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Abstract

In this thesis, the problem of image segmentation has bednesskd using the notion of thresh-
olding. Since the focus of this work is primarily on objeddjects background classification and
fault detection in a given scene, the segmentation proldenewed as a classification problem.
In this regard, the notion of thresholding has been usedasitly the range of gray values and
hence classifies the image. The gray level distributioniefariginal image or the proposed
feature image have been used to obtain the optimal threshold

Initially, PGA based class models have been developed ssifyadifferent classes of a
nonlinear multimodal function. This problem is formulatetiere the nonlinear multimodal
function is viewed as consisting of multiple class disttibns. Each class could be represented
by the niche or peaks of that class. Hence, the problem has foemulated to detect the
peaks of the functions. PGA based clustering algorithm le@s Iproposed to maintain stable
sub-populations in the niches and hence the peaks couldtbetel@. A new interconnection
model has been proposed for PGA to accelerate the rate oéigmmnce to the optimal solution.
Convergence analysis of the proposed PGA based algoritBrhden carried out and is shown
to converge to the solution. The proposed PGA based clagtalgorithm could successfully be
tested for different classes and is found to converge musthiféhan that of GA based clustering
algorithm.

Two thresholding schemes namely Feature Less (FL) andifedaased (FB) thresholding
have been proposed using the PGA based clustering algoatitthPGA based optimization
strategy. Both the approaches have been tested with imagétecent classes and it has been
found that FB approach proved to be better than FL approduh p&rformance of the proposed
approaches are found to be better than Otsu’s and Kwon’'sadgin many cases.

A Minimum Mean Square Error (MMSE) based FL and FB schemes baen proposed
to deal with fault detection in a given scene whose histogtaas not exhibit clear bi-modality

and almost becomes unimodal. These schemes also emplapfiespd PGA based clustering



algorithm. The schemes could successfully be tested widtyés of earth surface cracks and
performance of the proposed method proved to be better thang’s fault detection method.
The scheme could also be validated with general images areffibacy has been demonstrated
especially with image for colour-blindness.

Adaptive thresholding based schemes have been proposegpdoate object and back-
ground in images with nonuniform lighting conditions. Thethods are based on the notion
of window merging and window growing. Three new window setetcriteria have been pro-
posed to adaptively fix the size of windows for segmentatitre selected windows have been
segmented by Otsu’s, Kwon’s, the proposed PGA, and MMSEdsaskemes. Sizes of the
windows have also been fixed based on the window growing appravhere, selection of win-
dows is based on notion of entropy and feature entropy. Tinelaws, thus fixed, have been
segmented by Otsu’s, Kwon’s, and MMSE based approachesteBha#s obtained by window
merging and window growing are found to be better than thaesdlts obtained by Huang's
approach. The efficacy of the proposed schemes has been steated with different images

of having nonuniform lighting condition.
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Chapter 1

Introduction

Image segmentation is one of the basic early vision problamsmputer vision paradigm. De-
tection and tracking of moving objects in a given scene seagehe front end of an automated
vision system. Often, in many applications the gray levéfsxels belonging to object are sub-
stantially different from the gray levels of pixels belongito background. In some cases, the
scene could be with multiple objects and background. In sutalations, thresholding has been
a simple but effective tool to separate objects from baakgdo Thresholding operation seg-
ments the image into regions which may subsequently be zedlyased on their shapes, sizes,
relative positions, and other characteristics. Thredubithage requires less storage space than
the original one and hence more suitable for transmissiorceSbject detection and tracking
has to be accomplished in real-time for visual surveillaaneg monitoring, thresholding being
a simple and efficient strategy provides a viable solutiomiany real-time applications such
as fault diagnosis, tracking, monitoring, crack detectiamd bio-medical image analysis etc.
[1, 2, 3, 4]. Thresholding, in its simplest form, means tcssléy the pixels of a given image
into two groups for example, object and background, oneitinoly those pixels with their gray
values above a certain threshold and the other includinggtiaoth gray values equal to or be-
low the threshold. This is called bi-level thresholding.n@rally one can select more than one
threshold and use them to divide the whole range of gray sahie several sub-ranges.

Since, each range of gray value will correspond to one olgjess, multiple ranges will
correspond to multiple objects and background and hencépleutlasses. This process is
known as multilevel thresholding. There has been congisfért for more than three decades
to devise novel strategies based thresholding schemesége segmentation. The proposed

methods can be broadly categorised as; (i) global thresiplegchniques, and (ii) adaptive



thresholding techniques. Global thresholding methodsfudher be classified as; (a) bi-level
thresholding, and (b) multilevel thresholding. In this aed) a good number of techniques
have been reported in the literature [1, 2, 3, 4]. The scheaamdsstrategies proposed in the
literature for global thresholding may be broadly vieweg(Bsistogram shape based methods,
(i) Entropy based methods, (iii) clustering based methd@d3 higher order statistics based
methods, and (v) local characteristics based methods. derdo deal with the real world
environment, where images could have been acquired unaeumérm lighting conditions,
many adaptive methods have been proposed. In a wide vafigtglmiques, the problem has
been formulated as an optimization problem and therefohsistic optimization methods such
as Genetic algorithm, Particle Swarm optimization, eteelt@een used to determine the optimal
threshold. By and large, the techniques used are eithed lmasthe shape information of the
histogram or on any derivative of shape information. Thestds can further be categorized
as parametric and non-parametric methods. In the followtimg proposed methods based on

different approaches have briefly been described.

1.1 Non-parametric shape based methods

One of the landmark work on non parametric method is Otsy'srnféthod where the shape
information of the histogram has been exploited to find optithreshold. In this work, an op-
timal threshold has been obtained so as to maximize theaapgyr of the resultant classes in
gray levels. This method [5] determines the optimal thr&siadnile maximizing the inter-class
variance and in turn minimizing the intra-class varianceésu® method produced promising
results with two class problems and could also be extendatitoclass problems. But Otsu’s
method for multiclass problems is found to be computatigretpensive. This method pro-
duced good results when the histogram distribution exdxbiiear bi-modality. A fast search
scheme has been presented by Reddil. [6] to determine the single or multiple thresholds
that maximize the interclass variance between dark andhbregions. Leest al. [7] have in-
vestigated the issue of convergence of a fast Otsu’s metiggested by Reddit al. [6]. They
have also pointed out that if the object area is small contpatith the background area, the
histogram no longer exhibits bi-modality, and in such gitraOtsu’s method produced optimal
threshold that results in poor segmentation. If the imagel®en corrupted by additive noise,

the histogram looses clear bi-modality and hence Otsusraetresults in segmentation error.



The limitations of Otsu’s method has been partially overedoy an automatic image seg-
mentation method presented by Boukharoabal. [8], where the method does not depend on
the existence of modes of the histogram rather based on titvesin properties of the distri-
bution function of the image. Since the method exploits thiatle variations in the form of
the histogram, the method could successfully deal with atrfiat histograms. A correlation
based optimal threshold detection technique has been gedpwy Brink [9] and the optimal
threshold has been obtained by maximizing the correlategwéen the original image and the
thresholded bi-level image. Subsequently, it has beentg@biout by Cseket al. [10] that the
function to be maximized by Brinks’s method [9] is same a3 ®su’s [5] method. Don@t
al. [11] have proposed a fast efficient iterative search proeetb determine optimal threshold
from single and two dimensional histogram distributionsg¥iof the thresholding approaches
are based on the notion of variance and in this regard, étal. [12] have shown that the
bias for Otsu’s method may be attributed to the differennedass variances and the resulting
threshold is biased towards the component with larger elasance. Thus, they have proved
that the minimum class variance thresholding (MCVT) mettsogimilar to the methods based
on minimum error thresholding. Recently, Lém al. [13] have shown that the objective func-
tion of Otsu's method is equivalent to that of the K-meanshuoétin multilevel thresholding
and both of them are based on the same criterion that mingntiigewithin-class variance. Saha
et al. [14] have proposed a novel thresholding method which igthas the combination of
intensity based class uncertainty, histogram based psopegion homogeneity, and image
morphology based property. They have formulated a newltbidsnergy criterion exploiting
the above mentioned attributes.

Since, an automatic threshold detection still remains #eaging task due to poor con-
trast, low signal to noise ratio, and complex patterns ofrtheges, optimum threshold detection
by phase correlation between gray level image and its bioamter part has been proposed
by Belkasimet al. [15] and this method is found to be better than many othehaus. Seg-
mentation of colour blind images is another hard problermabse the histogram distribution
is very typical, neither it exhibits clear class distrilautinor a distinct valley. For such cases,
Kwon [16] has proposed an optimal threshold detection teglenbased on cluster analysis.
His technique could segment the colour blind images prgp#rhas already been pointed out
that Otsu’s method exhibits poor performance when the oisjee in a given scene is much

smaller than that of background. In order to address suciesssa thresholding criterion has



been suggested by Qiabal. [17] to specifically segment small objects. This criterexploits
the knowledge about the intensity contrast and the fornaunlas based on the weighted sum of
within-class variance and intensity contrast between Hjeats and background. The proposed
algorithm could successfully segment synthetic as weleakimages with small objects.
Besides using the shape information of the histogram, @btinmmeshold detection scheme
based on the spatial features of the histogram has beengadpy Zhangt al. [18]. They have
employed Fisher criterion and mutual information to measliscriminability and feature corre-
lation of spatial histogram features. A new discriminaitecion emphasizing the homogeneity
of the object gray level distribution while de-emphasizing heterogeneity of the background
has been proposed by Chehal. [19], where some of the shortcomings of the Otsu’s method
have been overcome. A novel thresholding approach has bepaged by Het al. [20], where
the proposed thresholding scheme exploits the region@fest and the threshold is determined
by minimizing the classification error within the constredhvariable background range. This
could successfully be tested with Magnetic Resonance (MB)GT images. Segmentation of
small objects in a given scene is a challenging problem arhisrregard, a new thresholding
criterion has been formulated by Qiabal. [17] by exploring the knowledge about intensity
contrast. Their thresholding criterion is based on the teid sum of within-class variance
and intensity contrast between the object and backgroundsesgjuently, Wangt al. [21] has
proposed a new criterion function that is obtained by ird&gg the histogram and the Parzen
window technique. Global optimal threshold is obtained pyimizing the criterion function
and this method proved to be better than Otsu’s minimum e¢mashold method and maxi-
mum cross entropy method. Another histogram modificatichrigue is proposed by Sex
al. [22], where histogram is modified based on the beam theatytl@ambiguity in the over
all information is minimized to obtain the optimal thresthoDonget al. [23] have proposed
an iterative algorithm based on minimizing a weighed sumgofase errors of objective func-
tion. They have also proved that their proposed algoritheqisivalent to the Otsu’s method
but incurs less computational burden. Besides finding aubftimal threshold for segmenta-
tion, a thresholding method for detection of edges has bempoped by Carnicest al. [24]
to deal with unimodal histogram. This algorithm performatisfactorily on different images
with unimodal histogram. A transition region based thrédimg algorithm has been proposed
by Hu et al. [25] and the algorithm is robust and easy to implement.ebstof determining a

threshold for the whole histogram, Chen [26] has developelidomatic volumetric segmenta-



tion scheme by partitioning the histogram into intervaltofeed by thresholding the intervals.
The efficacy of this algorithm could successfully be demi@tstl for volumetric breast tissue
segmentation. Besides Otsu’s method, a new thresholdiatggy based on standard deviation
has been proposed by &t al. [27] and the method could successfully be tested for wideta

of images. Further, a thresholding strategy based on themet fractional differentiation has
also been proposed by Nalebal. [28] and it could segment well many real world images. The
thresholding schemes discussed so far have been implaineffittne. Attempts have been
made to implement the thresholding scheme in real-timeitd butomatic machine vision sys-
tem. A thresholding algorithm has been implemented in ie@ by Mariaet al. [29] and in
this scheme, histogram has been generated in real time arshfter FPGA based controller
has been developed. Recently, Jiaetal [30] has implemented Otsu’s method in real time on
FPGA using Altera’s Cyclone Il chip and they could succelbgiegment the images in real-
time environment. An enhanced histogram based threslgpidathod has also been suggested

by Cristoet al. [31] to automatically detect stars in astronomical images

1.2 Evaluation method

Over the last three decades many thresholding algorithweslteen proposed to achieve proper
classification and hence there has been a necessity of tizety evaluating the performance.
Lie [32] has proposed evaluation methods for thresholdlggréghm, where the performance
has been analysed and efficient computing of block measasekden presented. Towards this
end, Zhang [33] has categorised the proposed methods asa(tical, (ii) the empirical good-
ness, and (iii) empirical discrepancy. In this work, he hes/iged a rank of the algorithm’s
evaluation capability. The algorithms have been evalubssgd on goodness and discrepancy
criteria. Zhang [34] has in his subsequent work reviewedetvaduation methods based on
goodness and discrepancy. He has also highlighted some ofiiteria such as intra-region uni-
formity, inter-region contrast, region shape, number a$-segmented pixels, position of mis-
segmented, number of objects in the image, and featurevaftmegmented objects. Sezgin
al. [4] have surveyed 40 thresholding methods and they are@es based on non-destructive

testing applications.



1.3 Parametric shape based methods

Analogous to Otsu’s [5] method, another landmark paramétresholding strategy has been
proposed by kittleet al. [35]. In this method, the gray level distribution of objectd back-
ground pixels are assumed to be known or estimated and tlimalghreshold is obtained
while minimizing the average pixel classification erroetaBesides, Kittler's [35] model based
approach, Mardi&t al. [36] have proposed several model based approaches thapasal
information. A thresholding method insensitive to shadimgyradually varying interference
has been proposed by Chawal. [37], where each local region of the image is modelled by a
mixture of normal distributions. A common framework haodieen devised for eleven thresh-
olding algorithms by Glasbey [38] and it has been shown thatterated version of Kittler's
[35] algorithm is the best among all the eleven algorithms.addition to Kittler's criterion,
two automatic thresholding algorithm based on minimizingnf square errors and the vari-
ance of the approximated histogram has been proposed bydRama. [39]. The efficacy of
the algorithm has been compared with the entropy based antentdased approaches. All
the above proposed approaches have dealt with imagesdreenfsises and the performance is
found to deteriorate with noisy images. In this regard, @aigtt al. [40] have proposed a mode
detection algorithm for noisy images and the method proweddrk satisfactorily for highly
noisy cases. Analogous to Kittler’s [35] method, a peakd&ia algorithm has been proposed
by Lui et al. [41] while minimizing the classification error and maximmg the Mahalonobis
distance besides statistical decision criterion an ak pobdel histogram based thresholding
algorithm has been presented by €gal. [42] and it has been advocated that the algorithm can

be used both for binarization and multilevel thresholding.

1.4 Entropy based thresholding methods

Parallel to the notion of non-parametric use of the shapaehtstogram, a new notion of the
entropy of the gray level histogram has been introduced loy[®38] to the research domain of
histogram based thresholding. Thresholds have been datsiioy arapriori maximization of

entropy determinedposteriori Successively, Pun [44] also suggested an automatic thicesh
selection related to the asymmetry of the gray level histogthat facilitated the derivation of
entropy based thresholding. Pun [44] in his work has alsoeated the use of this method for

multi-thresholding applications. The fundamental notdiPun [43, 44] has been analysed by
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Kapuret al. [45] and a new algorithm based on entropy has been proposeéddioand artifi-
cially generated histograms. The entropy based notion &éas éxploited by many researchers
and in this regard P&t al. [46] has presented a new definition of entropy which couldieeed
as modification of Shannon’s entropy but suitable for thoéding. This proved to be effective
in many cases. The concept of entropy was further extendéd élyal. [47], Brink et al. [48],
and Pal [49], where the optimal threshold has been seledtédd minimizing the cross entropy
between the image and its segmented versions. The firstentsgy based thresholding has
been introduced by Let al. [47] and the proposed method provides an unbiased estwhate
binarized version of the image in an information theoretiose. Liet al’s [47] cross entropy
method has been analysed by Pal [49] and towards this end arosw entropy based method
is presented overcoming the limitation of &t al’s [47] method. Besides entropy and cross
entropy, relative entropy based thresholding has beenogezpby Changt al. [50], where
the entropy of the co-occurrence matrix of one image has bsed. Extension of this work is
carried out by Althouse [51], where local entropy and loeddtive entropy thresholding meth-
ods have been described and compared with Otsu’s [5] anki®§t[35] method. An iterative
method for cross entropy based thresholding has been m@dpmnsLiet al. [52] and could
successfully be tested for many real images further exderddithis entropy based thresholding
has been carried out by Saheal. [53] and this thresholding is based on Renyi’s entropy.
By and large, the definition of image entropy has been assatiaith the probability
distribution of the gray levels. This entropy measured hleenkmodified by Brink [54], where
the spatial information of image has been incorporatedtimoentropy measure to devise the
criterion function that improved the result substantialljnsonget al. [55] have implemented
the methods proposed by Kapeir al. [45] and Sahoceet al. [53] using Genetic algorithm.
Both single and multi-thresholding methods have been dsatig Genetic algorithm. All the
entropy based methods described above are more or lessdra§&tnnon’s entropy. Pavesic
et al. [56] have devised thresholding criterion based on the sufaerda and Charvat entropy
and have shown that this entropy based scheme results ar beggmentation than that of using
Shannon’s entropy. The computational burden of maximunopptbased thresholding has
been reduced using Q-learning algorithm in the Reinforcearhing (RL) paradigm proposed
by Yin [57]. In Yin’s method [57], it has also been shown thia¢ talgorithm is suitable for
multilevel thresholding applications.

Besides, a thresholding algorithm using Tsallis entropy dlao been proposed by Albu-



guerqueet al. [58] and local entropy based method for extraction of tramsiregion has been
proposed by Yart al. [59]. In the sequel, local entropy based algorithm for bleessel de-
tection has been devised by Chanwimaluab@l. [60] and the method produced promising
results in case of many examples. Relative entropy basesdiblding algorithm has also been
proposed by Zhet al. [61], where two dimensional histogram instead of singlaehisional
histogram of the image has been used to obtain optimal tbigsi¥anget al. [62] have pro-
posed a fast threshold selecting algorithm based on onerdilmnal entropy. Recently, texture
Renyi entropy has been proposed by Sharethal. [63] for determining accurate threshold
and minimum cross entropy based thresholding [64] has bemoped for thresholding SAR
images. A non-extensive relative entropy also known asli$sltropy has been employed to
develop optimal threshold detection strategy [65] and th@liE entropy has been applied as a
generalized entropy formalism for information theory. feply based thresholding algorithms
have also been validated for biomedical images specificétiigsound images [66].

It has been found out that the spatial correlation among tkelpdo influence the un-
derlying notion of separation of object from the backgrouhorder to take into account the
spatial correlation of the pixels together with the grayelalistribution of images, two dimen-
sional entropy based thresholding method was first intredixy Abutaleb [67]. The proposed
2-D entropy based approach produced appreciable resultvdven signal to noise ratio (SNR)
is decreased. Subsequently, Cletral. [68] have suggested a fast two-dimensional entropy
based thresholding algorithm to reduce the computatiomadn. It has been shown that the
processing time reduced drastically. Besides, a wavalestorm based fast 2D entropic thresh-
olding algorithm also been proposed by Wagtaal. [69]. Specifically for ultrasound images,
a two-dimensional minimum cross entropy based algorithendeen developed by Zimmet
al. [70] and the algorithm could successfully be tested foriavecysts. The two-dimensional
entropy based algorithm has also been extended [71] futtharcorporate Tsallis-Havrda-
Charvat entropy while devising optimal threshold algarithRecently, thresholding strategy
has further been reinforced using 2D Tsallis entropy [72] @@ resulting algorithm produced
better segmentation result than the previously proposeditmensional thresholding methods.
Recently, Tiaret al. [73] has proposed a Tsallis-entropy image thresholdingpateusing two-
dimension histogram obque segmentation. The superidrityi®method has also been shown

to other methods.



1.5 Multi-thresholding approach

There was considerable research effort to separate olyjddiackground in a given scene and
hence the focus was on bi-level classification. This regusreingle optimal threshold to be
determined. It has been argued in many cases that the pbpogge thresholding methods
could be extended to multi-thresholding paradigm for neld8s problems. In this regard, a
recursive technique for multiple threshold has been prepby Wanget al. [74] and this algo-
rithm could successfully detect multiple thresholds fréwa histogram. The multiple thresholds
by and large, have been obtained from the histogram by sdgmehe histogram itself. A
three stage multi-thresholding algorithm has been prapbgePapamarkost al. [75], where
the scheme consists of the notion of; (i) hill clustering), lfistogram segmentation, and (iii)
Golden search minimization technique. The algorithm ceuiccessfully determine more than
two peaks. In multimodal histogram case, a Gaussian kemebthing method has been pro-
posed by Tsai [76] to detect multiple thresholds for a mlasis problems. The performance of
the algorithm could be compared with methods based on themot between-class variance
and entropy. In order to accelerate the convergence of +tluéisholding schemes, three fast
multi-thresholding schemes [77, 78, 79] have been propdSed of the schemes [77] is itera-
tive in nature and hence starts with a bi-level thresholdimdjthereafter, using this as the initial
result, higher order thresholds have been obtained. Thgopeal algorithm could be automatic
and could save a significant amount of computing time. In #dwusl, Yin [78] has proposed
a fast multi-thresholding scheme using Genetic AlgoritidA) and the Genetic algorithm has
been used to make the optimal thresholding technique maaigal. The third fast multi-
thresholding is based on maximum entropy theorem [79] aisdeébhnique is computationally
less expensive and hence computes the threshold quickdyd@&eGA, another soft-computing
based multi-thresholding technique has been proposed gnrarkoset al. [80], where the
proposed technique is implemented by principal componealyais (PCA) and a Kohonene
Self-Organized Feature Map (SOFM) neural network. Céieal. [81] have proposed a multi
thresholding algorithm that obtains the multiple threslisdirom the support vectors that fits
the histogram. This method does not require prior assum@imut the image. A new di-
chotomization technique has been proposed by Sezgah [82] and the technique is based
on selection of the consistent peak location function agtireshold value over the interested

histogram region. This algorithm has specifically beenglesil for automated inspection ap-



plication. A hybrid optimization technique based on Otsuimimum within group variance
and Gaussian function fitting has been proposed by Zadtaaha [83] and the method could
expedite Otsu’s method in the context of determining mldtibresholds. Arorat al. [84]
have proposed a multi-thresholding technique using itsmaeal variance. Recently, Maitra
et al. [85] have developed a particle swarm optimization basetitiuesholding algorithm.
This approach employs both cooperative learning and cdmepve learning. The algorithm
could be found to be quite effective to determine multipleegiholds and out perform many
other GA based algorithms. GA, when applied as an optindaagchnique to determine the
threshold, is found to be computationally intensive andis tegard Caet al. [86] have pro-
posed a strongest schema based GA which could be succesgiplied to multi-thresholding.
A biological inspired computing based multi-thresholdatgorithm has been proposed by Liou
et al. [87], where the algorithm is based on honey bee mating apaition. The performance
of the algorithm is found to be superior to PSO based algoritht has been observed that
the landmark work of Otsu’s thresholding when extended tttirolass problems is very time
consuming. In order to reduce the computational burdely, iemrently Huanget al. [88] have
proposed a two stage multi-threshold Otsu’s method, wisidess time consuming than Otsu’s

method. The method is found to be more efficient with an aaygguivalent to Otsu’s method.

1.6 Thresholding for fault detection

Thresholding is a simple and computationally efficient treghe and therefore, it is suitable for
real-time applications. Bi-level thresholding has beempleyed for automatic fault detection
in many real world environment. Suitability for specific #ipptions has been a decisive task
guantitatively. Towards this end, Sezgihal. [89] have carried out quantitative evaluation of
several algorithms for non-destructive (NDT) testing &gilon. A robust automatic threshold
selection technique based on the notion of moving windovbleas developed by Wilkinsaat

al. [90] and the technique has been found to achieve fast segtimmof blood vessels against
a varying background. Hui-Fuang Ng [91] has proposed annaatic thresholding method
that deals with both unimodal and bimodal histograms andhesessfully tested for detecting
small or large size defects in a given scene. Recently, tsateal [92] have proposed a thresh-
olding technique to segment images of micro-structurebraiet automotive aluminium alloys.

The defects in the welding process has been detected byshtideng technique proposed by
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Mahmoudiet al. [93]. This method produced comparable results with othethods, but the
proposed method is quite simple. Very recently, Otsu’s [8fmod, minimum error based ap-
proach of Kittler have been applied to detect cracks in atpayrj94] and this method could

successfully be applied to detect cracks.

1.7 Adaptive thresholding

Although several bi-level thresholding and multi-levedebholding strategies have been pro-
posed to achieve proper classification, there are manyetiggbs to handle noisy images and
images acquired under non-uniform lighting conditionse Tiked thresholding methods, both
bi-level and multi-level, produce poor results in suchaitons. Therefore, attempts have been
made over past two and half decades to devise adaptive thdesih methods to segment im-
ages under above conditions. By and large, adaptive thidisgamethods are based on the
notion of local thresholding. In late seventies, Nakagawal. [95] have proposed an adaptive
quantization scheme based on histogram peak sharpeningeagplication of this produced
better results than that of variational thresholding of @remd Kaneko [37]. Subsequently,
Yanget al. [96] have suggested an adaptive raster-scan threshatijogthm to deal with im-
ages under imperfect illumination. This algorithm is basadhe notion called Largest Static
State Difference (LSSD) and it has been argued that hardwgnementation of this algorithm
can be realized in real-time. Adaptive thresholding baséeémes have also been proposed by
Ribaricet al. [97] to deal with video image or sequence of image framess dligorithm is spa-
tially and temporally adaptive and it has been advocatede@rtime segmentation. Adaptive
thresholding has also been applied to detect specific abjébinget al. [98] have devised an
adaptive thresholding algorithm based on multi-resotutioalysis. They have carried out the
performance analysis based on Gaussian distribution nasdkhave shown that the adaptive
threshold thus determined is closed to the Baye’s thresAdid algorithm is robust even when
the image distribution is unknown.

Followed by this, another adaptive thresholding algoritieme been proposed to detect
targets with precision [99]. This algorithm determinesttiveshold by learning the characteris-
tics of the background from the given images. The algoritlasitteen found to exhibit superior
performance to the optimal laying algorithm in target detecand tracking. Kinmet al. [100]

has also suggested a motion estimation and tracking schemmg adaptive thresholding and
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K-means clustering. In this algorithm, the motion maske@egn a scene is indicated using an
adaptive thresholding method, which is a histogram basptbaph to discard temporal varia-
tion due to illumination. In order to track objects, spegiahissile tracking, Hakeet al. [101]
proposed an adaptive thresholding technique to sepamigbjbect and background and hence
track the missile in a video frames. A local adaptive thréding algorithm has been devel-
oped by Hermaret al. [102] to allow segmentation of television images at videt®s. They
have tested the scheme with grass and sky detection. Aniagl#pieshold algorithm based on
Mumford-Shah and Chan-Vise functionsal has been propog€eiginet al. [103], where they
have proposed a functional build upon an adaptive threshofdce coupled with the smoothed
image. This method produced good smoothing results eveas@sc where the images can not
be segmented using other adaptive thresholding techniques

In order to deal with images under uneven lighting conditiBmanget al. [104] has
proposed an adaptive window selection based techniquetéondi@e optimal threshold. The
method is based on window merging approach, where the insgg@riitioned into small win-
dows and each window is tested with a criterion based on ltoneflormation measure. |If
the window satisfies the criterion, then the window is fixethéosegmented by Otsu’s method
and if the window fixing criterion is not satisfied, then wingare merged based on pyramid
structure. The algorithm produced satisfactory resultsrfany poorly illuminated images but,
the accuracy of segmentation of this method greatly depepds the proper choice of initial
window size. Each window is segmented by Otsu’s method agisheetation of whole image
is the union of segmentation over all the windows.

Adaptive thresholding has also been applied to the detedioessels in retinal image
[105]. The proposed adaptive local thresholding is basedeoification based multi-threshold
probing scheme. The approach is a knowledge guided adaptesholding. The algorithm
produced satisfactory results for a wide variety of imag&daptive thresholding techniques
have also been applied for classification of ultrasound esg@06] and in-situ microscopy
[107]. Filhoet al's [106] adaptive thresholding method is based on Otsy'mhod to detect
classification regions in intra-vascular ultrasound insageor in-situ microscopy, Espinozt
al. [107] have proposed local thresholding based techniggedment images captured by in-
situ microscopy. Adaptive thresholding has also been agpb segment digital subtraction of
angiography images [108]. The algorithm introduces theelesxistence measure to determine

whether each sub-image contains vessels. The overall segtiom of the whole image is
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achieved by combining the thresholded images. This algoritas produced better results than
global thresholding methods and other local thresholdiethads. Recently, Jiareg al. [109]
have proposed an adaptive thresholding based techniquetdotdnfestation in fruit by X-ray
images. The algorithm also has been implemented in real-dind tested with X-ray image of
several fruits such as citrus, peach, guava etc..

The problem of detection of particles in an image has beereaddd by Pet al. [110] and
their technique consists of combination of thresholdind @atershed transforms. This could
successfully used for oil-sand size analysis and the dlgoralso speed up the size estimation
of fine particles. The gray level co-occurrence has beentosel/elop an adaptive thresholding
technique [111] that handles images with fuzzy boundaifigs.co-occurrence matrix contains
information on the distribution of gray level transitiorefluency and edge information. The
algorithm could successfully be tested with star fruit defsmages.

Recently, Sahat al. [112] have proposed an adaptive thresholding technicmenimmax
optimization of a novel energy functional that consists nba-linear convex combination of an
edge sensitive data fidelity term and a regularization t&ine. efficacy of the proposed method
has been demonstrated for delineating lung’s boundares lagnetic Resonance Imaging
(MRI). Tsai [113] has developed an adaptive thresholdingetdaapproach to deal with non-
uniform illuminations. The optimal threshold has been celé based on Simulated Annealing
(SA) algorithm. The algorithm has successfully been te&iethany real images. Shafaat al.
[114] have suggested a local adaptive thresholding tederfior document images and proved
to be effective for many documented images. Recently, aeption distance minimization
based adaptive thresholding technique has been propostatéyburget al. [115] and the pro-
posed method demonstrated more accurate segmentatidts tesun other local thresholding

based approaches.

1.8 Summary of the thesis

In this thesis, the problems addressed are; (i) the separatfiobject and background, and
(i) fault detection in a given scene. The problem has alsenbextended to separation of
multiple objects and background. This problem is a segnientproblem and is viewed as the
classification problem in a given scene. Separation of aeobland the background in a given

scene reduces to a two class problem, where object belomgetolass and the background as
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another class. There could be multiple objects in a givenese&d separating multiple objects
and the background reduces to a multiclass problem. Simasibeen intended to devise novel
schemes for real-time object detection and tracking, th®nof thresholding which is simple
and efficient, has been used to address the problem of ataswifi. The issue of thresholding
based image segmentation and classification has been seldifes more than three decades,
but reducing the misclassification error, in case of oveuilag class distributions still remains
an open problem. This research has attempted to addregsgheésin a novel framework of
Genetic Algorithm (GA) and Parallel Genetic Algorithm (PIa#ased Clustering.

Separation of object and background has been viewed assHiciatson problem with two
classes. The gray level distributions i.e. histogram ha&nhesed to determine the threshold
for dividing the range of gray values into two classes. Weehased the shape information of
the histogram to determine the threshold. The discretedraim of a two class image con-
sists of two class distributions, one belonging to the dbjéess and the other belongs to the
background class. In other words, the problem of separ#ti@dwo classes is to determine a
threshold that will separate the range of values into twe.s@e have devised GA and PGA
based clustering schemes to determine the threshold. Thxepn is simple when two class
distributions in the histogram landscape is well separatetibecomes challenging when the
two class distributions in the histogram landscape oveztagh other. In case of overlapping,
few pixels that would have belonged to the object class wbeldng to the background class,
thus resulting in classification error. In a two class case,pgroblem reduces to determining
optimal threshold that minimizes the misclassificatioroeriEach class distribution in a two
class problem has a niche or peak and hence there will be taks@and a valley point in be-
tween these two peaks. In order to separate the two clastiedistinct separability, the valley
point that corresponds to the threshold needs to be detedmifhus, for a two class problem
determination of the valley point that mostly corresporas$he minimum point between the
two peaks of class distribution needs to be found out. A sinitgrative search for the whole
range of gray values would often mislead many other grayegdis the minimum one. In order
to ameliorate such cases, we have adopted the following GA&A based clustering strategy.
Since, this valley point is assumed to exist in between tleertwhes or peaks corresponding to
the two classes, it is necessary to detect the two peaksdilsived by detection of the valley
point. We have proposed GA based class models to determenpeihks and thereafter, the

valley point that corresponds to the threshold.
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We have viewed the histogram landscape as a non-linear-matial function and each
mode of a class distribution represents a class. Hence, @A&A based class models have
been proposed to determine the peaks and thereafter, g paint. The thesis work can be

summarized as follows.

e First GA and PGA based class models have been proposed t thetg@eaks. For a non-
linear multi-modal function, there could be several glatyatima and many local optima.
This classification problem is formulated to determine laél bptima in the non-linear
multi-modal function landscape. We have considered sidasdunctions with multi-
ple global optima and also with one global optima and manglloptima. GA based
crowding algorithm has been used to maintain stable sulHptipns at respective niches
and in turn determine all the optima. It has been observad@Aabased crowding al-
though maintains stable sub-populations in different @sclit is found to converge after
large number of generations and hence incurs high compotdtburden. Hence, a PGA
based crowding scheme has been proposed to maintain subapop in the niches thus
determining all the optima. PGA based scheme is based amdisteondel and a new in-
terconnection model has been proposed to accelerate gemaer. This interconnection
model is based on the Island model, where a new notion of-derae migration has
been introduced besides the existing inter-deme migrafidns interconnection model
is found to accelerate the rate of convergence as compar@4 toased clustering. The
proposed PGA based algorithm is found to maintain stablepsylulations at different
niches, thus detecting the respective classes. The PGAl lohsstering scheme could
successfully be tested with two, four, and eight class nwd€his PGA based scheme
could detect successfully the different optima in case oaglisng and non-decaying sinu-
soidal functions of two, four, and eight class models. Theacgfof different parameters
of PGA based scheme such as network topology, migratiosyoéte of migration, and
interconnection model on the rate of convergence has beestigated in detail and the
optimum parameters thus found are used for the PGA basethscl@onvergence analy-
sis of PGA based scheme has been carried out and it is shownverge to the optimal

solution with a bound.

e The PGA based algorithm thus developed has been used tondetesptimal threshold

for image segmentation. Two schemes namely Feature Legssffileme and Feature
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Based (FB) scheme have been proposed to determine optiraghtiid. In FL scheme,
the histogram of the original image is considered and thkpearresponding to different
classes have been found out using the PGA based clustehamss and the valley points
in-between the peaks have also been found out using PGAs lidwn observed that this
scheme proved to be effective when the histogram exhiblesat bi-modality condition.
The results deteriorated with increase in the overlappfrieclass distributions in the
histogram landscape. In order to circumvent this problerfeature based scheme is
proposed. In this scheme, threshold is determined in tharke@lane instead of the gray
level plane. Hence, a feature pixel corresponding to eaxél pif the original image
is found out and thus a feature image is created. It has beseradd that the degree
of overlapping of the class distributions in the featurddgsam reduced substantially.
Threshold of the feature histogram has been found out by @® Pased scheme. The
threshold thus determined in the feature plane has beentassegment the original
image. It has been found that feature based scheme oftenqaddetter results than
the featureless scheme. The results have also been comythréditsu’s [5] and Kwon's
[16] method and the proposed feature based (FB) schemertartped the above two

methods and proposed featureless scheme.

PGA based thresholding schemes have been proposed to ceteks in the images of
earth surface cracks. It has been observed that our préyijoagposed FL and FB based
schemes and many existing schemes fail to detect crackiifféinent size of granules.
The histogram in case of crack images have lost the bimodglepty and have many
misleading modes or almost appearing unimodal. In thisgpedavork, feature less min-
imum mean square error (FL-MMSE) and feature based minimwamsquare error
(FB-MMSE) scheme have been proposed to detect cracks @relff size. This also
produced better results than Otsu’s [5], Kwon’s [16], HuiaRg's [91], and of earlier
proposed schemes. This also produced satisfactory resudtse of general two class

images.

Adaptive thresholding based segmentation scheme has baospd to segment images
acquired under uneven lighting conditions. The proposgdagthes can be categorised
as window merging and window growing. In both the cases, tinelew size is adopted

to make it suitable for segmentation with low misclassifaaerror. In window merging
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approach, the approaches can further be divided into pgrapproach and overlapping
windowing approach. The three proposed window mergingaitare based on; (i) lo-
cally biased Lorentz information measure (LIM), (ii) wetgl local and global statistics,
and (iii) entropy measure. Adaptive thresholding basederptoposed window merging
criterion proved to be better than Huaegal’'s [104] approach. But the efficacy of the
proposed scheme is found to greatly depend on the propececbbinitial window size.
In order to overcome this bottleneck, a window growing applobased adaptive thresh-
olding scheme has been proposed. In window growing apprtaelvindow size is fixed
based upon entropy and feature entropy based criteriond®iigrowing based scheme
is found to be more efficient than that of the window mergingrapch. In both window
merging and window growing approach, the proposed thrdgplkschemes and Otsu’s
method have been used to segment different windows and #ralbsegmentation is the

union of all the segmentation over all the windows.
The major contribution of the thesis can be summarized as fdbws:

1. A Parallel Genetic Algorithm (PGA) based clustering schesngeveloped to determine
the niches of the nonlinear multimodal function by maintagrstable sub-populations at

each niche.

. The PGA based algorithm is shown to converge to the optintatisn with probability.
For PGA based scheme, new interconnection model is propimsadcelerate conver-

gence.

. PGA based clustering is used to develop a feature less andréebased global thresh-

olding scheme for segmentation.

. A new thresholding scheme based on Minimum Mean Square BYWISE) has been
proposed. Two thresholding schemes such as Feature basesBvévid Feature Less

MMSE have been proposed.

. Segmentation of images under non-uniform lighting coaditias been achieved using
adaptive thresholding. Adaptive thresholding schemesdasesloped based on infor-
mation theoretic approach. They are based on adaptivelgdithe window size. The
proposed adaptive thresholding schemes are based on botlowimerging and window

growing concept.
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1.9 Organization of thesis

Chapter 2 provides the basic background on GA and PGA. Thkimgprinciple of GA and
PGA has been described in this chapter.

In chapter 3, the classification problem, in case of nonlinaatimodal function, has been
developed using GA and PGA based clustering. Sinusoiddimear multimodal functions of
different classes have been considered and PGA based agwaidjorithm has been proposed
to determine the peaks of the nonlinear functions and hetesses. The PGA based crowding
algorithm has been tested on two, four, and eight class mouigh decaying sinusoids and
non-decaying sinusoids. The proposed new interconnebti®h model has been developed in
this chapter. Convergence analysis of the proposed PGAigdgohas been carried out and
is shown to converge to the optimal solution with a bound. pteposed algorithm has been
tested with two, four, and eight class models and the effedtfterent parameters on the rate
of convergence has also been studied. Results pertainalyttee different class models have
been presented and discussion on results obtained has tesented.

Chapter 4 provides the segmentation of a given image usingy P&3ed thresholding
scheme. Segmentation problem is viewed as a classificatadiigm and thresholds for these
segmentation have been obtained by PGA based algorithimisiregardFeature Les$FL) and
Feature BasedFB) scheme have been proposed to determine thresholdgtiemstogram of
the original image and from the feature histogram corredpanto the feature image. Results
and discussion on two and three class images have beent@es€éhe performance of the pro-
posed schemes has also been compared with that of the Otsungbkwon’s [16] approaches.
A brief review on Otsu’s and Kwon'’s algorithm has also beesspnted.

Minimum Mean square ErroMMSE based thresholding schemes have been developed
specifically for detection of earth surface cracks in imagas$ are presented in Chapter 5. The
two schemes feature less MMSE (FL-MMSE) and feature base &M FB-MMSE) have been
developed in chapter 5 and have been tested with general&s® images particularly images
pertaining to colour blindness. Results obtained by theberses for different crack images
have also been presented. The performance of the propdseches has also been compared
with that of the Otsu, Kwon’s and Fuang’s approaches. D&oason the results obtained has
been carried out. A brief review on the Fuang’s [91] alganthas also been presented.

Chapter 6 deals with the adaptive thresholding schemesrfages acquired under non-
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uniform lighting conditions. The window merging and windgwwing based adaptive thresh-
olding schemes have been proposed. The three window mesghmgmes and one window
growing scheme have been presented in this chapter. Thaagsfiaf these schemes has been
demonstrated with different two class real images acquiradkr non-uniform lighting con-
ditions. The performance of the proposed schemes has beepaced with Huang's [104]
approach. Therefore, Huang’s adaptive window selecticedahresholding scheme has been
described. Results and discussion on different imagesdlagdéeen presented.

Conclusions drawn on different works of this thesis haven@evided in chapter 7. The

scope of future work have been highlighted.
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Chapter 2

Background on Genetic Algorithm and

Parallel Genetic Algorithm

2.1 Genetic Algorithm

Most classical methods of optimisation generate a detestiatrsequence of trial solutions,
based on the gradient or higher order statistics of the costion. Under regularity conditions
on this function, this technique can be shown to generataeseg that asymptotically con-
verges to local optimal solution. In certain cases they ey exponentially fast. Variations
in these procedures are often applied to training neuralor&s, or estimating parameters in
system identification, pattern recognition, machine |lemyradaptive image processing, expert
system and adaptive control application. But the methaehdtils to perform adequately when
random perturbations are imposed on the cost function. ilsal optimal solution proves in-
sufficient for real world engineering problem.

Genetic algorithm (GAs) has recently emerged from a studlyeomechanics of evolution.
They are stochastic optimisation techniques that can afteperform classical methods of
optimisation when applied to difficult real world problenGenetic Algorithms are searching
strategies suitable for finding the globally optimal saus. The main advantage of using GAs
is that they can find global optima without being stuck at logima [116, 117, 118, 119, 120]
in the solution space. The power of GA comes from the facttttetechnique is robust and can
deal successfully on a wide range of problem areas. GAs andiitance have been extensively
used in the past. GA researchers have been aware that teereutiiple solutions for a given

problem but the traditional GA proves to be quite efficienbjeth converges to one of the best
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possible solution.

In GA, the candidate solutions are represented by chromespwhich are nothing but
binary coded strings carrying information regarding Sohs. GAs are capable of forming
niches for the purpose of multi-modal function optimisatiMostly previous GA models have
been slightly complex and typically based on Markov chaBeveral studies have been carried
out on proportional solutions, mutation using Markov clsaanalysis, where it is assumed that
the population size is infinite or very large.

Genetic algorithms are randomized search algorithms baselde mechanics of natural
selection and genetics. They implement survival of thesfittenong the string structures. The
behavior of genetic algorithm can be subtle, but their besrcstruction and execution cycle is
straight forward. GA is an iterative procedure maintainengopulation of structures that are
candidate solutions to specific domain challenges. Duraatp generation, the structures in the
current population are rated for their effectiveness asaiorsolutions. On the basis of these
evaluations, a new population of candidate solutions isméat using specific genetic operators
such as reproduction, crossover, and mutation.

The natural law of evolution is derived from Darwins theofyegolution. According to
this theory, reproduction and mutation play major part. M/héproduction leads to intermin-
gling of different chromosomes and hence, creation of ildials having hybrid characteristics
with genetic properties derived from both parents by irthade, mutation is a factor that causes
changes in the basic chromosomes structure itself, andehds to diversity of the population.
GAs are based on the above mentioned phenomena and can bfousetimization of the
given problems by mimicking the natural processes of regcodn and mutation.

The power of GAs comes from the fact that the technique issbhod can deal success-
fully with a wide range of problems areas, including thoskicl are difficult for other methods
to solve. GAs are not guaranteed to find the global optimunit®wis to a problem, but they are
generally good at finding acceptably good solutions to alprmapacceptably quickly. Where
specialized techniques exist for solving particular peots, they are likely to out- perform GAs
in both speed and accuracy of the final result. The main gréem@As are in difficult areas,
where no such technique exists. Even where existing teabaigyork well, improvements have

been made hybridizing them with GA.
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2.1.1 Definitions
Chromosomes

It is a binary coded string containing information regagdihe variable to be optimized. Itis a

string of real values or as an individual.

Gene

Itis the smallest unit of information carrying block of clhmosomes. Multiple genes are present
in the chromosomes, when more than one unit of informati@mutthe variables have to be

coded.
Bit
Since, the information is coded as a binary string, the sstlinit of string is a digital bit, with

only two states: 0 and 1. a number of bits together give a ijgedahethod of storing coded

information.

Population

A population is composed of a number of individuals and bdata set on which GA operates.
A population is said to be diverse, when the chromosomestudtfieiently different from each
other and the candidate solutions (that encoded into chsomes) are spaced over the entire
solution space. In GA, population size affects both glomafgrmance and efficiency. Ge-
netic algorithm with small population usually performsuffgient convergence of the problem

space. A large population is more likely to be represergaiithe entire problem domain.

Mating pool

Similar to population, it is that population on which the ogters to get a new solution. The
mating pool is created by the survival of the fittest, usulajlyitness ranking or other appropri-

ate selection mechanism.

Parent

Parents are the original strings on which the operatorsgphea. The properties of the parent

strings are transferred to the resultant children strings.
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Offspring

The output of the genetic operator and crossover are cdli@ten and offspring. The offspring

becomes the parent of the next generation.

Operators

Simulations of the natural processes that bring about agehamthe population and thus give
rise to individuals that may be fitter than the parents. Therajors act on the individuals of the

mating pool and child population. The main operators arsodyection, crossover and mutation.

Generation

This is the number of iterations or cycles of the algorithtms Bnalogous to the generation con-
cept in the evolution. The generation gap controls the peacge of population to be replaced

during each generation.

Fitness

A figure of merit of an individual, which is proportional toghutility or ability of the individual
to survive in the given environment is usually a real qugnyiing between 0 and 1. A fitness
function must be devised for each problem to be solved. Thed# function returns a single

numerical fithess.

2.1.2 Description of the Operators

A simple GA that yields good results in many practical proidds mainly composed of three
operators i.e. reproduction, crossover, and mutatiors tkh be noted that crossover and muta-

tion are not only two operators in use, various other opesato also exist.

Reproduction

Reproduction is a process in which individual strings arpi@d according to their objective

function values. It is actually a copy operator in the sehaéit merely copies the parent chro-
mosome into the mating pool without actually changing theeiosome structure. However,
the copying is done probabilistically, with higher fit sgghaving more chance of being trans-

ferred to the mating pool than the strings with lower fitneBkis characteristic simulates the
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survival of the fittest. This operation results in a progresicrease of the number of high
fitness string over the less fitness strings with each sueeegsneration. This operator, of

course, is an artificial version of natural selection, a Dalan survival of fittest among the

string creatures.

Crossover

The primary exploration mechanism for GAs is crossover. s€ower randomly chooses two
individuals, and cuts the individual strings at some ranigarhosen position, to produce two
head segments, and two tail segments. The tail segmentsweagped over to produce two
new full-length chromosomes as shown in Fig. 2.1. The twsprfhg, each inherits some
genes from each parent, which is known as single point cvessdiowever, many different

crossover algorithms have been devised, often involvingerttean one cut point. Dejong [121]

investigated the effectiveness of multiple crossover {goiwhich reduces the performance of
GA.

Crossover point
Y

. 0 1 0 0| 1 1 1| Parentl
Y S S ¥ S ing of
int ! L1111 Swapping 0
Crossover pom{; B i ; B Bits
. o . X 1 1 0 | | Parent2
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ol o| 1| 1] o] 1| 1|1 | Chid2

Figure 2.1: Single point crossover operator

Two point crossover

In two point crossover (and multi-point crossover, in gaherather than linear strings, chro-
mosomes are regarded as loops by joining the ends togathexchange a segment from one

loop with that from another individuals in the populations shown in Fig. 2.2, this two point
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Figure 2.2: Two point crossover operator

crossover produces new individuals as offspring, whichhehaome features taken from each

parent.

Mutation

The mutation is usually considered as a secondary opeidtdation is applied to each child
individually after crossover. This consists of the vapatiof a randomly chosen bit of the
selected string. Mutation is analogues to the “NOT” operatn digital system and negates in
the sense of bit. This is an extremely powerful operator eantdrastically change the mating
pool composition by introducing new genetic material in gopulation. Random mutation
effectively introduces new information in the knowledgsd®aFollowing example of the nature,
the probability of applying the crossover operator is maantthat of mutation operator. It is
an useful operator, which allowed the algorithm to overcdongelocal extrema in the solution
space and hence, leads to the global searching capabil@Asf Fig 2.3 shows the third gene

(bit) of child 1 being mutated and the fifth gene (bit) of théal2 being mutated.

2.1.3 Working of Genetic Algorithm

In the following, the working principle of GA is described fatlows:
The first step consists of the codification of the variableslied in suitable binary strings.

In the second step, population of strings representinglipiarent population, usually randomly
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j Mutation Point
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L Mutation Point
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1 0 0 1 1 1 1 1 gt}t](lep mutaion

Cthild 2 .
0 0 1 0 1 1 0 1 after mutation

Figure 2.3: Mutation operator

selected in the entire solution space domain, is createddd®a selection has advantage that
this introduces diversity in the population and also aveéigsproblems of optimizing at local
optima. The population is a dynamic entity. Iterative rejrction leads to the population of
parameters towards the optimal condition. A parameter knasvfitness of a string is defined
and calculated at each iteration of the algorithm and thatitens are carried out until the
terminal condition is reached. This corresponds to themonh of a solution-string with the

desired value. A fitness value must be devised for each protadde solved.

2.1.4 Steps of the basic Genetic Algorithm

The step by step description of a basic GA is as follows:
Step 1: A fixed number of elements representing the initigluation are randomly chosen.
Step 2: The fitness of each element is evaluated using thedifoaction.
Step 3. The elements of the population are chosen prohtadally according to their fitness.

Step 4: With the respective probabilities, randomly pars&hosen for mating through the ge-
netic operator crossover (exchange of genetic materialdmst two selected candidates)

and selection, again possibly at random, a site where therralvill be exchanged re-
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sulting in the creation of offspring. Also secondary operahutation is applied. The

probability of mutation is very less i.e. between 0.003 ar@D0.
Step 5: Compute the fitness of the offspring.

Step 6: Introducing these strings into the original popatatiscarding an equal number of ran-

domly chosen strings.

Step 7: Repeat fixed number of generations till the maximumber of strings converges.

2.2 Parallel Genetic Algorithm

Genetic algorithms are efficient search methods based qgoritheple of natural selection and
population genetics. They are being successfully appiqgatablems in business, engineering
and science. GAs use randomized operators operating owgrdgtion of candidate solutions
to generate new points in search space. Hard problems negdex population and this trans-
lates directly into higher computational cost. Though,@#febased models are able to produce
the global optimal solution successfully, it has followibgttlenecks: (i) It needs a very large
number of population, and (ii) Increase in the computatibneden.

Evolution is highly a parallel process. Each individualetested according to its fithess
value and allowed to survive and reproduce. GAs are an alisinaof the evolutionary process
and is indeed very easy to parallelize. Recently, attemgis been made to devise PGA that
simultaneously aims at achieving reduced computationaldsuand fast conergence [122, 123,
124]. The basic motivation behind PGA is to reduce the prsiogdime to reach an acceptable
solution. This was accomplished implementing GAs on d#férparallel architectures. In
addition, it was noted that in some cases the PGAs foundrbsdtations than comparably
sized serial GAs. GAs are easy to parallelize and many Mar@nthe basic models have been
tried with good results on the different classes of problernmsthe past few years, Parallel
Genetic Algorithms (PGAs) have been used to solve difficcdbfems.

The first approach of parallelizing GAs is to do a global detaiation. In this class of
parallel GAs, the evolution of individual and the applicatiof genetic operators are explicitly
parallelized. Every individual has a chance to mate withtfal rest. The semantics of the

operators remain unchanged. PGAs are classified into tvestyp

1. Coarse Grained PGAs
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2. Fine Grained PGAs

2.2.1 Coarse-grained PGAs

The population is divided into few sub-populations (demegping them relatively isolated
from each other. The sub-populations are called demes tdwassionally exchange some indi-
viduals among themselves and this process is called nograti

The important characteristics of this class of algorithmesthe use of few relatively large
demes and introduction of migration operation. Coars@gthparallel GA is one of the most
popular model used in PGA literature. A more sophisticatiegiis used in coarse-grained par-
allel GAs, where the population is divided into few sub-plagpion (deme) keeping them related
and isolated from each other. This model of parallelizatroduces a migration operator that
is used to send some individuals from one sub-populatiomé)¢o each other. There are two
different implementation models of coarse-grained GA9: The island model, and (2) The
stepping stone model.

The population in the island model is partitioned into smsalb-populations and individ-
uals can migrate to any other sub-population. In the stepgione model, the population is
partitioned in the same way, but migration is restricted egghboring sub-populations. Both
models have been used in parallel GAs. Sometimes coarsedr&As are known as dis-
tributed GAs. Cantupaz [124] has provided a lucid surveyamaltel Genetic Algorithm, where
he has presented the efficacy of different models and alstgmbout the limitations.

Tanese [125] proposed a parallel GA that used a 4-D hypettoyatogy to communicate
individuals from one deme to another. In Tanese’s algorjthmgration occurred at a uniform
periods of time between neighboring processors along timemsions of the hypercube. The
migrations were chosen probabilistically from the besivitials in the sub-population and
they replaced the worst individuals in the receiving denan€eBe reported that the parallel GA
found results as good as serial GA, with the advantage ofinear speedups.

Cohoonet al. [126] proposed a multi-population genetic algorithm fotving the K-
partition problem on Hyper-cubes. Cohoetral. [127] proposed an implementation of parallel
GA based on the theory of punctuated equilibria. One asgehbiwtheory is that new species
are likely to form quickly in relative small isolated poptitan after some changes in the environ-
ment occur. Cohooat al. noticed that the number of migrants affected the level siugition

in the demes and the new solution was found shortly afteratiayr occured. A linear place-
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ment problem was used as a benchmark and experimented usieglatopology. However,
it is noted that the choice of topology is probably not verypartant in the performance of
parallel GA as long as it has high connectivity and small ditento ensure adequate mixing
as time progress. They found that parallel GA with migratoperformed both parallel GA
without migration and serial GA. Coho@t al. [128] applied the distributed genetic algorithms
for floorplan design problem to minimize the weighted sumrebaand wirelength measures in
the VLSI design cycle. Their method has performed bettar tha Simulated Annealing (SA)
algorithm, both in terms of the average cost of the solutfonad and the best-found solution.
Hence, itis concluded that migration is controlled by salparameters, the topology that
defines the connection between the sub-populations, a tiignate that controls how many
individuals migrate, and a migration interval that afféotsv often migrations occur. The values

for these parameters are chosen using intuition ratherahalysis.

2.2.2 Fine grained PGAs

Fine grained parallel GAs partition the population into egganumber of very small sub-
population. This model requires massive parallel computeicase of coarse-grained paral-
lelism, and fine-grained parallelism, selection and madiciur only within each sub-population.
In biological term, the sub-population refers to deme. Dé&rmmaller than population, which
is used by the serial GA. So we expect that the PGA will corméagter. Combination of the
first three methods have been used to develop hybrid paG#sl

In this model, the population is divided into small demese @emes overlap is providing
a good solution across the entire population. Again selestof a mating occur only within a
deme. Schleutezt al. [129] introduced the ASPARAGOS system. It uses a populaaheme
that looks like a ladder with upper and lower ends tied togletASPARAGOS was to solve

some difficult combinational optimization problems witlegt success.

2.2.3 Migration policy

The sub-population or demes occasionally exchange somadudls in a process called mi-
gration. Migration policy also affects the convergenceetiand the quality of solution. The
parallelized crowding scheme is based on the course-gtajpgroach and island model. In the

island model, the following four migration policies havesbaused.
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() Good migrants of one deme replacing the bad individuanother (GB).

(i) Good migrants of one deme replacing the random indialdwf another (GR).
(i) Random individuals of one deme replacing the bad ifdinals of another (RB).
(iv) Random individuals of one deme replacing random irdirals of another (RR).

All these migration policies are investigated while deglvith two, four and eight class models.

We have also considered multimodal functions of unequdtgpea

2.2.4 Steps of the Parallel Genetic Algorithm
The step by step description of the Parallel Genetic AlgorfRGA) is as follows:
Step 1: Initialize randomly population elements of size N
Step 2: Divide the population space into fixed number of sojpdpations (deme).
Step 3: Consider one subpopulation (deme) and go througblitbe/ing steps.
Step 3.1: Inthe given sub-population, the fitness of eaah@ies is evaluated.

Step 3.2: The elements of the sub-population (deme) areseimoprobabilistically according to

their fitness.

Step 3.3: With the respective probabilities randomly paneschosen for mating through two ele-

ments at random for crossover and mutation operation.
Step 3.4: Evaluate fitness of each parent.

Step 3.5: With the respective probabilities, randomly gaire chosen for mating through the ge-
netic operator crossover (exchange of genetic materialdmst two selected candidates)
and selection, again possibly at random, a site where therrakill be exchanged re-
sulting in the creation of offspring. Also, secondary op@ranutation is applied. The

probability of mutation is very less i.e. between 0.003 ar@D0.
Step 3.6: Compute the fitness of the offspring.

Step 3.7: Introducing these strings into the original papah, discarding an equal number of ran-

domly chosen strings.
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Step 3.8: Repeat steps 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and Ballfthe elements in the given sub-

population (deme).
Step 4: Repeat step 3 for fixed number of generations.
Step 5: Steps 3 and 4 are repeated for each sub-populatioe)de

Step 6: Migration is allowed from each deme to every otheralefe individuals are migrated
based on the selected migration policy. Number of elemenisigrate are determined
from the selected rate of migratidt),,;,. The elements migrate with migration probability
Prig-

Step 7: Repeat steps (3), (4), (5), and (6) till converges@ehieved. The migration among the

sub-population is continued till convergence is achieved.
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Chapter 3

Parallel Genetic Algorithm based Class

Models for Clustering

3.1 Introduction

Genetic Algorithm (GA) has extensively been used to solv@mpation problems in science
and engineering [116, 117, 118, 119, 120]. Genetic algoritthen applied to such problems
produce almost always global optimal solutions. In ordedétermine all the optima of a
nonlinear multi-modal functions, GA based crowding metihad been proposed [130, 131,
132] to determine all the solutions. If the nonlinear mutiodal function in the two dimensional
landscape can be viewed as the mixture of class distribaiiod then each niche or peak in this
distribution correspond to one class. In this class distiims, determining different classes
reduces to determining the different niches of the nonlimealti-modal functions [133, 134,
135]. This can be achieved by GA based crowding or clustealggrithm. The underlying
notion behind GA based clustering is to maintain stable gyfilations at each niche. The
entire population elements is divided into sub-populatiand the sub-populations need to be
clustered at different classes.

In this chapter, GA based crowding algorithm has been ssoedyg tested for two, four
and eight class models. In one case the peak of differergedasccur at same functional value
(fitness) value and in another cases the peaks occur atediffemctional values (fitness). The
first case corresponds to multiple global optima of a fumctidnile the second case correspond
to both global as well as local optimal solutions. In ordeataelerate the rate of convergence

Paralle Genetic Algorithm (PGA) based clustering algonithas been devised with the pro-
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posed interconnection model. PGA based algorithm has &lep alidated for both decaying
and non-decaying sinusoidal functions. The effect of difife parameters of PGA based inter-
connection model on the rate of convergence has been igag=ti. Convergence analysis of
the proposed PGA based algorithm has been considered ou$ ahdwn to converge to the

optimal solution with a bound.

3.2 GA based class models

The proposed GA and PGA based clustering algorithms have tested for two, four, and
eight class problems. The following two, four, and eighsslanodels have been considered in
the simulation.

Two class model:;

f(z) = |sin(2mx)|, 0 <z <1, (3.1)
f(x) = e 2@=018) » gin(27rx)], 0 <z < 1. (3.2)

Four class model,
f(z) = |sin(4nzx)], 0 <z < 1, (3.3)
f(z) = e 2@=018) » gin(4rx)], 0 <z < 1. (3.4)

Eight Class model;
f(z) = |sin(8rx)|, 0 <z <1, (3.5)
f(z) = e 2@=012) » gin(8rx)], 0 <z < 1. (3.6)

In each class model, the function is a nonlinear functionthertwo dimensional func-
tion landscape, the two modes correspond to two differeagsels and these classes may be
represented by the peak of the respective class. For exafigle3.1(a) shows the function
corresponding to (3.1). As seen from Fig. 3.1(a), thereweedlasses and accordingly two
niches/modes/peaks. It is to be noted that the two peaks at@ame value of the function
i.e. unity. In other words, we say the peaks are of equal héigh nonlinear landscape. Each
mode corresponds to one class and hence the sinusoidaiofumet(3.1) having two modes

correspond to a two class model. Sometimes in two class mtvdelpeaks corresponding to
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Figure 3.1: (a) Two class function, (b) Decaying two clasgtion, (c) Four class function, (d)
Decaying four class function, (e) Eight class function8caying eight class function

two classes may not occur at the same value of the functiotharsdthe two class distributions
will be different. The decaying sinusoidal function as givgy (3.2) represents a two class
model with uneven class distributions. Thus, the two peaksioat different functional values.
Similarly functions given by (3.3) and (3.4) correspondte four class model with and without
decaying sinusoidal functions. Hence, there will be fowhes/peaks for the 4-class models.
Analogously, the eight class model given by (3.5) and (3d®spsses eight niches/peaks corre-
sponding to the respective class distributions. Detertimnaf all the classes of a class model
boils down to determination of all the niches or peaks of thelimear multi-modal function.

It is known that basic Genetic Algorithm (GA) has extenspaten used for optimization
of nonlinear functions and it yields a global optimal saduti The above described class models
can be viewed as nonlinear multi-modal functions. Basic G#emapplied to such functions
will yield either a global optimum solution or one of the gidloptimal solutions [116, 117,
118]. Thus, in the classification paradigm, the algorithnuldaletermine one class or one of

the classes of the class model. Therefore, itis conceithbtall the classes of the class model
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can be determined if all the niches/modes or all the solsti@oth local and global) of the
multi-modal function can be found out.

GA based class models using the notion of crowding have bexpoped [130, 131, 133,
136, 137, 121] to determine all the niches of a nonlinear inmuttdal functions and hence all
the classes. This is achieved when GA could form stableersisif population of elements at
the niches/peaks of the nonlinear multi-modal functionotimer words stable sub-populations
could be maintained by GA based clustering algorithm aeckffit niches and hence different
classes could be determined. Thus, clustering has beeevadhising the notion of crowding
[132, 136, 137, 121] in GA. GA forms clusters at the nichesh# honlinear multi-modal
functions and hence GA based class model is achieved. Stablpopulations could also be
maintained using the notion of sharing. Since, throughbetthesis we have used the notion
of crowding to maintain stable sub-populations, we desdtie notions of crowding in section
3.2.1

3.2.1 Crowding method

Crowding originally proposed by De Jong [121] is motivatgdamalogy with competition for
limited resources among similar member of a natural pofmriaDissimilar population member
often occupy different environmental niches. Older membéthe niche will be replaced by the
fittest of the youngest member. To maintain stable sub-@dioul by replacing population with
like individuals can be called crowding method [121]. Stasiic replacement error prevents
the basic crowding algorithm from maintaining more than peaks of multi-modal fitness.

Deterministic crowding [132, 136, 138] eliminates replaeat error and maintains mul-
tiple peaks. It works by randomly pairing the population telg n/2 pairs for n individuals in
the population and each pair of parent yields two childremibglergoing crossover operation.
Two children compete against the parent. In partner touemamither children or both parent,
the pair containing the maximally fit element, will win.

The notion of crowding is inspired by ecological phenomendrere similar individuals
in a natural population compete against each other fordidmésources. Dissimilar individuals
tend to occupy different niches and hence typically they dbaompete. Thus for a fixed
size population at equilibrium, new members of a particslagcies replace old members of
that species. Crowding method attempts to maintain dityeddi the pre-existing mixtures.

Deterministic crowding that we have used in our algorithimsterms of number classes, is
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explained as follows.

In deterministic crowding, sampling occurs without reglarent [130, 131, 136]. We will
assume that an element in a given class is closer to an el@mignown class than to elements
of the other classes. A crossover operation between twoegitnof the same class yields two
elements of that class, and the crossover operation betimeealements of different classes
yields either: (i) one element from both the classes, (ig efement from two hybrid classes.
For example, for a four class problem, the crossover omerdtetween two elements of class
AA and BB may results in elements either belonging to the telasses AA, BB, or AB, BA.
Hence the class AB offspring will compete against the claBgpArents, the class BA offspring
will compete with class BA parents. Analogously for a twosslgroblem, if two elements of
class A are randomly paired, the offspring will also be o&slé, and the resulting tournament
will advance two class A elements to the next generation. rehdom pairing of two class B
elements will similarly result in no net change to the dizition in the next generation. If an
element of class A gets paired with an element of class B, &sprong will be from class A,
and the other from class B. The class A offspring will comgagainst class A parent, the class
B offspring against class B parent. The end results will lag ¢me element of both the classes

advances to the next generation and hence no net change.

3.2.2 Tournament selection

Selection mechanism is also a key issue that influences tiverggence of Genetic Algorithms.
The selection mechanism is a process that favours the isel@tbetter individuals in the pop-
ulation. The selection pressure is the degree to which ttierbadividuals are favoured. Over
successive generations, this selection pressure driggSAto improve the fitness of the popu-
lation. The convergence rate of a GA is largely determinethbyselection pressure with higher
selection pressure resulting in higher convergence ratestournament selection provides se-
lection pressure by holding tournament of “q” individuaisth “q” being the tournament size
[119, 120].

In tournament selection a group of “q” individuals is randgrchosen from the popula-
tion. They may be drawn from the population with or withoytleeement. This group takes
part in a tournament where a winning individual is deterrdidepending on its fitness value.
The best individual having the highest fithess value may lbs@&h deterministically or through

a stochastic selection process. In both the cases only tireewis selected into the next popu-
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lation and the processes is repeakdiimes to obtain a new population, wher¥’ ‘denotes the
number of elements participating in the tournament.

When the tournament size “q” is two, this is known as binayrmament. We assume
that the individuals are drawn with replacement and the wigpimdividual is deterministically
selected.

Let P(¢) denotes the population elements and the tournament sizenstetl byg <
1,2,.., \. Let P'(t) denotes the population size after selection and tournament

The following are the salient steps of the tournament select

(i) Select randomly the elements,, as, ....,ay) from P(t) to form the tournameng €

1,2, ...\
(i) Select'a, the best individual frong randomly chosen individualg, as, ..., a))

(iii) Repeat the steps (i) and (ii) till, as, ..., a, is replaced by}, di, ..., @),

3.2.3 Generalized crossover

Generalized Crossover (GC) operator proposed by Nandad [139] when applied to two
parents produces one offspring instead of two offspringndlse basic GA. The operator can be
described as follows. Two paren®s and P, are selected at random and the two crossover points
are also selected at random. In between the two crossovetspoio bits of the respective
positions of the two selected parents are now passed th@sghtching function to produce
one output. This is shown in Fig. 3.2. 4fandy are switching variables, then the possible
switching functionsf (z,y) are0, z'y', 2'y, «’, xy/, /', 2’y + xy/, 2’ + v/, zy, xy + 2'y', v,

¥ +y,x, x+vy, x+y, 1. From the above sixteen functions, 0 and 1 are not used bedaess
correspond to inconsistent functions. For a two variabkeca switching function is selected
at random from the above mentioned functions and the twab&smpressed as the input. The
corresponding output is stored in the same bit position &sobrthe parents. Analogously all
other bits are generated by selecting the other respedts/érdom the two parents and passing
them through the randomly selected switching function. déema stream of bits between the
two crossover points is generated that replaces one of tieaisao generate one offspring. The
motivation is two fold: (i) it helps to examine the diversdisolutions in solution space, (ii) this

model is more plausible from the evolutionistic sense thvat parents produce one offspring
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at a time. Same GC operator is applied to the same two paretitshe two new randomly
chosen crossover points and the necessary switching dmniciiproduce one more offspring.
As a result of this operation two offsprings are producedhftbe two parents by applying the
GC operator twice. This process may be repeated to product#ddring from N parents in

order to maintain the total population of elements constaat generations M is equal to N.

Parent1 1 1 0 0 1 0 0] 1 0|1 1

Parent2 0 1 (1|0

bkg— Switching Qutput
bl — Function
(b
1 Output 2
Offspringl |y | { o | 1| 1|1 ]| o0]1]|o0]!L 1

(©

Figure 3.2: Generalized Crossover Operator: (a) Two sgnagresented parents, (b) switching
function, (c) offspring generated by GC operator

GA based clustering Algorithm:
() Initialize randomly a population space of size N and tlodasses are determined.

(i) Choose two parents randomly for crossover and mutaifmeration with crossover prob-

ability P. and mutation probability?,,. Compute the fitness of parents and off-springs.

(i) The offsprings generated compete with the parentetam the concept of tournament

selection strategy.
(iv) After selection, the selected elements are put in tresipective classes.
(v) Steps (ii), (iii), (iv) are repeated for all elements hetpopulation.

(vi) Step (v) is repeated till the convergence is met i.e.eleenents of respective classes are

equally fit.
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3.3 PGA based class model

The Objective of designing parallel GA [140, 124, 141] is tfetd: (i) reducing the compu-
tational burden and (ii) improving the quality of the sotuts. The design of PGA involves
choice of multiple populations where the size of the popotatnust be decided judiciously.
These populations may remain isolated or they may commiengahanging individuals. Par-
allel Genetic Algorithm (PGA) is usually based on either (3eaGrained model or Fine Grained
model [140, 124, 141]. In coarse grained model the populasigartitioned into a small num-
ber of sub-populations or demes and in fine grained modeldpelption is partitioned into a
large number of smaller sub-population or demes. Theselatg@os may remain isolated or
they may communicate exchanging individuals. The procéssmmunication between indi-
vidual demes is known as migration. The coarse grained PGxoiadly based on the Island
model and Stepping stone model. In an Island model, the ptpalis partitioned into small
sub-populations by geographic isolation and individualsmigrate to any other sub-population
but in the Stepping stone model migration is restricted ighi®uring sub-populations.

The GA crowding scheme is parallelized using the Coarsengdaapproach. In Coarse
grained approach the interconnection model considerditstand model shown in Fig. 3.3.
In this scheme the population of the size N is divided into mber of sub-populations of fixed
size. The crossover and mutation operators are appliedcin @ame to generate candidate
solution. In this regard, the Generalize Crossover (GCYyaipe proposed by Nanda et. al
[139] and as given in section 3.2.3, has been used in our atironl Tournament selection
mechanism is applied to all the demes.In each sub-popnldtie crowding algorithm is applied
and the migration operator is applied intermittently. Thegfiency of migration is governed
by the average fitness of the sub-population. The migrasastapped when the individuals
in all demes have grown sufficiently fit. In other words, thegration is stopped when the
average fitness is above a pre-specified threshold. A nercarteection model with the notion
of self migration is proposed and is shown in Fig 3.5. In thisgpsed model, besides the
interconnection between demes, a self loop has been irteddto take care of intra-deme
migration. This is intended to accelerate the convergendeatso improves the quality of the
solution. We have adopted the good-bad(GB) based migrptibey. In our problem we have
considered four demes D1, D2, D3 and D4 and the interactitmank model is shown in Fig
3.5.
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3.3.1 Island model

Island model is an interconnection model used in coarsagdeapproach [140, 124, 141]. In
this approach, the entire population of elements is dividéa a number of sub-populations

called demes. The demes are interconnected to each otlexdoanging individuals.

3.3.2 Island model with inter-deme migration

A typical Island model is shown in Fig. 3.3, where it can beesbed that a demé,; is
connected to eight other demes for migration. In each demddsic GA based crowding
scheme is applied and after a few generations individual pmigrates to other demes using a
migration policy. For example, in Good-Bad (GB) migratiaslipy, certain percentage of good
individuals replace bad individuals of other deme. The psscof exchanging the individuals
is bi-directional. After migration among different dem& based crowding is again applied.
Since, before migration, GA based crowding notion can bepeddently applied. Operation in
each deme can be submitted to individual processor. Thisagxye process together with the
rate of migration plays a vital role in determining the saatand the quality of the solution. In

this thesis, the network model consists of four demes assiowig. 3.4.

Figure 3.3: Island Model

3.3.3 Island model with intra-deme migration

PGA with Island model is found to converge to the solution mtaster than that of the GA
based algorithm. In order to further accelerate the rat@o¥ergence, we have introduced the
notion of self migration called intra-deme migration. listmigration, the best fit individuals of
a deme will replace the worst fit individuals of the same deftgs notion is akin to the notion

of reproduction. In this process, depending upon the ragelbimigration, the number of best
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Figure 3.4: Island model with inter-deme migration

fit individuals increases. Thus, together with the intemdamigration the percentage of good
individuals in a deme increases. Therefore the inter-demgeation accelerates the process of
convergence.

Fig. 3.5 shows an Island model with four demes and it can berakd from this figure
that each deme is connected to every other deme bidiretitiofihis is known as inter-deme
migration. As observed from Fig. 3.5, besides inter-dengration a self-loop has been intro-
duced in each deme, making the model a fully connected onis. pfbposed interconnection

model accelerates the convergence.

Figure 3.5: Island model with intra-deme migration

3.4 Island model with neighbourhood structure

Our parallelization of crowding scheme is based on the eoguain approach, where the migra-
tion is allowed among all the demes. In other words commuioicas allowed between a deme
and every other deme of the network. This yields appreciaslelts but the computational bur-

denis horrendous. Hence, we introduced the notion of neigtitood and thus various network
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structure evolves. In the neighbourhood scheme, populalements of a deme need not mi-
grate to all other demes rather migrate to the neighbouremgas. Towards this end, we define
the order of the neighbourhood. The closest ones of a dermadp@ the first order neighbour-
hood as shown in Fig. 3.6(a). Similarly, the second and tbwcker neighbourhood structures
are shown in Fig. 3.6(b) and (c) respectively. Increaseertider of neighbourhood structure,
incorporates more number of demes for the migration. Thifigreint network structures are
evolved for PGA based clustering. If the order of neighboorhis increased further, eventually
a fully connected network is obtained. Thus, the fully carted network can be viewed as a
network of special neighbourhood structure as shown in Big(d). We have studied all the

three neighbourhood structure based network togetherfulljhconnected network.

—~
O
~

s OO

(©)

Figure 3.6: Net topology with different order neighbourtatructure(a)lst order, (b) 2nd or-
der, (c) 3rd order, and (d) connected to all
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3.4.1 Convergence Analysis

Even though we present simulation results for one migrghalicy, the convergence analysis
is valid for all schemes. In all the type of net structuregréhis a finite proportion of good
individuals after a certain number of migrations. Thus,fi®wing theorem provides a bound

on the proportion of good individuals taking part in migastiamong the demes.

Theorem 1 AssumeP,_; to be the proportion of good individuals afték — 1) migration,

then for any arbitrary initial condition with?,, the algorithm converge for
Py =(1- 51@)%

where,N = s™, s=Tournament size of tournament selection method, n=Nwmigenerations
between two consecutive migrations angd,—= Proportion of good individuals taking part in

k" migration.

Proof:

In the whole population of mixed fitness, we assume an eletodmt agoodindividual
if its fitness is above a threshold ahddif the fitness is below a threshold. Thus, in the whole
population each individual may be either good or bad. Letiniéviduals be selected to the
next generation using tournament selection. In tournarselgction a random sample sf
individuals is selected and out of thesparticipants one best individual is selected. If all the
s participants are bad and since one individual is to be salethen the selected individual is
a bad individual. Thus a bad individual will survive only if the sindividuals are bad. If the
initial proportion of good and bad individuals afg and(), respectively, then the proportion

of bad individuals in the next generation is:
Q1 = Q- (3.7)

Equation (3.7) implies tha®,; = (Q1)” = (Qy°)° = QOSQ. Therefore, at the,;, generation,
Q. = Qo . Let the first migration be allowed aftergenerations. Then the proportion of
bad individuals after first migration or in other words aftegenerations can be expressed
asQu, = Q,° — 01; whered; = proportion of bad individuals replaced by good migrated
individuals after first migration. It can be shown that thegmrtion of bad individuals after'

migration orkn generations.
Qin = Qp—1 — 0i; (3.8)
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whereé,, = proportion of bad individuals replaced by good migratedviitiials by k" migra-
tion. Since there are only two types of individuals i.e. gand bad, the sum of proportion of
good and bad individuals is always unity. The algorithm wihverge to the desired solution
when all individuals are good individuals or the proportmingood individualsPy,, is unity.
This implies that the proportion of bad individuals is zeffhus for convergencé,, = 0.

Since,d;, is the proportion of good individuals taking partift generation,
0 >0 (3.9)

Substituting (3.9) in (3.8),we have
Qi < Q5 (3.10)

SinceQ);_; is a proportion, from (3.10) it is evident that the populatad bad individuals has a
monotonically decreasing trend. This implies that the pagoan of good individuals will have
an increasing trend. From (3.8), we ha¥¢" , = d;. This implies thatP";, = 1 — 6, or
P,y =(1- 6k)%. Hence, proved. The theorem provides a bound on the propastigood
individuals taking part in migration among the demes to @ohiconvergence.

PGA based clustering algorithm:
1 Initialize randomly population elements of size N.

2 Divide the population space into fixed number of sub-paperda and determine the class

of individual in each sub-population.
3 Select a sub-population (deme) and go through the follgwsiaps:

3.1 In the given sub-population (deme), choose two elemantsndom for Generalized

Crossover (GC) and mutation operation.
3.2 Evaluate fitness of each parents and offspring.

3.3 The tournament selection mechanism is applied to seWedndividuals among the two

parents and offspring to be parents for the next generation.
3.4 Repeat steps 3.1, 3.2, and 3.3 for all the elements iruttvpspulation (deme).
3.5 Repeat steps 3.1, 3.2, 3.3 and 3.4 for a fixed number of gfeoe

4 Step (3) is repeated for each sub-population (deme).
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5 Migration is allowed from each sub-population (deme) tergwother sub-population
(deme). The individuals are migrated based on the selecigdhtion policy. Number
of elements to migrate are determined from the selectedfategration. The elements
migrate with migration probability”,,;,. At last some percentage of individuals of one
deme replace the same percentage of individuals of the same dased on the selected
migration policy. This self migration is valid for all demesth a probability of migration
Pig-

6 Repeat steps 3, 4, and 5 till convergence is achieved. (itkedeme migration and

intra-deme migration is continued till convergence is actd.)

3.5 Results and discussions

We have considered two, four and eight class models in stronla

3.5.1 Clustering for two classes
Non-decaying functions

The functions given in (3.1) and (3.2) have been consider¢est the schemes for a two class
model. Both the functions produce two classes but diffengrgs of functions as seen from Fig.
3.1(a) and 3.1(b). The first one given by (3.1) produced twssimodel with peaks occurring
at same functional value where as (3.2) produced a functitmpeaks occurring at different
functional values. These two functions are shown in Fig.a8\d Fig 3.9 respectively.

In order to implement the GA and PGA based clustering, theggrfunction considered
is same as the function of two class model thatigz) = f(x) of (3.1) and (3.2). Thus, the
problem reduces to determining all the niches of the fitnesstion. The corresponding func-
tion is shown in Fig 3.7 (a) where the two niches/peaks cpmeding to two different classes
need to be determined. Fig. 3.7(a) shows the initial distitim of population in the functional
landscape. It can be seen that the whole population is loliséd over the fithess landscape.
GA based clustering algorithm has been applied to deterthaspeaks. The parameters chosen
for GA are; population size N=400, crossover probabifty= 0.8 and mutation probability
P,, = 0.001.
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With progress in generation, the population elements gfeesve classes are pulled up to
form clusters at the two niches. This effect is observed g B.7(b) which is obtained after
200 generations. As observed from Fig. 3.7(b), the fitneksesaof the population elements
of respective classes have been enhanced and hence itafpdahey are pulled up towards
the respective niches. At 200 generations, out of 400 numbelements, 183 elements have
clustered at the first niche that corresponds to class 'Algidelements clustered at the second
niche i.e. class 'B’. As seen from Fig. 3.7(b) 192 elemengstastributed over class A and 208
elements are distributed over class 'B’. Eventually, alisth elements have been pulled up to
form clusters at the two niches. As seen from Fig. 3.7(cy &@90 generations, 192 nos of
elements clustered at the 1st niche corresponding to daaad 208 nos of elements clustered
in the 2nd niche corresponding to class B. These sub-popusahave been found to be stable
at the respective niches even after 6000 generations. ipiseis that the GA based crowding
scheme could successfully maintain sub-populations #drdiit niches thus detecting the two
classes. The rate of convergence is shown in Fig. 3.7(dyentmay be seen that the algorithm
converges to form the clusters after 2000 generations. Asrgbd from Fig. 3.7(d) GA based
clustering takes large number of generations to convergéi@nce a computationally intensive
algorithm. In order to reduce computational burden, PGAetagustering algorithm has been
proposed. PGA based algorithm, when applied to the two pladdem, yields results as shown
in Fig. 3.8. The parameters used in the PGA algorithm areuyladipn size N=400, crossover
probability P. = 0.8, mutation probability?,, = 0.001, number of demes = 4, migration
rate R,,,;, = 8%, self migration rateR,,,;,, = 4%, probability of migration?,,;, = 0.1 and
probability of self-migration?,,,;, = 0.1.

The PGA interconnection model considered is shown in Fig(a3.and this model is
the first order neighbourhood structure with inter-demeratign only. Two point crossover
operator has been used in PGA algorithm. Fig. 3.8(a) showsnikial distribution of the
population elements. Fig. 3.8(b) shows the distributiopagulation over the class distributions
after 10 generation. As observed from Fig. 3.8(b), most efgbpulation elements have been
pulled up towards the niche of the class distributions ametéeall the population elements are
above fitness value of 0.6. The population of elements hawstazied at two niches/peaks after
100 generations in case of Parallel Genetic algorithm. &teeaf convergence is shown in Fig.
3.8(d) where it is observed that after 40 generations theagesfitness values is close to unity

thus implying that the algorithm has converged to the ddsiadutions. Thus, the PGA is almost
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20 times faster than that of GA. Thus the PGA based algoritundcsuccessfully maintain sub-
populations at the respective niches of the distributiosh #aerefore the two different classes

could be determined.

Decaying functions

We have also considered two class models where the arealotkess in the fithess landscape
has unequal and hence the peaks corresponding to classegidferent fithess values. Equa-
tion (3.2) corresponds to such a case and the fitness furistgfrown in Fig. 3.9(a). There are
two classes: (i) peak of one class occurs at the functiortlaéwat 0.85, and (ii) the peak of the
second class occurs at around 0.34. In this case, apphaatimasic GA would have converged
to the highest niche i.e. 0.85. In the view point of nonlineaidti-modal functions, the small
peak corresponds to the local solution and the large pea&smnds to the global optimal so-
lution. In the clustering approach, all the peaks must berdenhed. Fig 3.9(a) shows the initial
distribution of population elements where 36 populaticmetnts converged at peak A and 9
population elements converged at class B. As generatiogr@sees, the population elements
are pulled up and after 500 generations, 183 elements gmueat peak A and 58 elements
converged at peak B. This effect is shown in Fig. 3.9(b). AB@00 generations, 292 elements
converged at peak A and 108 elements converged at peak B.twbustable sub-populations
could be maintained at the two peaks and hence two class&slm®determined as shown in
Fig. 3.9(c). The rate of convergence is shown in Fig. 3.9(bgne it may be observed that
the two classes converged at two different fithess valuesveer it can be observed that GA
converges after 3000 generations. In order to accelerateate of convergence, PGA based
algorithm has been used and the results are shown in Fig. Bi$03.10(a) shows the initial
distribution and as seen from Fig. 3.10(b), after 20 germrat most of the population elements
have been pulled up towards the respective niches. The ptaewf PGA is same as that of the
case of non-decaying sinusoidal function. In Fig. 3.10{B)) population elements have con-
verged at peak A and 65 elements have clustered at B. All thalaton elements converged
at the respective peaks after 100 generations thus idemgifige clusters. Fig 3.10(e) shows the
final converged stable sub-populations. The rate of coevergis shown in Fig. 3.10(d). Thus

the two classes could be identified properly.
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3.5.2 Clustering for four classes
Non-decaying functions

The functions in equation (3.3) and (3.4) have been considér validating the proposed
approaches for four class model. The functions given by) @@ (3.4) produce four class
models with peaks occurring at same fitness value and difféiteess values respectively. One
corresponds to four niches occurring at same fitness valdettenother one is a decaying
sinusoidal function where peaks occur at different funwiosalues.

Fig. 3.11(a) shows the functional landscape of four clasdehwith four distinct peaks
corresponding to four classes. The initial distributiorpopulation elements have been pre-
sented in Fig. 3.11(a). The parameters chosen for GA basstedhg algorithm are, popula-
tion size N=400, crossover probabilify. = 0.8 and mutation probability?,, = 0.001. It may
be seen from Fig. 3.11(b) that after 500 generations, mdkegbopulation elements have been
pulled up to the different niches and have formed clustelnss iE also reflected from the num-
ber of population elements those have clustered around-&laB, C and D. The population
elements are A=89, B=70, C=91 and D=60 which indicate thet tre close to forming clus-
ters. The converged population of elements after 4000 gdnas as shown in Fig. 3.11(c),
where it can be seen that stable population could be maedaah four different niches thus
detecting four classes of the four class model. The ratemfergence is shown in Fig. 3.11(d)
and it is seen that the algorithm converges after 1000 geassaand remains stable even after
4000 generations. Since GA based crowding is found to be atatipnally intensive, PGA
based crowding algorithm is also applied.

Fig 3.12(a) shows the initial distribution of populationedéments and after 10 generations
the distribution is shown in Fig. 3.12(b). It may be obsertiedt most of the population
elements in the respective classes have been pulled upntodiasters around the respective
peaks. It is found that the algorithm converged after 20 geimas as seen from Fig. 3.12(d)
and the stable population elements formed the clustersdreach peak thus detecting four
peaks. The rate of convergence is much faster than that of 1@&lAaa observed from Fig.
3.12(d), where the average fitness is close to unity aftereb@iations and converges after 20
generations which is 20 times faster than that of converg@icGA shown in Fig. 3.12(d).
Thus the PGA based clustering algorithm could detect eighkg within 20 generations.

48



Decaying function

Fig. 3.13(a) shows the function for four class model whemhedass has different area and
hence the peaks occur at different values. Since it is a degaynusoidal function, the first
mode occurs at a fitness value of unity and the subsequentsoader at fithess value with
decreasing order. As seen from Fig. 3.13(b) with progreggeireration, the population ele-
ments have been pulled up and finally after 800 generatiapdpulation elements clustered
at four different classes. This is shown in Fig. 3.13(c) dra&rate of convergence is shown in
Fig. 3.13(d) where it may be seen that the population of etesneonverged to four different
fitness values. The parameters used for GA and PGA are sarhe aeri-decaying case. Fig.
3.14(a) shows the initial distribution of elements for PGased class model and with progress
in generation the population elements are pulled up towhelsluster and after 80 generations
the population elements converged to the respective pdaksifiying respective classes. Thus
with peaks at different hights, stable sub-populationdatba identified. As observed from Fig.
3.14(d), the algorithm converged around 20 generationsiwisi around 40 times faster than

that of using GA.

3.5.3 Clustering for eight classes
Non-decaying functions

Eight class models as given by (3.5) and (3.6) have also bessidered in simulation. First,
we consider a nonlinear multi-modal function given in (3nBjere there are eight classes and
hence there are eight corresponding peaks. The functidmisrsin Fig 3.1(e), where it is seen
that there are eight peaks occurring at same functionakvalie have applied GA and PGA
based crowding to determine the eight peaks and hence é&gses. The parameters for GA
and PGA are same as two class and four class models. In PGA belseme the number of
demes considered is 4 with both intra-deme and inter-dergeation.
Analogous to previous cases, the fithess function is santesdanction itself that i (x)

as in (3.5) and (3.6) respectively. The initial distributiof 400 population elements is shown
in Fig. 3.15(a) and after 400 generations the distributoshown in Fig. 3.15(b), the pop-
ulation element in the respective classes have been pulledwards the respective niches.
Fig. 3.15(c) shows that stable sub-population have beestesked around eight different peaks
thus detecting eight classes. As observed from Fig. 3.1&&lalgorithm converged after 600
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generations but the sub-populations at respective peaikamed stable even after 1000 genera-
tions. Thus the same network model with four demes coulcctietght peaks corresponding to
eight classes. Since GA based crowding is found to be cormipuély intensive, PGA based
crowding algorithm is also applied.

Fig 3.16(a) shows the initial distribution of populationedéments and after 10 generations
the distribution is shown in Fig. 3.16(b). It may be obsertteat most of the population ele-
ments in the respective classes have been pulled up to fastecs around the respective peaks.
It is found that the algorithm converged after 20 generat@as seen from Fig. 3.16(d) and the
stable population elements formed the clusters around ek thus detecting eight peaks as
shown in Fig. 3.16(c). The rate of convergence is much faktar that of GA and as observed
from Fig. 16(d) the average fitness is close to unity after &@egations and converges after
20 generations which is 20 times faster than that of convegef GA shown in Fig. 3.16(d).
Thus the PGA based clustering algorithm could detect eighkg within 20 generations.

Decaying function

Eight class model with uneven distribution of classes hdse been studied. Fig 3.17(a) cor-
respond to (3.6) of a decaying sinusoids. As observed fraggn Bil7(a) that there are eight
different peaks occurring at different values of the fitnkesglscape. Fig. 3.17(a) shows the
initial distribution of the population elements. Fig. 3(hyshows the intermediate distribution
of elements after 500 generations and it is observed thantist of the elements have clustered
around different peaks. Fig. 3.17(c) shows that stable ladipns have been maintained after
4000 generations. The rate of convergence is shown in FIg(®), where it may be seen that
the algorithm converged to eight different peaks, thus essfully identifying eight different
classes. The parameters are same as that of the non-decageg) The rate of convergence
has been accelerated using PGA algorithm. The parametedsinshis case are same as that
of non-decaying case. Fig. 3.18(a) shows the initial distion and intermediate distribution
after 20 generations is shown in Fig. 3.18(b). It may be seam fig. 3.18(b) that most of
the population elements have clustered around the regpgetaks and after 40 generations the
population elements converged at the respective peaks.raldef convergence is shown in
Fig. 3.18(d) and this is 20 times faster than that of GA. PGaedkalgorithm could maintain

stable sub-population at different niches and hence eiffetent classes could be detected.
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3.5.4 Effect of parameters of PGA

PGA based scheme has several parameters and the pararetdissthce significantly the rate
of convergence. The effect of parameters such as, migrptbey, rate of migration, topology
of the interconnection model, and crossover operation ercéimvergence of the algorithm has
been investigated. In the following we discuss the effedhdividual parameters on the issue

of convergence.

Migration policy

There are four migration policies namely Good-Bad (GB), &&andom (GR), Random-Bad
(RB) and Random-Random (RR) migration policies. The effettifferent policies on the rate
of convergence has been analysed for a four class modelgmol#tig. 3.19(a) shows the rate
of convergence for a four class model. As seen from Fig. 3)the PGA algorithm using GB
migration policy converges after 20 generations while RBcy@losely follows the GB policy.
Use of GR migration policy makes the algorithm to converger&fO0 generations. As observed
from Fig. 3.19(b), the PGA with RR migration policy convesgafter 2000 generations. Fig.
3.19(a), shows that PGA with GB migration policy convergesraund 20 generations but after
10 generations the algorithm is very close to convergence.

Similar observations have also been made for four classydertunctions. Convergence
of different classes with different migration policies afeown in Fig. 3.20. Since this cor-
responds to decaying sinusoidal four class model, the ptipalelements in different classes
converge at different fitness values as shown in Fig 3.20¢s)(c) and (d). Fig. 3.20(a) shows
the convergence for class A and it is observed that GB policywerges fastest among all the
four policies. PGA with RB policy follows GB policy and algdrm with GB policy converges
around 10 generations, while RB policy converges aroundeb®itions. GR and RR policies
converge after 200 generations. Similar observations aseebeen made in case of other three
classes except in case of class B, the algorithm for RR pobayerges around 350 generations.

The effects of different policies on the rate of convergemas been analysed for a eight
class model problem. Fig. 3.21(a) and (b) shows the raterafargence for a eight class model.
As seen from Fig. 3.21(a) the PGA algorithm using GB migratiolicy converges after 20
generations while RB policy closely follows the GB policys&Jof GR migration policy makes
the algorithm to converge after 80 generations. As obseireed Fig. 3.21(b), the PGA with
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RR migration policy converges after 1000 generations. Bigl(a) shows that PGA with GB
migration policy converges at around 20 generations bet 4 generations the algorithm is
very close to convergence. Thus, it has been observed #ngirtposed PGA algorithm with
GB migration policies converges fast among all other pesiciTherefore, we have considered

GB policy throughout the thesis.

Rate of migration

The effect of rate of migration on the solution has also beedisd. This effect has been
investigated for four class problem. Fig. 3.22 show the oditeonvergence at different rates
of migration with different migration policies. Fig. 3.28(shows the convergence of PGA
with GB migration policy. Here, migration rates are varieanfi 8% to 80% and8% migration
means eight percentage good individual of one deme repki¢dsad individuals of another
deme. As observed from Fig. 3.22(a), with increase in the eamigration from8% to 28%
the rate of convergence increases i.e. the average fitn@eages from 0.91 to 0.97. Further
increase in the rate of migrations that is wilhfs and60% the rate of convergence increases
but deteriorates with further increase in rate of migratiblence, withs0% of migration rate,
the rate of convergence slows down. This is also intuitiegected because the high rate of
migration not only migrate the good but also the low fit indivals to other deme. This makes
the overall process slow. Similar observations are alscef@dGR and RB migration policies.
This effect can be observed from Fig. 3.22(b) and 3.22(cgcBipally for GR migration policy
of Fig. 3.22(b) with increase in rate of migration the enleanent in the rate of convergence
is appreciable. For RR migration policy increase in the odtmigration hardly produce any

effect on the rate of convergence. This can be observed fignBR22(d).

Neighbourhood

The effect of network topology on the rate of convergencediss been investigated. The net
topology with different orders are shown in Fig. 3.6. Fig6(3) shows a topology with 16
demes and each deme is interconnected with its 1st orddn@igs. For example, denig; is
connected td),, D5, Dy, and D+, the first order neighbours. Similarly, Fig. 3.6(b) indest
that the migration takes place among the 2nd order neigskiaieight demes. Analogously,
the third order neighbourhood based net topology is shoviAign3.6(c) and the all connected

net topology is shown in Fig 3.6(d). Migration takes placeoamthe connected demes in a net
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topology.

The effect of network topology on the rate of convergencebieen studied. We have
introduced the notion of intra-deme migration besides tiberideme migration. This topology
is shown in Fig. 3.5, where the intra-deme migration is aakdeby introducing a self-loop
in each deme. Fig 3.23(a) shows the rate of convergence wtid@if loop structure and with
different network topologies. As seen from Fig 3.23(a), aleconnected network converges
fastest among all the topologies. The all connected netamnkerges at around 10 generations
while the 1st, 2nd and 3rd order convergesd at 40 generatiims rate of convergence up to
0.9 fitness value remains almost same and thereafter 3rd @ydeerged faster than that of 1st
and 2nd order neighbourhood based topology. This effeatiasged with the self loop model
and the rate of convergence is shown in Fig. 3.23(b) that sethloop structure, the rate of
convergence increased and the all connected structuregas/around 10 generations while
the rest structures converge at around 30 generations. 3(a) and 3.23(b) are achieved
with a 16% migration rate. With increase in the neighbourhood stmécthe number of demes
participating in migration increases and hence will coraiahally be more expensive. There
Is marginal improvement by switching from 1st order neigit@od structure to all connected
network. Similar observations are also made with increaghe rate of migration from 16%
t026%. It may be observed from Fig. 3.23(c) and 3.23(d) th#t self loop the all connected
network has marginal improvement over the 1st order neigtitlmod structure. Since all con-
nected network incurs more computational burden with nmalgmprovement on the rate of
convergence, we have adhered to the 1st order neighbousgtaadure all through our thesis

work.

Network model

In PGA models, the interconnection structure takes carelyfthe inter-deme migration. We
have introduced a notion of intra deme migration and heneeetfect of self-loop has been
investigated. Fig. 3.24(a), (b), and (c) show results with point crossover (TPC) and with
different migration policies. It is evident from the abovede figures that the self-loop based
model enhanced the convergence to some extent even thotighdiaal. Similar observations
have also been made with Generalized Crossover operatienrale of convergence has been
enhanced with self loop structure as opposed to withoutlsef§ structure. Similar obser-

vations have also been made for the use of generalized erssperator with the proposed
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interconnection model. As seen from Fig 3.25(a), GB migrapolicy with self-loop based
interconnection model converges faster than that of witketi-loop model. Similar observa-
tions are also made for the RB migration policy as shown in Bi@5(b). But in case of GR
migration policy, as evident from Fig. 3.25(c), that intemtion of intra-deme migration did not

improve and the rate of convergence remained same for betmdiaels.

Crossover operator

We have employed two crossover operators namely GC and TBGharperformance of the
two operators have been compared for two, four and eighs alaslels. Fig. 3.26 (a) shows the
rate of convergence for TPC and GC operator, and it may benadxséhat although the initial
rate of rise remains same, after 0.88 fitness, GC operatedlagorithm rises faster than that
of TPC operator. The algorithm with GC converges to the finhlteoon faster than that of TPC
operator. In case of 4 class problem, even the initial ratesefwith GC operator is faster than
that of using TPC operator. This effect can be observed frgn &26(b). As seen from Fig
3.26(c), for eight class model, GC operator based algorgbnverges faster than that of TPC
operator. This GC operator in all the cases outperformed @ operator.

We have compared the performance of crossover operatioheorate of convergence.
The performance of GC and TPC have been compared with sgiftiderconnection structure
and different migration policies. Fig. 3.27 shows the resuiith different migration policies.
Considering Fig. 3.27(a), it may be observed that use of G&atpr enhances the rate of
convergence as compared to that of TPC operator and also €d Bgstem converged earlier
than that of TPC based system. This observation is made haticbod-Bad (GB) migration
policy. Similar observations are also made with migratiohqgoes as shown in Fig. 3.27(b) and
3.27(c). Hence, it is inferred that GC-GB-SL based schentgarforms all other schemes.

3.6 Conclusions

In this chapter we have developed the PGA based class modktoanpared the performance
with GA based class models. Two, four and eight class modeis been studied and specif-
ically the sinusoidal functions have been considered asrhki-modal nonlinear functions.

Both decaying and non-decaying sinusoidal functions haenlronsidered and it has been

found out that GA based crowding and the PGA based crowdintdcuccessfully maintain
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stable sub-populations at each cluster and thus couldifgetifferent classes. The notion

of intra-deme has been introduced to develop a fully comteaetwork model. This fully

connected network model is found to enhance the rate of cgenee. Besides the effect of

neighbourhood structure, migration policy, migratiorerahd crossover operation on the rate

of convergence has been investigated and it has been foangitlicious choice of the param-
eters significantly influence the rate of convergence.
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Chapter 4

Feature Less and Feature Based Clustering

Methods for Optimal Threshold

4.1 Introduction

By and large, histogram based thresholding techniquessaetion the shape information of the
histogram distribution on the shape information of thedgsam distribution [1, 2, 3, 4, 142]. In
the paradigm, a threshold is detected to separate the raggaydevels into different segments
in the histogram. The corresponding thresholds are usedgiment the image into different
segments [1, 2, 3, 4, 142]. Such segmentation problem isedeas a classification problem
and the thresholding approaches are extensively used @ochgs or multiclass problem. A
two class problem typically consists of separating thealgkss from the background whereas
in a multiclass problem the problem reduces to separatirigpteuwobjects and background. The
problem is more challenging when the object size is muchlemidlan that of the background.
In such cases, the histogram distribution exhibits unedisaiibution corresponding to the ob-
ject and background. In thresholding research, the lankiitimmesholding scheme has been
used to determine a threshold based on maximizing the ass distance while minimizing
the intra-class distance. Otsu’s [5] approach producesiging results when the histogram
exhibits clear bi-modality as a clear valley to be determin@tsu’s method could also be ex-
tended to multiclass problem. Over the years, good numbdaresholding schemes have been
proposed and these schemes by and large, can be viewedersagitogous to the Otsu’s no-
tion or derivative of Otsu’s scheme. Over the years, atterhpve been made to minimize the

classification error when the histogram looses the bi-mtydat multi-modality property and
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the respective classes have appreciable amount of overtapp

In this chapter, two thresholding schemes have been prdpdsee first one is based on
the shape information of the histogram of the original imegiéed feature less (FL) scheme and
the second one is based on the feature plane (feature baBpdgepposed to the gray level
plane. In both the proposed schemes, the histogram distniblias been viewed as a nonlinear
multimodal function and hence, the peaks could be detewnyethe proposed PGA based
clustering scheme of chapter 3 and therefore, the vallegtisrohined by PGA. The threshold
thus determined is used to segment the images. It has bead tbat performance of the
feature less (FL) schemes deteriorates when the overlgypithe class distribution increases.
A feature based (FB) scheme has been proposed, where fpateiehave been generated and
the corresponding feature histogram has been found outPG#ebased clustering algorithm
has been used to determine the peaks of the feature histagrdrthe valley of the feature
histogram. This valley point is used as threshold to segittenoriginal images. Both the FL
and FB schemes have been tested for a wide variety of class&adeen compared with Otsu’s
[5] and Kwon'’s [16] method and it has been found that the psegd=B method outperforms

Otsu’s and Kwon's method.

4.2 PGA based peak and threshold determination

Histogram distribution provides some first hand informataioout the image. Selection of
threshold from histogram often depends upon the shape didtréution. If the histogram dis-
tribution exhibits clear bi-modality separated by a distwalley, the determination of threshold
selection reduces to determination of valley point. D#fgrmethods have been proposed|2,
3, 4, 142] to determine the valley point. Nevertheless, eteudetermination of valley points
is not a trivial task because of noise, nonuniform lighting dn the following, we describe
about the two methods that we propose to determine the valiey in case of noisy as well as
overlapping classes of histogram distribution.

We have proposed two methods to determine the optimal tbieébr classification. The
first one, called Feature Less (FL) approach, exploits tlapeahnformation of the discrete
histogram distribution of the original image to determihe bptimal threshold. This optimal
threshold corresponds to the valley of the histogram laauksc In the histogram landscape,

each mode is assumed to correspond to one of the classesoe. For example, histogram
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having two modes (two peaks and one valley) as shown in Figajicorresponds to two classes
in the given image. Therefore, the problem is cast as a @lzetson problem.

Often, because of the non-smooth nature of discrete hetogiistribution, the conven-
tional exhaustive method may obtain incorrect threshadileg to poor classification. In case
of discrete histogram distribution, exhaustive searchtfierminimum gray value may lead to
pseudo thresholds because the exhaustive search may otatémnum value at either the ini-
tial portion or the final portion of the histogram distribati Hence, we propose a clustering
technique to detect peaks corresponding to different mofléise histogram. Irregularity in
the distribution, for example, could be due to the preseri@small kink in one of the peaks
of the distribution, thereby misleading one peak as two petkour work, a Parallel Genetic
Algorithm (PGA) based clustering technique is proposecdetect the peaks and, in the sequel,
the valley between the successive peaks is obtained by stwmsgearch method. The peaks
or niches are determined by maintaining stable sub-pdpulat each peaks. This is achieved
by the proposed GA and PGA based crowding method that magssable sub-population or
clusters of population elements at different peaks. Mamutee of stable sub-population could
be attributed to the maintenance of diversity among the jadipn elements. Thus, the peaks
can be determined. The proposed FL approach yields satisfaesults, but the performance is
found to deteriorate with overlapping class distributithve results from either the nature of the
image or the presence of noise. In such situations, FL apprimaund incorrect thresholds and
hence, poor classification. In order to ameliorate the 8dnaa Feature Based (FB) approach is
proposed. In this approach, a feature of the image is detexdrand the histogram correspond-
ing to the feature is considered as opposed to the histogréme original image. This feature
histogram is used for determination of optimal thresholdHe original image. The process of
determination of optimal threshold, or in other words walbé the featured histogram, is same
as that of the FL approach. PGA based clustering algorithusesl to determine the peaks and
thereafter the valley is obtained by the exhaustive searthoad. The valley, thus obtained, is
used as the threshold for the original image. FL and FB methoglvalidated for two as well as
three class images. FB approach is compared with FL, OtSpand Kwon'’s [16] approaches
and it is found that the FB approach is the best among theserfethods.
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4.3 Brief review of Otsu’s and Kwon'’s thresholding method

4.3.1 Otsu’s approach

Otsu’s [5] method is a non-parametric and unsupervised odeth automatic threshold selec-
tion for image segmentation. In this method, the selecsdrased on the discriminant criterion
that maximizes the inter-class variance while minimizimgintra-class variance. The threshold
is determined using gray level distribution. For two classhjeem, one needs to determine one
threshold. Otsu’s method can also be extended to multsktwle problems. Otsu’s method for
a two class problem is briefly summarized below.

For a two class problem, thresholding operation is regaaddtie partitioning of pixels of
an image into two classes namely object clasand background class,. Let the object class
Cy denotes the pixels with gray valuég, 1, ...., t} and background class, denotes the pixels
with gray valueqt+1,¢t+2,...., L—1}, where L is the total number of gray levels of the image.
Let the the threshold be at level of “t”, and thus the clasdabilities areql( ) = Y= (i)
and g, (t) = Y=/ ' p(i). The class mean gray values argt) = Y= ”’ and pa(t) =

=1 q1(
i=L-1 20) \where p(i) is the probability of* gray value in the image. The class variance at

i=t+1 ga(t)
threshold tis also defined as(t) = 1=} (i — ju (1)) 22 (t) = =it (= pa(t))? 2.
Using the class probabilities, the class means and claganearare defined as follows
oy = q(t)oi(t) + @(t)o3(t) and of = q(t)(ua(t) — pr)? + qot) (pa(t) — pr)?, where
pr = q1(H)p1(t) + ga(t) u2(t). Replacingur in 0%, 0%(t) is defined as

op(t) = qu(t)ga(t) (i (t) — pa(t))?

ando?. = Y150 (i — pr)*p(i) = oy (t) + oB(1).
The different criteria functions defined are

AN=op/ot, n=oplor and k= 0r/05. (4.1)

Maximization of the discriminant criteria, , andx for t are equivalent. Therefore, the optimal
threshold is obtained by maximizing one of the criteria timts. Considering the criterion

functiony, the optimal threshold is as follows.

0_2

B
T, =arg max =ar X —=. 4.2
opt gO<t<L 1T gO<t<L 1 o2 (4.2)
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Sincec? is constant, maximizing (4.2) is equivalent to maximizihg following

2
T, =arg max o
op gOgtgLfl B

Maximizing the criterion function in (4.2) is equivalentnoaximizing the between class

variance and minimizing the within-class variance.

4.3.2 Kwon’s approach

Know [16] proposed a threshold selection method using eftuahalysis by modifying the
Know’s new cluster validation index [143]. Even though higthod is valid for any num-
ber of clusters, for the sake of illustration and simplichg considered two class problem of
images. Let the given imag¥ be the union of two data sefs; and X, X = X; U X, =
{z1, %o, ..., 2y C R?} be asetof\l x N data points (pixels), wheref; and X, denote two
clusters containing pixels with gray values|int] and[t + 1, L — 1], z;, = (x},x%) denotes
the k™ point (1 < k < n), andz, denotes thg™ coordinate(1 < j < 2) of the k" point.
Let V = {v;,vs} C R? be a set of cluster centres with = (v}, v?) for 1 < ¢ < 2, and

f(zx) € [0, L — 1] denotes a gray level at point. The clustering problem reduces to selecting

an optimal gray level” € [0, L — 1] which optimizes the following.

T = arg oJmn Je(T), 4.3)
where
() < Enenn o = 0l + Sl — w4 AT ool

|v1 — va|?

In(4.4),v; = |X—11‘ Yzexy Thy V2 = |X—12‘ dozpeXy Thy U= ﬁ YopeXx Tha D = Wl\ and| - | denotes
the cardinality of a set and p is a weighting factor. The firet aecond terms of the numerator
in (4.4) measure the intra-class similarity, that is, hompact every class is. The more similar
(compact) the classes, the smaller it is. It is independkthisonumber of data points. The last
term of the numerator in (4.4) is an ad-hoc penalty functoposed to eliminate the decreasing
tendency when the number of clusters get very large and tddke number of data points. The
denominator in (4.4) measures the inter-class dissirtylaA larger value of it indicates that

every cluster is well-separated.
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4.4 Proposed methods

4.4.1 Feature less method

In this approach, the histogram of the original image is @ered. This histogram is modelled
as a nonlinear multimodal function. For a two class problgmg,histogram is shown in Fig.
4.1(a), where it can be observed that there are two modessparnding to two classes. The
envelop of this distribution is viewed as a nonlinear muttdal function. Each class distribution
can be represented by the dominant modes and hence, themprodduces to determining the
modes. Once the dominant modes have been determined, gumad that for a two class
problem a valley exists in between these two peaks. For aiglags problem, a valley has
to be determined between successive peaks. The fitnessofurcinsidered is same as the
histogram. Hence, the PGA based scheme maintains subgiiopLat the peak of the histogram
distributions.

Since, the histogram distribution considered is discairyentional iterative search would
have resulted in determining the minimum at some other pdimerefore, for a two class prob-
lem, the two peaks have been determined by the PGA based iogpwdheme. These two
peaks correspond to a two gray levels and the valley is cinsdl within the two peaks. In a
multiclass problem, the valley is sought between two swgieepeaks. The two peaks with the

valley is viewed as a convex function with valley as the mimimvalue of the convex function.

4.4.2 Feature based method

Mostly, the histogram of noisy scenes have overlappingsafigstributions. In such situations,
the FL approach yields approximate results with large peege of misclassification error.
This could be due to the overlapping class distributionsortfer to minimize the overlapping
of the class distributions, a feature based approach isogemp This approach deals with the
histogram distribution corresponding to an image dealirty features only. The feature from
the original image is extracted as follows. A window of a giv&ze is considered around a
pixel and the distributions of the pixels over the window ssamed to be Gaussian. The first
moment of this distribution over the window is considerethasfeature and this is governed by

the second moment (variance) of the distribution. With Gausassumption, it is known that
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the likelihood estimates of the first and second moment ovgndow size of w is

A 1 Ny o 1 Ny A 9
flw; = N, kzz:lxk and Gy, = N, kz::l (Ik - Mwij) : (4.5)

The first moment of the pixels is considered as the featungevidlthe following condition is

satisfied.

Zf ‘xij — :&wij < &wz‘j /K then Tij = ﬂwij (46)

where, K is a positive constant bounded between 1 to 10 todake of smoothness and also
differentiate edge and non-edge pixels; is the gray value of théi, 7)™ pixel, flw;; 1S the
mean valueg,,; is the standard deviationy,, denotes the number of pixels in the window.
The features corresponding to pixels of the whole image ansebl and histogram of the fea-
tured pixels is considered. The optimal threshold for thgioal image is obtained from the
modified histogram shown in Fig. 4.1(b). The modified hisamgreither reduces the degree of
overlapping or removes the overlapping between classhuisivns. The proposed PGA based
clustering algorithm is used to determine the peaks anedfier the valley is determined by

exhaustive search.

0.025 T T T T T 0.0025 T T T T T
0.02 — 0.002 - —
0.015 — 0.0015 —

>
->

p(g)----
p(g)--

1 0.001

0.005 — 0.0005 —

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Gray Value 'g’---> Gray Value 'g’--->
(a) (b)

Figure 4.1: (a) Normalized histogram of the image; (b) Ndizea histogram of the feature
image.
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4.4.3 PGA based algorithm

The objective of designing parallel GA is two fold: (i) reding the computational burden and
(if) improving the quality of the solutions. The design of R@volves choice of multiple pop-

ulations where, the size of the population must be decidéidipusly. These populations may
remain isolated or they may communicate exchanging indal&l In this parallel scheme, the
population is divided into demes (sub-population) and #mels evolve for convergence. After
some generations, migration is carried out to achieve egewee. This helps in accelerating
the convergence and also improves the quality of the solutide have adopted the good-bad
(GB) based migration policy. In our problem we considerad fitemes D1, D2, D3 and D4 and
the 1% order interaction network model for interaction among thmds. Tournament selection
mechanism is applied to all demes. The proposed GC opesatised in the PGA. The steps of

the parallelized crowding scheme are the following.

(1) Initialize randomly a population space of si2g (each element corresponds to a gray

value between 0 and 255) and their classes are determined.

(2) Divide the population space into fixed number of sub-pajans and determine the class

of individuals in each sub-population.
3) (i) In the given sub-population (deme), choose two elasat random for GC and
mutation operation with crossover probabilfly and mutation probability’,,.

(i) Evaluate fitness of each parent and offspring. The firfaaction is the featured

normalized histogram functiom(g).

(iii) Tournament selection mechanism is a binary tournarselection among the two
parents and offspring, the set which contains the indidilaging highest fithess among

the four elements is selected to the set of parents for thiegeseration.
(iv) Repeat steps (i), (ii) and (iii) for all the elements iretsub population.

(v) Repeat steps (i), (i), (iii) and (iv) for a fixed numbergénerations.
(4) Step 3is repeated for each sub-population (deme).

(5) Migration is allowed from each deme to every other dente ihdividuals are migrated

based on the selected migration policy. Number of elemenisigrate are determined
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from the selected rate of migrati&¥,;,. The elements migrate with migration probability
Prig-

(6) Self migration is allowed in each deme based on the salatiigration policy and se-

lected rate of self-migratioR,,,;, with a probability P, .

(7) Repeat Steps 3, 4, 5, and 6 till convergence is achievid.algorithm stops when the

average fitness of the total population is above pre-selé¢hteshold.
(8) Peaks are detected from the converged classes of Step 7.

(9) Go for the iterative search to find the valley point or gotfee following steps for PGA
(without crowding method) based optimization (minimipatin this problem) for valley

detection between two peaks. For PGA based valley detegtida step 10.

(20) Initialize randomly a population space of si¥g between the two peaks (i.e between the

two corresponding gray levels of the peaks).
(11) Divide the population space into fixed number of subypajons (demes).

(12) Follow the steps 3 to 7 (without tournament selectidhihie convergence is achieved. If

the population is converged, then the converged solutitreisalley point.

(13) If all the elements of the population is converged thea the solution as threshold to

segment the given image.

4.5 Results and discussions

Images exhibiting bi-modality and tri-modality in the lmgtam distribution are considered.
Histograms with bi-modality and tri-modality features i@spond to two and three class images
respectively. The two proposed schemes have been sudges=sfted with two and three class
images. In the FL approach, the histogram distribution efahginal image is used. The image
considered is shown in Fig. 4.2(a) and the correspondingetes histogram is shown in Fig.
4.2(b). The PGA based crowding and search scheme is usedeitt tiee peaks followed by
determination of the valley point that corresponds to tineghold. The parameters used for GA
are: Generation=1000, Probability of Crosso¥er= 0.8, Probability of Mutation?,, = 0.001,
population sizeV, = 400 andN, = 100. The parameters used for PGA are: Generation=1000,
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Figure 4.2: (a) Image 1; (b) Histogram with detected peal& \alley; (c) Average fitness
versus generation of class “A” PGA and GA; (d) Average fitnessus generation of class “B”
PGA and GA,; (e) Class “A” with SL and WSL,; (f) Class “B” with Slnd WSL; (g) Segmented
image using FL; (h) Segmented image using Otsu’s approach.

Migration period is 10 generations, Number of demes is 4b&ldity of Crossoverr, = 0.8,
Probability of Mutation?,, = 0.001, population sizeV,, = 400 and N, = 100, Probability of
migration P,,,;, = 0.8, Migration rateR,,;, = 4%,, Probability of self migratiorP,,;, = 0.8
and Self migration rate?,,,;,, = 2%. The peaks detected by PGA are at 71 and 189 and
the corresponding threshold T=114. GA and PGA based algositare compared and it is
observed that PGA converges much faster than that of GA. gifeaomenon is evident from
Fig. 4.2(c) and (d) that corresponds to class A and classfigotisely. For example, for class A,
PGA converges around 100 generations while GA takes arod@d denerations. In PGA, we
have used the island model with interconnection and we heygoged a fully interconnected
model by introducing a new notion of self migration(SL). Tgreposed interconnection model
is found to converge faster than that of the model without mégration(WOSL). This may
be observed from Fig. 4.2(e) and (f) for both the classes. titeshold value thus obtained
is used to segment the image and the segmented image is shdwign i 4.2(g). Our result
is compared with that of Otsu’s in Fig. 4.2(h) and it can beeobsd from Fig. 4.2(h) that
there are misclassified pixels near the rod and also at tHedjabe table of the image. This

misclassification is absent in case of result obtained bytbposed FL method in Fig. 4.2(Qg).
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The percentage of misclassification is determined as fallow

‘BoﬂBT|+|F0ﬂFT‘

PME=1-
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Figure 4.3: Percentage of misclassification error verseslow size (images 1, 2 & 3 corre-
spond to Fig. 4.4(a), 4.5(a) & 4.6(a))

Where background and foreground are denoted3gyand F, for the original image,
and by Br and F; for the test image. The threshold and the Percentage of aisification
Error(PME) are tabulated in Table 4.1 for different size afidows. The FB approach is also
validated with two and three class images. The feature patel generated as follows; a window
of a given size is considered around the pixgland the first moment i.e. average value of the
pixels is considered as the feature of the pixel. The distidln of the pixels over a window
is assumed to be Gaussian and the selection of the featuovésngd by the variance of the
distributions as given by (4.6). Since, the feature dependsindow size, initially the selection
of optimum window size is considered based on the PME. The Rivithree images is shown
in Fig. 4.3. It is found from simulation that the PME is minimuwith a window size of
9x9. The corresponding results are also tabulated in Tabléht optimum size, thus found
empirically is used as the window size in case of the imaghs.f&atured pixels are generated
and thus feature image is created. In this approach, thegngn of the featured pixels is
used. The image considered in FB approach is shown in Fig@}$ahd the histogram is
shown in Fig. 4.4(b). The histogram of featured pixels isvglha Fig. 4.4(c). This featured
histogram exhibits clear modes and the almost all gray $eaed present. The proposed PGA
based crowding algorithm is used to detect the peaks andethlesare at 73 and 188 and the
valley at 116. The detected peaks and valleys are shown irdH4gd). The parameters of the

PGA is same as that of the FL approach. The convergence of R&&dlscheme predominantly
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depends on the proper choice of the migration policy and dkee af migration. The effect of
these two parameters is also studied. The segmented résaibhed using the FB approach,
Otsu’s approach, and Kwon’s approach are shown in Fig. )4 @Xiand (k) respectively. It is
observed that there are misclassified pixels near base obthand back of the table. These
are absent in image obtained by the FB approach. This pherams also reflected from the

percentage of misclassification error tabulated in Table 2.
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Figure 4.4: (a) Image 1,(b) Histogram; (c) Featured histogr(d) Detected peaks and valley;
(e) Average fitness versus generations of class “A” PGA and (BAAverage fitness versus
generations of class “B” PGA and GA; (g) Class “A” with SL andS¥y (h) Class “B” with
SL and WSL; (i) Segmented image using the FB approach; (jimee¢ed image using Otsu’s
approach; (k) Segmented image using Kwon's approach.

The FB approach has also been tested with noisy images asishdwg. 4.5(a) and
Fig. 4.6(a). Fig. 4.5(a) is a clearly bimodal image. The yne®rsion of image of Fig. 4.5(a)
having signal to noise ratio (SNR) 22dB is shown in Fig. 4)5We define SNR aS N R,p =
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Figure 4.5: (a) Image 2; (b) Noisy version of image 2 with SNRIR; (c) Histogram of (b)
with detected peaks and valley; (d) Featured histogram )oiv{tln detected peaks and valley;
(e) Segmented image using FL; (f) Segmented image using pibagh; (g) Segmented image
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Figure 4.6: (a) Image 3; (b) Noisy version of image 3 with SNRIR; (c) Histogram of (b)
with detected peaks and valley; (d) Featured histogram )oiv{tln detected peaks and valley;
(e) Segmented image using FL; (f) Segmented image using péagh; (g) Segmented image
using the Otsu’s approach; (h) Segmented image using thalswapproach.
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Figure 4.7: (a) Image 4; (b) Histogram with detected peakisvaifieys; (c) Featured histogram
with peaks and valleys; (d) Segmented image using FL; (ejn®ated image using FB; (f)
Segmented image using Otsu’s approach; (g)Segmented imsageKwon’s approach.
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Figure 4.8: (a) Image 5; (b) Histogram with detected Peaksvalieys; (c) Featured histogram
with Peaks and Valleys; (d) Segmented image using the FISdgimented image using FB; (f)
Segmented image using Otsu’s approach; (g) Segmented imsageKwon’s approach.
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101og;, (Zij YT nfj). The histogram of the noisy image, as shown in Fig. 4.5(@wsh
overlapping of the object and background distributionse pkaks are detected at 92 and 151
and the corresponding threshold is at 119. It is clearly odeskefrom Fig. 4.5(d) that the
histogram of the featured pixels shows bi-modality. Thekgeand valley are detected at 89,
150, and 111 respectively. The segmented images are shokig.i.5(e), (), (g), and (h)
that corresponds to FL, FB, Otsu’s and Kwon’s approach. Ffable 2, it is found that the
misclassification error is more in case of Otsu’s method. ddethe FB approach performs
better than that of FL, Otus’s and Kwon'’s approach. The efficzf the FB approach is more
evident in the third example as shown in Fig. 4.6. It is obsdrirom the segmented results
shown in Fig. 4.6(e), (f), (g) and (h) that FB approach coulesprve edges and reduced the
number of misclassified pixels. In case of Otsu’s approamtmffable 2, it is observed that the
PME is more than two times of that of the FB approach. Thusi-happroach is more suitable
for noisy as well as images having overlapping class disiiobs.

We have also validated the proposed FL and FB scheme in cdbesefclass images as
shown in Fig. 4.7 and 4.8. The percentage of misclassificagipresented in Table 3. It may
be observed from the segmented results of Fig. 4.7. and dt&Boutperforms the FL, Otsu’s
and Kwon’s approach. It is also evident from Table 3 that thEERs minimum in case of FB
approach. Thus, in all the cases the proposed FB approadedgibetter results than the FL,

Otsu’s and Kwon'’s approach.

4.6 Conclusions

In this chapter, optimal threshold is obtained using therdig histogram of the original image.
For a two class problem, the two dominant modes have beemudatsel and the valley is as-
sumed to exist in between the two peaks. The valley that sporeds to the threshold is found
out by PGA based minimization. This scheme produced sat@faresults when the histogram
exhibited clear bi-modality with a prominent valley poiM/hen there was overlapping of the
class distributions, this method found out a valley poiat tiesulted in increased PME. There-
fore, the feature based scheme was proposed, where thadlurés found out in the feature
plane that is threshold is determined from the feature grsim. The feature histogram reduces
the amount of overlapping of two class distribution as comagao the original histogram. This

feature based scheme, could successfully handle ovenigpfass distribution cases.
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Table 4.1: Threshold values and PME for diffrent window sigeng the FB approach.

Sample Images
Imagel Image2 Image 3
Window Size (WS)| T PME | T PME | T PME
3x3 107 | 0.8942| 126 | 0.5748| 106 | 0.4593
5x5 107 | 0.8942| 129 | 0.5748| 119 | 0.3403
X7 110| 0.8942| 127 | 0.5748| 121 | 0.3403
9x9 116 | 0.8286| 130 | 0.5748| 112 | 0.0000
11x11 107 | 0.8942| 129 | 0.5748| 114 | 0.0000
13x13 104 | 0.8942| 108 | 1.4148| 114 | 0.0000
15x15 110| 0.8942| 110| 1.2904| 118 | 0.3403

Table 4.2: Performance evaluation of Otsu’s, Kwon’s, FL &flapproaches for two class
images.

Sample images Threshold Selection Methods

Otsu’s Approach Kwon'’s Approach| FL Approach| FB Approach
T PME T PME T PME T PME
Image 1 123| 2.8595 | 122 1.762 114| 0.0 | 116| 0.8286
Image 2(SNR 22dB) 121 0.705 119 0.759 119| 0.759 | 111| 0.5748
Image 3(SNR 22dB) 126| 0.6165 | 109 0.162 129| 0.8240| 106 | 0.2472

Table 4.3: Performance evaluation of Otsu’s, Kwon'’s, FL &Blapproaches for three class
images.

Sample Threshold Selection Methods

images| Otsu’s Approach | Kwon’s Approach FL Approach FB Approach
T, | Ty PME | 71 | T5 PME | Ty | Ty PME | 71 | T | PME

Image 4| 96 | 155| 11.2503| 101 | 197 | 76.6708| 88 | 171 | 13.0600| 112 | 167 | 5.5298

Image 5| 100 | 160 | 2.3787 | 125| 127 | 14.9711| 99| 154 | 1.5349 | 115| 140| 2.9010
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Chapter 5

Minimum Mean Square Error based
Feature Less and Feature Based

Techniques

5.1 Introduction

Automatic fault detection system has a wide application @iomSpecifically, in machine vi-
sion system for hazardous situation detection of faultsead-time is indispensable and also
challenging. In faulty condition, the detection problenduees to classification of pixels to
healthy pixels or unhealthy pixels corresponding to thé fsituations. In this chapter, attempts
have been made specifically to develop schemes that wowddtastrth surfaces cracks in a real
image with cracks. A novel scheme has been formulated whitemzing the mean square er-
ror (MMSE) of class distributions. Since, the faults couédds small or big size, the histogram
distribution becomes complex and loses clear bi-modalitiiout trace of valley. Therefore,
the scheme is based on considering the peaks to represesgsknd hence need to be detected.
The PGA based algorithm of chapter 4 has been used to detdct flowed by the algorithm
to detect the valley to minimize the class distribution erta this regard, feature less MMSE
(FL-MMSE) and feature based MMSE (FB-MMSE) have been predde deal with the typi-
cal histograms corresponding to the crack images. The pexpalgorithms could satisfactory
segment different crack images. The proposed MMSE basexdithign have also been tested
with other real world images and a typical image for coloumdihess. The performance of the

proposed algorithms has been found to be superior to thatsaf @&hd Kwon’s method in case
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of crack images and the performance is comparable to Kwoe¥od in case of other real

images.

5.2 Brief review of Hui-Fuang’s method

The objective of automatic thresholding proposed by Huwatk[91] is to find the valley in the
histogram that separates the foreground from the backdrdtor the case of single threshold-
ing, the threshold value exists at the valley of the two pgaksodal), or at the bottom rim
of a single peak (unimodal). It is observed that the prolggitmf occurrence of the threshold
value ;) is too small. With this observation Hui-Fuang [91] propds@ improvement to the
Otsu’s [5] method for selecting threshold values and narhashvalley-emphasimethod. The
idea of the valley-emphasis method is to select a threshallgethat has a small probability of
occurrence (valley in the gray-level histogram), and alsgimize the between group variance,
as in the Otsu’s [5] method. The formulation for the vallegghasis method is:

£ =Arg max (1= po)(wi()i(t) + ws(E)ps(0)). (5.1)

Where,p; = "+ represents the probability of occurrence of gray-leyeil; is the number of

pixels with gray-level, n is the total number of pixels in a given image,(t) = >!_, p; and

wy(t) = Y11, p; are the probabilities of the classes respectively aifd) = 3! wif’{t) and

pe(t) = S50 ﬁt) are the mean gray-level values of the two classes.

The key to valley-emphasis formulation made by Hui-Fuar [9 the application of a
weight, (1 — p;), to the Otsu’s [5] criterion function for threshold calctiten. The smaller the
p; value, the larger the weight will be. This weight ensures tha result threshold will always
be a value that resides at the valley or bottom rim of the dgagt distribution. The valley-
emphasis method does not attempt to split a peak in unimastabaition as the Otsu’s method
does. A peak in the histogram normally corresponds to aeiagfity in the image.

Hui-Fuang [91] extended the valley-emphasis method to leamdlti-level thresholding.

For M-1 level threshold (M class), the optimal thresholds ¢, ....... thi/_1} are given as:

M-1

M
{t], 5, .. 1} = Arg . P { (1 ]231 ptj) <kz:1 wkuk>} . (5.2

Where, the first term in (5.2) corresponds to the weight.
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5.3 MMSE method

In this scheme, we assume object to be one class and rest ofagses (one or more) are
assumed to be background. In case of a two class problempijbet@nd background have
distinct class distributions as shown in Fig. 5.1 that dispiwo class distributions correspond-
ing to object and background. It is assumed that the two peakespond to the mean of the
class distributions. Let T denote the threshold selectelstinguish the object and background
classes. Because of threshold T, the distribution as showigi 5.1 is divided into two classes,
one to the left of T and the other to the right of T. The classrihgtion to the left of T may

either correspond to object or background and analogokslglistribution to the right of T may

correspond to either background or object. kgt andm,, denote the mean value of the ob-

ject and background class distribution respectively. d,etenotes the error in the object class

plG)

Mo T my
Gray Values "g"-------oooo -

Figure 5.1: Bimodal distribution with the peaks represemthe dominant gray value of object
and background

occurring due to the selection of threshold T and is defineq as|(m,, — m,)|. Analogously
e, denotes the error in the background class occurring dueetseltection of threshold T and is
defined as;, = |(ms, — my)|. Since, the threshold is varried frobnto maximum gray value
Gz the errors are modeled as random variables.

Let e, ande, denote the instantaneous values of the random variehlasde;, respec-
tively. We assume, ande,, to be uncorrelated. The total error for both the class thstion at
a given time instant k is

E[¢] = Eleo (k)] + Elen (k)] (5.3)

In order to achieve the optimum threshold,;, in the minimum mean square error (MMSE)
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sense, the following function needs to be minimized. Asswgmnj (k) ande, (k) to be uncorre-

lated
6(]{) = GO(k) + eb(k)

&2 (k) = eo’(k) + e’ (k) + 2e0(k)en (k) (5.4)
Taking expectation of both sides
B[ (k)] = Eleo*(k)] + Elep* (k)] + 2Eeq (k)en (k)] (5.5)
Sincee, (k) ande, (k) are uncorrelatedEfe, (k)e, (k)] = 0
E[E*(k)] = Ele,” (k)] + Ele* (k)] (5.6)
which can be expressed as
Bl¢*(k)] = Eleo’ (k)] + Eley’(k)]. (5.7)

In (5.7), evaluation of the expectation of the individual term ididiflt because at' instant,
all possible values of the errors are not available. We demsinly the available instantaneous

value and hence
Elea?(k)] = eo’(K) and  Elen?(k)] = ep? (k). (5.8)
Therefore(5.7) can be expressed as
BIEX (k)] = eo?(k) + en?(k), (5.9)

The optimum threshold value is obtained by minimizifigd) with respect to T. Hence, the

optimum threshold’,,, can be determined as

Ty = argmin B¢ (k)] (5.10)

or T, =arg mjin (€0” + ep?). (5.11)
Substitutinge,? ande,? in (5.11), it can be written as
Topt = arg mjin {(mpy, —mp)? + (Mg, —m,)*}. (5.12)

The optimum value is obtained by the proposed iterativerdtyn. The salient steps of the

algorithm is as follows.
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Iterative algorithm

Step 1 Selectr, andm, from the PGA based algorithm.

Step 2 Choose an arbitrary initial threshold T. Initialine errore? ;. to a large value.

man

At each time step k, compute the following:
Step 3 Computen,r(k) andmyr (k) corresponding to the chosé.

Step 4 Computez (k) = {(mor(k) — mo)? + (myr (k) — my)?} ore(k) = (e2(k) + ei (k)).

o

Step 5 Ifez(k) < €2, thene?

min? min

= e2(k), T = Ty, k=k+1; T, = T} + AT

else k=k+171};, = T}, + AT
Step 6 Check if all gray values are exhausted. If "No” Go tqpSQ®r If "YES” go to Step 7

Step 7T denotes the optimum threshold corresponding to the minimwror.

5.4 FL-MMSE

We consider the histogram of the given image. The histogepending on the nature of
the image, exhibits two dominant niches or modes correspgrid two classes besides other
less dominant modes. The distribution thus can be viewedasknear multimodal function,
where each dominant mode corresponds to one class. The P§&8l baustering algorithm is
used to determine the two modes. This is achieved when the B S&d clustering algorithm
maintains stable sub-populations at the respective mbdsddrming clusters around the node.
The gray value of the histogram corresponding to theseaisisre assumed to be the respective
means of the two classes. The MMSE based algorithm condigese dominant modes as the

means and determines the valley or threshold that minintieestra-class classification error.

5.5 FB-MMSE

By and large, the gray level distribution in histogram ofsyoscenes have overlapping class
distribution. In such situations, the feature less (FLY[[ldpproach yields approximate results
with large percentage of misclassification error. This ddaé precisely attributed to the error

due to the overlapping class distributions. Hence, in tbieeme, the feature based histogram
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distribution is considered. The feature image is generagtbllows. A window of a given

size is considered around a pixel and the distributions efgitay values over the window is
assumed to be Gaussian. The first moment of this distribwien the window is used as the
feature and this is governed by the second moment (variafted distribution. With Gaussian

assumption it is known that the likelihood estimates of thet and second moment becomes

A 1 ) 1 2
How;; = N— Z Tk and Ow,;; = N— Z (xk’ - ,Uwij) : (513)
W k=1 W k=1
The first moment of the pixels is considered as the featungevidlthe following condition is

satisfied.

if T = fwy,| < 0w, /K then  z = fiy,; (5.14)

where, K is any positive constant;; is the gray value corresponding to thej)™ pixel, flow,
andg,,; are the average value and standard deviation of the Gaudistaibuted pixels over
the window centered &, 7)*" pixel, andN,, is the number of pixels in the window. Thus,
another image, consisting of featured pixels is generdigdl (a) shows the histogram of a two
class image. Itis seen from Fig.1(a) that there are distwetlapping of the class distributions.
The histogram of the featured image, generated u§ing) and (5.14) is shown in Fig.1(b)
that exhibits clear bi-modality with minimum overlappinglence, optimal threshold can be
determined using Fig.1(b).

The two dominant peaks of the feature histogram are deteahioy the PGA based crowd-
ing algorithm. Using these dominant modes as the means fef@lift classes, in the feature
plane, the MMSE based iterative algorithm is used to obta@walley or threshold in the fea-

ture plane. The threshold thus obtained in the feature plagsed to segment the image.

5.6 PGA based algorithm

The steps of the parallelized crowding scheme are the follpw

Algorithm

(1) Initialize randomly a population space of si2g (each element corresponds to a gray

value between 0 and 255) and their classes are determined.
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(2) Divide the population space into fixed number of sub-pajans and determine the class

of individuals in each sub-population.
(3) Go through the following steps:

(3.1) In the given sub-population, choose two elementsratam for Generalized Crossover

(GC) and Mutation operation with crossover probabiftyand mutation probability?,,,.

(3.2) Evaluate fitness of each parent and offspring. Thes#fienction is the featured normal-

ized histogram functiop(g) in (3).

(3.3) The tournament selection mechanism is a binary tonemé selection among the two
parents and two offspring, the set which contains the indial having highest fitness

among the four elements is selected to the set of parentsdarext generation.
(3.4) Repeat steps 3.1, 3.2 and 3.3 for all the elements isuthg@opulation.
(3.5) Repeat steps 3.1, 3.2, 3.3 and 3.4 for a fixed numbemargaons
(4) Step 3is repeated for each sub-population.

(5) Migration is allowed from each deme to every other dentee ihdividuals are migrated
based on the selected migration policy. Numbers of elententsgrate are determined
from the selected rate of migrati&),;,. The elements migrate with migration probability

Prig-

(6) Self Migration is allowed in each deme based on the saiectigration policy and se-

lected rate of self-migratioR,,,;, with a probability ;,,,;,

(7) Repeat Steps 3,4,5 and 6 till convergence is achievea algorithm stops when the

average fitness of the total population is above pre-seld¢bteshold.
(8) The peaks will be determined from the converged clasE8tep 7.
(9) Select the two peaks (for a two class problemygsandm,,.

(10) Consider the normalized histogram of the image. Chaasabitrary initial threshold T.

Initialize the errore? ; to a large value.

min

At each time step k compute the following:
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(11) Computen,(k) andmy; (k) corresponding to the choséh.
(12) Computer(k) = {(mor(k) —m,)? + (myr(k) — my)*} or ez.(k) = (e2(k) + ez (k).

(13) If ez (k) < €2,;,, thene?

man? man

= e2(k), T = Ty, k=k+1; T}, = T}, + AT;

else k=k+171};, = T}, + AT
(14) Check, if all gray values are exhausted. If "No” Go toiseor If "YES” go to Step 7

(15) T denotes the optimum threshold corresponding to the minimuor.

5.7 Results and discussions

The proposed MMSE based methods such as FL-MMSE and FB-MMSE lheen validated

with real images having typical histograms. The poterttiadf the proposed MMSE based
method has been tested with images of earth surface cradkhamorresponding histograms
possess either unimodal trend or have many misleading mbdas8y, in this section the results
corresponding to general images have been analysed falloywihe next section that deals with

specifically crack images. Besides, in this section we tést avtypical colour image.

5.7.1 Real and synthetic images

The real and synthetic images considered for this sect®slaswn in Fig. 5.2(a), (b), (c), and
(d) and the corresponding manually constructed ground traages are shown in Fig. 5.2(e),
(M, (g9), and (h) respectively. All these images belong to tass problem, for example, the
first image is a plate image having to class, the second insmgdable lamp image exhibits
two class, the third image which is a hanging light (ceilinght) image is also a two class
image. The last image is a typical synthetic image used ftaatien of colour blindness. This

image has been selected because of the typical nature agitggram distribution. The first

image considered is the plate image as shown in Fig. 5.3¢hjrencorresponding histogram
is shown in Fig. 5.3(b). In this case, the histogram has a 8¢y and unequal size of object
and background distribution. We have employed the FL-MM&8teme to test this image. The
two peaks of the histogram has been detected by the PGA blgedran. This is tested for,

both the without self-loop based and self-loop based intarection models. The performance

of the PGA is also compared with that of GA. The parameters dfa@: Generation=1000,
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Probability of CrossoveF, = 0.8, Probability of Mutation”,, = 0.001, population sizeV, =
400. The chosen parameters of PGA are: Generation=1000, Mignagériod is 10 generations,
Number of demes is 4, Probability of Crossover= 0.8, Probability of Mutation?,, = 0.001,
population sizeV,, = 400, Probability of migration?,,;, = 0.8, Migration rateR,;, = 4%,,
Probability of self migrationP,,,;, = 0.8 and Self migration rat&;,,;, = 2%.

The two peaks of the histogram of Fig. 5.3(b) have been dsdday PGA/ GA based
peak detection method of chapter 4. The population of elésnelnstered around the peaks
have been shown by “X” in Fig 5.2(b). The proposed MMSE basethods have been used to
detect the threshold and the threshold has been found toTH@8threshold values determined
by Otsu and Kwon method are 121 and 122 respectively. Thesghbld values are tabulated in
Table 5.1. The segmented images obtained by FL-MMSE methsidown in Fig. 5.2(i) where
it can be observed that the edge of the white circle could egireserved properly and hence
the percentage of misclassification error (PME) is foundetd 3. As seen from Fig 5.3 (g) and
(h) the edge pixels of the inner white circle has been preseproperly and hence, the PME
is 0.6 in both the cases. The two classes have been classifiperly. Hence, Otsu and Kwon
method classified the plate image properly and the perfocmahthe proposed MMSE based
approach is close to that of Kwon and Otsu’'s method. For tleedlasses, the convergence
of GA and PGA has been analysed. Fig. 5.3(c) and 5.3(d) shewdhvergence of class-A
and class-B respectively and from Fig. 5.3(c) it can be seatthe PGA converged around 50
generations, whereas GA converged at 1000 iterations.I&lypifor class-B, PGA converged
at around 70 generations while GA converged at 400 genaratithus, in both the case, PGA
converged much faster than that of GA.

The second image considered is the Table lamp image as shdwg i5.4(a). In this case,
the feature image has been generated and correspondiogrhist is shown in Fig. 5.4(b),
where it can be observed that there are many small misleadodes and the valley is not
precisely defined. The PGA based scheme could detect the psahown by “X”. The corre-
sponding valley point is detected by MMSE method and is shasvdotted line in Fig. 5.4(b).
The threshold, thus found by MMSE method is 122 where as treshiolds found by Otsu
and Kwon method are 123 and 122 respectively. Since, thehble are found to be either
same or very close to each other, the segmented resultsaralalost close to each other. The
segmented results for Otsu, Kwon and MMSE methods are showigi 5.4(g), (h) and (i)

respectively. As observed from these figures, there are soiswassified pixels near the right
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corner edge of the table. The misclassification is obsenmvedl these three cases and in case
of Fig. 5.4(g), there are additional misclassified pixelam#e base of the rod on the table.
Because of this additional pixels, PME for Otsu is 2.9 whigtigher than that of Kwon and
MMSE, which is 1.8. Analogous to the previous case also, P@Alass A and B converges
faster than that of GA. This phenomenon may be observed inF#c) and (d) respectively.
The effect of self-loop model on the rate of convergence leah lwemonstrated in Fig. 5.4(e)
and (f), where it can be observed that use of self-loop (SLjlehanade the algorithm con-
verge faster than that of use of without self-loop (WSL) mMod®& course, there is no radical
change in the rate of convergence but there is some imprawemehe final convergence of the
algorithm.

Similar observations have also been made for the hangihg (ailing lamp) image as
shown in Fig. 5.5(a). This FB-MMSE based algorithm has bewmiied to this image. The
feature image has been generated using the feature piétkharcorresponding histogram is
shown in Fig. 5.5(b). Since, the background occupies morggns of the image and the light
portion is small corresponding to background, is more prami than that of the foreground
portion. The proposed PGA based scheme could detect the peawn as “X” and the MMSE
based scheme detected the valley point shown as dottedTime corresponding threshold is
107, where as the thresholds found by Otsu’s and Kwon’s ndedih® 116 and 107 respectively.
These thresholds have been used for segmentation. The segihmesults are shown in Fig.
5.5(g), (h), and (i) and it may be observed from Fig. 5.5(g) the portion of the rod joining
the lamp has been missing because of misclassification andrad portion of rod joining the
wall is also missing. The right edge of the reflector has beastoided. But in case of Kwon
and MMSE method, the portion of the rod joining the reflectas bheen properly segmented
the sharpness of the edges in case of the MMSE method is betethat of Kwon’s method.
This effect has also been reflected in the PME values talobiat&able 5.2. PME in case of
Otsu’s method is higher than that of Kwon's and MMSE methos fa# as the convergence of
the algorithm is concerned, PGA for class-A is found to cogeearound 70 iterations while
GA converges at around 1000 generations and for class-BP&l#b converges at around 70
iterations. Thus PGA converges much faster than that of GAthErmore, it has also been
found that use of self-loop based interconnection modelelael algorithm to accelerate faster
towards the converged solution than that of the without-leelp case. This effect may be
observed from Fig. 5.5(e) and 5.5(f). Thus, in this examjde &B-MMSE produced result
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close to that of Kwon’'s method.

The next image considered is a synthetic image shown in Fi§, véhich is used for
detection of colour blindness. It has been found out thdt Basu and Kwon’s methods produce
very poor results while FL-MMSE, and FB-MMSE methods praglwery promising result.
This example clearly demonstrates the efficacy of the pregph&8-MMSE based method. The
histogram of the colour blind image is shown in Fig. 5.6()gre it may be observed that there
is very small mode with very small area of distribution, ané dther one is not very prominent.
There is hardly any valley observed between these two motes.feature histogram shown
in Fig. 5.6(c), where the modes have been enhanced. The getdsed by PGA are shown
and the valley is found to be at 37 and FL-MMSE method deteszththe same threshold. The
peaks are at different positions as shown in Fig. 5.6(c). fhineshold found by Otsu and
Kwon’s method are 169 and 148 and are tabulated in Table hid s€gmentation obtained by
these thresholds are shown in Fig. 5.6(j), (k) and (I) and dlearly observed that the image
could not be segmented and the object, that is “12”, couldeatetected. The PME for Otsu’s
and Kwon’s cases are also high i.e. 17.4, 22.6. Fig. 5.7@) & (k) show the segmented
image obtained by FL-MMSE and FB-MMSE approach and it canldszved that the image
could be segmented properly and accordingly the PME for thetlcases and FB-MMSE is 0.2.
Thus FL-MMSE method could segment the image properly wreMMMSE, Otsu and Kwon’s
method failed to segment this image. The effect of PGA oveh@sbeen demonstrated in Fig.
5.6(d) and (e). Analogous to previous cases, the self-loogainconverged faster than that of
without self-loop model. This is demonstrated in Fig. 5.&(d 5.6(g). This effect of FL-
MMSE and FB-MMSE on these four images have been shown in Fig. Big. 5.7(a) and
Fig. 5.7(d) have been segmented by FL-MMSE, while Fig. 5.d(t (c) have been segmented
by FB-MMSE method. The corresponding histograms with detepeaks and valleys are
shown in Fig. 5.7(e), (f), (g), and (h). The segmented imagesshown in Fig. 5.7(i), (j),
(k), and (l) and it can be seen from these figures that the immegeld be properly segmented
by MMSE method. Thus, MMSE based scheme proved to be moretigéfig¢han that of other
proposed schemes. Moreover, MMSE based method, besideestgg real world two class
images, could also segment the typical image for colourdbkss. This demonstrates clearly
the efficacy of the proposed MMSE based schemes.

The performance of MMSE based scheme has also been compitinetiat of Otsu and

Kwon’s method for all these images shown in Fig. 5.8. The gddtruth images have been
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provided for ease of reference. Fig. 5.8(a), (b), (c), andsfwbw the ground truth images.
Fig. 5.8(e), (f), (g), and (h) show the results by Otsu’s rodthnd Fig. 5.8(i), (j), (k), and
() show the results by Kwon’s method and Fig. 5.8(m), (r)),énd (p) show the results by
MMSE method. It may be observed from these figures that fofitbeimage, Otsu’s method
could produce result comparable to that of Kwon’s and MMSEho@. For the table lamp
and ceiling light image, Kwon’s and MMSE method producediltsssuperior to that of Otsu’s
method. But in case of colour blindness image, only FL-MMS&hod could segment properly
while Otsu’s and Kwon’'s method and FB-MMSE failed to prodsaésfactory results.

Thus, it has been demonstrated with different examplesliiegtroposed MMSE method
could prove to be effective for real world image and alsodgpsynthetic images, where other

methods failed to segment the image.

(€) (f) (9) (h)

Figure 5.2: (a) Image 1; (b) Image 2; (c) Image 3; (d) ImageXround trouth (GT) of image
1; (f) GT of image 2; (g) GT of image 3; (h) GT of image 4.

5.7.2 Earth surface crack images

In simulation, we have considered a wide variety of cracksose gray level histograms ex-
hibit misleading modes that would have been classified asetaby classical thresholding ap-
proaches. Specifically, four typical images have been densd with the following attributes,

() fine and coarse cracks with edges, (ii) cracks partitigrthe image with apparent granules
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Table 5.1: Threshold values obtained by Ostu’s, Kwon’'s and3# approach for real and
synthetic images

Sample| Peaks and Threshold values using the MMSE medhod
Images | Ostu| Kwon MMSE

Image 1| 121 | 122 108

Image 2| 123 | 122 122

Image 3| 116 | 107 107

Image 4| 169 | 148 37

Table 5.2: Performance evaluation of Otsu’'s, Kwon’s, arappsed MMSE approachs.

Sample| Threshold Selection Methods

Images | Otsu’s| Kwon’s | MMSE
PME | PME PME

Image 1| 0.6 0.6 1.3
Image 2| 2.9 1.8 1.8
Image 3| 0.4 0.2 0.2
Image 4| 17.4 22.6 0.2

of different sizes, (iii) cracks creating very small andyugranules, and (iv) large size granules

with shades apparent to be cracks.

Feature less approach

Fig. 5.9(a) shows the crack surfaces with fine and coars&srdte corresponding gray level
histogram is shown in Fig. 5.9(b), where two modes are prentiand a third mode is present
with less prominence. A classical peak search mechanisntiowaye identified three peaks
and accordingly two valleys corresponding to two threskol@his in turn would have seg-
mented the image into three classes as opposed to the gxistinclasses. The histogram of
Fig. 5.9(b) is discrete in nature and hence, we have deviseBGA based clustering to detect
the peaks. The parameters of PGA are: number of demes=4lgtiopusize=400, probabil-
ity of migration F,,;,= 0.1, probability of self-migratior?;,,;,= 0.1, probability of crossover
P.= 0.8, and probability of mutatio®,,;= 0.001. Migration from deme to deme takes place

after every 10 generations, and the percentage of migrétjop is 4% and the percentage of
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self-migratiorRs,,;, is 4%. With increase in the number of generations, the proposetl ¢¥@-
verged to two peaks as shown by "X’ that indicates the poirtarivergence of population of
elements. The number of population of elements that cordeny the first and second peak
are 25 and 155 respectively. Thus, stable sub-populatiesaintained resulting in differ-
ent classes. In this case, as observed from Fig. 5.9(b), &dotks the convergence of stable
sub-population at peaks corresponding to two classes e@st’A’ and 'B’. Thereafter, PGA
is used to search the valley point and hence, the '*' corredpdo the convergence of the to-
tal number of population elements. The threshold is founde@t a gray value of 56. The
convergence of the population of elements of PGA for clas@ @lass B is shown in Fig.
5.9(c) and 5.9(d). As expected, the PGA based algorithmergeg much faster than GA. It
is also observed that the self loop PGA model acceleratesainvergence as opposed to that
without self-loop PGA model. This phenomenon is evidentfreig. 5.9(e) and 5.9(f). The
segmented image, as obtained using the threshold of 5&wash Fig. 5.9(g), where it can be
observed that the fine cracks could be obtained togethertintboarse cracks. The fine cracks
are detected as thin dark lines, whereas the coarse cradghoside have been detected with
dark patch. However, the cracks appear as black while thecramk portion appears as white.
The left portion of the image has no cracks and hence, assanmeedliass appearing as "white”
as shown in Fig. 5.9(g). The result obtained by FL method mpared with that of Otsu’s,
Kwon’s and Hui-Fuang’s method. The threshold obtained bsu@tmethod is 114 while the
threshold by Kwon’'s method is 79. The segmented image by'©tsethod is shown in Fig.
5.9(h), where it is observed that the fine cracks in the midignoicould be detected while the
left portion has been misclassified as crack pixels. It isstadted that the left side of the orig-
inal image contains no cracks but edges. A ground truth inhagdbeen constructed manually
and the misclassification error is computed based on thisngréruth image. The misclassifi-
cation error by Otsu’s method is 18 45wvhile the error due to FL is 1.52. Fig. 5.9(i) shows
the segmented results obtained by Kwon’s method and thepi@ge of misclassification error
(PME) is 0.78%. As observed, Kwon’s method in this case yielded good resfig. 5.9())
shows the results obtained by Hui-Fuang method, and theftble is 84 and this method pro-
duced appreciable result with 1 %4f misclassification error. Thus, PGA based FL approach
produced better results than that of Otsu’s but comparalievon’s approach but the result by

Hui-Fuang’s method is comparable to FL approach.
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Feature based approach

The proposed Feature Based(FB) approach is tested withathe srack image as shown in
Fig. 5.10(a). Gray level histogram is shown in Fig. 5.10)window size of 3x3 has been
used to determine the features and value of K6inis selected to be 3. The feature histogram
is shown in Fig. 5.10(c) and the peaks detected are shown’a3 e valley corresponding to
the threshold is found to be at 58, which is very close to 56edsrchined by FL method. It
may be observed from the feature histogram that the seconé mdiich was less prominent
in Fig. 5.10(b) becomes predominant and, however, the l1demehich was less prominent
as compared to the third mode become more prominent becétise feature selection. This
first mode corresponds roughly to the cracks of the imagegrefbre, the feature helps the
modes to be more prominent to be detected by the clustergagitdim. In the FB approach
also, for both class A and Class B, PGA converged faster th&?o This is shown in Fig.
5.10(e) and Fig. 5.10(f). The self-loop introduced in theARBodel has intra-deme migration
besides inter-deme migration. This employs good-bad maraolicy and hence, accelerates
convergence. This phenomenon is evident from Fig. 5.104d)(&). Thus, the proposed
interconnected PGA model converges faster than that of P@8elwithout self-loop. The
segmented image obtained using the threshold is shown irbHi(i), where both fine as well
as coarse cracks could be detected. Here, the black edgesmamnds to fine cracks and the
black portion on the right hand side correspond to the caaeseks. The left side in the original
image has no cracks but edges and hence, the FB approachdededd the cracks as opposed
to the edges. The results obtained by Otsu’s, Kwon’s andAdaing’s method are produced in
Figs. 5.10(j), 5.10(k) and 5.10(l) for the case of comparisim case of Otsu’s method, edges

have been misclassified as crack pixels.

FL-MMSE and FB-MMSE approach

It has been observed from the previous examples that the@gedp-L and FB methods could
detect the cracks but need further improvement in perfooalm order to improve the perfor-
mance, threshold is detected by the proposed MMSE appra#oérithan the earlier GA based
approach. The four different crack images as shown in Figd.(8), (b), (c) and (d) are consid-
ered to test the MMSE approach. The 2nd image is different fiee first one in the sense that

all the edges are cracks only, whereas in Fig. 5.11(a) thheredge pixels those are not cracks
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but edges. The third image as shown in Fig. 5.11(c) has veeychiacks and some fine edge
pixels. This inturn results in small and large granular a@ppece in the surface. The fourth
image considered is shown in Fig. 5.11(d). As observed,ge has fine as well as coarse
cracks and a shaded portion that appears like cracks an@ hesmwes as a typical example.
The corresponding histograms of these images are showmg#n bill(e), (), (g) and (h). As
seen from these histograms, there are misleading modesarot#he first image and the fourth
image. The detected peaks for these images are shown ashiXvdlley corresponding to the
thresholds are determined by the proposed MMSE approach thifesholds obtained by this
method are 60, 12, 37 and 51. As observed from Table. 5.3ble for image 1 is 60, which
is close to that of the FL and FB methods using PGA based séarchinimum value. Fig.
5.11(f), the histogram of the second image, exhibits two @sodhich are unevenly distributed
in the histogram. The PGA based valley seeking algorithrdgta threshold of 60 while the
MMSE based approach yielded a threshold of 12. The segméntggk using this threshold
could detect cracks precisely. Similar observations a® @made for the third and fourth image
as shown in Figs. 5.11(g) and 5.11(h). In case of the fourdgenwith large granules, the
threshold obtained by MMSE approach is 51 as opposed to 7asm af PGA based minimum
search. The segmented images are shown in Figs. 5.11((k)@and (I). As seen, the fine as
well as coarse cracks could be detected in case of imagestl,2 8ut for image 4, the coarse
and fine cracks could be detected with the shades appearorgas which may be observed
in Fig. 5.11(e).

The above problem in case of fourth image could be amelidiatehe proposed FB based
MMSE approach. In order to obtain feature image and in tuatui®@ histogram, the window
size for the first image was considered as 3x3. The correspgifeature histogram, as shown
in Fig. 5.11(m) shows prominent modes and the peaks detaoteshme as FL approach. The
MMSE approach determined the threshold to be at 52 and thespmnding segmented image is
shown in Fig. 5.11(q). Since, the threshold value is clogbabof FL approach, the segmented
image is almost close to that of FL approach and hence, treepige of misclassification
is 1.74 as given in Table 5.4. The feature histograms for Zmtl3xd images are shown in
Figs. 5.11(n) and (0) and in these cases also the modes ponciag to different classes are
prominent. The window size used to generate the featurearaad histogram for 2nd and 3rd
images is 31x31 and K is 4. The thresholds determined arereiff from that of FL approach

but they are close to each other. The segmented images ettennld detect the thin cracks
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as shown in Figs. 5.11(r) and 5.11(s). In case of the fourthgen the modes in the feature
histogram are predominant and the MMSE based approachtelétde threshold to be 46.
Here the window size used to generate the feature image atajlam is 3x3 and K is 4. The
segmented image obtained using this threshold, couldditaithe shades partially and in turn
reduced the misclassification error fra$% to 0.83%. Thus, FB-MMSE approach has been
found to produce better results than that of FL-MMSE. Forghke of comparison, Fig. 9
shows all the segmented images obtained by different msthsiobserved from these figures,
Otsu’s and Know’s method failed to detect the cracks in 2nd a®d 4th image. As seen from
3rd and 4th row, there are many misclassified pixels and thdeshappear like cracks. In case
of the fourth image with large granules and shades, the shaidefalsely detected as crack
pixels. The results presented in the fifth row correspontiéaesults obtained by Hui-Fuang’s
[91] approach for fault detection. For the first image, theuteobtained is appreciable but
for 2nd, 3rd and 4th image, there are many misclassified ix&k seen in the 2nd image,
many background pixels have been misclassified while infBabe many crack pixels as well
as background pixels have been misclassified. In case oftibe, besides cracks, there are
shades in the background of the image. As seen from Tabléhg 4nisclassification errors for
2nd, 3rd and 4th images are much higher as compared to ounggdpnethods of FL-MMSE
and FB-MMSE. Even though FL and FB approach could detectrheks in case of 2nd and
3rd image, the shaded part was present. FB-MMSE approadti detect the cracks properly
while eliminating the shaded portion in the image. This ®alkeflected in the percentage of
misclassification error as given in 5.4. Thus, FB-MMSE apptocould be the best choice

among Ostu’s, Kwon'’s, Hui-Fuang’s and other proposed nmigho

Table 5.3: Threshold values for different approaches

Sample Threshold Selection Methods

Images | Otsu’s| Kwon'’s | Hui-Fuang's| FL | FB | FL-MMSE | FB-MMSE
T T T T T T T

Image 1| 114 79 84 56 | 58 60 52

Image 2| 110 125 104 60 | 60 12 15

Image 3| 108 117 102 31| 58 37 32

Image 4| 114 120 106 72| 73 51 46
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Table 5.4: Performance evaluation of Otsu’s, Kwon’s, Huafg’s, FL, FB and new proposed
approaches for crack detection

Sample Threshold Selection Methods

Images | Otsu’s | Kwon’s | Hui-Fuang's| FL FB | FL-MMSE | FB-MMSE
PME PME PME PME | PME PME PME

Image 1| 18.45| 0.781 1.54 1.52 | 1.302 1.16 1.74

Image 2| 22.932| 30.7881 14.11 8.232| 8.232 4.5 3.5

Image 3| 17.51 22.6 15.0 28 4.5 3.1 2.8

Image 4| 14.44 | 16.11 12.51 6.964| 7.1 2.5 0.83

5.8 Conclusions

In this chapter, two schemes namely FL-MMSE and FB-MMSE Hee@n proposed for clas-
sifying object and background. Specifically, the schemee h@en proposed to detect cracks
of earth surfaces. In the crack images, the pixels have ttalssified as either unhealthy pixels
corresponding to cracks and others are healthy pixelsnQite edge pixels of images appear
like cracks and have been classified as healthy pixels. T$tedgram of such crack images
either tends to uni-modal or almost uni-modal. Under sucbuanstances methods such as
Otsu’s, Kwon’s and the proposed methods of chapter 4 pratlunsatisfactory results, where
as MMSE based method could segment the images properlyla8ynior typical image of
colour blind image, MMSE method could produce promisingilieshere other methods fail
to segment. Thus, the proposed MMSE based method yieldesflasédry results for typical
images and other general real world images. This schemeecasdal for detection of faults in

images representing faulty conditions of environment.
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Figure 5.3: (a) Original Image 1; (b) Histogram of originaiage with detected peaks and
threshold; (c) Avg. fitness vs generations of class “A” PGA &A,; (d) Avg. fithess vs genera-
tions of class “B” PGA and GA,; (e) Avg. fitness vs generatiohslass “A” with self loop (SL)
and without self loop(WSL); (f) Avg. fithness vs generatiorigiass “B” with self loop (SL)
and without self loop(WSL); (g),(h) and (i) shows segmerntedge using Otsu’s, Kwon’s and
proposed MMSE method respectively
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Figure 5.4: (a) Image 2; (b) Featured histogram with deteptaks and threshold; (c) Avg.
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Kwon’s, and proposed MMSE method respectively
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Figure 5.6: (a) Image 4; (b) Original histogram with detdcpeaks and valley; (c) Featured
histogram with detected peaks and valley; (d) Avg. fithesgareerations of class “A” PGA and
GA,; (e) Avg. fitness vs generations of class “B” PGA and GAA{Y. fitness vs generations of
class “A” with SL and WSL; (g) Avg. fitness vs generations @fsd “B” with SL and WSL; (h),
(1), (), and (k) shows segmented images using , Otsu’s, KsydfL-MMSE, and FB-MMSE
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Figure 5.7: (a) Origina image 1; (b) Original image 2; (c) gimal image 3; (d) Original im-
age 4; (e) Detected peaks and threshold in the histogranmiage 1; (f) Detected peaks and
threshold in the histogram for image 2; (g) Detected peakistlareshold in the histogram for
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Figure 5.8: (a), (b), (c) and (d) shows the ground trouth ienaigmage 1, image 2, image 3 and
image 4; (e), (f), (g) and (h) shows the segmented image ajétdaimage 2, image 3 and image
4 using the Otsu’s method; (i), (j), (k) and () shows the segtad image of image 1, image
2, image 3 and image 4 using the Kwon’s method; (m), (n), (@) @) shows the segmented
image of image 1, image 2, image 3 and image 4 using the prdpdBSE method.
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Figure 5.9: (a) Image 1; (b) Histogram with detected Peakbwatlieys; (c) Avg. fitness vs
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images using FL, Otsu’s, Kwon’s, and Hui-Huang Method
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Figure 5.10: (a) Image 1; (b) Histogram; (c) Featured histog (d) Detected peaks and valley;
(e) Avg. fitness vs generations of class “A” PGA and GA,; (f) Aviinee vs generations of
class “B” PGA and GA; (g) Avg. fitness vs generations of classwith SL and WSL; (h)
Avg. fitness vs generations of class “B” with SL and WSL; (j), (k) and (l) segmented images
using FB, Otsu’s, Kwon’s and Hui-Huang’s method respedfive
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Chapter 6

Adaptive Threshold based Segmentation

6.1 Introduction

In this chapter, the problem of segmentation of images aequinder uneven lighting condition
has been addressed. It has been found that the existing ¢fwbsholding methods and the
proposed global thresholding methods proved to be quitiicrent and hence, it has been
necessary to devise adaptive thresholding methods. Maptiad methods have been proposed
in the literature for quite some time [95, 37, 96, 97, 98, 99),1101, 102, 103, 104] and these
methods are based on different approaches. Recently, Hetazg [104] have proposed an
adaptive thresholding method based on the window mergipgoagph. The basic notion is to
adaptively select the window size for local thresholding &pproach uses Lorentz Information
Measure (LIM) as criterion for selection of windows. The daw merging is based on the
pyramid approach. Even though it provided satisfactonylte$or many cases, it produced poor
results in case of different uneven lighting conditionse Thethod although proved to be quite
effective, the efficacy of this method is found to greatly eleghupon the poor selection of initial
window size. This motivated to develop adaptive windows@ba criteria for determining local
thresholds. In this regard, two strategies namely windowging and window growing have
been proposed.

In window merging approach, three new criteria have beepgsed to select the win-
dow for segmentation. An overlapping window merging apphobhas been proposed and the
performance of this approach has been compared with thatafhget al.s approach. The pro-
posed approaches have been found to have a proper choiggalfvindow size for accurate

segmentation. Therefore, a window growing approach has pesposed to adaptively select
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windows. This overcomes the problem of initial window sizzéuse this method starts from
an arbitrarily small window size. The selected windows hlagen segmented using the pro-
posed segmentation approaches. The schematic diagrammfaposed methods has shown in
Fig. 6.1.

Adaptive Thresholding

Window Merging Window Growing

Weighted local

Biased-LIM and _ _
global statistigs feature entropy | Window growi

Entropy and Entropy based

Figure 6.1: Schematic diagram of the proposed adaptivetibtding methods

6.2 Huang’s approach

The window merging is based on the use of Lorentz informatn@asure. In the following,
we explain the Lorentz information measure [104] (LIM). et consider the image X(m,n)
having G gray levels. The amount of information containethis image is called as picture
information measure (PIM) and that indicates the least tgasl variation when converting the
image X(m,n) to a constant gray level image and PIM can besssgad by

G

PIM(z) = > h(i) — maz;h(q). (6.1)

1=0

[y

where, h is the gray level histogram of X(m,n); h(i) reprdsethe gray level histogram of

X(m,n). PIM(x)=0, if X(m,n) consists of a constant gray valand PIM(x)= max, when the
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gray level histogram h(i) is uniformly distributed. Thush@n X(m,n) has the least information,
PIM(x) has its minimum value and when X(m,n) has the mostrimtion, PIM(x) has its
maximum value. Assuming that total number of pixels of X(msN(x), the normalized PIM
(NPIM) can be determined by

NPIM(z) = PIM(z)/N(z). (6.2)

Defining the probability; ash(i)/N(x), the NPIM(x) can also be expressed as

NPIM(z) =1— max;p;. (6.3)

Thus,PI M, can be defined as

PIM(z) = Gf hi)— 3 h(i), 0<k<G. (6.4)
i=0 i€0(k)

where, k is the number ofc highest values of.(i) and §(k) =k highest value ofi(:). It
indicates the minimum variation number that converts argerta the image with k gray levels.

Correspondingly, normalizeB 1 M, is denoted asV P/ M, and is obtained by

NPIM(x)=1— Z pi), 0<k<Q@G. (6.5)
i€p(k)
where,p(k)=the k maximum number op;. Let S, = NPIMg_i(z), 0<k <G, then
k—1
So=0, Sg=1,andS;, = Zpl) (6.6)
1=0

By connecting the point&: /G, Si), k = 0,1, ..., G, a broken line called Lorentz informa-
tion curve can be obtained. For the sake of illustration, Big shows a Lorentz information
curve with G=3, in which the histogramis: 2/N/9,3N/9,4N/2, with N being the total num-
ber of pixels in an image. The area defined bellow the Lorerftriation curve (area of the
oblique lines in the Fig. 6.2) as the Lorentz information swea LIM(py, p1, ..., pa_1. When
the gray level histogram of image is uniformly distributéd, Lorentz information curve be-
comes a line from (0,0) to (1,1) (dashed line in Fig. 6.2. @#le, it will be the convex broken
line below the dashed line (solid line in Fig. 6.2). So wheMLUWlpy, p1, ...., pc_1) iINCreases,
the image contains more information; as LiM(p1, ...., pg_1) decreases, the image has less
information, and vice versa.

The Lorentz information has been used as the window mergitgyion by Huanget al.

[104] and segmentation is carried out using Otsu’s critef].
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(0,0) KIG
Figure 6.2: Example of Lorentz information curve (G=3)
6.3 Implementation of Huang's approach

Huanget al’s [104] approach is based on the window merging approacle. ifiage is parti-
tioned into small windows and LIM is computed in each winddithe LIM is greater than a
predefined threshold, then the window is selected for setahen or else the window is merged
based on the pyramid structure shown in Fig. 6.3. As seenfign6.3, the four windows have
been merged to form a new window and the window is again tesitdcthe criteria and if the
criteria is satisfied, then this window is fixed to be segmenidiis window merging procedure
is also shown in Fig. 6.4. As observed from Fig. 6.4(a), the feindows have been merged to
form a larger window in the next step. For example, windows w2, w5, and w6 are merged
to form a greater window as shown in Fig. 6.4(b). Similarlyye¥ windows have been merged
with the notion of pyramid structure. If these windows do satisfy the criteria, then they are

merged to form a single window as shown in Fig. 6.4(c).
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w1

w2 w3 W4 w1 W2 w3 w4
W5 W6 W7 w8 W5 W6 w7 w8
W9 W10 W11 W12 w9 W10 w11 W12
W13 W14 W15 W16 W13 W14 W15 W16
() (b)
w1 W2 w3 W4
W5 W6 w7 w8
W9 w10 w11 w12
w13 W14 W15 W16
(c)

Figure 6.4: Window Merging using Pyramid structure
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6.4 Local biased Lorentz information based window merging

This notion of merging is based on the comparison of localimition with global information.
The image is partitioned into number of windows and in eachdew Lorentz information
measure (LIM) is computed. This LIM of each window serves &sature of the window. The
histogram of these LIM features is computed and a threshaded on Otsu’s [5] approach is
obtained from this feature histogram. The LIM of each windswiased by the local statistics

of each window. The merging criterion becomes

Q0wh + @0L1M, > Trotsu (6.7)

Where,o,,, denotes the standard deviation of histogram of a given windal M,, denotes
the Lorentz information of the windowf;o.s,, denotes the threshold of the feature histogram

obtained by Otsu’s method; andg, are the associated weights.

6.5 Window merging based on weighted local and global statis
tics

Let the image be partitioned into N sub windows. &}, denotes the:'” window andL,
denotes the Lorentz information of th€ window. In each window of the image, Lorentz in-
formation measure (LIM) is computed and LIM of each windoveassidered as a feature of
the window. The Histogram of LIM of all the windows represetfie feature histogram and
provides the global information. Histogram of gray valuésaxh window provides local infor-
mation. The following is the proposed window merging crdgarusing the linear combination

of local and global statistics.

Nw

q10wh + Q20 fh(LIM) > J Z(xz‘fh — T§0tsu)? (6.8)

=1
Where, o, denotes the standard deviation of the histogram distobudf the window consid-
ered for mergingg 411y denotes the standard deviation of the feature histogyaemdg, are

the associated weights;., denotes thé'" feature of the feature histogram and the right hand

ifh
side is the standard deviation of the feature histogram thiighmeari;o.;,,, as the threshold of

the feature histogram determined by Otsu’s method.
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6.6 Entropy based window merging

The window merging criterion is based on entropy and featateopy of window. The image

is partitioned into sub-images and in each sub-image, ttro@nis computed based on the
histogram. In each sub-image, the edges are considereciasefe and the feature entropy
is computed. The entropy and the feature entropy of the botagje is also computed. The

window is merged with the neighbouring windows, if the felilag condition satisfied.
H, >Th, subjectto the constraintH,; > Thy (6.9)

The thresholdg9’h andT'% in the above inequalities are chosen based on the totalpgntfo
the image and that of the feature image.

Based on the above decision criterion, a window is eithegetkor unmerged to be seg-
mented. The windows are merged to be tested for further mgrdifter windows are selected
to be segmented are segmented with Otsu’s and our proposdaseof FLPGA, FBPGA
and MMSE approaches. The windows are also segmented ussugs @tethod for the sake of

comparison.

6.7 Adaptive window selection based on window growing

It has been observed in the above notion of window mergingttieasegmentation accuracy
greatly depends upon the proper choice of initial windove slm order to ameliorate the above
effect, a window growing method is proposed. The initial dow size considered is very
small and the window selection depends on both the entrofilyearay values and the feature
entropy. We consider edge as a feature and compute the gwifrtdpe feature. If the following
constraint information condition is satisfied, the wind@vselected to be segmented or the
window size is incremented xw and again the selection criterion is tested. If the enhanced
window satisfies the selection criterion, then a new windewadnsidered from the rest of the

image. The criterion for fixing the window is
H, >Th, subjectto the constraintHd, ;> Thy (6.10)
Where,H,, represents the entropy of the window alid, represents the entropy of the feature

window.
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6.8 Implementation of proposed window merging and win-

dow growing approaches

Besides pyramid structure, we have proposed window ovarggechnique for window merg-
ing approach. Selection of windows in these methods neels based on the three proposed
criterion. The overlapping approach is shown in Fig. 6.5 Tthage is partitioned into say, for
example, 16 windows and for example wl, w3, w4, w8, w13, anfl gdtisfy the selection cri-
terion and therefore, they have been selected. Since, wanadn7 do not satisfy the criteria,
they are merged with w3 to form a window consisting of w2, w8, wnd w7 and this larger
window is tested with the proposed criterion. These mergediows are shown with dotted
lines. Since, w5 does not satisfy the criteria, this is meéngéh w6, w9, and w10 to form a
window to be tested with the criteria. Analogously, w1l isges with w12, w15, and w16 to
form a window to be tested with the criteria. These mergediaivs satisfy the criterion and
hence, selected to be segmented. Finally, w14 is mergedwif wll, w10, wl6, wl2, w8,
w7, and w6 to form a large window as shown in Fig. 6.5(f) tosgtihe criteria. As seen from
Fig. 6.5(f), all the merged blocks have been tick marked ath, the whole image has been
considered in this process.

The notion of merging affects the histogram distributiod #ms effect is demonstrated in
Fig. 6.6. Fig 6.6(a) shows a hexagon image partitioned iftevihdows and the corresponding
histograms are shown in Fig. 6.6(b). It may be observed Heahistogram of most of the win-
dows, except few ones, exhibits unimodal distribution aedde, unsuitable for segmentation.
The windows have been merged based on the pyramid structdrthase four windows after
merging are shown in Fig. 6.6(c). The corresponding histogr are shown in Fig. 6.6(d),
where it may observed that the histogram in each window @shiimodality condition and
hence, can be segmented by proposed approach. Thus, tbe pnbtmerging helps to add
information so that the merged window can be segmented gyope

For this example of hexagon image, the histograms obtaipegifamid merging approach
are shown in Fig. 6.7 (a) and (b). Fig. 6.7(a) shows the histogoefore merging and after
merging, the histograms are bimodal with overlapping ctissibution. When the windows
are tested for the proposed biased Lorentz condition, onme mimdow that is w6 is selected as
shown in Fig. 6.8(a) and after pyramid merging, histografitb®merged windows are shown

in Fig. 6.7(b), where histograms are bi-modal with a lessgree of overlapping of the class
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distributions. When the windows are tested for the propdsaded Lorentz condition, two
more windows that are wl and w2 are selected as shown in Rg§b)6.Hence, biased LIM
method is expected to obtain more accurate thresholds arue hieetter segmentation.

The effect of overlapping concept for window merging is shaw Fig. 6.9. The image
is partitioned into eight windows and the correspondingdeins have been merged based on
the notion of overlapping as shown Fig. 6.9(c). The histograf the merged windows are
shown in Fig. 6.9 (d), where it can be observed that the hiatag exhibit clear bi-modality
and hence, can be segmented.

The notion of window growing is illustrated in Fig. 6.10. Fig.10(a) shows that a small
window has been selected initially and the window is increted in the direction of the arrow
and the window is fixed after satisfying the criterion. Onmee window has been selected for
segmentation, subsequent window growing starts from gibegion of the image as shown in

Fig. 6.10(c). This procedure is adapted until all the padiof the image have been considered.

6.9 Results and discussions

Four different images, with non-uniform lighting condit® have been considered to validate
the proposed adaptive thresholding scheme. The images lz#gagon image, crow image,
rabbit image and rice image shown in Fig. 6.11(a), (b), () &) respectively. It may be
observed from these figures that different portions of thegenare with different lighting con-
ditions but the images have object/ objects and backgrddadce, this is a two class problem.
Itis apparent as if these images have been acquired undemmfamm lighting conditions. The
histograms of these images have been shown in Fig. 6.12. ge\adad, the first one appears to
be tri-modal, the second bi-modal with unequal distribogicthe third is bi-modal with many
misleading kinks, and fourth is almost uni-modal. It is itikely expected that, except for
Fig. 6.12(b), global thresholding method will yield poosud. The results obtained by Otsu’s
[5] method are shown in Fig. 6.13, where it may be observetthgmethod could not seg-
ment the hexagon, crow, and rice grain images but couldgblgrsegment the rabbit image.
The ground truth images are shown in Fig. 6.13. This has aftected in the percentage of
misclassification error (PME). The PME is defined as

_\BOmBT|+|FOmFT\

PME =1
| Bo | + | Fo |

(6.11)
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Figure 6.5: Window overlapping concept with LIM criteriga) Image is devided into 16
subimages (Windows), (b) w1, w3, w4, w8, wl3,wl6 are satsfiee criterion, (c) w2 is

merged with w3, w6 and w7 to form a window w2w3w6w?7 after Sgirey the criterion, (d) wb

is merged with w6, w9 and w10 to form a window w5w6éw9w10 afisfying the criterion,

(e) wll is merged with w12, w15 and w16 to form a window wllw13w16 after satisfying
the criterion, (f) wl4 is merged with w15, w11, w10, w16, wi28, w7 and w6 to form a
window wew7w8w10wl1lwl2wl4wl5w16 after satisfying theemnion

Where, background and foreground are denotedsgyand F,, for the original image, and
by By and Fr for the test image. The PME of the rabbit image is 2.93, whicmuch less
as compared to that of hexagon, crow and rice grain image.cajanis found that global
thresholding approaches are not suitable to segment imegpsred under uneven lighting
conditions. Fig. 6.16 shows the results obtained using Heral's [104] adaptive window
selection approach with Lorentz information measure. Thages have been partitioned into
sub-images with window size 100x100 for hexagon image, 80e6 crow image, 75x125
for rabbit image, and 32x32 for rice image. The windows tlais§ed the Huanget al.’s
[104] criteria are segmented by Otsu’s approach and thoseotsatisfy are merged in the
pyramidal structure to form a new window to be segmented. diffierent window sizes with
the corresponding thresholds are tabulated in the Tabld=6oIn Table 6.1, it may be seen that

there are two merged window&’” and10** and the corresponding thresholds have also been
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given in Table 6.1. As observed four windows namelyf (4", 7*" and8*") have been merged
and (1%, 12", 15", and16") windows have also been merged and the thresholds detetmine
are 78 and 60. As observed from Fig. 6.16, Huang's approagld cmt segment the image
properly. In case of hexagon image, the left portion of thage which is poorly lighted could
not be segmented and also there are some black portions iohélge inside the white portion
as shown in Fig. 6.16(a). The corresponding PME is 8.17. &fidackground portion of the
crow image has been merged with the foreground as shown irf6Hi§(b). In case of the rabbit
image of Fig. 6.16(c), the background portion has been assdied and in case of rice grain
image, many grains have been merged to form a class as shdwg i8.16(d), thus increasing
the classification error. Accordingly the PMEs for crow,lvdpand rice image are 5.84, 14.77,
and 8.36 respectively.

It can also be observed that many pixels in the uneven lightetions could not be seg-
mented. We have proposed three windowing schemes and tld®ewsnare merged based on
pyramid approach of Huang’s method [104]. The windows arggettbased on the proposed
overlapping concept. Once the windows have been fixed basédeomerging criterion, the
windows are segmented by Otsu’s [5] approach, the propo§s4l IBPased scheme and the

MMSE based scheme. The following window merging based sekdrave been described.

6.9.1 Window merging

Huanget al. [104] method fixed the windows based on Lorentz Informatiomakure (LIM)
criterion and after the windows have been fixed, windows egenented using Otsu’s segmen-
tation method. We have selected the window based on follpwiree criterion and after the
windows have been selected, the windows are segmented tnasieel proposed PGA based FL

approach and the MMSE based approach.
Biased Lorentz information measure based criterion

Pyramid approach

The image is partitioned into sub-images. In case of hexagage of Fig. 6.17, the image
is partitioned into an initial size of 100x100 and the di#fiet windows selected are tabulated
in Table 6.2. As seen from the table, windows nanigly 24, 5", and6'* have been merged

in a pyramid structure and similarly<, 4, 7 and8** and 9, 10", 13", and 14" have
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been merged by pyramid structure. The thresholds obtapn&itdu’s, PGA and MMSE based
methods have been tabulated in Table 6.2. The overall segtr@nis the union of all the
segmented windows. As observed from Table 6.2, some of tlestibld are different, for
example, for thet’” window, Otsu and PGA based methods produced same threshoih8e
MMSE method has produced 111, which is quite different fréva other two. The results
obtained have been presented in Fig. 6.17, where the reduitsang’s approach have been
given for the sake of comparison.

As observed from Row 2, the shape of the hexagon could bergesséut some mid
portion of the image has been misclassified as backgroundlogausly, for crow image the
left hand bottom corner of the background has been mistlkegsit foreground. The PME
for this is 5.52. Some portions of the rabbit image have aksenbmisclassified but for the
rice grain image all the grains have been segmented fromablegbound and accordingly the
PME is 1.38. There is an improvement in the accuracy of theneegation, where the selected
windows have been segmented by PGA based method. As obssyre&ow 3 of Fig. 6.17,
the hexagon has almost been classified with barely minimumbeu of misclassified pixel
within the hexagon portion and near one edge. In case of tralpli rice grain image, the
images have been classified properly but in case of crow inege are some misclassification.
Accordingly, the PME for these images have been reducedsatadbiilated in Table 6.7.

As observed from Row 4 of Fig. 6.17, use of MMSE method for segaion resulted
in degraded performance as compared to that of using PGAbsareed from the results, the
left portion of the hexagon and some portion of the backgddwewve been misclassified. Some
background portion of the crow image has also been mist@ikedsiThere is less misclassifica-
tion in case of rabbit and rice grain images. This has alsa beffected in the PMEs tabulated
in Table 6.7. Except for rabbit image, where PME is 1.83, tMER are higher than that of
the PGA based segmentation. Hence, in case of local biadédbased criterion, use of PGA

based algorithm yielded satisfactory results.

Window overlapping approach

Fig. 6.18 shows the results obtained, where biased LIMrasitetogether with the notion of
window overlapping has been used for selection of windows:edhe size of the window have
been fixed, Otsu’s, PGA and MMSE based segmentation mettagskieen used to segment

over the windows. The given image is partitioned into sulbges and the windows are merged
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based on the notion of overlapping of section 6.4. The wirglhat overlapped to form a larger
window are given in Table 6.3. For examplé’, 27¢, 5t and6* windows have been merged
to form a new window and the threshold obtained by Otsu is 8A B 37, and MMSE is 40.
These four threshold values have been used to segment tgesmn case of other or?,
4th 7th - and 8™ are merged together to form a new window, whose thresholetsrohined
by Otsu, PGA, and MMSE are 37,71, and 62 respectively. Thesttold obtained by MMSE
is quite different from Otsu and PGA approach. The seleatbwindow by the concept of
overlapping yields better results as observed from Fig8.680bserving Row 2 of Fig. 6.18, itis
found that some portion of hexagon has been misclassifiethanobackground portion in case
of crow image has been misclassified. The rice grain imagééas classified properly where
as some misclassified pixels are present in case of the iatdge. The result improved while
using the PGA approach and it can be observed that the hexage almost be segmented
properly. Even the non-uniform lighted portion has beermssifeed properly. Comparing the
results of row 2 of Fig.6.18 with 6.17, there are visible imygments in the results obtained by
window overlapping notion. The PME accordingly reduced @sgared to that of using the
pyramid approach. As observed for the pyramid approach oasef MMSE based scheme did
not improve the result rather deteriorated the overall ssgation. This effect can be observed
from row 4 of Fig 6.18. The results obtained by the proposgui@xrhes have been found to be
better than that of Huanet al.’s method.

Weighted local and global statistics

In this case, the image has been partitioned and the windaweslbeen merged using the pyra-
mid approach of Huangt al.. The windows are fixed based on the criterion given by (6:8), a
the windows merged and unmerged are given in Table 6.4. Teslblds obtained by these
methods have also been tabulated in Table 6.4. Observingsh#s presented in row 2 of 6.19,
Otsu’s method produced results with misclassificationd@she hexagon and also some mis-
classification in the background of crow image. The corredpw PMEs have been tabulated
in Table 6.7. The results improved while using PGA based segation scheme. The hexagon,
except very few pixels, could be segmented properly ancether some misclassified pixels
in case of crow image. The result of rabbit image improvedamspared to Otsu’s based ap-
proach. Rice grain image also could be segmented propdrly.€ffect has also been reflected

in the values of PME tabulated in Table 6.7, which are 1.88,418, and 1.57. The segmented

131



results further determined with the use of MMSE approachséen from row 4 of 6.19, some
portion of hexagon and the background portions have beetiassfied. There are more mis-
classification in case of crow image. However, rabbit anel gi@in images could be segmented
properly. Thus in this case also, the PGA based approaclegmyperior segmentation results

to Otsu’s and MMSE based methods.

Entropy based criterion

In this scheme, the image is partitioned into sub-images@adivs) and the windows are merged
based on the entropy based criterion given by (6.9). Theovirscconsidered have been given
in Table 6.5. The initial window size is (200x80), thus thare 10 sub-images (windows). It
is observed from Table 6.5 that except 1st and 6th window atiredows satisfie the criterion.
The 1°t and6!" windows are merged with"d,374, 4t 7th 8t and9** windows to form a new
window, which satisfied the criteria given in (6.9). Threlslsoobtained for different methods
also have been tabulated in Table 6.5. The results obtaipetifierent methods have been
presented in Fig. 6.20. As seen from row 2 of Fig. 6.20, th@ber image has been segmented
properly with PME 1.5619. This is due to few misclassifiedgtsxat the left most corner of
the hexagon. This criteria with Otsu’s method of segmemagiroduced appreciable result
for the rice grain image. Except few misclassified pixelg, blackground and rabbit could be
segmented properly. But in case of crow image, a portion@btckground has been classified
as foreground and hence, PME is 11.60. These results imghsaestantially when PGA based
segmentation scheme has been applied for segmentingediffeindows. As observed from
row 3 of Fig. 6.20, the hexagon image has been segmentedrjiyropth a minimum PME
of 1.533. The improvement of PGA based method over allotlseevident in case of crow
image, where background has been classified properly. Tinespmnding PME is as low as
1.48. Similarly the rabbit and rice grains have been claskiroperly. The PMEs for rabbit
and rice grain are 1.328 and 1.915 respectively, which isddo be minimum in case of all the
window merging approaches. As we moved to MMSE method, thdtres satisfactory but not
as good as PGA based method. It may be observed from row 4 o6FQ that there are few
misclassified pixels are observed in all images and this ges leflected in PME. As observed
from Fig 6.20, PGA based method produced best result amoagdrt al’s, Otsu’s, MMSE
based methods. Thus, entropy based criterion with PGA bisesholding proved to be the

best among all.
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6.9.2 Window growing

It has been found in window merging that the accuracy of segatien greatly depends upon
the proper choice of initial window size. The initial windosizes in case of the previous
approaches have been selected on trial and error basis, thleusindow growing approach is
adopted. In this case, a small window of (50x10) is selectetiacremented by (5x1) till the
window satisfies the entropy based criterion given in (6.TO different windows that satisfied
the criterion are tabulated in Table 6.6 and the threshadaesponding to each window are
given in Table 6.6. The overall segmentation is the unioreghsentation over all the windows.
Results obtained by Otsu’s method is shown in row 2 of Figl6vhere it may be observed
that the hexagon image could be segmented properly but #rereisclassified background
pixels in crow image. There are few misclassified pixels iobiaand rice grain image. The
result improved when we moved to PGA based approach. Thésedained by PGA based
approach are presented in row 3 of Fig. 6.21, where it may Iserebd that the hexagon
image has been segmented properly and a few background phiae¢ been misclassified in
case of crow image. As observed, very few misclassified piaet there in case of rabbit
and rice grain image. The result deteriorated when MMSE dasethod has been applied for
segmentation. This is evident from the results presentedvin4 of Fig. 6.21, where there
are many misclassified pixels in case of rabbit image. The FV&Rinimum in case of PGA
based approach. The PME for hexagon, crow, rabbit and rai@ gre 1.58, 2.98, 1.03, and
0.75 respectively. There are substantial improvemenblyigind quantitatively over Huang’s
approach. Thus, in window growing approach also, the PGAdasheme performed best
among all other method.

In both window merging and window growing approaches, th&B&sed scheme proved

to be the most effective scheme.

133



Table 6.1: Threshold values for Huang’'s Approach (Hexagoade:400x400, initial window

size 100x100)

Starting End Huang’s
Window point point | Approach
SL No T
1 (2nd W) (1,101) | (100,200)| 46
2 (3rd W) (1,201) | (100,300)| 67
3 (4th W) (1,301) | (100,400) 84
4 (8th W) (101,301)| (200,400)| 89
5 (12th W) (201,301)| (300,400)| 90
6 (14th W) (301,101)| (400,200)| 47
7 (15th W) (301,201)| (400,300)| 66
8 (16th W) (301,301)| (400,400) 82
9 (3+4+7+8th W) (1,201) | (200,400)| 77
10 (11+12+15+16th W) (201,201)| (400,400) 78
12 (all windows) (1,1) | (400,400) 60
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Figure 6.8: Pyramid structure Window Merging Concept withsked LIM: (a) Histograms of
the sub-images with the selected windows are tick markeddgmentation; (b) histograms of
the sub-images after merging and the selected windowsckrenarked for segmentation.
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Figure 6.10: Window Growing Concept
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Table 6.2: Pyramid structure window merging (Biased Largrfelected windows and thresh-
old values determined by different methods (for hexagorgerat size 400x400, initial window

size=100x100)

Starting End Ostu PGA MMSE
Window point point | (Methodl)| (Method2)| (Method3)
SL No T T T

1 (2nd W) (1,101) | (100,200)] 46 46 52

2 (3rd W) (1,201) | (100,300) 67 64 73

3 (4th W) (1,301) | (100,400) 84 84 111

4 (6th W) (101,101)| (200,200) 39 30 42

5 (8th W) (101,301)| (200,400) 89 81 66

6 (12th W) (201,301)| (300,400) 90 92 62

7 (14th W) (301,101)| (400,200)| 47 45 37

8 (15th W) (301,201)| (400,300) 66 66 49

9 (16th W) (301,301)| (400,400) 82 82 102

10 (1+2+5+6th W) (1,1) | (200,200) 36 39 43
12 (3+4+7+8thW) | (1,201) | (200,400)| 77 72 65
13 (9+10+13+14th W)| (201,1) | (400,200)| 35 37 44
14 (11+12+15+10th W) (201,201)| (400,400) 78 71 60

Table 6.3: Window overlapping (Biased Lorentz): Selectettdews and threshold values deter-
mined by different methods (for hexagon image of size 400x#0tial window size=200x100)

Starting End Ostu PGA MMSE
Window point point (Methodl)| (Method2)| (Method3)
SL No T T T
1 (4th W) (1,301) | (200,400), 87 88 67
2 (8th W) (201,301)| (400,400)| 88 92 65
3 (1+2+5+6thW)| (1,1) | (200,400) 36 37 40
4 (3+4+7+8th W)| (201,201)| (400,400), 37 71 62
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Table 6.4: Window Merging (Local & Global biased approach¢iected windows and thresh-
old values determined by different methods (for hexagorgerat size 400x400, initial window

size=200x100)

Starting End Ostu PGA MMSE

Window point point (Method1)| (Method?2)| (Method?3)
SL No T T T
1 (3rd W) (1,201) | (200,300) 67 62 71
2 (4th W) (1,301) | (200,400) 87 81 67
3 (7th W) (201,201)| (400,300) 67 66 72
4 (8th W) (201,301)| (400,400) 88 92 65
5 (1st+2nd+5th+6th W) (1,1) (400,200) 36 37 40

Table 6.5: Window Merging (Entropy based): Selected winsl@and threshold values deter-

mined by different methods (for hexagon image of size 400x#0tial window size=200x80)

Starting End Ostu PGA MMSE
Window point point (Methodl)| (Method2)| (Method3)

SL No T T T
1 (2nd W) (1,81) | (200,160) 35 36 39
2 (3rd W) (1,161) | (200,240) 54 49 57
3 (4th W) (1,241) | (200,320) 74 73 55

4 (5th W) (1,321) | (200,400) 90 94 111
5 (7th W) (201,81) | (400,160) 34 32 38
6 (8th W) (201,161)| (400,240) 54 51 58
7 (9th W) (201,241)| (400,320) 73 74 54

8 (10th W) (201,321)| (400,400) 91 101 100
9 (1+2+3+4+6+7+8+9 W) (1,1) (400,320) 54 60 45

140




Table 6.6: Window growing approach: Selected windows amdstiold values determined
by different methods (for hexagon image of size 400x40Gjainwindow size=50x10, row
increment=>5, col increment=1)

Starting End Ostu PGA MMSE

Window point point (Methodl)| (Method2)| (Method3)
SL No T T T
1 (1,1) | (400,175) 32 34 41
2 (1,175) | (295,234)| 55 51 63
3 (1,234) | (335,301) 71 68 77
4 (1,301) | (150,331) 82 80 60
5 (1,331) | (155,362) 88 94 64
6 (1,362) | (250,400) 96 86 89
7 (150,301)| (360,343) 83 93 93
8 (155,343)| (300,372) 92 94 65
9 (170,356)| (400,400) 95 83 117
10 | (295,175)| (400,240) 57 60 64
11 (235,330)| (400,400) 91 105 73
12 (310,235)| (400,400) 73 78 88
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Table 6.7: Threshold values and misclassification error)MEdiffrent window size using the
FB approach.

Different Approach Percentage (%) of Missclasification error of different ireag
Hexagone Image Crow Image| Rabbit Image Rice Image
Otsu’s Approach 10.8850 15.4229 2.9260 18.5837
(Global Thresholding)
Huang’s Approach 8.1781 5.8403 14.7740 8.3664
Approach 1 Method1l 2.4238 5.5278 1.5913 1.3840
(Biased Lorentz Method?2 1.7706 3.9639 1.1940 1.7441
Pyramid approach) | Method3 3.6331 10.4976 1.1830 3.1250
Approach 2 Method1 2.6519 11.3550 1.8793 1.6479
(Biased Lorentz Method?2 1.84 1.8394 1.48 2.4
Overlapping approach) | Method3 2.9838 4.7505 2.9293 2.6382
Approach 3 Method1l 2.5769 12.5830 1.4320 1.5808
(Weighted Local & Method2 1.8863 4.9326 1.1847 1.5701
Global approach) Method3 4.9069 13.4087 1.5727 6.7154
Approach 4 Method1 1.5619 11.6099 1.5033 1.3443
(Entropy based Method?2 1.5337 1.4819 1.3280 1.9150
approach) Method3 2.3444 2.1016 1.9033 2.6430
Approach 5 Method1l 1.5776 10.6323 2.4767 1.4252
(Window Growing Method?2 1.5844 2.9880 1.0360 0.75
approach) Method3 2.5062 3.9395 2.4333 5.2017
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(a) (b) (c) (d)

Figure 6.11: Nonuniform lighting images (a) Hexagon (4034 (b) Crow (400x512); (c)

Rabbit (300x500); (d) Rice (256x256)
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Figure 6.12: Corresponding histogram of the (a) HexagonC(bw; (c) Rabbit; (d) Rice

&

Figure 6.14: Corresponding ground truth images manualtgtacted
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(@) (b)

() (d)

(a) (b) () (d)

Figure 6.16: Segmented images using Huang’s Approach withnild window merging. Ini-
tial window size: (a) 100x100; (b) 50x64; (c) 75x125; and3a@x32
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Row 4: Segmented images using proposed Biased Lorentaiatmn and method 3 (MMSE).

Figure 6.17: Adaptive window merging with Biased Lorentzatyid structre and segmentaion
of windows using Otsu’s and proposed method1, method2, atdod 3
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Row 4: Segmented images using proposed Biased Lorentariatmn and method 3 (MMSE).

Figure 6.18: Adaptive thresholded images using Biasedrtaid/indow Overlapping approach
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Row 4: Segmented images using proposed local global Infiemand method 3 (MMSE).

Figure 6.19: Adaptive window merging in pyramid structusgng the local global information
and segmentaion of windows using Otsu’s and proposed méthoethod2, and method 3
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Row 3: Segented images using proposed entropy basedarigerd method 2 (

Row 4: Segmented images using proposed entropy basedariteard method 3 (MMSE).

Figure 6.20: Adaptive window growing method (Window ovepang) with entropy based cri-
terion and segmentaion of windows using Otsu’s and proposstiodl, method2, and method
3
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Row 4: Segmented images using proposed window growingicmtand method 3 (MMSE).

Figure 6.21: Adaptive window growing with entropy basederion and segmentaion of win-
dows using Otsu’s and proposed methodl, method2, and mathod

149



6.10 Conclusions

In this chapter, segmentation of images acquired underamigyhting condition has been car-
ried out. It has been observed that global thresholdingagmpr failed to segment these images
and hence, adaptive thresholding methods are necessaradélptive thresholding approaches
are based on window merging and window growing notions. & e criteria have been pro-
posed for window merging. It has been observed that with awntherging, segmentation of
the proper portion of the image could be selected. The winolvlapping approach is based
on the notion of adding neighbourhood information in thegmand hence, the adjacency is
maintained for accurate segmentation. The methods, whapaed with Huang’s approach
showed improved performance. However, it has been obsénatthe segmentation accuracy
greatly depends upon the proper choice of size of the imitiatlows. This has been achieved
by trial and error approach. In order to overcome this probkewindow growing approach has
been proposed based on the notion of entropy and featur@gnifhe accuracy of segmenta-
tion in window growing approach is found to be better than tiavindow merging approaches

and Huang’s method.
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Chapter 7

Conclusions and Future Work

The problem of image segmentation has been addressed hs&spalding based techniques.
Often, in practice, it is necessary to separate object foenbtackground and hence, viewed
as a classification problem. If there are multiple objecta stene, the problem boils down to
a multiclass problem. Specifically, for fault detectionhids been necessary to separate faulty
region from the healthy region and hence a classificatiohlpro.

Since, this thesis aimed at developing schemes suitabhe feal-time standpoint, the
focus has been on devising novel strategies and algoritkpisigng the notion of thresholding.
In this thesis, GA and PGA based schemes have been proposkthio optimal threshold. By
and large, most of the thresholding techniques are basdtedndtogram of the original image.

A new notion of GA and PGA based clustering has been propasdewMise thresholding
based schemes. The histogram of images are by and larg@nwdél and nonlinear in nature.
Therefore, the problem is viewed as handling nonlinear imoltial function. Each mode in
a multimodal histogram corresponds to a class and thereddmihs many mode as there are
classes. Each mode can be viewed to represent a class armd tietection of class distributions
of a histogram has been viewed as detecting the peaks ofsteglam. If the histogram can
be viewed as a nonlinear multimodal function, then deteatnom of the classes reduce to the
problem of detection of all the peaks. In nonlinear multi@lddinction frameworks, that is in
an optimization framework, these peaks correspond to aipte solutions that is global and
local optima of the nonlinear functions. Therefore, inifiattempts have been made to develop
schemes that would detect all the niches or peaks of a mudairionction. In such cases, basic
GA (BGA) that has been widely used as function optimizatiosbtem would have reproduced

one optimal solution. Therefore, it could be conceived B@A will fail to detect all the peaks
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and hence, the focus changed to devise schemes that woald ditfpeaks.

It has been known that GA based crowding maintains stablgpephlations at different
niches of multimodal function. GA based crowding algoritivimen tested on multimodal func-
tion could maintain stable sub-population at the respeatiches and hence, all solutions or
classes could be determined. The major bottleneck of tliierse was found to be compu-
tational burden. In order to make this scheme a viable orefdtus shifted to devise PGA
based scheme. PGA based clustering algorithm has beensgapad the iterations taken was
much less (some times 40 times less) than that of GA basedeshéurthermore, PGA based
schemes could detect all the peaks and hence, classestabcuridhe effect of the network
topology, migration policy, rate of migration, and type agmnation on the rate convergence has
been studied and it was observed that the migration polidyrate of migration, greatly influ-
ence the convergence rate. In order to accelerate the gmma of the PGA based schemes, a
new interconnection model has been proposed based on a tien obintra-deme migration
besides the existing inter-deme migration.

This scheme accelerated the convergence to some extentrexggh not radically. It
was also found out that the computational burden increaghsmerease in the neighbourhood
structure of the net-topology and improvement on the resal not substantial. Hence, the
first order net-topology with intra-deme migration was adaesed. The proposed PGA with
this interconnection model converged faster than the witkelf-loop model. The convergence
analysis of the proposed algorithm has been carried outtendlgorithm has been shown to
converge with a bound. The proposed PGA based algorithndsudcessfully be tested for
two, four, and eight class nonlinear multimodal functioms.all these cases, the number of
demes chosen is four. Even with decaying sinusoids, theitigocould detect all the peaks
and hence, all the classes. The only bottleneck of this seh&that the parameters of PGA has
been chosen on trial and error basis. The PGA based scherhedrafound to converge within
few tens of iterations.

The same notion has been used to develop thresholding belseshas of chapter 4. In
this case, the shape information of the histogram has beet tasdevice the thresholding
based schemes. Besides, the threshold has also been dhtamdeature plane as opposed
to original histogram. The feature pixels have been geedrahd the feature histogram has
been constructed. Threshold is obtained from the featstednam as opposed to the original

histogram. The histogram distribution consists of modessponding to a class and the over-
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lapping of the class distribution occurs either due to norstypical nature of the image. It has
been observed that the degree of overlapping reduces stibByan case of feature histogram
thus paving the way for determination of correct threshBI@A based clustering schemes have
been used to determine the peaks followed by PGA based sdoedstermine the valley. It
has been found that the Feature based (FB) scheme produts#dcsary results as compared
to Otsu’s and Kwon'’s and FL approach.

In order to deal specifically with faults in a scene such athesurface cracks, MMSE
based schemes have been developed. The cracks could beafdrmll size and the corre-
sponding histogram looses bi-modality or tends to beconmmaaufal. In such situations the FL,
FB, Otsu, and Kwon’s method produced poor results whereaMtiSE based scheme pro-
duced satisfactory results. MMSE based schemes have baed to produce vary satisfactory
results in case of image for colour blindness and earth seideacks. The only bottleneck of
the MMSE scheme is that the accuracy depends upon the assorapthe peak as the mean
of the class. It is considerable that for large uneven dhstions, the detected means may not
correspond to the actual mean and hence, the detecteddittesly yield more classification
error.

It has been observed that the proposed scheme, Otsu and Kettwadrnproduced poor
results for images acquired under uneven lighting conastid herefore, adaptive thresholding
methods have been proposed to obtain local thresholds. ridomi merging approach, the
window selection criterion depends on the three proposkerion. Based on this criterion,
either the image is merged or unmerged. It has been foundhautte results obtained by the
proposed methods are superior to that of Huang’s approacthéiwshortcoming of Huang’s
approach, that is the accuracy of segmentation dependsthp@noper choice of window size,
still persists with our proposed window merging schemesis Has been overcome by the
proposed window growing approach. The proposed schemd pootiuce satisfactory results

for different images acquired under different uneven ligghtondition.

7.1 Future work

PGA based scheme has been proposed to deal with discreigraisis. The peaks and valleys
have been detected by PGA based search algorithm. Thesrebtdined are based on the serial

implementation of the parallel algorithm. Hence, paral@blementation of the algorithm is
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worth pursuing.

The feature based schemes have been developed to minireizeéhapping class dis-
tribution error. This can be extended to handle noisy images images with overlapping
distributions. MMSE based schemes have been developeddotdaults in a given image.
Although MMSE based algorithm produced promising restitis,schemes can be modified to
parametrize the class distribution as opposed to assuimingdak at the mean of the classes.
Robust MMSE based schemes shall be modified for multiclagsgmms. The scheme also can
be modified to detect other type of faults.

Adaptive thresholding methods have been proposed basedapmtivzely selecting win-
dows based criteria. Two dimensional entropy based aitan be defined to handle window
selection. Adaptive thresholding strategies may be ddwsethe feature plane. The adap-
tive window merging schemes have been implemented sedathyits parallel implementation
is worth pursuing. Multi-resolution based adaptive thoddimg scheme may be designed to

handle images under uneven lighting condition and noisylitioms.
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