [73, 81, 82], which 
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exceed the quality of the approximation results of conventional methods. Later, it has been 

applied by Marquardt and Zenner [83] for lifetime calculation under variable amplitude 

loading on the basis of a linear damage accumulation in accordance to Palmgren and Miner 

rule. Fotovati and Goswami [84] have used ANN approach to predict fatigue crack growth 

rate in Ti-6Al-4V alloy at elevated temperature. They reported a least square error of 0.03 

with experimental findings. A precise but useful literature survey regarding the application 

of ANN in the field of fatigue has been made by Jia and Davalos in their research paper 

[85]. 

Prediction of fatigue life by adaptive Neuro-Fuzzy Inference System (ANFIS) 

 Earlier, crisp mathematical system was applied in modeling linear time-invariant 

system into numerous scientific and technical areas. However, many complex non-linear 

systems remain beyond the reach of the said theory. Zadeh’s innovative concept [86] for 

modeling the mechanism of human thinking with linguistic fuzzy values rather than crisp 

number led to fuzzy systems. The fuzzy logic system (FLS) achieved much attention in 

handling both numerical data and linguistic information simultaneously leading to fuzzy 

system modeling. 

 Two primary tasks are basically involved in fuzzy system modeling. The first one 

is structure identification and the second is parameter adjustment. In the early approaches, 

these were performed by trial and error. Since then, gradual research in this recently 

developed area has been undertaken to search for new hybrid integrated systems. This is 

done in order to systematize the above two tasks [87]. The best way of applying learning 

technique for parameter identification of fuzzy models is by hybrid neuro-fuzzy method. 

Such neuro-fuzzy models are currently a very active area of research [88]. A brief history 

of the model has been presented by Engin et al [89]. Till date, several neuro-fuzzy models 

have been reported in the literature [90-96]. Jang [93, 94] used an adaptive neuro-fuzzy 

inference system (ANFIS) for the adjustment and identification of the parameters of a 

Takagi-Sugeno-Kang (TSK) [95] fuzzy model. Rahouyi et al [96] presented an application 

of ANFIS for the modeling of microwave devices. 

 Different soft-computing techniques are being introduced in the field of fatigue to 

handle subjective uncertainties in a quantitative way. Fuzzy set theory has been used to 
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analyze the S-N curves and predict fatigue life [97-99]. Wu et al. [100] applied fuzzy 

regression analysis to determine the fatigue crack growth rate under constant and random 

amplitude stress. Jarrah et al. [101] applied ANFIS to model the fatigue behavior of 

unidirectional glass fiber / epoxy composites under tension-tension and tension-

compression loading. Vassilopoulos and Bedi [102] used ANFIS to model fatigue behavior 

of a multidirectional composite laminate. 

 

2.3 Summary and the justification of the proposed model 

 The science of fatigue crack growth has been evolved since 1960s by correlating 

fatigue crack growth rate with stress intensity factor range. Later in the seventies, the 

concept of crack closure was used successfully and widely in modeling fatigue life. 

However, in the later stage the popularity of this concept was criticized due to some of its 

limitations as discussed in section 2.2.2. These shortcomings pave the way to search for an 

alternative approach to predict fatigue crack growth rate particularly in case of single 

tensile overload. Subsequently a modern approach was evolved to include load ratio, short 

cracks, shielding of dislocations, overloads/underloads, surface cracks etc. at a time for 

fatigue model formulation. This is termed as the Unified Approach [41, 103-107], which 

has proved its potentiality in providing superior quality life prediction methods.  

It is generally considered that the most fundamental and widely used fatigue crack 

growth equation is the Paris-Erdogan relation [108] from which most of the differential 

form of the fatigue crack growth model proposed so far are based. However, it has some 

limitations as observed in literature [109, 110]. Spagnoli [109] analyzed the Paris-Erdogan 

relation on the basis of both similarity methods and fractal concepts and presented some 

experimental evidence of its breakdown of similitude concept. He observed that the 

complete self-similarity (corresponding to no crack-size dependence of da/dN-∆K 

relationship) of Paris-Erdogan relation is only possible for larger cracks. In case of small 

cracks (for micron-sized crack) and in heterogeneous materials like concrete, the crack 

growth rate depends on crack size leading to incomplete self-similarity (non-self similar). 

Jones et al. [111] have also questioned the validity of similitude hypothesis in Region I and 

lower portion of Region II of crack growth. Pearson [112] and Pell et al. [113] also 
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conformed that fracture mechanics based tools applicable for determination of macroscopic 

crack growth data had difficulty in predicting crack growth of small micron sized flaws. 

Further, Maymon [110] observed that a physical inconsistency occurs when the constants 

of the crack growth rate equation of Paris model are randomized as per dimensional 

analysis point of view. All these deficiencies may be partially overcome [114] by the log-

linear relationship crack growth law proposed by Frost and Dugdale [115] much before the 

work of Paris. However, the law was able to predict crack growth only for small micron-

size flaws on a cycle-by-cycle basis in full-scale aircraft fatigue tests and in an extensive 

range of coupon tests [116-119]. However, this holds good in Region I and the lower 

portion of Region II of the crack growth rate curve. One of the fundamental problems 

concerning the above models is the quantification of the mean stress effect. 

 The ultimate aim of fatigue crack growth models is to establish a suitable means to 

predict the residual fatigue life of engineering structures. Usually, the experimental test 

results in fatigue are noisy and random in nature, although repeated trends are observed. A 

good prediction of the fatigue crack growth behavior can only be obtained by a stochastic 

rather than a deterministic differential equation model [120, 121]. However, the very 

purpose of a scientific model is that it must be simpler and faster to apply with some 

physical meaning during its solution process. The fatigue life predictions in general, have 

low accuracy and may vary as much as 10:1 or even more for the same loading condition 

and material [3]. An error of %1±  in stress intensity factor range can result in an error of -

3.5% to +3.7% in fatigue life estimate. The discrepancies may be even more dramatic for 

initial cracks near the fatigue threshold [122]. The prediction methodology becomes more 

complex in case of transient load spectra as the micro-mechanisms of fatigue are not yet 

understood. It has been observed that significant ambiguity and disagreement exist in terms 

of exact mechanisms involved in estimating the fatigue life. As already mentioned, several 

life prediction models have been proposed till date considering different load interaction 

mechanisms. However, each model has its own capabilities and limitations as discussed by 

Murthy et al. [123]. There is no universal and all encompassing model that has been 

proposed so far which would incorporate all mechanisms at a time or would be applicable 
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to all situations. The following conclusions can be drawn regarding the prediction 

methodology: 

1. Each and every crack growth analysis involves the use of fracture mechanics 

parameters. Once these parameters are estimated precisely, it is to be translated for 

obtaining crack growth rate. In a closed form method, cycle-by-cycle integration is 

required to estimate the fatigue life of the components/structures. The integration 

methods should be able to accommodate the evaluation of an arbitrary/non-planar 

crack which creates a topological problem for the numerical methods. Further, the 

residual stresses and load interaction effects create additional problems for which a 

robust and complex integration scheme is required. 

2. The lack of similitude hypothesis in Region-I (i.e. threshold region) underpins most 

of the current crack growth models. The prediction of fatigue life in case of small 

micron-sized cracks is difficult by using macroscopic crack growth law. 

3. As far as Paris-Erdogan differential equation crack growth model is concerned, 

there are two significant limitations. Firstly, it shows physical inconsistency while 

randomizing the constants of the model as per dimensional analysis point view. 

Secondly, in case of micron-sized cracks and for heterogeneous materials, crack-

size dependence of da/dN-∆K relationship (incomplete self-similarity) is observed 

restricting the application of Paris-Erdogan crack growth model. 

4. As per the Unified Approach, fatigue is fundamentally a two-parameter problem 

since there are two crack driving forces Kmax and ∆K required for fatigue crack 

growth, in contrast to the earlier approach where a single crack driving parameter 

∆K was considered sufficient to describe the fatigue crack growth rate. 

5. As far as load interaction is concerned, several mechanisms may be responsible for 

retardation. Based on these facts, a number of investigators have proposed different 

retardation models but none of them has definitive advantages over the others. It 

has also been visualized that none of these models has universal acceptance in all 

transient situations in terms of the dominant mechanisms involved. Therefore, a 

model should be calibrated by experimental data fitting to encompass all the 

mechanisms that induce retardation effects [124]. 
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6. During the growth of a fatigue crack, load excursion in the form of a single tensile 

overload may occur either in mode I or mixed-mode (mode I and II). Most of the 

available retardation models deal only with mode-I overload situations. No serious 

attempt has been made to predict crack growth rate and end life of components 

subjected to interspersed mixed-mode (I and II) overload.  

 

The objective of the present work is to propose a model for the prediction of 

fatigue life. An attempt has been made to make it universalized by including different 

loading situations i.e. constant amplitude loading with and without load ratio effect, 

constant amplitude loading interspersed with spike overload in mode-I and constant 

amplitude loading interspersed with spike overload in mixed-mode (I and II). The 

prediction results of the model have been compared with two soft-computing methods 

i.e. ANN and ANFIS in order to obtain its performance characteristic. 
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CHAPTER III 

EXPERIMENTAL INVESTIGATIONS 

3.1 Introduction 

 The fatigue crack growth tests under different loading conditions (i.e. constant 

amplitude loading; constant amplitude loading interspersed with mode-I and mixed-mode 

overload) were conducted on 7020-T7 and 2024-T3 aluminum alloys. All the tests were 

performed in a servo-hydraulic dynamic testing machine (INSTRON-8502) using single 

edge notch tension (SEN) specimens under load control mode. A mixed-mode holding 

fixture was fabricated and used to overload the specimens at different loading angles (18°, 

36°, 54°, 72° and 90°). Before conducting the tests, crack coefficients were determined for 

SEN specimens in order to measure the crack length by compliance method with the help 

of a COD gauge.  

 

3.2 Test specimens and accessories 

3.2.1 Material 

 For this investigation, two aluminum alloys i.e. 7020 and 2024 were selected. 7020 

aluminum alloy suitable for ground transport systems was procured in as-fabricated 

condition whereas, 2024 aluminum alloy, an aircraft structural material was procured in T3 

condition.  The chemical compositions of aluminum alloys under investigation are 

presented in Table 3.1. 

 

Table 3.1 – Chemical composition of materials 

Materials 

(% wt.) 

Al Cu Mg Mn Fe Si Zn Cr Others 

7020-T7  93.13 0.05 1.20 0.43 0.37 0.22 4.60 - - 

2024-T3 92.78 3.90 1.50 0.32 0.50 0.50 0.25 0.10 0.15 

 
 

The as-fabricated 7020 Al alloy was subjected to T7 heat treatment. The details of 

its procedure has been presented in Appendix-A. The tensile properties and plane strain 

fracture toughness (KIC) were determined as per ASTM E8M-97 [125] using INSTRON 
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1195 static testing machine and are presented in Tables 3.2. The plane stress fracture 

toughness (KC) was calculated using following empirical relation proposed by Irwin [126]. 

( )2

IC

2

IC

2

C 4.11 β+= KK          (3.1) 

where, 








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σ
β

K

B
 

 

Table 3.2 – Mechanical properties of materials 

Materials Tensile 
strength 

(σut ) 

MPa 

Yield    
strength 

(σys) 

MPa 

Young’s 
modulus 

(E) 

MPa 

Poisson’s 
ratio  (ν) 

Plane- 
Strain 

Fracture 
toughness 

(KIC) 

mMPa  

Plane- 
Stress 

Fracture 
toughness 

(KC) 

mMPa  

Elongation 

7020-T7 352.14 314.70 70,000 0.33 50.12 236.80 21.54 % 
in 40 
mm 

2024-T3 469.00 324.00 73,100 0.33 37.00 95.31 19 % 
in 12.7 

mm 

 

 

Metallography 

 In order to examine the microstructure, metallographic specimens of the material 

were prepared in three directions: L-T, L-S, and T-S. The specimens were polymer 

mounted, polished and etched using Graff reagent. Then they were examined in all three 

directions with the help of an optical microscope using polarized light. The microstructures 

of all three directions were superimposed to obtain the 3-D view and illustrated in Fig. 3.1 

and 3.2.  
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Fig. 3.1 – Microstructure of 7020-T7 Al alloy etched by Graff reagent 

 

  

  

 

 

 

 

 

 
 
 
 

Fig. 3.2 – Microstructure of 2024-T3 Al alloy etched by Keller’s reagent 

 
 

3.2.2 Specimen geometry  

For conducting the fatigue crack growth tests, single edge notch (SEN) tension 

specimens were fabricated from supplied 6.5mm thick sheet. The specimens were made in 

the LT plane, with the loading aligned in the longitudinal direction. The dimensional 

details of specimen are presented in Fig. 3.3.  
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Fig. 3.3 – Single Edge Notch (SEN) Specimen geometry (LT orientation) 
 
 

3.2.3 Mixed-mode attachment 

 The mixed mode loading fixture along with pins (to mount-up in machine) was 

fabricated from a 13.5 mm thick EN24 steel plate. The fixture is designed on the basis of 

the set-up proposed by Richard [2]. Six holes of 25.5 mm diameter were provided to 

facilitate loading at an interval of 18°. These holes were used to mount the fixture along 

with the specimen to the testing machine. Three holes of 8 mm diameters were also made 

on each set of fixture to attach the test specimen. Holes are made at triangular position due 

to space limitation and to fix 52 mm width SEN specimen rigidly to avoid tearing failure. 

Stainless steel bolts were used to attach the specimen with the mixed mode fixture. The 

test set-up for the present investigation is illustrated in Fig. 3.4. 

 

 

 

20 



 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

            

 

 

 

 

Fig. 3.4 – Mixed-mode Loading Fixture 

 

3.2.4 Test equipment 

 The machine used for the fatigue tests was a servo-hydraulic dynamic testing 

machine (INSTRON 8502 PLUS) having a load capacity of 250kN interfaced to a computer 

for machine control and data acquisition. Fig. 3.5 shows the overall arrangement to 

conduct the test.  
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     Fig. 3.5 – INSTRON 8502 dynamic testing machine 

 

3.3 Test program 

3.3.1 Determination of crack coefficient 

 INSTRON 8502 PLUS dynamic testing machine uses INSTRON FAST TRACK da/dN 

Fatigue Crack Propagation Program to perform fatigue crack growth studies on standard 

specimens in accordance with ASTM E647 08 [127]. This test program runs under an 

environment set up by the LabVIEW programming application from National Instruments. 

The da/dN program has the ability to use the compliance method to measure crack length 

with the help of a COD gauge which requires various crack coefficients C0 to C5. The 

values of the coefficients are already incorporated in da/dN Fast Track Software for some 

specimen geometries. Since the crack coefficients for the specimen used in this work was 

not available in the software, it was necessary to determine the values of the coefficients to 

be used in the da/dN program for computing crack length. Details of the procedures for 

determination of the crack coefficients are presented in Appendix-B.  

22 



3.3.2 Fatigue crack growth tests 

 Single-edge notched (SEN) tension specimens with a V-starter notch were prepared 

from 6.5mm thick sheets in the L-T direction. Both sides of the specimen surfaces were 

given mirror-polish with the help of different grades of emery papers and subsequently by 

magnesium oxide powder (MgO) suspension. The specimen surfaces were marked at 

interval of 1 mm to optically monitor the crack extension as well. A pair of knife edges 

was fixed on the face of the machined V-notch of the specimen. The COD gauge was 

mounted on the knife edges to monitor crack extension. Fatigue pre-cracking was done 

under mode-I loading (crack opening mode) at constant ∆K to an a/w ratio of 0.3. 

Following four sets (vide Fig. 1.1; Section – 1.2; Chapter - I) of crack growth tests 

were performed in this investigation: (i) constant amplitude loading with fixed R-ratio, (ii) 

constant amplitude loading with variable R-ratio, (iii) constant amplitude loading with 

single tensile overload in mode-I and (iv) constant amplitude loading with single tensile 

overload in mixed-mode (I and II). The tests were conducted in constant load control mode 

(i.e. increasing ∆K with crack extension) in accordance with ASTM standard [128] using a 

servo-hydraulic dynamic testing machine (Section-3.2.4). All the four sets of tests were 

conducted in ambient condition at a frequency of 6 Hz and load ratio of 0.1. The stress 

intensity factor K [128] was calculated using following equation: 

wB

aF
gK

π
).(f=          (3.2) 

where, 432 )/(39.30)/(72.21)/(55.10)/(231.012.1)(f wawawawag +−+−=   

 

3.3.2.1 Constant amplitude load test 

In Set-1, specimens (four from each alloy) were fatigue tested under constant 

amplitude loading maintaining a fixed load ratio, R = 0.1 whereas in second set, specimens 

(six from each alloy) were tested under same loading conditions with varying load ratios, R 

= 0, 0.2, 0.4, 0.5, 0.6 and 0.8 in order to study their effects on growth rates and also on the 

fatigue lives. The experimental parameters for both the tests are mentioned in Tables 3.3 

and 3.4 respectively for both the materials. 
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Table 3.3 – Load scenarios and results of CAL (set-1) 

Test 
Specimen 

Fmax 

kN 
Fmin 

kN 
ai 

mm 
af 

mm 

7020-T7 8.89 0.89 18.30 30.24 

2024-T3 7.20 0.72 17.75 34.0 

 

Table 3.4 – Load scenarios and results of CAL (set-2) 

Test 
specimen 

Fmax 

kN 

Fmin 

kN 
ai 

mm 
af 

mm 

7020-T7 7.944 3.972 18.3 35.1 

2024-T3 7.204 3.602 18.3 35.4 

 

3.3.2.2 Constant amplitude loading interspersed with mode-I spike overload  

In case of constant amplitude loading interspersed with mode-I spike overload (Set-

3), specimens were tested in order to investigate the effect of a single tensile mode-I 

overload on the subsequent constant amplitude fatigue crack growth. The crack was 

allowed to grow up to an a/w ratio of 0.4. This was followed by an overload spike 

application (at various overload ratios such as 2, 2.25, 2.35, 2.5, 2.6, and 2.75 for 7020-T7 

Al-alloy and 1.5, 1.75, 2.0, 2.1, 2.25 and 2.5 for 2024-T3 Al-alloy) in the same crack 

opening mode at a loading rate of 8 kN/min. The overload ratio is defined as        

B

ol
ol

K

K
R

max

=           (3.3) 

where, B
Kmax  is the maximum stress intensity factor for base line test. The specimens were 

subsequently subjected to mode-I constant amplitude load cycles. Table 3.5 shows the 

experimental details of the tested specimens of both the alloys.  

 

Table 3.5 – Load scenarios of the tested specimens under mode-I overload 

Test 
sample 

Fmax  

(kN) 

Fmin  

(kN) 

ol
Fmax  

(kN) 

R
ol

 ai  

(mm) 
a

ol  

(mm) 
af  

(mm) 

7020-T7 7.856 0.7856 18.462 2.35 18.30 19.10 29.10 

2024-T3 7.305 0.7305 15.341 2.10 17.75 20.40 32.40 
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3.3.2.3 Constant amplitude loading interspersed with mixed-mode (I & II) 

spike overload  

 Similarly in the last set (Set-4) of experiment, specimens were tested under the 

above loading conditions to study the effect of mixed-mode (I and II) overload spike on 

crack growth behavior. The overloading was done by using the mixed-mode loading 

fixture shown in Fig. 3.4.  The following equations were used to determine stress intensity 

factors KI and KII for different angles of overload application, 

wB

aF
gK

πβ .cos
).(fI =         (3.4) 

wB

aF
gK

πβ .sin
).(fII =         (3.5) 

All the specimens were subjected to a single tensile overload cycle (Rol = 2.5) at various 

overloading angles, β = 0º, 18º, 36º, 54°, 72º and 90º. In this case, overloading ratio is 

defined as       

B

ol

K

K
R

max

ol

eq
=           (3.6) 

where B
Kmax is the maximum stress intensity factor for base line test. The equivalent stress 

intensity factor ( )ol

eqK  was calculated according to the following equation [2]: 

( ) ( )2ol

II1

2ol

I

ol

I

ol

eq 45.05.0 KKKK α++=       (3.7) 

where α1 = (KIC/KIIC) = 0.95 according to strain energy density theory [129] and KI
ol

 and 

KII
ol

 are the stress intensity factors of modes I and II during the overload respectively. After 

the application of overload, the fatigue test was continued in mode-I. Table 3.6 shows the 

experimental parameters of the tested specimens. 

 

Table 3.6 – Load scenarios of the tested specimens under mixed mode overload 

Test 
Sample 

Fmax 

 (kN) 

Fmin  

(kN) 
R

ol ai  

(mm) 
a

ol   

(mm) 
af  

(mm) 

7020-T7 8.429 0.843 2.5 17.75 19.10 31.2 

2024-T3 7.197 0.720 2.5 17.75 20.40 32.40 
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CHAPTER IV  

EVALUATION OF EXPERIMENTAL RESULTS 

4.1 Introduction  

 This chapter describes a method for calculating fatigue crack growth rate (FCGR) 

from the experimental a-N data which are usually scattered. This has been accomplished 

by fitting an exponential equation to the raw a-N data obtained from each set of tests. 

Finally, a few fractured samples were selected after each test and were examined under 

scanning electron microscope (SEM) to study their fracture characteristics.  

 

4.2 Determination of fatigue crack growth rate from experimental data: A 

new approach [137] 

Fatigue crack propagation, a natural physical process of material damage, is 

characterized by the analysis of the rate of change of crack length (a) with number of 

cycles (N). It requires a discrete set of crack length vs. number of cycle data generated 

experimentally. Unlike monotonic test, fatigue test data are usually scattered and is 

illustrated in a typical a-N plot (Fig. 4.1). The crack growth rates (da/dN) obtained from 

raw data also exhibit large degree of scatter. Hence, it is necessary to have some means of 

data smoothening.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 – Crack length vs. number of cycle  
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In recent years, many crack growth models have been proposed to predict fatigue 

life under various loading conditions which primarily deal with the relationships between 

fatigue crack growth rate and different crack driving forces as well as material properties. 

However, in majority of instances, the method of determination of crack growth rates from 

a–N data is not explicitly mentioned. The most widely used techniques for crack growth 

rate determination are: 

a) calculating finite differences between successive data points and making a linear 

interpolation to estimate the gradient at the mid-point [130]; 

b) fitting best smooth curve through a–N data and taking gradients of the slope [131]; 

c) fitting an analytical curve (e.g. polynomial) through all or a part of the data [132]; 

d) using orthogonal polynomial method for fitting cubic expressions to equidistantly 

spaced crack length measurements [133]; 

e) by spline technique both for interpolation and data smoothing [134]; 

f) by incremental polynomial method fitting a second-order polynomial (parabola) to 

sets of (2n+1) successive data points, where n is usually 1to 4. [127]. 

 The test results of constant amplitude fatigue crack growth reveal that there is an 

increase in crack length with number of loading cycles. This increase in crack length is 

exponential in nature and can be expressed by simple log-linear relationship (Eq. 4.1) as 

per the observation of Frost and Dugdale [115]. 

  ( ) ( )
iaLnNaLn += ϖ    or, N

ieaa
ϖ=     (4.1) 

where, N is the fatigue life, ϖ  is a parameter that depends on the geometry, 

material and load scenario, a is the crack length and ai is the initial flaw size. Other 

researchers have also observed the apparent exponential rate of crack growth for both 

micro- and macro-cracks [116-119; 135, 136]. Further, it is known that various types of 

non-linear functions such as logarithmic, exponential or some other functions can be fitted 

to the scattered experimental data and then the least squares method can be easily applied 

to get the smooth curve. Based on the above fact, it is felt that the crack length vs. number 

of cycle data can be fitted by an exponential equation of the form: 

)(

ij
ijij NNm

eaa
−

=    (4.2) 

where,  ai and aj = crack length in ith step and jth step in ‘mm’ respectively, 
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Ni and Nj = No. of cycles in ith step and jth step respectively, 

mij= specific growth rate in the interval i-j, 

i = No. of experimental steps, 

and j = i+1  

 

Procedure for calculation of FCGR 

 The experimental a-N data of one specimen (Al 7020-T7 under constant amplitude 

loading condition) is considered to explain the calculation procedure of this new method. 

The procedures of the method are outlined below with the help of Table 4.1 (since fatigue 

test data are very large in number, only a small part of the data is presented in the table for 

the purpose of explaining the procedure of smoothening the a–N curve). 

1. The exponent mij (i.e. specific growth rate) is an important controlling parameter in 

the proposed exponential equation. The specific growth rate m is not a constant 

quantity and depends on a number of factors. Its significance and dependence on 

various crack driving parameters are given by Mohanty et al. [137]. The specific 

growth rate ‘mij’ is derived by taking logarithm of Eq. 4.2 as follows:  

 
( )ij

i

j

ij

ln

NN

a

a

m
−










=   (4.3) 

2. The raw values of specific growth rate from experimental a–N data (columns A and 

B, Table 4.1) are calculated using equation 4.3 and are given in column C of same 

table. These are fitted with corresponding crack lengths by a polynomial curve-fit. 

3. To get a better result, crack lengths at small increments (0.005 mm in the present 

case) are tabulated in column D and the corresponding values of mij are obtained 

using polynomial equation and presented in column E.  

4. The above values of specific crack growth rates are used to get the smoothened 

values of the number of cycles (column F, Table 4.1) as per the following equation: 

i

ij

i

j

j

ln

N
m

a

a

N +









=   (4.4) 

28 



5. The crack growth rates (da/dN) are calculated directly from the above calculated 

values of ‘N’ as follows: 

( )
( )ij

ij

NN

aa

N

a

−

−
=

d

d
  (4.5) 

The scatter of specific growth rate calculated piecewise and that obtained after data 

smoothening are shown in Fig. 4.2. 

 

Table 4.1 – Comparison of experimental and smoothed sets of fatigue growth data 

A B C D E F 

No. of 
cycles 
(expt) 

 

Crack 
length 
(expt) 
(mm) 

Sp. Growth rate 
(calculated 
piecewise) 

 

Crack length 
incremented 
by 0.055 mm 

 

Sp. Growth rate 
(calculated from 

polynomial 
equation) 

No. of 
cycles 

(calculated 
from 

equation) 
66950 20.01 7.7E-06 20.005 8.45E-06 67590 
67970 20.2 5.72E-06 20.225 8.6E-06 68871 
68980 20.41 1.37E-05 20.445 8.74E-06 70116 
70000 20.58 9.73E-06 20.665 8.88E-06 71328 
71020 20.77 2.12E-05 20.885 9.03E-06 72508 
72040 20.96 9.19E-06 21.105 9.19E-06 73656 
73060 21.18 7.27E-06 21.325 9.35E-06 74773 
74080 21.4 9E-06 21.545 9.52E-06 75859 
75100 21.63 1.07E-05 21.765 9.7E-06 76914 
76120 21.79 7.07E-06 21.985 9.89E-06 77939 
77140 21.97 7.01E-06 22.205 1.01E-05 78932 
78160 22.12 3.48E-06 22.425 1.03E-05 79895 
78920 22.27 5.39E-06 22.59 1.05E-05 80596 
79940 22.53 1.54E-05 22.81 1.08E-05 81503 
80960 22.7 7.05E-06 23.03 1.11E-05 82379 
81980 22.95 6.71E-06 23.25 1.14E-05 83223 
83000 23.23 9.95E-06 23.47 1.17E-05 84036 
84010 23.5 1.36E-05 23.69 1.21E-05 84816 
85030 23.79 1.35E-05 23.91 1.25E-05 85565 
86050 24.09 9.98E-06 24.13 1.29E-05 86283 
87070 24.43 1.31E-05 24.35 1.34E-05 86969 
88090 24.77 1.62E-05 24.57 1.39E-05 87624 
88600 24.94 1.29E-05 24.68 1.42E-05 87940 
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Fig. 4.2 – Specific crack growth rate vs. crack length 

Comparison with incremental polynomial method 

 This method is based on nine point incremental polynomial as per ASTM E647-08 

standard [127]. It involves fitting a second-order curve (parabola) to sets of nine successive 

data points so as to minimize the square of the deviations between observed and fitted 

values of crack sizes (least squares method). The crack growth rates are obtained from the 

first derivative of the fitted equation. The calculated crack growth rates for the present case 

are presented in Fig. 4.3 along with the results of proposed exponential equation method 

for comparison. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.3 – Comparison of crack growth rate (da/dN) with stress intensity factor range ∆K 
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4.3 Test results 

4.3.1 Constant amplitude loading: Set - 1  

 As mentioned in chapter-III (section-3.3.2), constant amplitude fatigue crack 

growth tests (set-1) were conducted on four SEN specimens (two from each material) 

maintaining R = 0.1. Crack lengths vs. number of cycles were calculated from the raw 

experimental a-N data as per the procedures described above in order to get the 

smoothened values. Figs. 4.4 and 4.5 present the final a-N plots for the alloys under 

investigation.   

 
Fig. 4.4 – a-N curve of Al 7020-T7 

 
 
 
 
 
 

 
 
 

 

 

 

 

 

Fig. 4.5 – a-N curve of Al 2024-T3 
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 The corresponding crack growth rates (da/dN) were calculated from the 

smoothened a-N values as per Eq. 4.5. The corresponding plots of log(da/dN) vs. log(∆K) 

are presented in Figs. 4.6 and 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.6 – log(da/dN)- log(∆K) curve of Al 7020-T7 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 – log (da/dN)-log(∆K) curve of Al 2024-T3   
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Set - 2  

 For set-2 (constant amplitude test series), six different load ratios were maintained 

for conducting the fatigue crack growth tests. The smoothened a-N plots for all R-values 

obtained by the proposed method were superimposed and plotted in Figs. 4.8 and 4.9 

respectively for 7020-T7 and 2024-T3 alloys. Fatigue crack growth rate values were 

calculated at regular intervals for all the cases and plotted in Figs. 4.10 and 4.11 along with 

their ∆K values in linear-linear scale.  

 

 

 

 

 

 

 

 

 
 

Fig. 4.8 – Comparison of a-N curve for different load ratios (7020-T7) 
 

 

 

 

 

 

 

 

 

 

Fig. 4.9 – Comparison of a-N curve for different load ratios (2024-T3) 
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Fig. 4.10 – Comparison of log (da/dN)-log(∆K) curves for different load ratios (7020-T7) 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 4.11 – Comparison of log (da/dN)-log(∆K) curves for different load ratios (2024-T3) 
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Fractography 

 Few representative specimens were examined under Scanning Electron 

Microscope (SEM) and are presented in Figs. 4.12 to 4.15. Fractographs of 7020-T7 and 

2024-T3 Al alloys tested at R = 0.1 are presented in Figs. 4.12 and 4.13. In case of higher 

stress ratios (Fig. 4.14 and 4.15), the difference of fractographic features are not so 

significant.    

 

 

 

 

 

 
 

 
 
 
 
 

Fig. 4.12 – SEM image of fracture surface of 7020-T7 (R = 0.1) at mMPK 21.10=∆  

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 – SEM image of fracture surface of 2024-T3 (R = 0.1) at mMPK 41.10=∆  
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Fig. 4.14 – SEM image of fracture surface of 7020-T7 (R = 0.5) at mMPK 21.10=∆  

 
 
 
 

 

 

 

 

 

 

 

 
 
 

Fig. 4.15 – SEM image of fracture surface of 2024-T3 (R = 0.5) at mMPK 41.10=∆  
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base line data in Figs. 4.16 and 4.17 respectively for both the alloys. Figs. 4.18 and 4.19 

show the crack growth rates vs. stress intensity factors curves for different overload ratios. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.16 – Superimposed a-N curve of Al 7020-T7 
 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Fig. 4.17 – Superimposed a-N curve of Al 2024-T3 
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Fig. 4.18 – Superimposed da/dN-∆K curve of Al 7020-T7 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 4.19 – Superimposed da/dN-∆K curve of Al 2024-T3 
 
 
 

Fractography 

 Some representative fractographs are presented in Figs. 4.20 to 4.25. Figure 4.20 
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respectively. The line represents the beginning of overload stretch zone (marked by arrow). 

As observed in the same figures, the crack front corresponding to the overload cycle is 

crescent shaped. The width of stretch zone is also visible and marked in the figures for 

both the cases. For other overload ratios the values of stretch zone width are tabulated in 

Table 4.2 to show their variations with the magnitude of overloads.  

 

Table 4.2 – Width of stretch zone for different overload ratios 

Al 7020-T7 Al 2024-T3 

OLR (Rol) Stretch Zone Width in µm OLR (Rol) Stretch Zone Width in µm 

2.00 115.00 1.50 63.50 

2.25 203.35 1.75 79.35 

2.35 242.12 2.00 94.12 

2.50 295.00 2.10 121.1 

2.60 328.85 2.25 179.25 

2.75 389.23 2.50 252.00 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.20 – SEM image of fracture surface showing SZW of 7020-T7 (Rol = 2.5) 
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Fig. 4.21 – SEM image of fracture surface showing SZW of 2024-T3 (Rol = 2.5) 

 

 Figs. 4.22 to 4.25 present fractographs of pre- and post-overload regions of both the 

alloys (OLR = 2.5). Typical fatigue fracture surfaces were having chaotic wavy appearance 

and the fracture paths did not seem the result from a single mechanism of fracture (Figs. 

4.22 and 4.23).  Fatigue fractures exhibited relatively smooth areas (labeled A) separated 

by tear ridges or walls (labeled B). The smooth areas consisted of transgranular fatigue 

crack propagation containing poorly defined striations with evidence of secondary cracking 

(Fig. 4.22) and widely dispersed microvoid formation around second-phase particles 

(labeled C). The occurrence of cleaved particles in voids and the presence of unbroken 

particles adjacent to some voids (Fig. 4.23) were also observed. Fatigue striations in the 

direction of crack propagation (marked by arrow) after some distance from the overload 

point were also observed in both the alloys, but these were more continuous in 2024-T3 

(Fig. 4.25) than in 7020-T7 (Fig. 4.24). 
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Fig. 4.22 – Fracture surface (SEM) of 7020-T7 before overload at mMPK 61.10=∆  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.23 – Fracture surface (SEM) of 2024-T3 before overload at mMPK 25.10=∆  
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Fig. 4.24 –Fracture surface (SEM) of 7020-T7 after overload at mMPK 32.12=∆  

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.25 – Fracture surface (SEM) of 2024-T3 after overload at mMPK 12.12=∆  
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4.3.3 Constant amplitude loading interspersed with mixed mode (I and II) 

spike overload  

The crack lengths vs. number of cycle (a-N) curves for different overloading angles 

are obtained from the experimental data by adopting the same procedure and are given in 

Figs. 4.26 and 4.27. Figs. 4.28 and 4.29 illustrate the superimposed plots of crack growth 

rates vs. stress intensity factor ranges for the above loading conditions. 

 

 

 

 

 

 

 

 

 

Fig. 4.26 – Superimposed a-N curve of Al 7020-T7 

 

 

 

 
 

 

 

 

 

Fig. 4.27 – Superimposed a-N curve of Al 2024-T3 
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Fig. 4.28 – Superimposed da/dN-∆K curve of Al 7020-T7 
 
 
 

 
 

 

 

 

 

 

 

 

 

 
Fig. 4.29 – Superimposed da/dN-∆K curve of Al 2024-T3 

 

Fractography 
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angle of 54o are shown in Figs. 4.30 to 4.35. Figs. 4.30 and 4.31 show the typical overload 

stretch zone at the point of application of overload (marked by arrow) for 54o overloading 

angle. The values of stretch zone width (SZW) for other overload angles are presented in 

Table 4.3. 

 

Table 4.3 – Width of stretch zone for different overload angles 

Al 7020-T7 Al 2024-T3 

OLR 

(β) 

Stretch Zone Width (SZW) in µm OLR 

(β) 

Stretch Zone Width (SZW) 

in µm 

90° 101.68 90° 89.25 

72° 126.23 72° 92.16 

54° 172.00 54° 116.00 

36° 194.65 36° 129.02 

18° 225.00 18° 205.85 

0° 295.00 0° 252.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.30 – SEM image of fracture surface showing SZW of 7020-T7 (β = 54o) 
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Fig. 4.31 – SEM image of fracture surface showing SZW of 2024-T3 (β = 54o) 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Fig. 4.32 – Fracture surface (SEM) of 7020-T7 before overload at mMPK 85.10=∆  
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Fig. 4.33 – Fracture surface (SEM) of 2024-T3 before overload at mMPK 05.11=∆  

 
 
 

 

 

 

 

 

 

 

 
 

 
 

 

 

Fig. 4.34 –Fracture surface (SEM) of 7020-T7 after overload at mMPK 02.13=∆  
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Fig. 4.35 – Fracture surface (SEM) of 2024-T3after overload at mMPK 56.13=∆  

Comparing the fractographic features of mixed-mode overload with that of mode-I, 

not much qualitative difference has been found. 
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CHAPTER V  

PREDICTION OF FATIGUE LIFE BY EXPONENTIAL MODEL 

5.1 Introduction    

A new model [138-141] (exponential model) has been formulated to estimate the 

fatigue life under different loading conditions as described in Chapter-III. The proposed 

model is based on the exponential nature of growth of fatigue cracks with the number of 

loading cycles. The main feature of the model is that the exponent (i.e. specific growth 

rate) of the exponential equation of the model has been judiciously correlated with various 

physical variables like crack driving parameters and material properties in non-dimensional 

forms so that the same model can be used for different loading conditions as well as 

different regimes (II and III) of crack growth. Finally, the validation of the model has been 

done with the experimental findings in order to compare its accuracy in predicting fatigue 

life.  

 

5.2 Background and approach 

 Use of exponential model was first suggested by Thomas Robert Malthus (1766-

1834) for the prediction of growth of human population/bacteria. He realized that any 

species could potentially increase in numbers according to an exponential series. The 

differential equation describing an exponential growth is  

rP
t

P
=

d

d
           (5.1) 

where P is population, t is time and the quantity r in this equation is the Malthusian 

parameter, also known as specific growth rate. 

The solution of the above differential equation is  

rt

0.)( ePtP =           (5.2) 

This equation is called the law of growth.  

 When t = 0, P = P0. However, as t → ∞, P also tends to infinity. But at any point of 

time the population cannot become infinite due to natural calamities. Hence, some 

modification is required if this model is to be used for calculation of growth of population. 
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However, in the present case it was realized that a fatigue crack would grow exponentially 

and approach to infinity (of course the plate width has to be infinite) as t→∞. Although 

this concept resembles to the earlier work of Frost and Dugdale [115], but the form of 

exponential equation and its exponent have been treated differently in this work in a sense 

that the exponent has been correlated with the physical parameters involving fatigue crack 

growth. The form of exponential equation [138-141] of the proposed Exponential Model is 

as follows:  

)(

ij
ijij NNm

eaa
−

=          (5.3) 

The exponent, i.e. specific growth rate (mij) is calculated by taking the logarithm of the 

above equation as follows: 

( )ij

i

j

ij

ln

NN

a

a

m
−










=          (5.4) 

 In conventional differential equation model of Paris-Erdogan, there is a physical 

inconsistency when the constants of the crack growth rate equation are randomized as per 

dimensional analysis point of view [110]. In case of proposed exponential model, this type 

of inconsistency does not arise as the specific growth rate mij is a dimensionless parameter 

like 






 ∆

CK

K
, 









CK

Kmax and 








E

ysσ
as described in the procedure below. Further, Spagnoli 

[109] analyzed the Paris-Erdogan law on the basis of both similarity methods and fractal 

concepts and presented some experimental evidence of its breakdown of similitude concept 

and proposed a crack-size dependent Paris-Erdogan law by strengthening the phenomenon 

of incomplete self-similarity in the fatigue crack growth process. The differential equation 

of the proposed model follows the form proposed by Spagnoli for non-self similar growth 

and for the growth of a fractal crack emphasizing the fact that crack growth rate is crack 

size dependent as per Frost and Dugdale law. 
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5.3 Model formulation 

 Fatigue crack growth behavior is dependent on initial crack length and previous 

load history. Therefore, while using the exponential model described in Eq. 5.3 each 

previous crack length is taken as the initial crack length for the present step and the 

specific growth rate mij (which is a controlling parameter in the present model) is 

calculated for each step in incremental manner. Experimental a-N data have been used to 

determine the values of mij for each step as per Eq. 5.4. The detail procedure of the model 

is given below. 

General procedure [138]:  

1. The specific growth rate mij is calculated for each step from experimental a–N data 

according to the Eq. 5.4 and subsequently fitted with corresponding crack lengths by a 

polynomial curve-fit. 

2. To get a better result, crack lengths at small increments (say 0.005mm) are given to the 

initial crack length, ai (experimental) so as to reach the final value, af and the 

corresponding (smoothened) values of mij are obtained using the polynomial equation 

obtained in step-1. 

3. The above smoothened values of mij are correlated with a parameter l taking into 

account the two crack driving forces ∆K and Kmax as well as material parameters KC, E and 

σys as follows: 

4

1

max
















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
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







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

 ∆
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EK

K

K

K
l

ys

CC

σ
        (5.5) 

 The values of plane stress fracture toughness (KC) for both the alloys are calculated from 

plane strain fracture toughness values (KIC) by an empirical relation proposed by Irwin 

[128] as follows: 

( )2

IC

2

IC

2

C 4.11 β+= KK          (5.6) 

where, 












=

ys

IC
IC

1

σ
β

K

B
        (5.7) 

The different m and l values are fitted by a polynomial equation as follows:  

''2'3'
DlClBlAmij +++=         (5.8) 
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where, A
’
, B

’
, C

’
 and D’

 are constants of curve fitting. 

3. The predicted number of cycles or fatigue life is calculated from the following equation: 

i

ij

i

j

j

ln

N
m

a

a

N +









=          (5.9)  

 

5.4 Modeling under constant amplitude loading  

5.4.1 Model design  

Set-1 (Constant R) 

 As mentioned in Chapter-III, four specimens (from each alloy) were tested in 1st set 

of experiment under CAL out of which the experimental results of three specimens were 

taken for model formulation and the 4th one was left for model testing. The values of 

specific growth rate were calculated from Eq. 5.8 by following the general procedure. The 

values of the constants A′ , B′ , C ′ and D′  are tabulated in Tables 5.1 and 5.2 respectively 

for the two alloys. The predicted values of specific growth rate (mij) of the tested 

specimens were calculated by putting the average values of the curve fitting constants in 

Eq. 5.8. Taking the initial values of a and N from each step of the experimental data, the 

predicted number of cycles or fatigue life (Nj) were calculated using Eq. 5.9 so as to reach 

the final crack length af  (from experiment). 

Table 5.1 – Curve fitting constants of Al 7020-T7 

Test Specimen 610−×′A  610−×′B  610−×′C  610−×′D  

1     25226     26640    –5571.7    276.49 

2     25035     33750    –7282.8    376.41 

3     24353     27263    –5665.7    280.56 

Avg.     24871.3     29217.67    –6173.4    311.153 

 
Table 5.2 – Curve fitting constants of Al 2024-T3 

Test Specimen 610−×′A  610−×′B  610−×′C  610−×′D  

1     544055    -46346     838.98     11.84 

2     516939    -53301     1277.8     11.249 

3     495466    -43411     809.55     10.466 

Avg.     518820    -47686     975.443     11.185 
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Set-2 (Varying R) 

 Six specimens (from each alloy) were tested under different load ratios out of 

which five sets (i.e. R = 0, 0.2, 0.4, 0.6 and 0.8) of experimental results were used for 

model formulation. The values of specific growth rate were calculated for each load ratio 

from Eq. 5.8 in the same manner as that of Set-1. The values of the constants A′ , B′ , 

C ′ and D′  for each load ratios for both the alloys are given in Tables 5.3 and 5.4 

respectively. Each constant of different load ratios were correlated with the corresponding 

R by the following sets of equations:  

11

2

1 ZRYRXA ++=′  (5.10) 

22

2

2 ZRYRXB ++=′    (5.11) 

33

2

3 ZRYRXC ++=′  (5.12) 

44

2

4 ZRYRXD ++=′   (5.13) 

where, X1, X2, X3, X4, Y1, Y2, Y3, Y4 are another set of curve fitting constants relating A′ , 

B′ ,C ′ and D′ with load ratio, R.  The generalized equation for specific growth rate (Eq. 

5.8) was: 

{ } { } { } { }44

2

433

2

3

2

22

2

2

3

11

2

1 ZRYRXlZRYRXlZRYRXlZRYRXmij +++++++++++=

 (5.14) 

The predicted values of mij for the tested specimens (R = 0.5) were calculated by 

putting their respective values of above constants in Eq. 5.14 separately for each material. 

Subsequently the predicted number of cycles was determined as per Eq. 5.9.  

 

Table 5.3 – Curve fitting constants of 7020-T7 aluminum alloy 

load Ratio(R) A’
610−×  B’

610−×  C’
610−×  D’

610−×  

0.0 300696 -49899 2873.1 -56.178 

0.2 361205 -61403 3519.7 -66.708 

0.4 431366 -72311 4003.6 -71.464 

0.6 433914 -72170 3953.9 -69.641 

0.8 403545 -66761 3683.3 -65.589 
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Table 5.4 – Curve fitting constants of 2024-T3 aluminum alloy 

load Ratio(R) A’
610−×  B’

610−×  C’
610−×  D’

610−×  

0.0 665987 -164037 13843 -390.33 

0.2 720615 -181465 15675 -452.43 

0.4 870070 -214174 17879 -494.04 

0.6 938408 -222270 17717 -459.37 

0.8 929936 -221605 17607 -448.1 

 
 
5.4.2 Model validation  

Set-1 (Constant R) 

 For the first set, the predicted results were compared with the experimental data and 

the results obtained by using Forman model for a constant load ratio of 0.1 [138]. The 

values of the constants aC  and an of the Forman equation (Eq. 2.3; Section 2.2.1; Chapter-

II) were calculated from experimental data by taking the average values of three tested 

specimens for each material and given in Table 5.5. The predicted a-N curves for both the 

materials obtained from the proposed exponential model and that of Forman model were 

compared with the experimental data (Figs. 5.1 and 5.2) and their numerical values are 

given in Table 5.6. The da/dN–∆K curves are illustrated in Figs. 5.3 and 5.4 for the tested 

specimens for comparison.  

 It may be noted that specific growth rate (mij) is not a constant quantity. It changes 

with change in loading condition as well as crack length. Since in constant load fatigue 

test, crack length increases with number of cycles resulting increase in stress intensity 

factor, the specific growth rate mij also changes with crack length and number of cycles. 

The typical variations of mij with crack length and number of cycles are shown in Fig.5.5 

to Fig.5.8 respectively for both the alloys. 

 

Table 5.5 – Constants of Forman model 

Forman 
constants 

Specimens (Al 7020-T7) Specimens (Al 2024-T3) 

No. 1 No. 2 No. 3 Avg. No. 1 No. 2 No. 3 Avg. 
510−×aC  1.00 2.00 1.00 1.33 2.00 2.00 2.00 2.00 

an  3.247 3.175 3.164 3.195 2.784 2.786 2.710 2.760 
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Table 5.6 – Predicted results of CAL (Set-1) 

Test 
Specimen 

F

fN  

K cycle 
 

P

fN  

K cycle 
 

E

fN  

K cycle 
 

7020-T7 96.899 97.561 98.829 

2024-T3 124.12 124.56 125.09 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 5.1 – a–N curve of Al-7020-T7 
 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 5.2 – a–N curve of Al-2024-T3 
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Fig. 5.3 – da/dN–∆K curve of Al 7020-T7 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 5.4 – da/dN–∆K curve of Al 2024-T3 
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Fig. 5.5 – Variation of specific growth rate with crack length (7020-T7) 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.6 – Variation of specific growth rate with crack length (2024-T3) 
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Fig. 5.7 – Variation of specific growth rate with number of cycles (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 – Variation of specific growth rate with number of cycles (2024-T3) 
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Set-2 (Varying R)  

 In the second set, the model result was tested for load ratio of 0.5. Table 5.7 

presents the predicted and experimental fatigue lives for both the alloys. The predicted a–N 

and also da/dN–∆K curves are compared with experimental results in Figs. 5.9 to 5.12 

respectively.  

 

Table 5.7 – Predicted results of CAL (set-2) 

Test 
specimen 

Load 
ratio 

R 

ai 

mm 
af 

mm 
 P

fN  

kcycle 
 

 E

fN  

kcycle 
 

7020-T7 0.5 18.3 35.1 78.265 78.783 

2024-T3 0.5 18.3 35.4 112.879 113.298 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

Fig. 5.9 – Crack length vs. number of cycle for load ratio 0.5 (7020-T7) 
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Fig. 5.10 – Crack length vs. number of cycle for load ratio 0.5 (2024-T3) 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 5.11 – Crack growth rate vs. stress intensity range for load ratio 0.5 (7020-T7) 
 

 

 

18.3

20.3

22.3

24.3

26.3

28.3

30.3

32.3

34.3

9.00E+04 9.50E+04 1.00E+05 1.05E+05 1.10E+05

No. of cycle(N)

C
ra

c
k
 le

n
g
th

(a
),

m
m

Exponential

Experimental

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

9.8 14.8 19.8 24.8 29.8 34.8

Stress intensity factor(del.K),MPa.m 1̂/2

C
ra

c
k
 g

ro
w

th
 r

a
te

(d
a
/d

N
),

m
m

/c
y
c
le

Exponential

Experimental

60 



 

 

 

 

 

 

 

 

 

 
Fig. 5.12 – Crack growth rate vs. stress intensity range for load ratio 0.5 (2024-T3) 

 

5.5 Modeling under Constant amplitude loading interspersed with mode-I 

spike overload   

5.5.1 Model design  

 As already mentioned in Chapter-III, six specimens (from each alloy) were tested 

under the above loading condition with different overload ratios out of which five 

experimental results (Rol = 2.0, 2.25, 2.50, 2.60 and 2.75 for 7020-T7 and Rol = 1.50, 1.75, 

2.00, 2.25 and 2.50 for 2024-T3) were taken for model formulation. The values of the 

specific growth rate were calculated from Eq. 5.9 as before and the values of the 

constants A′ , B′ ,C ′ and D′  for each overload ratios are tabulated in Tables 5.8 and 5.9 

respectively for both the alloys.   

 

Table 5.8 – Curve fitting constants of 7020-T7 aluminum alloy 

Overload Ratio 
(Rol) 

A’
610−×  B’

610−×  C’
610−×  D’

610−×  

2.00 -68004 16721 -1149.9 24.582 

2.25 -104212 25796 -1793.1 38.17 

2.50 -136870 33690 -2398.5 52.668 

2.60 -165538 41857 -3113.5 72.101 

2.75 -166698 41801 -3084.1 70.865 
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Table 5.9 – Curve fitting constants of 2024-T3 aluminum alloy 

Overload Ratio (Rol) A’
610−×  B’

610−×  C’
610−×  D’

610−×  

1.50 -22226 9137.4 -1088.20 41.208 

1.75 -14173 6054.7 -709.26 25.827 

2.00 -15258 5987.1 -545.09 12.189 

2.25 -11951 4822.9 -521.37 16.770 

2.50 -19774 8027.2 -896.03 30.197 

 
 

It is observed that the values of the above constants differ according to different 

overload ratios (Rol) since the amount of retardation depends on Rol. Therefore, the above 

constants were correlated with Rol by a 2nd degree polynomial through the following sets of 

equations: 

( ) 11

2

1 ZRYRXA olol ++=′  (5.15) 

( ) 22

2

2 ZRYRXB olol ++=′    (5.16) 

( ) 33

2

3 ZRYRXC
olol ++=′  (5.17) 

( ) 44

2

4 ZRYRXD olol ++=′   (5.18) 

where, X1, X2, X3, X4, Y1, Y2, Y3, Y4 are another set of curve fitting constants relating A′ , 

B′ ,C ′ and D′ with load ratio, Rol.  The generalized equation for specific growth rate (Eq. 

5.8) is: 
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(5.19) 

The predicted values of mij for the tested specimens (Rol=2.35 for 7020-T7 and 2.1 

for 2024-T3) were calculated by putting their respective values of above constants in Eq. 

5.19 separately for each material. Subsequently the predicted number of cycles was 

determined as per Eq. 5.9.  

5.5.2 Model validation 

 The proposed model was tested by comparing experimental result and also the 

result obtained from Wheeler model with the predicted one for overload ratio of 2.35 for 

7020-T7 and 2.1 for 2024-T3 respectively [139]. 
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Comparison with experimental results 

The comparison of the model results with the experimental findings is presented in 

Figs. 5.13 to 5.16 respectively for both the materials. The various values of the retardation 

parameters and also the number of cycles (i.e. fatigue life) are presented in Table 5.11.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 5.13 – Predicted crack length vs. number of cycle for Rol = 2.35 (7020-T7) 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14 – Predicted crack length vs. number of cycle for Rol = 2.10 (2024-T3) 
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Fig. 5.15 – Predicted crack growth rate vs. stress intensity range for Rol = 2.35 (7020-T7) 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 5.16 – Predicted crack growth rate vs. stress intensity range for Rol = 2.10 (2024-T3) 
 
 

Comparison with ‘Wheeler Model’: 

For determination of the various retardation parameters such as retarded crack 

length (ad) and delay cycles (Nd) for Wheeler model, it was necessary to calculate its 

shaping exponent. The Wheeler model parameters are shown in Fig. 5.17. 

0.00E+00

3.00E-04

6.00E-04

9.00E-04

1.20E-03

1.50E-03

1.80E-03

9.6 11.6 13.6 15.6 17.6 19.6 21.6

Stress intensity factor range(del.K),MPa.m 1̂/2

C
ra

c
k
 g

ro
w

th
 r

a
te

(d
a
/d

N
),

m
m

/c
y
c
le

Base line

Exponential

Experimental

overload point

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

8.4 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4

Stress intensity factor range(del.K),MPa.m 1̂/2

C
ra

c
k
 g

ro
w

th
 r

a
te

(d
a
/d

N
),

m
m

/c
y
c
le

Base line

Exponential

Experimental

overload point

64 



    

 

 

 

 

 

Fig. 5.17 – Plastic zone size definitions used in Wheeler’s model 

 The Wheeler retardation relation for the delay in crack growth due to a single 

tensile overload is given by: 

( ) ( )[ ]n
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        (5.20) 

where, (Cp)i is the retardation parameter and is given by  
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where, p = empirically determined shaping parameter 

a
ol = crack length at overload 

and rp0 = overload plastic zone size, that was calculated, assuming plane stress 

loading using the following expression: 
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Assuming plane stress loading conditions, the current cyclic plastic zone rpi was calculated 

from the expression given below: 
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The presence of a net compressive residual stress field around the crack-tip reduces the 

usual size of the plane stress cyclic plastic zone size. Therefore, Ray et al. [142] introduced 

rpi 

rpo a
ol

 

ai 
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a plastic zone correction factor λ in the expression of the instantaneous cyclic plane stress 

plastic zone size in a compressive stress field.  
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Also from Eq. 5.20 
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Equation 5.21 is now written as 
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where, γ  is a correction factor which is expressed as 
pλγ = . 

The values ofγ , λ  and p calculated using Eqs. 5.24 and 5.26 are presented in Table 5.10 

for tested specimens of both the materials. 

 

Table 5.10 – Material parameters of Paris-Erdogan and modified Wheeler model 

Test 
sample 

C n λ p γ 

7020-T7 8106 −×  3.14763 3.5931 0.4246 1.7213 

2024-T3 8106 −×  3.270 0.7385 0.3748 0.8926 

 
 

Table 5.11 – Experimental results of the tested specimens 

Test 
sample 

P

da  

mm 

W

da  

mm 

E

da  

mm 

P

dN  

k. cycle 
 

W

dN  

k. cycle 
 

E

dN  

k. cycle 

P

fN  

k. cycle 

E

fN  

k. cycle 

7020-T7 2.10 2.20 2.13 29.89 29.80 30.51 79.46 80.82 

2024-T3 2.06 2.45 2.18 36.65 34.52 37.60 135.75 136.80 

 
 

 Using these values, the crack lengths and the corresponding number of cycles were 

calculated. The resulting a–N and da/dN–∆K curves are presented in Figs. 5.18 to 5.21 

respectively along with their experimental and exponential model results for comparison. 
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The different calculated retardation parameters are given in Table 5.11 for the quantitative 

comparison of the predicted results. 

 

 

 
 

 
 
 
 
 
 
 
 
 

 

 

 

Fig. 5.18 – Superimposed a-N curve of 7020-T7 (Wheeler, predicted and experimental)  

 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 

Fig. 5.19 – Superimposed a-N curve of 2024-T3 (Wheeler, predicted and experimental)  
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Fig. 5.20- da/dN – ∆K curve of 7020-T7 (Wheeler, predicted and experimental)  

 
 

 

 

 

 

 

 

 

 

 

Fig. 5.21- da/dN – ∆K curve of 2024-T3 (Wheeler, predicted and experimental)  
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5.6 Modeling under constant amplitude loading interspersed with mixed mode 

(I and II) spike overload   

5.6.1 Model design  

 In this case, six specimens (from each alloy) were tested under the above loading 

condition with fixed overload ratio (Rol = 2.5) but at different overloading angles (β) out of 

which five experimental results (β = 0o, 18o, 36o, 72oand 90o for both the alloys) were taken 

for model formulation and the 5th one i.e. β = 54o was left for validation. The values of the 

specific growth rate were calculated from Eq. 5.9 in similar manner as before and the 

values of the constants A′ , B′ ,C ′ and D′  for each overloading angles are tabulated in 

Tables 5.12 and 5.13 respectively for both the alloys along with their corresponding mode-

mixity.   

 
Table 5.12 – Curve-fitting constants of 7020-T7 alloy 

Overload Angle 
 

Mode- mixity 
 

6' 10−×A  6' 10−×B  6' 10−×C  6' 10−×D  

90o 1 –539649 145310 –10994.00 259.79 

72o 0.755 –502381 134367 –9829.70 220.57 

36o 0.421 –398478 104031 –6853.30 126.11 

18o 0.245 –375919 98609 –6562.20 122.74 

0o 0 –352141 91313 –5839.90 97.56 

 
 

Table 5.13 – Curve fitting constants of 2024-T3 alloy 

Overload Angle 
 

Mode- mixity 
 

6' 10−×A  6' 10−×B  6' 10−×C  6' 10−×D  

90o 1 –317743 130554 –14954.0 526.86 

72o 0.755 –161221 66285 –7576.1 270.48 

36o 0.421 –123760 49826 –5091.6 148.40 

18o 0.245 –131140 53025 –5560.5 170.22 

0o 0 –184424 75502 –8449.2 284.73 

  
 
It is observed that the values of the above constants differ according to different 

mode-mixity 








+ III

II

KK

K
. Because of such variations the said constants were correlated 

with mode-mixity, to give the following sets of equations:  
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where, X1, X2, X3, X4, Y1, Y2, Y3, Y4 are another set of curve fitting constants relating A′ , 

B′ ,C ′ and D′ with mode mixity.  The generalized equation for specific growth rate (Eq. 

5.8) is: 
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 (5.31) 

 The predicted values of ‘mij’ for the tested specimens (β = 54o) were calculated by 

putting the values of different constants in Eq. 5.31 separately for each material. 

Subsequently the predicted number of cycles was determined using Eq. 5.9.  

 

5.6.2 Model validation 

The proposed model was tested for overload angle of 54o for both the materials and the 

predicted results are compared with the experimental data (Figs. 5.22 to 5.29) [140]. The 

predicted fatigue life along with the retardation parameters (i.e. ad and Nd) are tabulated in 

Table 5.14.  

Table 5.14 – Experimental results of the tested specimens 

Test  
sample 

P

da  

mm 

E

da   

mm 

P

dN  

kcycle 

E

dN  

kcycle 

P

fN  

kcycle 

E

fN  

kcycle 

7020 T7 1.978 1.994 21.49 21.750 74.60 74.78 

2024 T3 2.274 2.300 19.564 20.019 118.22 118.48 
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Fig. 5.22 – Comparison of predicted and experimental a–N curves for 54o (7020-T7) 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 

Fig. 5.23 – Comparison of predicted and experimental a–N curves for 54o (2024-T3) 
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Fig. 5.24 – Predicted and experimental crack growth rate for β = 54o (7020-T7) 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5.25 – Predicted and experimental crack growth rate for β = 54o (2024-T3) 

 
 
 
 

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

10.3 15.3 20.3 25.3 30.3

Stress intensity factor range (del.K ), Mpa.m 1̂/2

C
ra

c
k
 g

ro
w

th
 r

a
te

 (
da

/d
N

),
 m

m
/c

y
c
le

Base line

Exponential

Experimental

overload point

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

8.6 10.6 12.6 14.6 16.6 18.6 20.6 22.6 24.6 26.6

Stress intensity factor range (del.K ), MPa.m 1̂/2

C
ra

c
k
 g

ro
w

th
 r

a
te

 (
da

/d
N

),
 m

m
/c

y
c
le

Base line

Exponential

Experimental

overload

point

72 



 

 

 

 

 

 

 

 

 

 

Fig. 5.26 – Predicted and experimental retarded crack length for β = 54o (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.27 – Predicted and experimental retarded crack length for β = 54o (2024-T3) 
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Fig. 5.28 – Predicted and experimental delay cycle for β = 54o (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.29 – Predicted and experimental delay cycle for β = 54o (2024-T3) 
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CHAPTER VI  

PREDICTION OF FATIGUE LIFE BY ARTIFICIAL NEURAL NETWORK 

(ANN) 

6.1 Introduction   

 As discussed in chapter II, artificial neural network (ANN) is one of the powerful 

and versatile soft-computing methods in modeling multivariate complex problems in a 

number of engineering fields including the field of fatigue. In the present investigation, a 

multi-layered, feed-forward ANN architecture was developed and implemented for fatigue 

life prediction under different loading conditions such as constant amplitude loading 

(variable load ratios) and constant amplitude loading interspersed with mode-I and mixed 

mode (I and II) spike load. The model results were compared with the experimental data. 

 

6.2 Background  

 The term “neural network” refers to a collection of neurons, their connections and 

the connection strengths between them. The knowledge is acquired during the training 

process by correcting the corresponding weights so as to minimize an error function. There 

are three types of learning in ANN technology: supervised, unsupervised and 

reinforcement. In case of supervised learning (learning with a teacher), the network is 

trained by optimizing corresponding weights in such a way that the significant outputs can 

be obtained for the inputs not belonging to the training set. The unsupervised training is 

based on organizing the structure so that similar stimuli activate similar neurons where 

there is no pre-defined output and the network finds differences and affinities between the 

inputs. The reinforcement learning, which is a particular form of supervised training 

attempts to learn input-output vectors by trial and error through maximizing a performance 

function (named reinforcement signal). 

 Back propagation networks are in fact the powerful networks which refer to a 

multi-layered, feed-forward perceptron trained with an error-back propagation algorithm 

(error minimization technique). The architecture of a simple back propagation ANN is a 

collection of nodes distributed over a layer of input neurons, one or more layers of hidden 

neurons and a layer of output neurons. Neurons in each layer are interconnected to 
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subsequent layer neurons with links, each of which carries a weight that describes the 

strength of that connection. Various non-linear activation functions, such as sigmoidal, 

tanh or radial (Gaussian) are used to model the neuron activity. Inputs are propagated 

forward through each layer of the network to emerge as outputs. The errors between those 

outputs and the target (desired output) are then propagated backward through the network 

and then connection weights are adjusted so as to minimize the error. 

 

6.3 Model formulation 

The neural network used in the present investigation is a multi-layer feed forward 

perceptron [65] trained with the standard back propagation algorithm [143]. It consists of 

one input layer, one output layer and seven hidden layers. Hence, the total numbers of 

layers in the network are nine. The chosen numbers of layers have been selected 

empirically so as to facilitate training. The three input parameters are associated with the 

input layer whereas the output layer consists of one output parameter. The neurons 

associated with the input and output layers are three and one respectively. The neurons in 

seven hidden layers are twelve, twenty four, hundred, thirty five, and eight respectively. 

These are taken in order to give the neural network a diamond shape as shown in Fig. 6.1. 

 All the training tests have been performed in MATLAB environment. During 

training and during validation, the input patterns fed to the neural network comprise the 

following components; 

y1
{1} = 1st input         (6.1) 

y2
{1} = 2nd input         (6.2) 

y3
{1} = 3rd input   (6.3) 

These input values are distributed to the hidden neurons which generate outputs given by: 

{ } { }( )lay

s

lay

s f vy =           (6.4) 

where, { } { } { }∑ −=
r

yWv 1lay

r

lay

sr

lay

s .        (6.5) 

lay = layer number (2 to 8) 

s = label for sth neuron in the hidden layer ‘lay’ 

r = label for rth neuron in hidden layer ‘lay-1’ 
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{ }lay

srW = weight of the connection from neuron r in layer ‘lay-1’ to neuron‘s’ in layer ‘lay’ 

f (.) = activation function, chosen in this work as the hyperbolic tangent function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6.1 – ANN architecture 

 
 During training, the network actual output θactual, may differ from the desired output 

θdesired as specified in the training pattern presented to the network. A measure of the 

performance of the network is the instantaneous sum-squared difference between θdesired 

and θactual for the set of presented training patterns:  

( )2

actualdesiredrr
2

1
∑ −=

patterns
training
all

E θθ   (6.6) 

 The error back- propagation method is employed to obtain the network [65]. This 

method requires the computation of local error gradients in order to determine appropriate 

weight corrections to reduce ‘Err’. For the output layer, the error gradient { }9δ is: 

{ } ( )( )actualdesired

9

1

'9 f θθδ −= V   (6.7) 
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The local gradient for neurons in hidden layer {lay} is given by: 

{ } { }( ) { } { }







= ∑ ++

k

WV
1lay

ks

1lay

k

lay

s

'lay

s f δδ        (6.8) 

The synaptic weights are updated according to the following expressions: 

( ) ( ) ( )11 +∆+=+ tWtWtW srsrsr        (6.9) 

and ( ) ( ) { } { }11 −+∆=+∆ lay

r

lay

ssrsr ytWtW ηδα   (6.10) 

where, α = momentum coefficient (chosen empirically as 0.2 in this work) 

η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation of a training pattern and 

correction of the weights. 

The final output from the neural network is: 

{ }( )9

1Vfactual =θ          (6.11) 

where, 

{ } { } { }∑=
r

rr yWV 89

1

9

1  (6.12) 

 

6.4 Modeling under constant amplitude loading (CAL) 

 In case of constant amplitude loading, ANN was applied to predict the fatigue life 

in Set-2 (variable load ratio condition) of fatigue crack growth test (Chapter III). The two 

crack driving forces: stress intensity factor range (∆K) and maximum stress intensity factor 

(Kmax) were chosen as the two inputs as per ‘Unified Approach’. The third input chosen 

was the load ratio (R) because of its influence on crack growth rate in case of constant 

amplitude loading (Fig. 4.8 and 4.9). Crack growth rate (da/dN) was selected as the output. 

The three input parameters associated with the input layer were as follows;  

Stress intensity factor range = “sifr”; Maximum stress intensity factor = “msif”; load ratio 

= “lr”. 

The output layer had one output parameter i.e. crack growth rate = “cgr”. 
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6.4.1 Application design 

 Proper selection of input and output parameters and their normalization are the two 

primary objectives to design a suitable ANN architecture. The proposed ANN model was 

developed using back propagation architecture with three inputs and one output. As far as 

normalization of input and output parameters are concerned, classical normalization, where 

the range is scaled between 0 and 1, may not be applicable in every ANN model. In order 

to make the input amenable for successful learning to minimize the overall sum-squared 

error, the two input parameters ∆K and Kmax were normalized between 1 and 4, while the 

other one, load ratio (R), was normalized between 1 and 3. Similarly the output i.e. crack 

growth rate was normalized between 0 and 3 for network training and testing. The inputs 

and outputs of the training sets (TS) were constituted from 505050 ×× experimental 

values for each of the load ratios 0, 0.2, 0.4, 0.6 and 0.8 in case of both 7020-T7 and 2024-

T3 Al-alloys respectively. Figs. 6.2 and 6.3 illustrate the mean square error (MSE) curves 

during the training of the model. The performance of the trained ANN model is presented 

in Table 6.1.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 6.2 – MSE curve obtained during training of ANN for Al 7020-T7 
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Fig. 6.3 – MSE curve obtained during training of ANN for Al 2024-T3 

 
Table 6.1 – Performance of ANN model during training 

Material Momentum 

Coefficient 

Learning 

rate 

Hidden 

neurons 

MSE Training 

epochs 

Computational 

Time (Min.) 

7020-T7 0.2 0.35 179 610278.1 −×  510919.5 ×  697 

2024-T3 0.2 0.35 179 610108.1 −×  510627.5 ×  626 

 

 
6.4.2 Model validation 

The adopted multi-layer perceptron (MLP) neural network model was applied to 

simulate the crack growth rate of an unknown set of load ratio (R = 0.5) as validation set 

(VS). The inputs were fed to the trained ANN model in order to predict the corresponding 

outputs for the validation set. The predicted results are presented in Figs. 6.4 and 6.5 

respectively along with the experimental data for comparison. It is observed that the 

simulated da/dN–∆K points follow the experimental ones quite well. The number of cycles 

was calculated from the simulated crack growth rates by taking the first experimental ‘a’ 

and ‘N’ values as the initial values and assuming an incremental crack length of 0.05 mm 

in steps in excel sheet as per following equation:  
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i

ij

j N

dN
da

aa
N +

−
=          (6.13) 

The predicted a–N values of the ANN model are compared with the experimental data in 

Figs. 6.6 and 6.7 respectively for both the materials. The predicted numbers of cycles 

(fatigue life) along with their percentage deviation from experimental data are presented in 

Table 6.2. 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6.4 – Predicted (ANN) and experimental crack growth rate for R = 0.5 (7020-T7) 

 

 

 

 

 

 

 

 
 
 
 
 

 
Fig. 6.5 – Predicted (ANN) and experimental crack growth rate for R = 0.5 (2024-T3) 
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Fig. 6.6 – Predicted (ANN) and experimental number of cycle for R = 0.5 (7020 T7) 
 

 

 

 

 

 

 

 

 

 

Fig. 6.7 – Predicted (ANN) and experimental number of cycle for R = 0.5 (2024-T3) 
 
 
 

Table 6.2 – Comparison of ANN model results with experimental data 

Test specimens A

fN  

K cycle 
 

E

fN  

K cycle 

 

7020-T7 75.343 78.783 

2024-T3 110.919 113.298 
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6.5 Modeling under constant amplitude loading interspersed with spike 

overload in mode-I 

 The artificial neural network approach was also applied to predict the fatigue life in 

case of single tensile overload followed by constant amplitude loading. The fundamental 

concept of the ANN approach has already been discussed in the previous section.  

 

6.5.1 Application design 

 In this case, same multi-layer feed forward neural network architecture with back 

propagation algorithm was selected. But, the only difference was in the selection of 3rd 

input parameter, which was the overload ratio (“olr”) in contrast to load ratio (“lr”) of 

previous case. The first two inputs, ∆K and Kmax were normalized between 1 and 4, while 

the 3rd one i.e. overload ratio was normalized between 1 and 3. Similarly the output, da/dN 

was normalized between 0 and 3 for network training and testing. The inputs and outputs 

of the training sets (TS) were constituted from 505050 ×× experimental values for each 

overload ratios of 2.0, 2.25, 2.5, 2.6, and 2.75 in case of 7020-T7 Al-alloy and that of 1.5, 

1.75, 2.0, 2.25 and 2.5 in case of 2024-T3 Al-alloy respectively. The adopted multi-layer 

perceptron (MLP) neural network model was applied to simulate the crack growth rate of 

an unknown set of overload ratio (Rol = 2.35 for Al 7020-T7 and Rol
 = 2.1 for Al 2024-T3) 

as validation set (VS). Figs. 6.8 and 6.9 illustrate the mean square error (MSE) curves 

during the training of the model. The performance of the trained ANN model is presented 

in Table 6.3.  

 

Table 6.3 – Performance of ANN model during training 

Material Momentum 
Coefficient 

Learning 
rate 

Hidden 
neurons 

MSE Training 
epochs 

Computational 
Time (Min.) 

7020-T7 0.2 0.35 179 610056.1 −×  510861.6 ×  727 

2024-T3 0.2 0.35 179 610034.1 −×  510559.6 ×  694 
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Fig. 6.8 – MSE curve obtained during training of ANN for Al 7020-T7 

 
 

 

 

 

 

 

 

 
 
 
 
 

Fig. 6.9 – MSE curve obtained during training of ANN for Al 2024-T3 
 

 
6.5.2 Model validation  

 The inputs were fed to the trained ANN to predict the corresponding crack growth 

rate for the validation set. The predicted results are presented in Figs. 6.10 and 6.11 

respectively along with their experimental data for comparison. It was observed that the 

simulated da/dN–∆K points follow the experimental ones quite well. The numbers of 

cycles were calculated from the simulated da/dN values in similar manner as described 
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above. Figs. 6.12 and 6.13 show the corresponding pedicted a–N curves. The curves of a–

da/dN and N–da/dN are plotted in Figs. 6.14 to 6.17 in order to facilitate the calculation of 

various retardation parameters. Table 6.4 presents the comparison of various predicted 

results with the experimental data. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6.10 – Predicted (ANN) and experimental crack growth rate for Rol = 2.35 (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11 – Predicted (ANN) and experimental crack growth rate for Rol = 2.10 (2024-T3) 
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Fig. 6.12 – Predicted (ANN) and experimental number of cycle for Rol = 2.35 (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.13 – Predicted (ANN) and experimental number of cycle for Rol = 2.10 (2024-T3) 
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Fig. 6.14 – Predicted (ANN) and experimental retarded crack length (7020 T7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.15 – Predicted (ANN) and experimental retarded crack length (2024-T3) 
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Fig. 6.16 – Predicted (ANN) and experimental delay cycle (7020-T7) 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6.17 – Predicted (ANN) and experimental delay cycle (2024-T3) 

Table 6.4 – Comparison of ANN model results with experimental data 
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6.6 Modeling Constant amplitude loading interspersed with spike overload in 

mixed mode (I and II)  

 The neural network was also applied in this loading condition in order to predict 

the end life along with various retardation parameters. 

 

6.6.1 Application design 

The same ANN architecture was implemented under the above loading condition. 

However, the only difference was in the selection of 3rd input parameter. Since the amount 

of retardation was affected by the overloading angles (Figs. 4.26 and 4.27; Section: 4.3.3), 

mode-mixity “mm” was considered as the 3rd input for the proposed ANN model. To make 

the input amenable for successful learning to minimize the overall least normalized mean 

square error (NMSE), the two inputs ∆K and Kmax were normalized between 1 and 4, while 

the other one, mode-mixity was normalized between 0 and 1. Similarly the output (da/dN) 

was normalized between 0 and 3 for network training and testing. The inputs and outputs 

of the training sets (TS) were constituted from 505050 ××  experimental values for each of 

the overloading angles 0°, 18°, 36°, 72° and 90° with mode-mixity of 0, 0.245, 0.421, 

0.755 and 1.0 in case of both 7020-T7 and 2024-T3 Al-alloys. The multi-layer perceptron 

(MLP) neural network architecture was applied to simulate the crack growth rate of an 

unknown set of overload angle, 54o (mode-mixity = 0.579) as validation set (VS) by 

constructing a training set (TS) with five known sets of overload angles (β = 0°, 18°, 36°, 

72°, 90° and mode-mixity = 0, 0.245, 0.421, 0.755 and 1). Figs. 6.18 and 6.19 illustrate the 

mean square error (MSE) curves during the training of the model. The performance of the 

trained ANN model is presented in Table 6.5. The input parameters, stress intensity factor 

range, maximum stress intensity factor and mode-mixity for the suppressed overload angle 

54° have been fed to the trained ANN model in order to predict the corresponding crack 

growth rate. 
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Fig. 6.18 – MSE curve obtained during training of ANN for Al 7020 T7 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.19 – MSE curve obtained during training of ANN for Al 2024 T3 
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Table 6.5 – Performance of ANN model during training 

Material Momentum 
Coefficient 

Learning 
rate 

Hidden 
neurons 

MSE Training 
epochs 

Computational 
Time (Min.) 

7020-T7 0.2 0.35 179 610688.1 −×  510419.7 ×  765 

2024-T3 0.2 0.35 179 610798.1 −×  510789.7 ×  686 

 

 

6.6.2 Model validation 

 After training, the trained ANN was tested for the validation sets whose predicted 

results (crack growth rate) are presented in Figs. 6.20 and 6.21 respectively along with the 

experimental data for comparison. The numbers of cycles were calculated from the 

simulated da/dN values in similar manner as per previous cases. The predicted a–N values 

of the ANN model are compared with the experimental data in Figs. 6.22 and 6.23 

respectively for both the materials. Table 6.6 shows the predicted fatigue lives of both the 

materials along with different retardation parameters as calculated from a–da/dN and N–

da/dN plots (Figs. 6.24 to 6.27).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6.20 – Predicted (ANN) and experimental crack growth rate for β = 54o (7020-T7) 
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Fig. 6.21 – Predicted (ANN) and experimental crack growth rate for β = 54o (2024-T3) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 6.22 – Predicted (ANN) and experimental number of cycle for β = 54o (7020-T7) 
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Fig. 6.23 – Predicted (ANN) and experimental number of cycle for β = 54o (2024-T3) 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

Fig. 6.24 – Predicted (ANN) and experimental retarded crack length (7020-T7) 
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Fig. 6.25 – Predicted (ANN) and experimental retarded crack length (2024-T3) 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 
Fig. 6.26 – Predicted (ANN) and experimental delay cycle (7020-T7) 
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Fig. 6.27 – Predicted (ANN) and experimental delay cycle (2024-T3) 

 
 
 

Table 6.6 – Comparison of ANN model results with experimental data 
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K cy. 

7020-T7 1.900 1.994 22.547 21.750 75.493 74.778 

2024-T3 2.141 2.300 20.791 20.019 120.152 118.48 
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CHAPTER VII  

PREDICTION OF FATIGUE LIFE BY ADAPTIVE NEURO-FUZZY 

INFERENCE SYSTEM (ANFIS) 

7.1 Introduction 

A methodology has been developed to predict fatigue crack propagation life under 

three different loading conditions (as mention in Chapter-III) by adopting adaptive neuo-

fuzzy inference system (ANFIS), a novel soft-computing approach, suitable for non-linear, 

noisy and complex problems like fatigue. It is a novel non-conventional hybrid technique 

which uses advantages of both ANN and fuzzy logic thereby giving better prediction 

accuracy than that of ANN. ANFIS model has been formulated for each loading conditions 

separately and the predicted results have been compared with the experimental data. 

 

7.2 Background  

Fuzzy logic methods 

Fuzzy logic is a problem solving technique which maps an input space (variables) 

to an output space. These mappings are performed through linguistic terms of fuzzy if-then 

rules characterized by appropriate membership function in order to achieve optimum 

outputs, very much close to the target output. One of its advantages is that it has the ability 

to draw conclusions and generate responses based on imprecise and inconsistent 

information using simple rules to describe the system behavior rater than analytical 

equations. It provides a way of catching information by incorporating the qualitative 

aspects of human experience within its mapping laws. However, it needs expert knowledge 

in order to define fuzzy rules and also requires relatively long time to fine tune the fuzzy 

system parameters (parameters of membership functions). 

Artificial neural network 

Artificial neural networks (ANN) are most effective artificial intelligence system, 

capable of adapting and learning the system behavior by minimizing the mean-square error 

(MSE) between the predicted output and targeted output. These are information processing 

systems consisting of several neurons, which are parallel connected to each other via 
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synapses. Generally, an ANN has three layers: an input layer, a set of hidden layers (one or 

more), and an output layer. The information enters at the input layer and then all layers 

process these signals until they reach the output layer. The learning process is conducted 

by adopting or modifying the connection weights in response to training data. It is 

terminated either when the mean square error between the observed data and the ANN 

outcomes for all elements in the training set has reached a pre-specified threshold or after 

the completion of a pre-specified number of learning epochs.  

ANN has attracted a great deal of attention because of its ability of system 

identification by which the characteristic features of a system can be extracted from the 

input output data. However, its ability to perform well is strongly influenced by the weight 

adaptation algorithm. The knowledge learned by ANN is difficult to understand. Hence, it 

is a black box that needs to be defined, which is a highly compute-intensive process.  

Fuzzy Inference System (FIS) 

Fuzzy inference systems also called rule-based systems are capable modeling non-

linear complex problems by employing both fuzzy logic and linguistic if-then rules. A 

simple model of the system is presented in Fig. 7.1. The controller has four main 

components: the fuzzification interface, inference engine, rule base and defuzzifier. The 

rule base contains a number of linguistic fuzzy if-then rules provided by experts. 

 

 

 

 

 

  

 

 

 

 

Fig. 7.1 - Fuzzy inference system 
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The fuzzification interface transforms crisp inputs into corresponding fuzzy 

memberships in order to activate rules that are in terms of linguistic variables. The 

inference engine defines mapping from input fuzzy sets into output fuzzy sets. The 

defuzzifier transforms the fuzzy results into a crisp output through various defuzzyfication 

methods including the centroid, maximum, mean of maxima, height and modified height 

defuzzifier. The most popular defuzzification method is the centroid, which calculates and 

returns the center of gravity of the aggregated fuzzy sets. One of the important aspects of 

fuzzy inference system is that the fuzzy rules which are fired in parallel, does not affect its 

output irrespective of the firing orders. 

A fuzzy inference system requires a knowledgeable human operator to first 

initialize the system parameters and then optimize them to achieve a required degree of 

accuracy. Manual optimization of parameters is accomplished visually, which is a 

disadvantage.  

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

 Fuzzy inference system (FIS) faces difficulties in system modeling due to lack of 

definite criteria for selection of the shape of membership functions, their degree of 

overlapping and above all optimization of system parameters. Adaptive neuro-fuzzy 

inference system (ANFIS) which is an integrated system of ANN and FIS utilizes the 

advantages of both. ANFIS is a class of adaptive networks, whose membership function 

parameters are tuned (adjusted) using either a back-propagation algorithm or hybrid 

algorithm based on a combination of back-propagation and least squares estimate (LSE). In 

the present investigation, type-3 ANFIS [93] topology based on first-order Takagi-Sugeno 

(TSK) [95] if-then rules has been used. A typical first-order TSK fuzzy inference system 

with three inputs and one output can be expressed in the following form: 

 

IF 1x is jA          (7.1) 

 2x is kB          (7.2) 

AND 3x is mC          (7.3) 

THEN iii rxqxpxof +++= 321ii        (7.4) 
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for  1,....,1 Sj =  

 2,....,1 Sk =  

 3,....,1 Sm =  

 321,....,1 SSSi ××=  

where A, B, and C are fuzzy sets defined on input variables 1x , 2x , and 3x  respectively; 

1S , 2S , and 3S  are the number of membership functions; f is a linear consequent function 

defined in terms of input variables; while o, p, q, and r are linear coefficients referred to as 

consequent parameters of the first-order TSK fuzzy model.  

 

7.3 Model formulation 

The proposed ANFIS structure consists of a number of interconnected fixed and 

adjustable nodes. It corresponds to first-order TSK fuzzy model as shown in Fig. 7.2 

below.  

  

 

Fig. 7.2 - ANFIS architecture 
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It is composed of five layers having three inputs and one output. The functions of 

different layers are as follows: 

Layer-1: Every node in this layer is a square node with a particular membership function 

specifying the degree to which a given input satisfies the quantifier. For three inputs 

ANFIS model, the output of a given node is given by: 

( )1
1 xO

jAj µ= , 1,.....,1 Sj =         (7.5) 

( )2

1
xO

kBk µ= , 2,.....,1 Sk =         (7.6) 

( )3

1
xO

mCm µ= , 3,.....,1 Sm =         (7.7) 

where 1S , 2S , and 3S  are universes of discourse of three input variables respectively; x is 

the input to nodes j, k, and m respectively; jA , kB , and mC  are the linguistic labels (small, 

large etc) associated with the respective node functions; and ( )1x
jAµ ,  ( )2x

kBµ , ( )3x
mCµ  

are membership grade functions. In this layer, the membership function can be any 

appropriate parameterized membership function such as triangular, Gaussian or bell. Bell 

membership function has been selected for the present work because, it has the 

characteristics of smoothness and succinctness, and are extensively applied to the fuzzy 

sets. It is defined as: 

( )
ii b

i

i

A

a

cx
x







 −

+

=

1

1
µ         (7.8) 

where ia , ia , and ia  are the membership function parameters. Parameters in this layer are 

referred to as ‘premise parameters’. 

Layer-2: Every node in this layer is a fixed circle node labeled Π, whose output is the 

product of all the incoming signals (T-norm operation): 

( )
mkj CBAii xwO µµµ 1

2 ==         (7.9) 

The output of a node in the 2nd layer represents the firing strength (degree of fulfillment) of 

the associated rule. Typical representation of fuzzy rules in a first-order TSK FIS is given 

as: 

Rule-1: if x1 is A1, x2 is B1 and x3 is C1 then 13121111 rxqxpxof +++=   (7.10) 
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Rule-2: if x1 is A2, x2 is B2 and x3 is C2 then 23222122 rxqxpxof +++=   (7.11) 

Layer-3: Every node in this layer is also a circle node labeled Ν. The output of ith node is 

the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths: 

∑
=

==
321

1

3

SSS

L

L

i
ii

w

w
wO           (7.12) 

The output is called as ‘normalized firing strength’. 

Layer-4: Every node i in this layer is a square or adaptive node with a node function: 

( )
iiiiiiii rxqxpxowfwO +++== 321

3       (7.13) 

where iw  is the output of layer 3, and { }
iiii rqpo ,,,  is the parameter set. Parameter in this 

layer is referred to as the consequent parameter. 

Layer-5: The single node in this layer is a circle node labeled ∑, which computes the 

overall output as the summation of all incoming signals: 

∑
∑
∑

===
i i

ii

iii
w

fw
fwputoveralloutO

5       (7.14)  

 In the proposed ANFIS topology, there are 1S , 2S  and 3S  number of membership 

functions associated with each of the three inputs respectively. So the input space is 

partitioned into ( )321 SSS ××  fuzzy subspaces, each of which is governed by fuzzy if-then 

rules. The premise part of a rule (layer 1) defines a fuzzy sub-space, while the consequent 

part (layer 4) specifies the output within this sub-space. 

 The basic learning rule of adaptive network is back-propagation algorithm where 

the model parameters are updated by a gradient descent optimization technique. However, 

due to the slowness and tendency to become trapped in local minima its application is 

limited. A hybrid-learning algorithm, on the other hand is an enhanced version of the back-

propagation algorithm.  It is applied to adapt the premise and consequent parameters to 

optimize the network. In the forward pass, functional signals go forward till layer 4 and the 

consequent parameters are identified by the least square estimate. In the backward pass, the 

error rates propagate backward and the premise parameters are updated by the gradient 

descent method. Heuristic rules are used to guarantee fast convergence. The details of the 
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above technique have been elaborately discussed by Jang [93]. The flow chart of the 

trained ANFIS model is illustrated in Fig. 7.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 7.3 – Flow chart of ANFIS model 
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 The model performance was verified by computing root mean square error 

(RMSE); coefficient of determination (R2) and mean percent error (MPE) defined by the 

following equations: 

( )
21

1

1 







−= ∑

=

p

i

ii otpRMSE         (7.15) 

( )
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
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        (7.17) 

where ‘t’ is the target value, ‘o’ is the output value, and ‘p’ is the number of data items. 

  

7.4 Modeling under constant amplitude loading  

7.4.1 Application design  

It was observed from the tests that fatigue crack propagation life (i.e. number of 

cycles, N) decreased as load ratio (R) increased. Accordingly, the crack growth rate also 

varied with respect to different load ratio. The stress intensity factor range (∆K) and 

maximum stress intensity factor (Kmax) are expected to be the two important controlling 

crack driving forces [41, 103-107] responsible for these variations. Therefore, in the 

present case, R, ∆K, and Kmax have chosen as the three input parameters for ANFIS 

structure, whereas crack growth rate (da/dN) as the only output parameter.  

 Before applying ANFIS model, the pre-processing of experimental data is essential 

in order to achieve optimum modeling results. Out of six experimental data sets of Chapter 

III (set-2 of constant amplitude loading results) five sets (R = 0, 0.2, 0.4, 0.6, 0.8) were 

taken as the training sets and one set (R = 0.5) was taken as the testing set. The inputs i.e. 

load ratio, maximum stress intensity factor and stress intensity factor range were 

normalized in such a way that their maximum values were normalized to unity. The crack 

growth rate, which constitutes the system output, was also normalized in similar manner. 
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 Referring to Fig. 7.2, layer 1 has 15 ( )35×  nodes with 45 parameters. Layers 2, 3 

and 4 have 125 ( )35  nodes each with 500 parameters associated in layer 4. The 

membership functions were chosen to be 555 ××  corresponding to the inputs R, ∆K, and 

Kmax respectively. Hence, the total numbers of membership functions (rules) were 125. 

This choice was based on the fact that R had five distinct values in the experimental data 

sets.  

 

7.4.2 Model validation 

In this research, ANFIS shown in Fig. 7.2 was implemented by using MATLAB 

6.5 with Fuzzy Logic Toolbox. The numbers of membership functions (MF) were chosen 

to be 555 ×× corresponding to the inputs R, Kmax and ∆K respectively. The 125555 =××  

fuzzy ‘if-then’ rules were constituted in which fuzzy variables were connected by T-norm 

(fuzzy AND) operators. The adjustment of premise and consequent parameters was made 

in batch mode based on the hybrid-learning algorithm. The model was trained for 4000 

epochs until the given tolerance was achieved. Table 7.1 summarizes all the characteristics 

of ANFIS network used during training. The performance of the model during training and 

testing was verified through three statistical indices (Eqs. 7.15 to 7.17) and presented in 

Table 7.2.  

 

Table 7.1 – Characteristics of the ANFIS network 

Type of membership function Generalized bell 

Number of input nodes (n) 3 

Number of fuzzy partitions of each variable (p) 5 

Total number of membership functions 15 

Number of rules ( )np  125 

Total number of nodes 394 

Total number of parameters 545 

Number of epochs 4000 

Step size for parameter adaptation 0.01 

 

Table 7.2 – Performance of ANFIS model 

Material During training During testing Computat-
ional Time 
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RMSE           R2                MPE RMSE          R2            MPE (Min.) 

7020-T7 0.002897 0.99285 0.48546 0.03056 0.92894 0.87986 419 

2024-T3 0.001283 0.99987 0.28679 0.01285 0.99783 0.77895 398 

 

The trained ANFIS model was employed to simulate the crack growth rate for load 

ratio (R) 0.5 in case of both the alloys and the predicted crack growth rates were compared 

with the experimental data in Figs. 7.4 and 7.5 respectively. The numbers of cycles 

(fatigue life) were calculated from predicted and experimental results in the excel sheet 

(Figs. 7.6 and 7.7) as per the following equation: 

i

ij

j N

dN
da

aa
N +

−
=          (7.18) 

where, ai and aj = crack length in ith step and jth step in ‘mm’ respectively, 

Ni and Nj = No. of cycles in ith step and jth step respectively, 

i = No. of experimental steps, 

and j = i+1  

Table 7.3 shows the predicted fatigue lives for both the materials. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 – Predicted (ANFIS) and experimental crack growth rate for R = 0.5 (7020-T7) 
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Fig. 7.5 – Predicted (ANFIS) and experimental crack growth rate for R = 0.5 (2024-T3) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.6 – Predicted (ANFIS) and experimental number of cycle for R = 0.5 (7020-T7) 
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Fig. 7.7 – Predicted (ANFIS) and experimental number of cycle for R = 0.5 (2024-T3) 

 

Table 7.3 – Comparison of ANFIS model results with experimental data 

Test 

specimens 

AN

fN  

K cycle 

 

E

fN  

K cycle 

 

7020 T7 76.826 78.783 

2024 T3 112.391 113.298 

 

 

7.5 Modeling under Constant amplitude loading interspersed with spike 

overload in mode-I  

7.5.1 Application design  

The application of a single tensile overload during fatigue crack propagation can 

lead to significant retardation of crack growth resulting in an increase in the specimen life 

time (Fig. 4.16 and4.17; Chapter-IV). This delaying effect must be taken into account 

while predicting the residual fatigue crack growth lives of the structures subjected to 

variable amplitude loading conditions. It depends on the magnitude of overload ratio (Rol). 

Further, it has been proved that fatigue crack growth rate is governed not only by single 
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crack driving force ∆K, but, according to ‘Unified Approach’, by the simultaneous action 

of both ∆K and Kmax [41, 104-108]. Therefore, overload ratio (Rol), maximum stress 

intensity factor (Kmax), and stress intensity factor range (∆K) were considered as linguistic 

input variables whereas, crack growth rate (da/dN) was taken as output variable for the 

proposed ANFIS model. Out of six experimental data sets having overload ratios (Rol) 2, 

2.25, 2.35, 2.5, 2.6, 2.75 in case of Al 7020 T7, one set (Rol = 2.35) was taken as validation 

set (VS). Similarly, out of six experimental data sets (Rol = 1.5, 1.75, 2.0, 2.1, 2.25 2.5), the 

set having overload ratio 2.1 was taken as validation set (VS) in case of Al 2024 T3. 

During training, same parameters were taken (Table 7.1) as that of constant amplitude 

loading case. 

 

7.5.2 Model validation  

Training and testing were done with Fuzzy Logic Toolbox of MATLAB 6.5 by 

taking the same parameters as that of constant amplitude loading case (Table 6.1). The 

performance of the model during training and testing was verified through three statistical 

indices (Eqs. 7.15 to 7.17) and presented in Table 7.4. The trained ANFIS model was 

tested for the validation sets and the predicted crack growth rates were compared with the 

experimental data in Figs. 7.8 and 7.9. The numbers of cycles (fatigue life) were calculated 

from predicted and experimental results in the excel sheet (Figs. 7.10 and 7.11) as per Eq. 

7.18. Figs. 7.12 to 7.15 show the plots of various retardation parameters. The different 

predicted model results are presented in Table 7.5 along with their percentage variations 

from the experimental data. 

 

Table 7.4 – Performance of ANFIS model 

Material During training 

RMSE             R2                MPE 

During testing 

RMSE             R2            MPE 

Computat-
ional Time 

(Min.) 

7020-T7 0.002643 0.99873 0.348387 0.010879 0.96895 0.86495 355 

2024-T3 0.001413 0.99967 0.385620 0.018268 0.93879 0.89697 425 
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Table 7.5 – Comparison of ANFIS model results with experimental data 

Test 
sample 

AN

da  

mm 

E

da  

mm 

% 
Error 

in 
AN

da  

AN

dN  

K cy. 

E

dN  

K cy. 

% 
error 

in 
AN

dN  

AN

fN  

K cy. 

E

fN  

K cy. 

% 
error 

in 
AN

fN  

7020-T7 2.230 2.134 +4.695 31.880 30.509 +4.494 82.388 80.815 +1.946 

2024-T3 2.330 2.181 +6.880 40.581 37.599 +7.931 138.307 136.804 +1.099 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.8 – Predicted (ANFIS) and experimental crack growth rate, Rol = 2.35 (7020-T7) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.9 – Predicted (ANFIS) and experimental crack growth rate, Rol = 2.10 (2024-T3) 
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Fig. 7.10 – Predicted (ANFIS) and experimental number of cycle, Rol = 2.35 (7020-T7) 
 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 7.11 – Predicted (ANFIS) and experimental number of cycle, Rol = 2.10 (2024-T3) 
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Fig. 7.12 – Predicted (ANFIS) and experimental retarded crack length (7020-T7) 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 7.13 – Predicted (ANFIS) and experimental retarded crack length (2024-T3) 
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Fig. 7.14 – Predicted (ANFIS) and experimental delay cycle (7020-T7) 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.15 – Predicted (ANFIS) and experimental delay cycle (2024-T3) 
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7.6 Modeling under constant amplitude loading interspersed with spike 

overload in mixed mode (I and II)  

7.6.1 Application design  

It has been verified earlier [2, 58, 59] and also in the present investigation (Figs. 

4.26 and4.27; Section: 4.3.3; Chapter-IV) that a pure Mode-I overload (β=0°) leads to 

maximum retardation, while Mode-II overload (β=90°) has least effect on it. In the 

intermediate ranges (β = 18°, 36°, 54°, and 72°), the single tensile overload has mixed 

effect due to the presence of shear stress component. Accordingly, the fatigue crack growth 

retardation is affected by different angles of overloading leading to variation in residual 

fatigue life. Therefore, maximum stress intensity factor (Kmax) and stress intensity factor 

range (∆K) were selected along with overloading angle (β) as three linguistic input 

variables whereas, crack growth rate (da/dN) was taken as one output variable. A set of 

linguistic rules formulated, in the “If-Then” form were derived from expert observation and 

experimentation. The model architecture was designed by taking the five overloading angle 

(β =0o, 18o, 36o, 72o and 90o) fatigue test data as training set (TS) and one data (β =54o) as 

validation set (VS) in case of both the materials. Parameters (Table 7.1) selected during 

training were also same as that of constant amplitude loading case. 

 

7.6.2 Model validation 

 After proper training, the model was tested for overload angle of 54o in both the 

cases. Table 7.6 shows the performance of the model in terms of three statistical indices 

both during training and testing. The numbers of cycles were calculated from predicted 

crack growth rate in a similar manner as that of previous cases. The various model results 

are compared with the experimental findings both quantitatively and qualitatively as 

presented in Table 7.7 and also in Figs. 7.16 to 7.23 respectively. 
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Table 7.6 – Performance of ANFIS model 

Material During training 

RMSE        R2             MPE 

During testing 

RMSE        R2          MPE 

Computat-
ional Time 

(Min.) 

7020-T7 0.001643 0.99973 0.388387 0.018899 0.94895 0.89495 395 

2024-T3 0.002513 0.99864 0.345620 0.010269 0.96869 0.87694 382 

 
 

Table 7.7 – Comparison of ANFIS model results with experimental data 

Test 
sample 

AN

da  

mm 

E

da  

mm 

% 
error 

in 
AN

da  

AN

dN  

K cy. 

E

dN  

K cy. 

% 
error 

in 
AN

dN  

AN

fN  

K cy. 

E

fN  

K cy. 

% 
error 

in 
AN

fN  

7020-T7 1.880 1.994 -5.717 21.96 21.750 +0.966 75.045 74.778 +0.357 

2024-T3 2.150 2.300 -6.522 20.028 20.019 +1.653 119.19 118.48 +0.604 

 
 
 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 7.16 – Predicted (ANFIS) and experimental crack growth rate for β = 54o (7020-T7) 
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Fig. 7.17 – Predicted (ANFIS) and experimental crack growth rate for β = 54o (2024-T3) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 7.18 – Predicted (ANFIS) and experimental number of cycle for β = 54o (7020-T7) 
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Fig. 7.19 – Predicted (ANFIS) and experimental number of cycle for β = 54o (2024-T3) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

Fig. 7.20 – Predicted (ANFIS) and experimental retarded crack length (7020-T7) 
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Fig. 7.21 – Predicted (ANFIS) and experimental retarded crack length (2024-T3) 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.22 – Predicted (ANFIS) and experimental delay cycle (7020-T7) 
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Fig. 7.23 – Predicted (ANFIS) and experimental delay cycle (2024-T3) 
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CHAPTER VIII 

RESULTS AND DISCUSSION 

8.1 Introduction 

 This chapter is devoted to study the performance characteristics of the proposed 

exponential model. Three evaluation criteria have been adopted to compare its prediction 

accuracy quantitatively with the two soft-computing methods (i.e. ANN and ANFIS) 

implemented for life predictions. Finally, a brief discussion has been provided describing 

the relative merits and limitations of the proposed exponential model with that of soft-

computing methods and some of the conventional life prediction models.   

 

8.2 Comparison of predicted and experimental results 

 In the present investigation, the performances of different fatigue life prediction 

models are evaluated by comparing the predicted results with the experimental findings by 

the following criteria: 

• Percentage deviation of predicted result from the experimental data i.e. 

100
result alExperiment

result alExperimentresult Predicted
Dev0

0 ×
−

=    (8.1) 

• Prediction ratio which is defined as the ratio of actual data (i.e. experimental) to 

predicted result i.e. 

Prediction ratio,
result Predicted

data Actual
Pr =      (8.2) 

• Error bands, i.e. the scatter of the predicted life in either side of the experimental 

life within certain error limits. 

 

8.2.1 Constant amplitude loading  

Set-1 

 As presented in Chapter–III, the constant amplitude fatigue crack growth tests were 

conducted in two sets for both 7020-T7 and 2024-T3 Al-alloys. In set-1, a fixed load ratio 

of R = 0.1 was maintained whereas in set-2, different load ratios (R = 0, 0.2, 0.4, 0.5, 0.6 
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and 0.8) were maintained to study their effects on crack growth rates. In 1st set, the fatigue 

life was predicted by applying the exponential model and the predicted results were 

compared with that of Forman model. It may be mentioned here that the soft-computing 

techniques are data base dependent and the predictions are confined within training ranges. 

Hence, there was no scope to apply ANN and ANFIS in case of set-1 as the data base was 

not enough for the purpose. The percentage deviations and the prediction ratios of the two 

alloys are presented in Table 8.1. It is observed that the maximum deviation of fatigue life 

predicted by Forman model is -2% whereas it is -1.3% in case exponential model. The 

prediction ratio in both the models is approximately 1.0. Heuler and Schuetz [144] 

suggested that a fatigue life prediction method may be considered adequate if the 

prediction ratios lie within the range of 0.5 to 2.0. Therefore, the performance of the 

proposed exponential model may be considered satisfactory and conservative under the 

given loading condition. The error band scatter of the predicted lives of both the alloys is 

presented in Figs. 8.1 and 8.2. The figures show that the predictions by the proposed 

exponential model lie within ±0.025% of experimental life. It under-predicts the life 

compared to the life predicted by Forman model and hence is a better proposition. The 

graphical comparisons of predicted lives are presented in Figs. 8.3 and 8.4 for both the 

materials respectively.  

 

Table 8.1 – Model performances under CAL (R-constant) 

Test 
Specimen 

% Dev 

( F

fN ) 

% Dev 

( P

fN ) 

Prediction ratio 

of Forman model 

( F

rP ) 

Prediction ratio 

of exponential model 

( P

rP ) 

7020-T7 –1.953 –1.283 1.019 1.008 

2024-T3 –0.775 –0.424 1.012 1.004 
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Fig. 8.1 – Error band scatter of predicted lives of 7020-T7 under CAL (R-constant) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.2 – Error band scatter of predicted lives of 2024-T3 under CAL (R-constant) 
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Fig. 8.3 – Superimposed constant amplitude a–N curves of Al 7020-T7 (R-constant) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4 – Superimposed constant amplitude a–N curves of Al 2024-T3 (R-constant) 
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Set-2  
In 2nd set of constant amplitude loading fatigue tests, the results predicted by 

exponential model were compared with those obtained from ANN and ANFIS. The 

performance characteristics in terms of percentage deviation and prediction ratio are 

tabulated in Table 8.2.  

It may be observed that the maximum percentage deviations of fatigue lives of 

exponential, ANN and ANFIS models are -0.7%, -4.4% and -2.5% respectively. The 

prediction ratios for all the cases are approximately 1.0. It reveals that exponential model 

gives much better performance in comparison to the other two models in terms of 

percentage deviation. Comparing the relative performances of ANFIS and ANN, former 

provides better result than the later. Figs. 8.5 and 8.6 show that the scatter of the predicted 

lives from all the models are within ± 0.05% error band in 7020-T7 alloy and  ± 0.025% 

error band in 2024-T3 alloy. Further, predicted lives lie below the experimental data. This 

indicates that the results are conservative and acceptable. The graphical comparisons of 

predicted lives are presented in Figs. 8.7 and 8.8 for both the materials respectively.  

 

Table 8.2 – Model performances under CAL (R-varying) 

Test 
Specimen 

% Dev 

( P

fN ) 

% Dev 

( A

fN ) 

% Dev 

( AN

fN ) 

Prediction ratio 

of exponential 

model 

( p

rP ) 

Prediction 

ratio of 

ANN 

( A

rP ) 

Prediction 

ratio of 

ANFIS 

( AN

rP ) 

7020-T7 –0.658 –4.366 –2.484 1.007 1.046 1.025 

2024-T3 –0.370 –2.100 –0.801 1.004 1.021 1.008 
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Fig. 8.5 – Error band scatter of predicted lives of 7020-T7 under CAL (R-varying) 

 
 
 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 8.6 – Error band scatter of predicted lives of 2024-T3 under CAL (R-varying) 
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Fig. 8.7 – Superimposed constant amplitude a–N curves of Al 7020-T7 (R-varying) 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 8.8 – Superimposed constant amplitude a–N curves of Al 2024-T3 (R-varying) 
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8.2.2 Constant amplitude loading interspersed with spike overload in mode-I  

 Since the values of various retardation parameters (ad, Nd) are equally important, 

their percentage deviations have been compared with the Wheeler model and presented in 

Table 8.3. Table 8.4 illustrates the performances of various models in terms of percentage 

deviations and prediction ratios of post-overload lives for the alloys. Analyzing the 

performance results of the models, it is observed that the maximum deviations of post-

overload fatigue crack propagation life are -1.7%, +3.6% and +2.0% in case of 

exponential, ANN and ANFIS models respectively and the prediction ratio is 

approximately 1.0. In this case too the relative performance of exponential model is much 

better than those obtained by soft-computing techniques. Further, comparing the results of 

ANN and ANFIS, the predicted results of the later is better than the former one. It is 

observed that all the model results are within ± 0.05% error band in case of Al 7020-T7 

alloy (Fig. 8.9), whereas it is ± 0.08% in case of Al 2024 T3 alloy (Fig. 8.10). Figs. 8.11 

and 8.12 show graphical representation of the predicted fatigue lives under the above load 

condition. 

 

Table 8.3 – Percentage deviations of retardation Parameters (mode-I overload) 

Test 
sample 

% 

Dev 

P

da  

% 

Dev 

A

da  

% 

Dev 

AN

da  

% 

Dev 

W

da  

% 

Dev 

P

dN  

% 

Dev 

A

dN  

% 

Dev 

AN

dN  

% 

Dev 

W

dN  

7020-T7 –1.40 –6.37 +4.70 +3.29 –2.03 +7.09 +4.494 –2.32 
2024-T3 –5.50 –8.76 +6.88 +12.4 –2.53 +8.29 +7.931 –8.19 

 

 

Table 8.4 – Model performances under interspersed mode-I overload 

Test 
Specimen 

% Dev 

( P

fN ) 

% Dev 

( A

fN ) 

% Dev 

( AN

fN ) 

Prediction 
ratio of 

exponential 

model ( p

rP ) 

Prediction 
ratio of 

ANN( A

rP ) 

Prediction 
ratio of 

ANFIS( AN

rP ) 

7020-T7 –1.68 +3.60 +1.95 1.017 0.965 0.981 

2024-T3 –0.77 +1.89 +1.10 1.008 0.981 0.989 
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Fig. 8.9 – Error band scatter of predicted lives of 7020-T7 under mode-I overload 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.10 – Error band scatter of predicted lives of 2024-T3 under mode-I overload 
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Fig. 8.11 – Superimposed mode-I overload a – N curves of Al 7020-T7 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.12 – Superimposed mode-I overload a – N curves of Al 2024-T3 
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8.2.3 Constant amplitude loading interspersed with spike overload in mixed 

mode (I and II)  

Prediction of fatigue crack propagation life under interspersed mixed mode (I and 

II) is of particular importance because no such model is available in the literature. Under 

this loading condition, all the three models are applied to predict the post-overload fatigue 

crack propagation life alongwith retardation parameters for the alloys. The percentage 

deviations of retardation parameters of the models are presented in Table 8.5. Table 8.6 

shows the performances of the models in terms of post-overload fatigue life. 

The post-overload lives are within –0.2% to +1.5% and the prediction ratio is about 

1.0. Hence, the overall performances of all the models are quite satisfactory. As far as 

relative performance is concerned, the performance of exponential model is better since it 

under-estimates in all the cases. Analyzing the error band scatter of the predicted model 

results (Figs. 8.13 and 8.14) it is observed that the results of Al 7020-T7 are within 

± 0.05% error band while, it is less i.e. ± 0.025% for Al 2024-T3. Both the soft-computing 

methods (ANN and ANFIS) slightly over-predict life whereas exponential model under-

predicts life with a better comparative result. The graphical representation of the predicted 

fatigue lives under the above loading condition for both the alloys are presented in Figure 

8.15 and 8.16. 

 
Table 8.5 – Percentage deviations of retardation Parameters (mixed mode overload) 

Test 
sample 

% Dev 

P

da  

% Dev 

A

da  

% Dev 

AN

da  

%  Dev 

P

dN  

% Dev 

A

dN  

% Dev 

AN

dN  

7020-T7 –0.80 –4.71 –5.72 –1.195 .664 +0.966 
2024-T3 –1.13 –6.91 –6.52 –2.273 3.856 +1.653 

 

Table 8.6 – Model performances under interspersed mixed mode overload 

Test 
sample 

% Dev 

( P

fN ) 

% Dev 

( A

fN ) 

% Dev 

( AN

fN ) 

Prediction 
ratio, expo. 

model  

( p

rP ) 

Prediction 
ratio, 
ANN 

( A

rP ) 

Prediction 
ratio, 

ANFIS 

( AN

rP ) 

7020-T7 –0.241 +0.956 +0.357 1.0024 0.991 0.996 

2024-T3 –0.219 +1.415 +0.604 1.0021 0.986 0.994 

129 



 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.13 – Error band scatter of predicted lives of 7020-T7 under mixed mode overload 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.14 – Error band scatter of predicted lives of 2024-T3 under mixed mode overload 
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Fig. 8.15 – Superimposed mixed mode (I and II) overload a – N curves of Al 7020-T7 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 

Fig. 8.16 – Superimposed mixed mode (I and II) overload a – N curves of Al 2024-T3 
 

8.3 Discussion 
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of section-4.2 (Chapter-IV) reveals that the experimental crack length vs. number of cycle 

data can be fitted by an exponential equation of the form
)(

ij
ijij NNm

eaa
−

= . This facilitates in 

smoothening the scattered a-N data thereby simplifying the calculation of da/dN. It is also 

observed that the values of da/dN obtained (Fig. 4.3) from the proposed method reduces 

scatter in comparison to the incremental polynomial method as per ASTM standard [127]. 

Further, the above exponential equation has efficiently been used to model and estimate 

fatigue life under different loading conditions as described in Chapter-V. 

 In the proposed exponential model, the most important parameter is the exponent of 

the exponential equation (i.e. specific growth rate mij). It may be noted that this parameter 

is not a constant quantity. It varies with number of cycles (and hence crack length) and its 

variation depends on various crack driving parameters (load history and loading 

conditions) and material properties. Therefore, it is suitably correlated with two crack 

driving forces (∆K and Kmax) as per Unified Approach and material properties (E and σys). 

Further, these are expressed in non-dimensional forms so that the exponential model 

equation becomes dimensionally correct. 

 Till date it is considered that the conventional Paris-Erdogan model is the most 

fundamental and widely used crack growth model describing fatigue crack propagation in 

terms of the peak-to-peak range of K in the fatigue cycle. Spagnoli [109] analyzed the 

Paris-Erdogan law on the basis of both similarity methods and fractal concepts and 

presented some experimental evidence of its breakdown of similitude concept. According 

to his analysis, Paris-like fatigue crack growth law (i.e. based on LEFM parameters) is able 

to predict crack growth as per similitude concept. But, whenever the crack size is small 

(for micron-sized crack and for heterogeneous materials), the crack growth rate depends on 

crack size leading to incomplete self-similarity (non-self similarity) of Paris-Erdogan 

relation. Based on these facts, Spagnoli proposed a crack-size dependent Paris-Erdogan 

relation by strengthening the phenomenon of incomplete self-similarity in the fatigue crack 

growth process. In case of the proposed exponential model, the above fact has been 

verified by the following analysis.  

The fundamental equation of the model is: 

)(

ij
ijij NNm

eaa
−

=          (8.3) 
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Differentiating the above equation the CGR becomes: 

( )
( )( )ijiij NNm

ijijiji

e

NNmma

dN
da

−
−

−′
=

1
        (8.4) 

 

 From the differential equation (Eq. 8.4) of proposed exponential model, it can be 

observed that the equation follows the form proposed by Spagnoli [109] for non-self 

similar growth. The equation also follows the concept of a fractal crack emphasizing the 

fact that crack growth rate is crack size dependent as per Frost and Dugdale law. 

 Further in the Paris-Erdogan model, there is a physical inconsistency when the 

constants of the crack growth rate equation are randomized as per dimensional analysis 

point of view [110]. In case of the proposed exponential model (Eqs. 5.5 and 5.8), this type 

of inconsistency does not arise since the specific growth rate (mij) is a dimensionless 

quantity. 

 Most of the fatigue crack growth models are in the form of differential equations 

relating crack growth rate and stress intensity factor raised to a power of approximately 3. 

Hence, any inaccuracy in the value of stress intensity factor is magnified in life calculation. 

The discrepancies may be even more dramatic for initial cracks loaded near the fatigue 

threshold limit. The involvement of robust numerical integration scheme also makes the 

life calculation more complicated particularly for variable amplitude loading [122]. But, in 

the proposed exponential model any inaccuracy in the values of crack driving forces does 

not significantly alter the fatigue life as the specific growth rate mij is related to different 

crack driving forces raised to a power (highest) of 0.75.  

 Two soft-computing methods i.e. artificial neural network (ANN) and adaptive 

neuro-fuzzy inference (ANFIS) techniques have been developed to predict the fatigue lives 

under the same loading conditions as described in Chapters-VI and VII. The predicted 

results from the above methods have been quantitatively compared with the proposed 

exponential model in Chapter-VIII. From the analysis of the predicted results (section 8.2), 

it can be observed that the proposed exponential model under-predicts the fatigue life 

while, the two soft-computing methods (ANN and ANFIS) over-estimate it.  
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CHAPTER IX 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions  

 In the present work, the fatigue crack growth study was conducted on 7020-T7 and 

2024-T3 aluminum alloys. The test programs were performed under three different loading 

conditions: constant amplitude loading with fixed and variable load ratios, constant 

amplitude loading interspersed with spike overload in mode-I as well as in mixed-mode (I 

and II). A new method was suggested to calculate crack growth rate (da/dN) from 

experimental a-N data. That concept was subsequently utilized to propose a prediction 

model (i.e. Exponential Model) in order to estimate the residual life under all the three 

loading conditions. Further, two soft-computing techniques (i.e. ANN and ANFIS) were 

formulated and applied to predict the fatigue life under same loading conditions. Finally, 

their predicted results were compared with that of proposed exponential model.  

 

The conclusions drawn from the present work are summarized as follows: 

1. An exponential equation of the form 
)( ijij NNm

ij eaa
−

=  has been effectively used to 

smoothen the scattered experimental a-N data which in turn simplifies the 

calculation of crack growth rate (da/dN) irrespective of loading conditions. 

2. Subsequently, to predict fatigue life, the exponent, mij (specific growth rate) has 

been judiciously correlated with crack driving parameters ∆K and Kmax and material 

properties KC (for specific specimen geometry), E, σys in the form of dimensionless 

quantities. The same form of equation can be used for different loading conditions 

and regimes II and III of crack propagation. 

3. The rate equation derived from the exponential model has efficiently been used to 

estimate fatigue life. It is observed that the proposed exponential model under-

predicts the life to an extent 025.0± % which is conservative from reliability point 

of view. The model also effectively estimates mode-I and mixed-mode (I and II) 

overload-induced retardation parameters (i.e. ad and Nd). The differential form of 
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the equation conforms to dimensional analysis concept showing a dependence of 

da/dN on a. 

4. Soft-computing methods, ANN and ANFIS, can be applied to predict the fatigue 

life under the given load conditions. In the present investigation, both the methods 

slightly over-estimate the life.  

  

9.2 Suggested future work  

In the course of this study several areas were identified for future investigation. 

1. The proposed exponential model may be extended to small fatigue cracks. 

2. Soft-computing methods may be used to determine the specific growth rate.  

3. The proposed exponential model may be tested on other specimen geometries like 

MT, CT etc. and also with other materials. 

4. Attempts may be made to use the model to predict fatigue life under other load 

scenarios.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

135 



References: 

 

[1] M. Sander, and H.A. Richard, “Finite element analysis of fatigue crack growth  

 with interspersed mode-I and mixed mode overloads,” Int. J. of Fat., vol. 27, pp.  

 905-913, 2005. 

 

[2] M. Sander, and H.A. Richard, “Experimental and numerical investigations on the  

 influence of the loading direction on the fatigue crack growth,” Int. J. of Fat., vol.  

 28, pp. 583-591, 2006. 

 

[3] R. I. Stephens, A. Faterni, R. R. Stephens, and H. O. Fuchs, “Metal Fatigue in 

  Engineering,” 2nd Edition, John Wiley & Sons, Inc., New York, 2001. 

 

[4] F. A. McClintock, “On the plasticity of the growth of fatigue cracks,” In Fract. of  

 Solids (eds. D.C. Drucker & J.J.Gilman), New York: Wiley, vol. 20, pp. 65-102,  

 1963. 

 

[5] N. E. Frost, ‘The growth of fatigue cracks,” In Proceedings of the First 

 International Conference on Fracture (ed. T. Yokobori), Sendai, The Japan 

 Society for Strength and Fracture of Materials, pp. 1433-1459, 1966. 

 

[6]  P. C. Paris, R. J. Bucci, E.T. Wessel, W. G. Clark, and T. R. Mager, “Extensive 

study of low fatigue crack growth rates in A533 and A508 steels,” In Stress 

Analysis and Growth of Cracks, ASTM STP, vol. 513, pp. 141-176, 1972. 

 

[7] R. A. Schmidt, and P. C. Paris,” Threshold for fatigue crack propagation and the  

  effects of load ratio and frequency,” In Progress in Flaw Growth and Fracture  

  Testing, ASTM STP, vol. 536, pp. 79-94, 1973. 

 

[8] K. Sadananda, and P. Shahinian, “Prediction of threshold stress intensity for

 fatigue crack growth using a dislocation model,” Int. J. of Fract., vol. 13, pp. 585- 

136 



 594, 1977. 

[9] C. Laird,” The influence of metallurgical structure on the mechanisms of fatigue  

 crack propagation,” In Fatigue Crack Propagation, ASTM STP, vol. 415, pp. 131- 

 168, 1967. 

 

[10] R. W. Lardner, “A dislocation model of fatigue crack growth in metals,” 

Philosophical Magazine, vol. 17, pp. 71-82, 1967. 

 

[11] R. M. N. Pelloux, “Mechanisms of formation ductile fatigue striations,” 

Transaction of the American society for materials, vol. 62, pp. 281-285, 1969. 

 

[12] B. A  Bilby, A. H. Cottrell, and K. H. Swinden, “The spread of plastic yield from  

 a notch,” Proceedings of the Royal Society, London, vol. A272, pp. 304-314, 

 1963. 

 

[13] R. G. Forman, V. E. Kearney, and R. M. Engle, “Numerical analysis of crack 

 propagation in cyclic-loaded structures,” J.l of Basic Engg., vol. 89, pp. 459-464,  

 1967. 

 

[14] K. Walker, “The effect of stress ratio during crack propagation and fatigue for 

2024-T3 and 7075-T6 aluminum,” In Effects of Environment and Complex Load  

 History for Fatigue Life,  ASTM STP, vol. 462, pp. 1-14, 1970. 

 

[15] J. M. Barsom, “Fatigue crack growth under variable amplitude loading in various  

 bridge steels,” In Fatigue Crack Growth Under Spectrum Loading, ASTM STP,  

 vol. 595, pp. 217-235, 1976. 

 

[16] Jr. J. C. Newman, “The merging of fatigue and fracture mechanics concepts: a

 historical perspective,” Progress in Aerospace Science, vol. 34, pp. 347-390,  

 1998. 

137 



[17] O. E. Wheeler, “Spectrum loading and crack growth,” J. of Basic Engg., vol. 94, 

 pp. 181-186, 1972. 

 

[18] J. D. Willenborg, R. M. Engle, and H. A. Wood, “A crack growth retardation

 model using an effective stress concept,” Report AFFEL-TM-71-1- FBR, Dayton  

 (OH), Air Force Flight Dynamics Laboratory, Wright–Patterson Air Force Base,  

 1971. 

 

[19] J. L. Rudd, and Jr R. M. Engle, “Crack growth behavior of center-cracked panels  

under random spectrum loading,” In: Chang JB, Hudson CM, editors: Methods and 

models for predicting fatigue crack growth under random loading, ASTM  

 STP, vol. 748, pp. 103-114, 1981.  

 

[20] J. B. Chang,  M. Szamossi, and K.W. Liu, “Random spectrum fatigue crack life 

predictions with or without considering load interactions,” In: Chang J.B, Hudson  

 C.M, editors: Methods and models for predicting fatigue crack growth under  

 random loading, ASTM STP, vol. 748, pp. 115-132, 1981. 

 

[21] D. M.  Corbly, and P. F. Packman, “On the influence of single and multiple peak  

 overloads on fatigue crack propagation in 7075-T6511 aluminum,” Engg. Fract.  

 Mech., vol. 5, pp. 479-497, 1973. 

 

[22] F. Taheri, D. Trask, and N. Pegg, “Experimental and analytical investigation of  

 fatigue characteristics of 350WT steel under constant and variable amplitude  

 loadings,” J.of  Marine Struct., vol. 16, pp. 69-91, 2003. 

 

[23] J. B. Chang, and C. M. Hudson, “Methods and models for predicting fatigue crack  

 growth under random loading,” ASTM STP, vol. 748, 1981. 

 

[24] J. P. Gallagher, “A generalized development of yield zone models,” AFFDL-TM- 

138 



 74-28-FBR, O. H Dayton, 1974. 

[25] J. B. Chang, R. M. Engle, and J. Stolpestad, “Fatigue crack growth behavior and  

 life predictions for 2219-T851 aluminum subjected to variable amplitude  

 loadings,” ASTM STP, vol. 743, pp. 3-27, 1981. 

 

[26] W. S. Johnson, “Multi-parameter yield zone model for predicting spectrum crack  

 growth,” ASTM STP, vol. 748, pp. 85-102, 1981. 

 

[27] B. K. S. Yuen, and F. Taheri, “Proposed modifications to the Wheeler retardation  

 model for multiple overloading fatigue life prediction,” Int. J. of Fat., vol. 28,  

 pp.1803-1819, 2006. 

 

[28] D. S. Dugdale, “Yielding of Steel Sheets Containing Slits,” J. of Mech. and Phy.  

 of Solids, vol. 8. pp. 100-108, 1960. 

 

[29] W. Elber, “The significance of fatigue crack closure. In: Damage tolerance in  

 aircraft structures,” ASTM STP, vol. 486, pp. 230-242, 1971. 

 

[30] C.Y. Kim, and J. H. Song, “Fatigue crack closure and growth behavior under  

 random loading,” Engg. Fract. Mech., vol. 49, No. 1, pp. 105-120, 1994. 

 

[31] J. Dominguez, J. Zapatero, and B. Moreno, “A statistical model for fatigue crack  

 growth under random loads including retardation effects,” Engg. Fract. Mech.,  

 vol. 62, pp. 351-369, 1999. 

 

[32] M. Jono, A. Sugeta, and Y. Uematsu, “Fatigue crack growth and crack closure  

 behavior of ti-6al-4v alloy under variable amplitude loadings,” In: McClung R.C.  

 and Newman Jr J.C, editors, Advances in fatigue crack closure measurement and  

 analysis, ASTM STP, vol. 1343, West Conshohocken (PA), pp. 265-284, 1999. 

 

139 



[33] C. F. Lee, “EndoFEM intergrated methodology of fatique crack propagation with  

 overloaded delay retardation,” The Chinese Journal of Mechanics – Series A, vol.  

 19, No. 2, pp. 327-335, 2003. 

[34] P. Ljustell, and F. Nilsson, “Variable amplitude crack growth in notched  

 specimens,” Engg. Fract. Mech., vol. 72, pp. 2703-2720, 2005.  

 

[35] D. Aliaga, A. Davy, and H. Schaff,” Mechanics of Fatigue Crack Closure,” edited  

 by J.C. Newman Jr, pp.  491-504, 1987. 

 

[36] U. H. Padmadinata, “Investigation of crack closure prediction models for fatigue  

 in aluminum alloy sheet under flight-simulation loading,” Ph.D-thesis, Delft,  

 1990. 

 

[37] G. Baudin, R. Labourdette, and M. Robert, “In Fatigue crack growth under  

 variable amplitude loading,” edited by J. Petit et al., Elsevier Applied Science,  

 London, pp. 292-308, 1988. 

 

[38] A.U. de Koning, “A simple crack closure model for prediction of fatigue crack  

 growth rates under variable-amplitude loading,” In: Roberts Richard, editor.  

 Fracture mechanics,  thirteenth conference, ASTM STP, vol. 743, pp. 63-85,  

 1981. 

 

[39]  A. K. Vasudevan, K. Sadananda, N. Louat, “A review of crack closure, fatigue 

crack threshold and related phenomena,” Mats. Sci. Engg. Vol. A188, No. 1-2, pp. 

1-22, 1994. 

 

[40] A. K. Vasudevan, K. Sadananda, “Analysis of fatigue crack growth under 

compression-compression loading,” Int. J. of Fat., vol. 23, pp. S365-S374, 2001. 

 

140 



[41] K. Sadananda, A. K. Vasudevan, R. L. Holtz, and E. U. Lee, “Analysis of overload 

effects and related phenomenan,” Int. J. of Fat., vol. 21, pp. S233–S246, 1999 

 

[42] J. Quian, and A. Fatemi, “Mixed mode fatigue crack growth: A literature survey,”  

 Engg. Fract. Mech., vol. 55, No. 6, pp. 969-90, 1996. 

 

[43] S. Iida, and A. S. Kobasahi, “Crack propagation in 7075-T6 plates under cyclic  

  tensile and ransverse shear loadings,” J.of Basic Engg. Series, vol. D91, pp. 764- 

  769, 1969. 

 

[44] R. Roberts, and J. J. Kibler, “Mode-II fatigue crack propagation,” J.of Basic  

  Engg. Series, vol. D93, pp. 671-680, 1971. 

 

[45] K. Tanaka, “Fatigue Crack Propagation from a Crack Inclined to the Cyclic  

 Tensile Axis,” Engg. Fract. Mech., vol. 6, pp. 493–507, 1974. 

 

[46] H.A. Richard, “Role of Fracture Mechanics in Modern Technology,” Elsevier  

 Science Publishing, North-Holland, 1987. 

 

[47] H. A. Richard, “Fracture mechanical predictions for cracks with superimposed  

          normal and shear loading,” Dusseldorf: VDI-Verlag, 1985 [in German] (in 10). 

 

[48] A. B. Patel, and P. K. Pandey, “Fatigue Crack Growth under Mixed-Mode

 Loading,” Fat. and Fract. of Engg. Mats. and Struct., vol. 4, pp. 65–77, 1981. 

 

[49] D. F. Socie, “Prediction of Fatigue Crack Growth in Notched Members under

 Variable Amplitude Loading Histories,” Engg. Fract. Mech. Vol. 9, pp. 849–865,  

 1977. 

 

141 



[50] S. C. Reddy, and A. Fatemi, “Small Crack Growth in Multiaxial Fatigue,” In 

 Advances in Fatigue Lifetime Predictive Techniques, ASTM STP, vol. 1122, pp.

 276–298, 1992. 

[51] W. R. Chen, and L. M. Keer, “Fatigue Crack Growth in Mixed-Mode Loading,” J.  

 of Engg. Mat. and Tech., vol. 113, pp. 222–227, 1991. 

 

[52] T. Tamilselvan, K.W. Lo, Y. B. Gong, and M. M. Zhao, “A Model for Mixed- 

 Mode Fatigue,” J. of Testing and Evalution, vol. 33, No. 3, pp. 188-196, 2005. 

  

[53] J. K. Kim, and C. S. Kim, “Fatigue crack growth behavior of rail steel under mode-

I and mixed mode loadings,” Mats. Sci. and Engg., vol. A338, pp. 191-201, 2002. 

 

[54] L. P. Borrego, F. V. Antunes, J. M. Costa, and J. M. Ferreira, “Mixed-mode fatigue 

crack growth behavior in aluminum alloy,” Int. J.of Fat., vol. 28, pp. 618-26, 2006. 

 

[55] K. H. Benrahou, M. Benguediab, M. Belhouari, M. Nait-Abdelaziz, and A. Imad, 

“Estimation of the plastic zone by finite element method under mixed mode (I & II) 

loading,” Comput. Mats. Sci., vol. 38, pp. 595-601, 2007. 

 

[56] S. Ma, X. B. Zhang, N. Recho, and J. Li, “The mixed mode investigation of the 

fatigue crack growth in CTS metallic specimen,” Int. J. of Fat., vol. 28, pp. 1780-

1790, 2006. 

 

[57] P. Dahlin, and M. Olsson, “Mode-I fatigue crack growth reduction mechanisms 

after a single mode-II load cycle,” Engg.Fract. Mech., vol.73, pp. 1833-1848, 2006. 

 

[58] V. Srinivas, and P. Vasudevan, “Studies of mixed mode crack propagation in 

D16AT aluminum alloy,” Engg.Fract. Mech., vol. 45, No. 4, pp. 415-430, 1993. 

 

142 



[59] S. B. Biner, “Fatigue crack growth studies under mixed mode loading,” Int.J. of 

Fat., vol. 23, pp. S259-S263, 2001. 

 

[60] W. S. McCulloch, and W. A. Pitts, “A logical calculus of the ideas immanent in 

nervous activity,” Bull. Math. Biophysics, vol. 943, No. 5, pp. 115-133.    

 

[61] D. Hebb, “The Organisation of Behaviour,” Willey, New York, USA, 1949. 

 

[62] J. J. Hopfeld, “Neural Networks and Physical Systems with Emergent Collective  

Computational Abilities,” Proc. Natl. Acad. Sci., vol. 79, pp. 2554-2558, 1982. 

 

[63] D. Skapura, “Building neural networks,” New York, ACM Press Addison-Wesley  

Publishing Company, 1996. 

 

[64] R. J. Schalkoff, “Artificial neural networks,” McGraw-Hill, 1997. 

 

[65] S. Haykin, “Neural networks: a comprehensive foundation,” New York, 

Macmillan, 1994. 

 

[66] R. Herzallah, and Y. Al-Assaf, “Control of non-linear and time-variant dynamic 

systems using neural networks,” In: Proceedings of the 4th World Multiconference 

on Systemics, Cybernetics and Informatics, Florida, 2000.  

           

[67]  W, Mansoor, H, Al-Nashash, and Y. Al-Assaf, “Image classification using 

wavelets and neural networks,” In: The 18th IASTED International Conference on 

Applied Informatics, Innsbruck, Austria, 2000.           

 

[68] H. Al-Nashash, Y. Al-Assaf, B. Lvov, and W. Mansoor, “Laser speckle for 

materials classification utilizing wavelets and neural networks image processing 

techniques,” J. Mater. Evaluat., vol. 59, pp. 1072–1078, 2001. 

143 



[69] C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Failure of carbon/epoxy 

composite tubes under combined axial and torsional loading––1. Experimental results and 

prediction of biaxial strength by the use of neural networks,” Comp. Sci. Technol., vol. 59, 

pp. 1779–1788, 1999. 

         

[70] F. Aymerich, and M. Serra, “Prediction of fatigue strength of composite laminates 

by means of neural networks,” Key. Engg. Mater., vol. 144, pp. 231-240, 1998.     

   

[71] J. A. Lee, D. P. Almond, B. Harris, “The use of neural networks for the prediction 

of fatigue lives of composite materials,” Comp. Appl. Sci. Manufact., Part A, vol. 

30, pp. 1159-1169, 1999.  

[72] S. Meyer, E. Diegel, “Bru¨ckner-Foit A, Mo¨slang A. Crack interaction modeling,” 

Fat. Fract. Engg. Mater. Struct., vol. 23, pp. 315–323, 2000. 

 

[73] P. Artymiak, L. Bukowski, J. Feliks, S. Narberhaus, and H. Zenner, “Determination 

of S-N curves with the application of artificial neural networks,” Fat. Fract. Engg. 

Mater. Struct., vol. 22, pp. 723–728, 1999. 

         

[74] T. T. Pleune, O. K. Chopra, “Using artificial neural networks to predict the fatigue 

life of carbon and low-alloy steels,” Nucl. Engg. Design, vol. 197, pp. 1–12, 2000. 

         

[75] V. Venkatesh, H. J. Rack, “A neural network approach to elevated temperature 

creep-fatigue life prediction,” Int. J. of Fat., vol. 21, pp. 225–234, 1999. 

 

[76] M. E. Haque, K. V. Sudhakar, “Prediction of corrosion-fatigue behavior of DP steel 

through artificial neural network,” Int. J. of Fat., vol. 23, pp. 1-4, 2001. 

 

[77] Y. Cheng, W. L. Huang, and C.Y. Zhou, “Artificial neural network technology for 

the data processing of on-line corrosion fatigue crack growth monitoring,” Int. J. of 

Pres. Ves. and Pip., vol. 76, pp. 113–116, 1999.  

144 



[78] R. M. V. Pidaparti, and M. J. Palakal, “Neural Network Approach to Fatigue-  

 Crack- Growth Predictions under Aircraft Spectrum Loadings,” J. of Aircraft, vol.  

 32, No. 4, pp. 825-831, 1995.    

         

[79] J. Y. Kang, and J. H. Song, “Neural network applications in determining the fatigue 

crack opening load,” Int. J. of Fat. vol. 20,  No. 1, pp. 57-69, 1998. 

 

[80] K. Genel, “Application of artificial neural network for predicting strain life fatigue 

properties of steels on the basis of tensile tests,” Int. J. of Fat. vol. 26, pp. 1027-

1035, 2004.  

 

[81] H. Zenner, and C. Marquardt, “Ermittlung von Bauteilwo¨hlerlinien mittels 

Ku¨nstlicher Neuronaler Netze,”  Forschungsbericht FVA und VBFEh, 2003. 

 

[82] H. Zenner, L. Bukowski, M. Karkula, and C. Marquardt, “Lifetime prediction with 

the application of artificial neural networks,” 8th International fatigue congress–

fatigue, 3-7 June, Stockholm, pp. 2697-2704, 2002.  

 

[83] C. Marquardt, and H. Zenner, “Lifetime calculation under variable amplitude 

loading with application of artificial neural networks,” Int. J. of Fat. vol. 27, pp. 

920-927, 2005.  

 

[84] A. Fotovati, and T. Goswami, “Prediction of elevated temperature fatigue crack 

growth rates in Ti-6Al-4V alloy – neural network approach,” Mats. Engg. and 

Design, vol. 25, pp. 547-554, 2004. 

 

[85] J. Jia, and J. F. Davalos, “An artificial neural network for the fatigue study of 

 bonded FRP-wood interfaces,” Composite Structures, vol. 74, pp. 106-114, 2006. 

 

[86] L. A. Zadeh,  “Outline of a new approach to the analysis of complex systems and  

145 



 decision processes,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 28–44,  

 Jan. 1973. 

  

[87] S. Barada, and H. Singh, “Generating Optimal Adaptive Fuzzy-Neural Models

 of Dynamical Systems with Applications to Control” IEEE Trans. Syst., Man,

 Cybern. Part-C, vol. 28, No. 3, pp. 371-391, 1998. 

 

[88] S. Mitra, and Y. Hayashi, “Neuro-fuzzy rule generation: Survey in soft computing  

 framework,” IEEE Trans. Neural Netw., vol. 11, No.3, pp.748–768, 2000. 

 

[89] S. N. J. Engin, Kuvulmaz, and V. E. Omurlu, “Fuzzy control of an ANFIS model  

 representing a nonlinear liquid-level system,” Neural Comput. & Applic. vol. 13,  

 pp. 202–210, 2004. 

 

[90] C. T. Lin, and C. Lee, “Neural-network-based fuzzy logic control anddecision 

 systems,” IEEE Trans. Comput., Special Issue on Artificial Neural Networks, vol.  

 40, pp. 1320–1336, Dec. 1991. 

 

[91] L. X. Wang, and J. Mendel,“ Back-propagation of fuzzy systems as nonlinear

 dynamic system identifiers,” in Proc. IEEE Int. Conf. Fuzzy Systems, San Diego,  

 CA, pp. 1409–1418, 1992. 

 

[92] F. Zia, and C. Isik, “Neuro-fuzzy control using self-organizing nets,” in 3rd IEEE  

 Int. Conf. Fuzzy Systems, Orlando, FL, vol. 1, pp. 70–75, 1994. 

 

[93] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE 

Transactions on Systems, Man, and Cybernetics, 23(3), 665–685, 1993. 

 

146 



[94] J. S. R. Jang, “Structure determination in fuzzy modeling: A fuzzy CART 

Approach,” Proceedings of the third IEEE International conference on Fuzzy 

Systems, Orlando, Florida, vol. 1, pp. 480–485, 1994. 

[95] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to 

modeling and control,” IEEE Transactions on Systems, Man, Cybernetics, vol. 15, 

pp. 116–132, 1985. 

 

[96] E. B. Rahouyi, J. Hinojosa, and J. Garrigos, “Neuro-fuzzy modeling techniques for 

microwave components,” IEEE Microwave and Wireless Components Letters, vol. 

16, No. 2, pp. 72–74, 2006. 

 

[97] A. Bardossy, and I.. Bogardi, "Fuzzy Fatigue Life Prediction", Structure Safety, 

vol. 6, pp. 25-38, 1989. 

 

[98] H. Tanka, and S. Uejima, "Linear Regression Analysis With Fuzzy Model", IEEE 

Transactions on Systems, Man, and Cybernetics, vol. SMC-12, No. 6, pp. 903-907, 

11/12 1982. 

 

[99] S. Naruhito, "Application of Fuzzy set theory to Fatigue Analysis of Bridge 

Structures", Information Sciences, Vol. 45, pp. 175-184, 1988. 

 

[100] X. Wu, J. M. Hu, and M. Pecht, “Fuzzy Regression Analysis for Fatigue Crack 

Growth,” TH0334-3/90/0000/0437$01.00 © 1990 IEEE. 

 

[101] M. A. Jarrah, Y. Al-assaf, and H. El kadi, “Neuro-Fuzzy Modeling of Fatigue Life  

Prediction of Unidirectional Glass Fiber/Epoxy Composite Laminates,” J. of  

composite materials, Vol. 36, No. 06, pp. 685-699, 2002. 

 

147 



[102] A. P. Vassilopoulos, R. Bedi, “Adaptive neuro-fuzzy inference system in modelling 

fatigue life of multidirectional composite laminates,” Comput. Mats. Sci., vol. 43, 

No. 4, pp. 1086-1093, 2008. 

 

[103] D. Kujawski, “A new (∆K
+ 

Kmax)
0.5 driving force parameter for crack growth in   

aluminum alloys,” Int. J. of Fat., vol. 23, No. 8, pp. 733-740, 2001. 

 

[104]  A. H. Noroozi, G. Glinka, and S. Lambert, “A two parameter driving force for 

fatigue crack growth analysis,” Int. J. of Fat., vol. 27, pp. 1277-1296, 2005. 

 

[105] S. Dinda, D. Kujawski, “Corelation and prediction of fatigue crack growth for 

different R-ratios using Kmax and ∆K
+ parameters,” Engg. Fract. Mech., vol. 71, No. 

12, pp. 1779-1790, 2004. 

 

[106] K. Donald, and P. C. Paris, “An evaluation of ∆Keff estimation procedures on 6060-

T6 and 2024-T3 aluminum alloys,” Int. J. of fat., vol. 21, pp. S47-S57, 1999.  

     

[107]  D. Kujawski, “A fatigue crack driving force parameter with load ratio effects,” Int. 

J. of Fat., vol. 23, pp. S239-246, 2001. 

   

[108] P. C. Paris, and F. Erdogan, “A critical analysis of crack propagation laws,” J. of 

Basic Engg., vol. 85, pp. 528-534, 1963. 

 

[109] A. Spagnoli, “Self-similarity and fractals in the Paris range of fatigue crack 

growth,” Mech. Mat., vol. 37, pp. 519-529, 2005.  

  

[110] G. Maymon, “The problematic nature of the application of stochastic crack growth 

models in engineering design,” Engg. Fract. Mech., vol. 53, No. 6, pp. 911-916, 

1996. 

 

148 



[111] R. Jones, L. Molent, and S. Pitt, “Similitude and the Paris crack growth law,” Int. J. 

Fat., vol. 30, pp. 1873-1880, 2008. 

 

[112] S. Pearson, “Initiation of fatigue cracks in commercial aluminum alloys and the 

subsequent propagation of very short cracks,” Engg. Fract. Mech., vol. 7, pp. 235–

247, 1975. 

 

[113] R. A. Pell, P. J. Mazeika, and L. Molent, “The comparison of complex load 

sequences tested at several stress levels by fractographic examination,” J. Engg. 

Fail. Anal., vol. 12, No. 4, pp. 586–603, 2005. 

 

[114] R. Jones, L. Molent, S. Pitt, and E. Siores, “Recent developments in fatigue crack 

growth,” In: Gdoutos EE, editor: Proceedings of the 16th European conference on 

fracture, failure analysis of nano and engineering materials and structures, July 3–7, 

Alexandroupolis, Greece, 2006. 

 

[115] N. E. Frost, and D. S. Dugdale, “The propagation of fatigue cracks in test 

specimens,” J. Mech. Phys. Solids., vol. 6, pp.92–110, 1958. 

 

[116] M. J. Caton, J. W. Jones, J. M. Boileau, and J. E. Allison, “The effect of 

solidification rate on the growth of small fatigue cracks in a cast319-type 

aluminium alloy,”  Metall. Mater. Trans., vol. 30A, pp.3055–3068, 1999. 

  

[117] N. Kawagoishi, Q. Chen, and H. Nisitani, “Significance of the small crack growth  

 law and its practical application,” Metall. Mater. Trans., vol. 31A, pp.2005–2023,  

 2000.  

[118] Y. Murakamia, and K. J. Miller, “What is fatigue damage? A view point from the 

observation of low cycle fatigue process,” Int. J. of Fat., vol. 27, No. 8, pp.991–

1005, 2005. 

 

149 



[119] H. Nisitani, M. Goto, and N. Kawagoishi, “A small-crack growth law and its 

related phenomena,” Engg. Fract. Mech., vol. 41, No. 4, pp.499–513, 1992. 

 

[120] D. A. Virkler, B. M. Hillberry, and P. K. Goel, “The statistical modeling nature of 

fatigue crack propagation,” J. Engg. Mat. Technol., ASME, vol. 101, pp. 148-153, 

1979. 

[121] H. Ghonem, and S. Dore, “Experimental study of the constant probability crack 

growth curves under constant amplitude loading,” Engg. Fract. Mech., vol. 27, pp. 

1-25, 1987. 

 

[122] C. Timbrell, R. Chandwani, and G. Cook, “State of The Art in Crack Propagation,”  

Zentech International Limited, http://www.zentech.co.uk, 2004. 

 

[123] A. R. C. Murthy, G. S. Palani, and N. R. Iyer, “State-of-the-art review on fatigue 

crack growth analysis under variable amplitude loading,” Inst. of Engineers, India, 

Journal-CV, vol. 85, pp. 118-129, 2004. 

 

[124] D. Broek, “The practical use of fracture mechanics,” Kluwer, 1988. 

 

[125]  “Standard Test Method for Tension Testing for Metallic Materials,” ASTM, E8M-

97, 1997. 

 

[126] G. R. Irwin, NRL Report, pp. 65-98, vol. 21, Nov. 1967. 

 

[127]  “Standard test method for measurement of fatigue crack growth rates,” ASTM 

E647-08, West Conshohocken (PA), American Society for Testing and Materials, 

2008. 

 

[128] W. F. Brown, J. E. Srawley, “Plane strain crack toughness testing of high strength  

150 



metallic materials,” ASTM STP, vol. 410, American Society for Testing and 

Materials, Philadelphia, USA, p. 1, 1966. 

 

[129] S. Suresh, “Fatigue of materials,” 1st ed., Cambridge University Press, p. 351, 1992. 

 

[130] B. Mukherjee, “A note on the analysis of fatigue crack growth data,” Int. J. Fract., 

vol. 8, pp. 449- 451, 1972. 

 

[131] R. A. Smith, “The determination of fatigue crack growth rates from experimental  

data,” Int. J. Fract., vol. 9, pp. 352-355, 1973.  

  

[132] K. B. Davies, and C. E. Feddersen, “Evaluation of fatigue-crack growth rates by       

polynomial curve fitting,” Int. J. Fract., vol. 9, pp. 116-118, 1973. 

 

[133] H. G. Munro, “The determination of fatigue crack growth rates by data smoothing 

  technique,” Int. J. Fract., vol. 9, pp. 366-368, 1973. 

 

[134] J. Polak, and Z. Knesl, “On the fatigue crack growth rate evaluation from  

 experimental data,” Int. J. Fract., vol. 11, pp. 693-696, 1975.  

 

[135] D.Y. Wang, “An investigation of initial fatigue quality, design of fatigue and 

fracture resistant structures,” In: Abelkis P.R, Hudson, C.M., editors, ASTM STP, 

vol. 761, pp. 191–211, 1982.             

[136] J. Z. Zhang, “A shear band decohesion model for small fatigue cracks growth in an 

ultra-fine grain aluminium alloy,” Engg. Fract. Mech., vol. 65, pp. 665-681, 2000. 

 

[137] J. R. Mohanty, B. B. Verma, and P. K. Ray, “Determination of fatigue crack 

growth rate from experimental data: A new approach,” Int. J. of Micro-struct. and 

Mats. Prop., Inderscience, Accepted, Ref. No. IJMMP-119/08. 

 

151 



[138] J. R. Mohanty, B. B. Verma, and P. K. Ray, “Prediction of fatigue crack growth 

and residual life using an exponential model: Part I (constant amplitude loading),” 

Int. J. of Fat., Elsevier, vol. 31, pp. 418-424, 2009. 

 

[139]  J. R. Mohanty, B. B. Verma, and P. K. Ray, “Prediction of fatigue crack growth 

and residual life using an exponential model: Part II (mode-I overload induced 

retardation),” Int. J. of Fat., Elsevier, vol. 31, pp. 425-432, 2009. 

 

[140]  J. R. Mohanty, B. B. Verma, and P. K. Ray, “Prediction of fatigue life with 

interspersed mode-I and mixed mode (I & II) overloads by an exponential model: 

Extensions and Improvements,” Engg. Fract. Mech., Elsevier, vol. 76, pp. 454-468, 

2009.   

 

[141]  J. R. Mohanty, B. B. Verma, and P. K. Ray, “Evaluation of Overload-induced 

Fatigue Crack Growth Retardation Parameters using an Exponential Model,” Engg. 

Fract. Mech., Elsevier, vol. 75, pp. 3941-3951, 2008. 

 

[142] P. K. Ray, P. K. Ray, and B. B. Verma, “A study on spot heating induced fatigue 

crack growth retardation,” Fat. Fract. Engg. Mat. Struct., vol. 28, pp. 579-585, 

2005.    

  

[143] P. J. Werbos, “Backpropagation and neurocontrol: a review and prospectus,” Int. 

Joint Conf.,  Neural Netw., vol. 1, pp. 209, 1989.  

 

[144] P, Heuler, and W. Schuetz, “Assessment of concepts for fatigue crack initiation and 

propagation life prediction,” Z. Werkstofftech, vol. 17, pp. 397-405, 1986. 

 
 

 

 

 

152 



Appendix A 
 

Heat-treatment of Al 7020 aluminum alloy 
 
 The 7020 aluminum alloy procured from Hindalco, Renukoot, Maharastra, India in 

the as-fabricated condition was subjected to T7 heat-treatment to obtain optimum 

mechanical properties. It is a two-step aging heat treatment procedure particularly suitable 

for 7xxx series Al-alloys. It consists of heating at a temperature of 100°C to 120°C for 8 

hours followed by aging (over-aging) at a temperature of 145°C to 175°C. It allows the 

formation of large number of GP zones. These zones transform to the intermediate η’
 

precipitate and finally to the equilibrium η (MgZn2) phase during over-aging, thereby 

increasing hardness. To decide the solution treatment temperature, aging temperature, and 

also aging time the following procedures were followed.  

Procedure 

1. Total 18 numbers of samples with mm10mm10 × dimension were cut from the 

plate to prepare three sets of experiments of 6 each. 

2. Those sets were given solution treatment at three different temperatures such as 

490°C, 510°C and 540°C for 2 hours and water quenched. 

3. Three samples (one from each set) were taken and their hardness’s were measured 

in Vicker’s hardness testing machine. 

4. Rest 5 samples of each set were given 1st step aging at temperatures 110oC for 8 

hours in the oven. Then three samples (one from each set) were taken out for 

hardness measurement and rest of the samples were given 2nd step aging at a 

temperature of 150oC for 14 hours, 18 hours, 22 hours and 26 hours respectively 

and their corresponding hardness’s were measured at different time intervals. 

The noted times and their corresponding hardness’s are listed in Table A1 and illustrated in 

Figs. A1, A2 and A3 respectively. From Table A1 it is observed that set-2 gives the 

optimum value of hardness which is 132. 
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Table A1 - Vicker’s Hardness of 7020 T7 Al alloy  

Test 
sets 

  Vicker’s 
Hardness 

   

 
After 
Quench 

After  
8-hours 
at 
110oC 

After 
22 hrs.(8hrs.at 
110oC+14hrs.at 
150oC) 

After   26 
hrs. 
(8hrs.at 
110oC 
+18hrs.at 
150oC) 

After 
30hrs. 
(8hrs.at 
110oC 
+22hrs.at 
150oC) 

After 
34hrs. 
(8hrs.at 
110oC 
+26hrs.at 
150oC) 

Set-1 (Tsol=490o) 81 99 116 119 118 117 

Set-2 (Tsol=510o) 81 101 128 131 132 127 

Set-3 (Tsol=540o) 81 98 115 121 123 121 
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Fig. A1 – Time vs. Temperature plot of set-1 
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Fig. A2 – Time vs. Temperature plot of set-2 
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Fig. A3 - Time vs. Temperature plot of set-3 
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Appendix B 

Determination of coefficients for calculation of crack length in DADN 

software 

In order to determine the crack coefficients, six sets of constant amplitude fatigue 

tests were conducted using single edge notch specimens in INSTRON 8502 dynamic 

testing machine at a frequency of 6 Hz. Out of those tests, three tests were used for 

coefficient calculation and rest three sets were used for validation. General formula used in 

software for calculation of crack length is: 

...........4

4

3

3

2

210 +++++= UCUCUCUCCwa      (B1) 

where, 
( ) 1

1
+′

=
PvBE

U   

E ′ = plane strain modulus = 21 η−
E , B = specimen thickness, P = load, ν = displacement 

between measurement points, η = Poisson’s ratio, a = crack length and w = specimen 

width. The coefficients were calculated using MATLAB 7.1 with the following matrix 

program: 

>> [ ]..................=′A ; 

>> ( )AinvB ′=′ ; 

>> [ ]..................=′C ;  

>> BCD ′∗′=′  

where, A′ is the coefficient matrix from the values; B′  is the known matrix i.e. values of 

a/w; D′  is the unknown matrix and its value will give  C0 , C1, C2   …… etc. 

Test: 1 
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 The different results of first set of constant amplitude fatigue test are tabulated in 
Table B1. 

Table B1 - Results of constant amplitude fatigue test - 1 

Crack length 

a (mm) 

No of cycles 

N 

PvBE ′  
( ) 1

1
+′

=
PvBE

U  

19.23 47170 3.71 0.3417 

20.28 89130 4.221 0.3274 

21.43 125500 4.891 0.3114 

22.41 148700 5.592 0.2972 

23.37 161400 6.272 0.2854 

24.24 169400 7.167 0.27195 

 

CALCULATION: 

 With the above tabulated values, the following sets of simultaneous equations are 

formulated by using the equation B1. 

0.3702 = C0 + C1 (0.3417) +C2 (0.1168) + C3 (0.0399) + C4 (0.0136) + C5 (0.00466) 

0.3905 = C0 + C1 (0.3274) +C2 (0.1072) + C3 (0.0351) + C4 (0.0115) + C5 (0.00376) 

0.4126 = C0 + C1 (0.3114) +C2 (0.09697) + C3 (0.0302) + C4 (0.0094) + C5 (0.00293) 

0.4315 = C0 + C1 (0.2972) +C2 (0.0883) + C3 (0.0263) + C4 (0.0078) + C5 (0.00232) 

0.4499 = C0 + C1 (0.2854) +C2 (0.0815) + C3 (0.0232) + C4 (0.0066) + C5 (0.00189) 

0.4667 = C0 + C1 (0.27195) +C2 (0.07396) + C3 (0.0201) + C4 (0.0055) + C5 (0.00149) 

Solving the above equations with the help of the given program in MATLAB, the 

first sets of coefficients are obtained as follows: 

C0 = 2.762883; C1 =-16.79367; C2 = 29.75729; C3 = 22.77747; C4 =-48.35849 and          C5 

= -81.7772 

Test: 2 
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Table B2 shows the results of test-2. 

Table B2 - Results of constant amplitude fatigue test - 2 

Crack length 

a (mm) 

No of cycles 

N 

PvBE ′  
( ) 1

1
+′

=
PvBE

U  

19.23 48180 3.716 0.34157 

20.28 90390 4.243 0.3268 

21.43 127100 4.911 0.3109 

22.41 149200 5.609 0.2969 

23.37 161900 6.326 0.2845 

24.24 169400 7.167 0.27195 

 The coefficients calculated from the 2nd set of experiments using the same 

procedure are as follows: 

C0 = 0.3771; C1 =1.3354; C2 =-0.5490; C3 = -5.5918; C4 =-57.3827 and C5 = 130.0125 

Test: 3 

Table B3 shows the results of test-3. 

Table B3 - Results of constant amplitude fatigue test - 3 

Crack length 

a (mm) 

No of cycles 

N 

PvBE ′  
( ) 1

1
+′

=
PvBE

U  

19.23 47920 3.703 0.34196 

20.28 89890 4.238 0.3269 

21.43 126600 4.911 0.3109 

22.41 149000 5.598 0.2971 

23.37 161600 6.309 0.2848 

24.24 169400 7.167 0.27195 

The coefficients calculated from the 3rd set of experiments using the same procedure are as 

follows: 

C0 = 0.73762; C1 = 0.32498; C2 = -7.91378; C3 = 4.9771; C4 = 42.4170 and C5 = -71.18278 
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Validation tests 

 In validation tests, three constant amplitude fatigue crack growth tests were 

conducted under same conditions similar to the previous tests. Before the tests, both the 

surfaces of the specimen were marked at every 1.0 mm interval in order to record the 

readings by visual (manual reading) method. All the fatigue tests were performed one by 

one by using the crack coefficients calculated from the previous tests with the help of COD 

gauge mounted at the edge of the SEN specimen. The few readings (up to six steps) from 

the machine were recorded and tabulated in Table B4 shown below: 

Table B4 - Results of constant amplitude fatigue validation tests 

Crack 
length 
(a) in 
mm 

(manual) 

No. of 

cycles 

(N) 

Crack 
length (a) 

in mm 
(machine 
for test-1) 

Crack 
length (a) 

in mm 
(machine 
for test-2) 

Crack 
length (a) 

in mm 
(machine 
for test-3) 

% Dev 
(from 

manual 
reading 
for test-

1) 

% Dev 
(from 

manual 
reading 
for test-

2) 

% Dev 
(from 

manual 
reading 
for test-

3) 

19.1 51430 20.234 20.012 19.356 0.590 0.480 0.130 

20.1 92660 21.825 20.989 20.546 0.860 0.440 0.220 

21.1 129300 23.012 21.978 21.234 0.910 0.420 0.600 

22.1 150300 23.986 22.864 22.168 0.850 0.350 0.300 

23.1 161900 25.213 23.992 23.129 0.920 0.390 0.126 

24.1 169525 26.578 24.897 24.157 1.030 0.330 0.237 

 Analyzing the results presented in Table A4, It was concluded that the coefficients 

obtained from test-3 were better than the other two. Taking the crack coefficients of test-3, 

all the fatigue crack propagation fatigue tests were conducted. 
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