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Abstract

System models are essentially required for analysis, controller design and

future prediction. System identification is concerned with developing models of

physical system. Although linear system identification got enriched with sev-

eral useful classical methods, nonlinear system identification always remained

active area of research due to the reason that most of the real world systems

are nonlinear in nature and moreover, having non-unique models. Among

the several conventional system identification techniques, the Volterra series,

Hammerstein-Wiener and polynomial model identification involve consider-

able computational complexities. The other techniques based on regression

models such as nonlinear autoregressive exogenous (NARX) and nonlinear au-

toregressive moving average exogenous (NARMAX), also suffer from difficulty

in choosing regressors.

To overcome the above difficulties, nonlinear system identification using neural

networks (NNs) have been given considerable attention over last three decades.

This is because NNs has the capability of approximating almost every nonlin-

ear function. However, it requires appropriate training to optimally tune the

wights of the NN. For this, conventional methods such as back-propagation

(BP), Levenberg-Marquardt (LM) etc are usually applied with the objective

that a cost function e.g. mean squared error (MSE) between the actual and

estimated output gets minimized. However, these conventional techniques suf-

fer from the problem of local minima and are much sensitive to initial values

of weights. Hence, to overcome the problem of initilization and local minima,

evolutionary algorithms (EAs) have been paid importance as attractive ap-

proach for NN training. Moreover, the same EA can be used to train different

NNs such as feed-forward, recurrent and higher order NNs, to save a lot of

computational effort. The objective of this thesis is to exploit the global op-

timization properties of evolutionary computation (EC) approaches to train



NNs so that one can acheive successful system identification strategies using

NNs.

First this thesis considers devloping sequential hybridization (SH) algorithms

for nonlinear system identification by combining differential evolution (DE)

with the local search algorithm i.e. LM algorithm in sequential manner. The

efficiency of this hybrid training increases by combining the DE’s global search

ability with LM’s local search ability to fine tune the search space. Initially

DE will locate a point i.e. a set of initial weights for the local search LM,

in the basin of attraction of the global minimum. LM starts its search with

these initial weights so that it will be easy to obtain global optimal weights.

By pursuing a number of simulation studies, the effectiveness of the proposed

SH algorithm used as system identifier has been accessed. Studies on the ef-

fectiveness of this proposed DE+LM+NN identifier has been made together

with the convergence analysis of this approach.

The problem of SH algortihm lies on deciding when to stop one algorithm

and start the next one. So, the thesis proposes other type of hybrid algorithm

known as memtic algorithm (MA) where the local search BP algorithm is used

as an operator like crossover and mutation operator for genetic algorithm (GA),

particle swarm optimization (PSO) and DE. A detailed MSE analysis for up-

dating the weights of a NN has been made. From this, it is observed that the

proposed differential evolution back-propagation (DEBP) memetic algorithm

trained NN approach to system identification is an efficient method that of-

fers better optimal solutions compared to GA and PSO based identification

schemes. Both the SH and MAs have been successfully applied to a highly

nonlinear twin rotor multi-input-multi-output (TRMS) identification problem.

Following the above development of identifiers, the thesis next describes how

the DE can be extended to obtain better identification performance. This ex-



tension has led to a different variation of DE algorithm called an opposition

based differential evolution (ODE) algorithm using opposition based learning

approach to train a feed-forward neural network (FNN) that is found to be

effective for identification of nonlinear systems. Simulation results obtained

envisage that the system identification using ODE is faster and the identifi-

cation error is less compared to the case of identification of nonlinear systems

using the DE. A further development of the identification scheme has been

proposed exploiting a new variant of the DE known as opposition based mu-

tation differential evolution (OMDE). This approach has provided a further

improvement in optimization compared to the DE. The proposed OMDE al-

gorithm used as a parameter estimator. A comparative analysis of parameter

estimation of a three phase induction motor using the DE and OMDE has

been made which shows a significant reduction in computational overhead as

well as a substantial improvement in estimation accuracy.

The efficacies of the developed system identification strategies have been demon-

strated by their application to model a number of nonlinear systems such as

Box-Jenkin’s gas furnance system, TRMS, induction motor and two bench

mark problems.

The work described in the thesis contributes towards development of num-

ber of neuro-evolutionary system identification approaches which are useful

for achieving successful nonlinear system identification.
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Chapter 1

Introduction

1.1 Introduction

System identification (SI) is an important research area primarily devoted to

developing models of physical systems based on observed input output data.

During the past three decades a lot of research has been directed towards de-

veloping efficient system identification algorithms with a view to obtain models

that closely match to the real physical systems. Motivated by the nice prop-

erty of function approximation of Neural Networks (NNs) many research work

use these networks for identification of nonlinear dynamic systems. However,

selection of appropriate neural network topology, fast and efficient training are

of important concerns for achieving successful system identification. Train-

ing in NNs is usually guided by the minimization of an error function, such

as the mean square error (MSE) or sum squared error (SSE) or root mean

square error (RMSE) between actual output and estimated output averaged

over all samples, by iteratively adjusting connection weights. Most training

algorithms, such as back-propagation (BP) and conjugate gradient algorithms

are based on gradient descent principles that often get trapped in a local mini-

mum of the error function. Hence, these algorithms have the inability of finding

a global minimum if the error function is multimodal and/or non-differentiable.

Recently, there is an increasing interest in exploiting evolutionary neural net-

works for different applications where evolution can be introduced into NNs at
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different levels such as in inter layer connection weights training and architec-

ture design etc. Evolutionary approaches are considered as global approaches

to connection weight training of NNs, especially when gradient information of

the error function is difficult to obtain. Gradient-based training algorithms

often have to be run multiple times in order to avoid the problem of being

trapped in a poor local optimum. Motivated by the global optimizing feature

of the Evolutionary Computation (EC), recently, a lot of research works con-

sider the use of evolutionary computing techniques such as Genetic Algorithm

(GA), Evolutionary Algorithm (EA), Particle Swarm Optimization (PSO) and

Differential Evolution (DE) etc. for efficient training of NNs. Identification

problem can be conceived as an optimization problem in which the error be-

tween the actual physical measured response of a system and the identified

response of a model is minimized. Therefore, interest in system identifica-

tion lies in minimizing the error norm of the outputs. This thesis considers

the identification of nonlinear systems using a number of neuro-evolutionary

approaches. It has been demonstrated in this work that the success of the

combined use of local and global search methods for training of the neural

network yields efficient nonlinear system identification strategy.

1.2 Background

1.2.1 System Identification

The first step in designing the controller is to model the plant. System identifi-

cation is the process of building models of dynamic process from input-output

signals. The aim of system identification [1] can be identified as to find a

model with adjustable parameters and then to adjust them so that the pre-

dicted output matches the measured output. Two important points on system

identification are:

• Which model parameterization is to be used?

• How to know if the fitted model is good?
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Most of system identification techniques have their roots in statistical meth-

ods like Least squares fitting, maximum likelihood estimation etc. Apart from

parametric methods of system identification there are non-parametric tech-

niques for system identification such as spectral analysis, correlation analysis

and transient analysis. The various steps involved in system identification

are experiment setup and data collection, data preprocessing, model structure

selection, parametric estimation and validation. In nonlinear system identi-

fication [2] one approach is the black box model that uses various selected

model structures and the model that gives optimum fit for the test data is the

identified model.

Linear system identification

A linear system obeys two properties namely superposition and scaling. Hence,

if f is a linear operator given by

y1(t) = f (u1(t)) (1.1)

y2(t) = f (u2(t)) (1.2)

where, u1, u2, y1 and y2 are the inputs and outputs of the system, then ac-

cording to the definition of linearity, we have

f (k1u1(t) + k2u2(t)) = k1y1(t) + k2y2(t) (1.3)

where k1 and k2 are constants.

Parametric representations

A parametric model consists of a set of differential or difference equations which

describe the system dynamics. Such equations usually contain a small number

of parameters, which can be varied to alter the behavior of the equations. The

identification of an unknown system comprises two stages. First, the structure

of the parametric model is chosen, and then the parameters themselves are
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estimated by using an optimization algorithm.

Linear Difference Equations

We can write the relationship between the input, output, and noise as a linear

difference equation given by

y(t) + a1y(t− 1) + ...+ anxy(t− nx) = b1u(t− 1) + b2u(t− 2) + ...bnyu(t− ny)+

e(t) + c1e(t− 1) + ...+ cnze(t− nz)
(1.4)

which can be written more compactly as

A(q)y(t) = B(q)u(t) + C(q)e(t) (1.5)

where

A(q) = 1 + a1q
−1 + ...+ anxq

−nx

B(q) = b1 + b2q
−1 + ...+ bnyq

−ny+1

C(q) = 1 + c1q
−1 + ...+ cnzq

−nz

q−1 is the backward shift operator. This is the auto-regressive, moving av-

erage exogenous (ARMAX) model. The current output y(t) depends on an

exogenous input u(t), an innovations process e(t) and the past values of the

output. The polynomials ( A(q), B(q) ) known as deterministic model, whereas

( A(q), C(q) ) represent the stochastic system model. This model has several

special cases, the first of which is the autoregressive (AR) model:

A(q)y(t) = e(t) (1.6)

in which the output depends on the current disturbance, as well as the previous

values of the output. Another special case is the moving average (MA) model:

y(t) = C(q)e(t) (1.7)
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in which the output depends on the previous values of the disturbance, Com-

bining these two, we get the autoregressive moving average (ARMA) model:

A(q)y(t) = C(q)e(t) (1.8)

If we add an accessible input, u(t), to the AR model, the result is an auto-

regressive exogenous input (ARX) model:

A(q)y(t) = B(q)u(t) + e(t) (1.9)

A special case of the ARX structure, in which there is no disturbance input,

is the finite impulse response (FIR) model:

y(t) = B(q)u(t) (1.10)

In this case, the output depends solely on the previous values of the exogenous

input. This structure forms the basis of a number of so-called non-parametric

identification schemes. Once a candidate model structure and order have been

chosen, the model representation can be reduced to a parameter vector, θ =

[A(q)B(q)C(q)]

State Space Models

Another parametric system representation is the state space model. In this

case, we consider a set of equations of the form:

x(t+ 1) = Ax(t) +Bu(t) (1.11)

y(t+ 1) = Cx(t) +Du(t) (1.12)

where the sequences u(t), y(t) and x(t) represent the system’s input, output

and state respectively. The impulse response (Markov parameters) of the sys-

tem is first identified from input-output data, and then used to compute the

system matrices A, B, C and D.
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Nonparametric representations

A linear system can be represented by its impulse response. In continuous

time, we can compute the output via the convolution integral: [20]

y(t) =

T∫
0

h(τ)u(t− τ)dτ (1.13)

where T is the memory length of the system, and h(τ) is the impulse response.

In this case, as the lower bound of the integration is 0, the system is causal.

Given that the analysis will be performed using sampled data on a digital

computer, we will require a discrete time formulation. One benefit gained by

restricting ourselves to discrete time is that it avoids the mathematical difficul-

ties associated with a continuous-time white-noise signal. In continuous time, a

white noise signal has infinite bandwidth and hence infinite power. In discrete

time, however, it is simply a sequence of independently distributed random

variables. In discrete time, the convolution integral becomes the summation:

y(t) = ∆t.
T−1∑
τ=0

h(τ)u(t− τ) (1.14)

Here, the memory length, T , and the lag τ , are integers. If the system is non

causal, then the lower limit of the summation will be negative. The sampling

increment is ∆t; which is assumed to be 1 here so that it can be dropped.

If the input process is white, it can be shown that the impulse response can

be recovered from the input/output cross-correlation function. Given N data

points, a biased estimate of the cross-correlation can be obtained as:

Φ̂uy(τ) =
1

N

N∑
t=τ+1

u(t− τ)y(t) (1.15)
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Substituting the value y(t) of from (1.14) in (1.15) we have

Φ̂uy(τ) = 1
N

N∑
t=τ+1

u(t− τ)
T−1∑
j=0

h(j)u(t− j)

=
T−1∑
j=0

h(j)

{
1
N

N∑
t−τ+1

u(t− τ)u(t− j)
}

=
T−1∑
j=0

h(j)Φ̂xx(τ − j)

(1.16)

Hence, from equation (1.16) the input-output cross-correlation is equal to the

convolution of the impulse response with the input auto-correlation function.

If the input is white, the auto-correlation function is an impulse, and the cross-

correlation and impulse response are equal. If the input is non-white, the input

auto-correlation function must be deconvolved, from the cross-correlation es-

timate. This problem was approached by modeling the observed input as a

white noise process filtered by an autoregressive filter. This filter can be esti-

mated, and its inverse (a moving average filter) applied to both the input and

output signals. The cross-correlation between the filtered input and filtered

output is then estimated. Since the filtered input signal is effectively white,

the cross-correlation estimate provides an estimate of the impulse response

[20]. The input auto-correlation is estimated, and the convolution between the

input auto-correlation and the impulse response can be written in matrix form

as:
φ̂uy(0)

φ̂uy(1)
...

φ̂uy(T − 1)

 =


φ̂uu(0) φ̂uu(1) · · · φ̂uu(T − 1)

φ̂uu(1) φ̂uu(0) · · · φ̂uu(T − 2)
...

...
...

φ̂uu(T − 1) φ̂uu(T − 2) · · · φ̂uu(0)




h(0)

h(1)
...

h(T − 1)


(1.17)

This equation can be solved efficiently, using Levinson’s algorithm [3], since

φ̂uu, is the matrix derived from the input auto-correlation function, has a

symmetric Toeplitz structure.
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Nonlinear system identification

Nonlinear system identification is the task of determining or estimating a sys-

tems input-output relationship F , based on (possibly noisy) output measure-

ments.

y(t) = F [x(t)] + e(t) (1.18)

where e(t) is the noise, disturbance or another source of error in the pro-

cess of measurement. Nonlinear systems can be modeled into nonparametric

and parametric forms. In parametric modeling the input-output relationship

are defined by finite number of parameters. Nonparametric nonlinear system

identification includes the Volterra and Wiener series models which are based

on Taylor series expansion of time invariant nonlinear systems. The Volterra

model expresses the input-output relationship of a nonlinear system in terms

of Volterra kernels. The output y(t) in response to the input x(t) can be

expressed as

y(t) = h0 +
∞∑
n=1

∞∫
−∞

· · ·
∞∫

−∞

hn (τ1, · · · , τn)x (t− τ1) · · · x (t− τn) dτ1 · · · dτn

(1.19)

where h0 is a constant and hj (τ1 · · · · · · τj) , 1 ≤ j ≤ ∞ is the jth order Volterra

kernel coefficients defined for τi = −∞ to +∞, i = 1, 2, · · · , n. We assume

hj (τ1, · · · , τj) = 0 if any τi < 0, 1 ≤ i ≤ j which implies causality. In para-

metric nonlinear system models, the input-output relation can be expressed

by a mathematical function determined by a finite number of parameters.

Parametric models can be viewed as special case of nonparametric models.

Truncated N -th order Volterra series can be taken as parametric nonlinear

system model described as

y(t) = h0 +
N∑
n=1

∞∫
−∞

· · ·
∞∫

−∞

hn (τ1 · · · · · · τn)x (t− τ1) · · · x (t− τn) dτ1 · · · dτn

(1.20)
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Linear-in-parameter models

Parametric representations of nonlinear systems typically contain a small num-

ber of coefficients that can be varied to alter the behavior of the equation and

may be linked to the underlying system. Leontaritis and Billings [4] have

proposed the NARMAX structure as a general parametric form for modeling

nonlinear systems. This structure is suitable for modeling both the stochastic

and deterministic components of a system and capable of describing a wide

variety of nonlinear systems [5, 6, 7, 8]. NARMAX models have been success-

fully demonstrated for modeling the input output behavior of many complex

systems such as adaptive polynomial filters, and offer a promising framework

for describing nonlinear behavior such as aircraft dynamics. Often, this for-

mulation yields compact model descriptions that may be readily identified and

afford greater interpretability. This system representation, however, can yield

a large number of possible terms required to represent the dynamic process. In

practice, many of these candidate terms are insignificant and can be removed.

Consequently, the structure-detection problem turns out to be selection of a

subset of candidate terms that best predicts the output while maintaining an

efficient system description.

NARMAX models also describe nonlinear systems in terms of linear in the pa-

rameters difference equations, which represent the current output with present

and past inputs and, past outputs. Identifying a NARMAX model requires two

distinct steps such as structure detection and parameter estimation. Structure

detection can be divided into steps such as model order selection and selection

of parameters to include in the model. We consider model order selection as

part of structure detection since, theoretically, there are an infinite number

of candidate terms that could be considered initially. Establishing the model

order limits the choice of terms to be considered. Good parameter estimation

methods can be explored if the model order is known. However, there remains

a problem in model order selection. Depending on the order of the system, the

9



1.2 Background

number of candidate terms can be very large. Selection of a subset of these

candidate terms is necessary for an efficient system description. In fact, many

NARMAX systems can be described by only a few terms. A wide range of dis-

crete time multiple variable nonlinear stochastic systems can be represented

by the following NARMAX model:

ŷ(t) = α + F l [y(t− 1), ..., y(t− nx), u(t), ..., u(t− ny), e(t− nz)] + e(k)

(1.21)

where y(t), u(t) and e(t) represent the system output, input, and prediction

error, respectively. Also, l is the degree of nonlinearity, α is a constant dc

level, F l[.] is some vector valued nonlinear function, nx, ny and nz represent

the number of lags in the input, output and prediction error, respectively. The

prediction error term e(t), defined as e(t) = y(t) − ŷ(t), is included in the

model to accommodate noise, where ŷ(t) is the prediction output. Expanding

Eq. (1.21) by defining the function F l[.] as a polynomial of degree l gives

a representation of all the possible combinations of y(t), u(t) and e(t) up to

degree l. For example, the current output can be presented as

y(t) = α+θ1y(t−1)+θ2u(t−1)+θ3u(t−1)y(t−1)+θ4u(t−1)e(t−1)+θ5e(t−1)+e(t)

By defining

p1(t) = y(t− 1), p2(t) = u(t− 1), p3(t) = u(t− 1)y(t− 1),

p4(t) = u(t− 1)e(t− 1), p5(t) = e(t− 1), p0(t) = 1, and θ0 = α

If N input and output measurements are available, and if there areM terms

in the model, then the above equation can be written in a matrix form as

Y = Aθ + e (1.22)

where

YT = [y(1) y(2) · · · y(N)]

θT = [θ0 θ1 · · · θN ]
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eT = [e(1) e(2) · · · e(N)]

A =


A0(1) A1(1) · · · AM(1)

A0(2) A1(2) · · · AM(2)
...

...
...

A0(N) A1(N) · · · AM(N)


where A represents a term in the NARMAX model and θ represents the

unknown parameters to be estimated. The parameter vector θT in Eq. (1.22)

can be estimated using some well known methods, such as a least-squares-

based or prediction error method, Choleski or U −D factorization, the Q−R

algorithm, singular value decomposition or principle component regression.

Nonlinear-in-parameter models

This class of models include all parametric descriptions of nonlinear systems

whose output is not linearly related to the parameters. Nonlinear-in-parameters

models often arise from physical modeling considerations. In general, it can

be expressed as y(t) = F [x(t), θ] where F has a fixed functional form that

is parameterized by θ. Neural networks are the most well-known class of

nonlinear-in-parameter models [16]. The hidden nodes represent the nonlinear

processing units and the link between the nodes represent the weighting factor

to the input of each neuron. These weights are the parameters of the neural

network model. As the neurons are the nonlinear functions, the output of the

network is the nonlinear functions of the parameters. Multi layer perceptrons

are nonlinear-in-parameter models so the identification method must include

a nonlinear optimization technique such as nonlinear least square, prediction

estimation error method etc. It will be discussed later that there remains se-

rious problem of local minima in using these optimization techniques.

The basic block-diagram representation of an identification problem is shown

in Fig. 1.1. From the figure it is clear that if the error tends towards zero the

estimated output will be same as the desired output. So the identified model
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will exactly mimic the original system to be identified.

 

System to be Identified 

Optimization Algorithm 

e 

+

‐

θ 

u   y

ŷ
Mathematical Model 

Figure 1.1: Block Diagram on System Identification

As shown in Fig.1.1, given the discrete time, time invariant nonlinear dy-

namic system of inputs u(k) and outputs y(k). The objective is to develop

identification algorithms using several methods such as evolutionary comput-

ing techniques and neural networks. The NARX model structure is taken as

the nonlinear frame work which is in the form of

yk = f (y(k − 1), · · · , y(k − ny);u(k);u(k − 1), · · · , u(k − nu)) (1.23)

<k = [y(k − 1), · · · , y(k − ny);u(k);u(k − 1), · · · , u(k − nu)] where k ∈ Z+is

the discrete temporal variable

uk ∈ R1 is the input at time k

yk ∈ R1 is the output at time k

f : Rny+nu is an unknown nonlinear mapping defined on an open set

ny is an integer denote maximum lag in the output

nu is an integer denote maximum lag in the input

<k is the regression vector in a NARX model

Since f is unknown, the objective is to use some type of network approximator

Γ (<, θ) to approximate f(<). In the network, < ∈ Rn is the input to the net-

work and θ ∈ Rd is set of adjustable parameter in vector form of d dimension.
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The system described in equation (1.23) can be rewritten in the form as

yk = Γ (<(k); θ∗) + e(k) (1.24)

where is e the modeling error, defined as

e(k) = f (<(k))− Γ (<(k); θ∗) (1.25)

In order to obtain successful identification the identified system must be able

to reproduce the output of the physical system for any given input. Let <k
belongs to some compact set Z for all k > 0, then we define the parameter

vector θ∗ as the optimal value of θ in the sense that it minimizes the distance

between fand Γ for all < ∈ Z. The optimal parameter vector θ∗ is defined as

θ∗ = arg min

{
sup
<∈Z
|f(<)− Γ(<; θ)|

}
(1.26)

The optimization problem requires finding a vector θ ∈ S, where S is the

search space, so that a certain quality criterion is satisfied, namely that the

error norm is minimized. By changing the value of θ it is possible to change

the input-output response of the network Γ. The search space S is defined by

a set of maximum and minimum values for each parameter. The vector θ is an

d dimensional domain where each element θi is bounded with θmax and θmin

containing the upper bounds and lower bounds of the d parameters respec-

tively i.e.

S =
{
θ ∈ Rd|θmin,i ≤ θi ≤ θmax,i ∀i = 1, 2, · · · , d

}
.

1.2.2 Neural Networks

A neural network [9, 10] consists of a set of processing elements, also known as

neurons or nodes, which are interconnected. It can be described as a directed

graph in which each node i performs a transfer function fof the form

yi = f

(
n∑
j=1

wi,jxj − bi

)
(1.27)
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where yi is the output of the node i, xj is the jth input to the node i, and

wi,j is the connection weight between nodes i and j, bi is the threshold (or

bias) of the node. Usually, f is nonlinear, such as a heaviside, sigmoid, or

Gaussian function. NNs can be divided into feed-forward and recurrent classes

according to their connectivity. A NN is feed-forward if there exists a method

which numbers all the nodes in the network such that there is no connection

from a node with a large number to a node with a smaller number. All the

connections are from nodes with small numbers to nodes with larger num-

bers. A NN is recurrent if such a numbering method does not exist. In (1.27),

each term in the summation only involves one input. The architecture of a

NN is determined by its topological structure, i.e., the overall connectivity

and transfer function of each node in the network. Learning NN is otherwise

known as training of NN because the learning is achieved by adjusting the con-

nection weights iteratively so that trained NN can perform certain tasks. This

Learning is roughly divided into supervised, unsupervised, and reinforcement

learning. Supervised learning is based on direct comparison between the esti-

mated output of a NN and the desired correct output, also known as the target

output. It is often formulated as the minimization of an error function such

as the total mean square error between the actual output and the estimated

output summed over all available data. A gradient descent based optimization

algorithm such as backpropagation [64] can then be used to adjust connection

weights in the NN iteratively in order to minimize the error. Reinforcement

learning is a special case of supervised learning where the exact desired output

is unknown. It is based only on the information of whether or not the actual

output is correct. Unsupervised learning is solely based on the correlations

among input data. No information on correct output is available for learning.

The essence of a learning algorithm is the learning rule, i.e., a weight-updating

rule which determines how connection weights are changed. Examples of pop-

ular learning rules include the delta rule and backpropagation. These will be

discussed in chapter 2.
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1.2.3 Evolutionary Algorithms

Evolutionary algorithms are based on computational models of fundamental

evolutionary processes such as selection, recombination and mutation. Fig.

1.2 gives an overview of a general evolutionary algorithm. Individuals, or cur-

rent approximations are encoded as strings composed over some alphabet(s),

e.g. binary, integer, real valued etc., and an initial population is produced

by randomly sampling these strings. Once a population has been produced it

may be evaluated using an objective function which characterizes an individual

performance in the problem domain. The objective function is also used as

the basis for selection and determines how well an individual performs in its

environment. A fitness value is then derived from the raw performance mea-

sure given by the objective function and is used to bias the selection process.

Highly fit individuals will have a higher probability of being selected for re-

production than individuals with a lower fitness value. Therefore, the average

performance of individuals can be expected to increase as the fitter individuals

are more likely to be selected for reproduction and the lower fitness individu-

als get discarded. Selected individuals are then reproduced, usually in pairs,

through the application of genetic operators. These operators are applied to

pairs of individuals with a given probability and result in new offspring that

contain material exchanged from their parents. The offspring from reproduc-

tion are then further perturbed by mutation. These new individuals then make

up the next generation. These processes of selection, reproduction and eval-

uation are then repeated until some termination criteria are satisfied, e.g. a

certain number of generations completed, a mean deviation in the performance

of individuals in the population or when a particular point in the search space

is reached.
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procedure EA { 

t = 0; 

initialize P(t); 

evaluate P(t); 

while not finished do { 

t = t + 1; 

select P(t) from P(t-1); 

reproduce pairs in P(t); 

mutate P(t); 

evaluate P(t); 

} 

} 

 

Figure 1.2: A Simple Evolutionary Algorithm

In general, most real world optimization problems have several challenging

properties. Almost of all problems have a significant number of local optima,

and the search space can be so huge that the exact global optimum cannot be

found in reasonable time. Further, the problems may have multiple conflicting

objectives that should be considered simultaneously (e.g., cost versus quality).

Moreover, there may be a number of nonlinear constraints to be fulfilled by the

final solution. Furthermore, the problem may have dynamic components al-

tering the location of the optimum during the optimization process. For some

problems, variants of the local search approach have proven to be very efficient,

e.g., Lin-Kernighan algorithm for the Traveling Salesman Problem. However,

deterministic local search algorithms, such as steepest decent, do not allow

a decrease in the solutions quality during the search. For this reason, these

algorithms often stagnate at a local optimum, which makes local search less

desirable for many real-world problems. Valuable alternatives are stochastic

search methods such as simulated annealing, Tabu search, and evolutionary
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algorithms. Among these techniques, EAs seem to be a particularly promis-

ing approach for several reasons. EAs are very general regarding the problem

types they can be applied to continuous, mixed-integer and combinatoric type

problems. Furthermore, these algorithms can easily be combined with existing

techniques such as local search methods. In addition, it is often straightfor-

ward to incorporate domain knowledge in the evolutionary operators and in

the seeding of the population. Moreover, EAs can handle problems with any

combination of the above mentioned challenges in real-world problems i.e. lo-

cal optima, multiple objectives, constraints, and dynamic components. In this

connection, the main advantage lies in the EAs population-based approach.

For local optima, the genetic diversity of the population allows the algorithm

to explore several areas of the search space simultaneously. There is of course

no guarantee on the premature convergence to a local optimum, but the pop-

ulation improves the EAs robustness on such problems. Naturally, EAs do

also have some disadvantages. Unfortunately, they are rather computation-

ally demanding, since many candidate solutions have to be evaluated in the

optimization process. However, recently there has been an increase interest

in dealing with this problem and some techniques have been suggested such a

hybrid EAs to make it faster.

1.3 Literature Survey on System Identification

The theory of system identification for linear systems is matured during the last

two decades and there exist useful tools based on Least Mean Square (LMS),

Recursive Least Square (RLS), Kalman Filtering [1] etc. Many problems in

control engineering, signal processing and machine learning can be cast as a

system identification problem where the task is to determine a suitable model

from a given set of input-output data. The resulting model can then be used for

the prediction and control of a ”black- box” system. In reality, however, all sys-

tems are more or less nonlinear. In recent years there has been a lot of research

pursued on nonlinear system identification. A survey of existing techniques of

17



1.3 Literature Survey on System Identification

nonlinear system identification prior to 1980s is given by Billings [2], a survey

of the structure detection of input-output nonlinear systems can be obtained

in [5], and a survey of nonlinear black-box modeling in system identification

can be found in [7]. Several methods have been developed for the identification

and control of nonlinear system, including NARMAX, Hammerstein, Wiener

or Hammerstein-Wiener structures, but these methods suffer the difficulty of

representing the behavior of the system over its full range of operation [6].

For nonlinear system identification, NARX model has been implemented by

the authors [4, 8]. The extra complexity associated with nonlinear system

identification, particularly when there is no initial information or model struc-

ture detail. One successful approach to this problem is the orthogonal Least

Squares Regression (LSR) method to find a suitable set of nonlinear terms for

the system.

Since eighties, neural networks have been extensively applied to the identi-

fication of nonlinear dynamical systems. Most of the works are based on mul-

tilayer feed-forward neural networks with back-propagation learning algorithm

[68, 70]. In neural network based identification, the selection of the number of

hidden nodes and the number of hidden layers (i.e. the structure of the net-

work) corresponds to the model selection stage. The network can be trained

in a supervised manner with a back-propagation algorithm, which is based

on an error-correction learning rule. The error signal is propagated backward

through the network. The back-propagation algorithm utilizes gradient de-

scent to determine the weights of the network and hence corresponds to the

parameter estimation stage. Both feed-forward and recurrent networks can be

used for identification purposes. The feed-forward network provides a nonlin-

ear static map between inputs and outputs of the neural network. A number of

theoretical and practical system identification problems have been solved us-

ing neural network approach with multi-layered perceptron (MLP) with back-

propagation training [16, 17]. In [18] the author has used a radial basis function
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neural network (RBFNN) for the nonlinear system identification problem. The

Wavelet networks techniques [19] were also applied to system identification of

nonlinear systems in which adaptive techniques such as back propagation al-

gorithm found to provide better accuracy compared to non-adaptive ones such

as Volterra series, Wiener-Hammerstein modeling and polynomial methods. A

novel multilayer discrete-time neural network is presented in [21] for identifi-

cation of nonlinear dynamical systems. In [22], a scheme for on-line states and

parameters estimation of a large class of nonlinear systems using RBFNN has

been designed. An approach to control nonlinear discrete dynamic systems,

which relies on the identification of a discrete model of the system by a feed-

forward neural network with one hidden layer, is presented in [23]. Nonlinear

system identification using discrete-time recurrent single layer and multilayer

NNs are studied in [24]. An identification method for nonlinear models in the

form of Fuzzy-Neural Networks is introduced in [25]. This Fuzzy-Neural Net-

works combine fuzzy if-then rules with NNs. An adaptive time delay NN is

used for identification of nonlinear systems in [26]. Onder and Kaynak in [27]

investigated the identification of nonlinear systems by feed-forward NNs, ra-

dial basis function NNs and adaptive neuro-fuzzy inference systems. Authors

in [28] have discussed about a least squares support vector machine (SVM) re-

gressor used for generating the control actions, while an SVM-based tree-type

neural network is used as the critic.

However, the complexity and the combinatorial growth in the search space

mean that exhaustive search is not always feasible and is limited in applica-

tion. Conventional training algorithms mainly rely on gradient based tech-

niques. Although these techniques suffice in many applications, they require

a differentiable performance index or a smooth search space. This condition

may not always be satisfied in practical applications because of noisy data

or system discontinuity. Even when the derivative or gradient information is

available these techniques often result in a local optimum if the solution space

19



1.3 Literature Survey on System Identification

is multi-modal. They may also fail completely, if the space is noisy as found in

practical applications. These problems can become more complex if the plant

to be identified is multiple-input and multiple-output system. Further, the

following difficulties exist with conventional techniques.

• Initial information of the parameters usually need to be known a priori.

• The estimation may be biased if the measurement or process noise is

correlated.

• It is difficult to identify the transport delays.

• Input-Output data at steady state may cause problems in matrix manip-

ulations, as they have very close value.

• It is difficult to estimate parameters that are not linearly separable.

Compared to the conventional approaches which search the term space iter-

atively, building a more and more complex model, the EA based approach

conducts a global and robust search of the model space. Thus, the EA has

the potential to be more effective in identifying a suitable model structure and

hence more general in nature. Contribution to the system identification using

EAs is discussed in [29, 30, 31, 32, 33, 34, 35]. In [29] the authors proposed

a genetic algorithm based on NARX system identification algorithm. In [30]

an inversion control of nonlinear system with an inverse NARX model iden-

tification using genetic algorithms has been proposed. Authors in [31] have

implemented nonlinear system identification using a subset selection method

and LSR using GAs. In [32] the authors have discussed about the identification

of structural system using an evolutionary strategy. Models for evolutionary

algorithm and their application in system identification are addressed in [33].

Authors in [35] have implemented the genetic algorithms to estimate the Pa-

rameter of a robot arm. The GA is used to select a fixed number of terms

from a set of possible nonlinear terms and LSR is used to identify the param-

eters of those terms. Because the EA operates on a population of solution
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estimates, the EA produces a family of low-variance models which can be as-

sessed according to different criteria before a final model is chosen. From the

previous neural network system identification approaches, it is observed that

even neural network has been proved to be a successful technique for nonlinear

system identification but there still remains little concern about its conver-

gence and problem of being trapped at local minima. Evolutionary neural

networks (EANNs) refer to a special class of neural networks in which evolu-

tion is another fundamental form of adaptation in addition to learning [36, 37].

In [38], the author has applied genetic algorithms to obtain the values of the

weights of both the feed-forward and feedback connections. It describes the

use of genetic algorithms to train the Elman and Jordan networks for dynamic

systems identification. In [39] a genetic algorithm is proposed to design wavelet

neural networks (WNNs) for nonlinear system identification. By introducing

a connection switch to each link between a wavelet and an input node, the

decomposition is done automatically during the evolutionary process. GA is

used to train the wavelet parameters and the connection switches. In this way,

both the structure and wavelet parameters of WNNs are optimized simultane-

ously. Evolving wavelet neural networks for system identification is discussed

by the authors [40]. A new encoding scheme for training RBF networks by

genetic algorithms is proposed by the authors [41]. In the proposed encoding

scheme, both the architecture (numbers and selections of nodes and inputs)

and the parameters (centers and widths) of the RBF networks are represented

in one chromosome and evolved simultaneously by GAs so that the selection

of nodes and inputs can be achieved automatically. The performance and ef-

fectiveness of the presented approach are evaluated using two benchmark time

series prediction examples and one practical application example, and are then

compared with other existing methods. It is shown by the simulation tests that

the developed evolving RBF networks are able to predict the time series accu-

rately with the automatically selected nodes and inputs. In [42], both off-line
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architecture optimization and on-line adaptation have been developed for a dy-

namic neural network (DNN) in nonlinear system identification. A series of GA

operations are applied to the connection matrices to find the optimal number

of neurons on each hidden layer and interconnection between two neighboring

layers of DNN. The hybrid training is adopted to evolve the architecture, and

to tune the weights and input delays of DNN by combining GA with the mod-

ified adaptation laws. The modified adaptation laws are subsequently used to

tune the input time delays, weights and linear parameters in the optimized

DNN-based model in on-line nonlinear system identification. An approach to

nonlinear system identification using evolutionary Neural Networks and LMS

algorithm has been proposed by the authors in [43]. A PSO tuned radial basis

function network model is proposed for identification of nonlinear systems in

[44]. At each stage of orthogonal forward regression (OFR) model construction

process, PSO is adopted to tune one RBF unit’s centre vector and diagonal

covariance matrix by minimizing the leave-one-out (LOO) MSE. In [45] the

author has presented a learning algorithm for dynamic recurrent Elman neu-

ral networks based on a modified particle swarm optimization. The proposed

algorithm has been applied to perform speed identification and to design a

controller to perform speed control for Ultrasonic Motors (USM). The contri-

bution in [46] concerns with the design of a generalized functional-link neural

network with internal dynamics and its applicability to system identification by

means of multi-input single output nonlinear models of autoregressive with ex-

ogenous inputs type. A GA based evolutionary multi-objective optimization in

the Pareto-sense is used to determine the optimal architecture of that dynamic

network. The contributions in [47] proposed the application of a modified arti-

ficial immune network inspired optimization method - the opt-aiNet - combined

with sequences generate by Henon map to provide a stochastic search to adjust

the control points of a B-spline neural network (BSNN). The numerical results

presented here indicate that artificial immune network optimization methods

are useful for building good BSNN model for the nonlinear identification of
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two case studies: (i) the benchmark of Box and Jenkins gas furnace, and (ii)

an experimental ball-and-tube system. Authors in [48] outlined the basic con-

cept and principles of two simple and powerful swarm intelligence tools: the

PSO and the BFO. The adaptive identification of an unknown plant has been

formulated as an optimization problem and then solved using the PSO and

BFO techniques. Using this approach efficient identification of complex non-

linear dynamic plants have been carried out through simulation study. One

such evolutionary computation i.e. DE, was first introduced in [49], is suc-

cessfully applied to many artificial and real world optimization problems with

applications. A differential evolution based neural network training algorithm

was first introduced in [50]. Authors in [51] proposed an effective DE based

learning algorithm for recurrent fuzzy neural network (RFNN) with fuzzy in-

puts, fuzzy weights and biases, and fuzzy outputs. The effectiveness of the

proposed method is illustrated through simulation of benchmark forecasting

and identification problems and comparisons with the existing methods. The

suggested approach has also been used for real applications in an oil refinery

plant for petrol production forecasting.

The major disadvantage of the EANN [36, 37] approach is that it is com-

putationally expensive and has slow convergence. With a view to speed up

the convergence of the search process, a number of different gradient methods

such as LM and BP are combined with evolutionary algorithms. These are the

new class of hybrid algorithms i.e. global evolutionary search supplemented

by local search techniques. It may be noted that the local search methods

when used alone there may be problem for getting trapped in local minima.

The hybridization of these local searches with evolutionary techniques is useful

to either accelerate the discovery of good solutions, for which evolution alone

would take too long to discover, or to reach solutions that would otherwise

be unreachable by evolution or a local method alone. It is assumed that the

evolutionary search provides for a wide exploration of the search space while
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the local search can somehow zoom-in on the basin of attraction of promising

solutions. The natural analogies between human evolution and learning, i.e.

EAs and neural networks prompted a great deal of research into the use of

hybrid algorithms such as memetic algorithms to evolve the design of NNs.

Memetic algorithms (MAs) have been proven very successful across a wide

range of problem domains such as combinatorial optimization [57], optimiza-

tion of non-stationary functions [52], multi-objective optimization [53], bioin-

formatics [54], etc. MAs have received various names throughout the literature

and scientist not always agree what is and what is not an MA due to the large

variety of implementations available. Some of the alternative names used for

this search framework are hybrid GAs, Baldwinian EAs, Lamarckian EAs, ge-

netic local search algorithms, etc to cover a wide range of techniques where

evolutionary-based search is augmented by the addition of one or more phases

of local search. Research in memetic algorithms has progressed substantially,

and several Ph.D. dissertations have been written analyzing this search frame-

work and proposing various extensions to it [55, 56, 57, 58]. In [59], the authors

have proposed an effective PSO based memetic algorithm for designing arti-

ficial neural network where an effective adaptive Meta-Lamarckian learning

strategy is employed to decide which local search method to be used so as

to prevent the premature convergence and concentrate computing effort on

promising neighbor solutions. Authors in [60] propose two hybrid evolutionary

algorithms as alternatives to improve the training of dynamic recurrent neural

networks.

However, a lot more research is needed to achieve the faster convergence and

obtaining global minima. Hence there has been a great interest in combining

training and evolution with neural networks in recent years.
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1.4 Objectives of the Thesis

The objectives of the thesis are as follows

• To develop efficient nonlinear system identification algorithms using evo-

lutionary computing techniques and neural networks.

• To combine evolutionary algorithm and gradient descent (GD) learning

for overcoming the problems of local minima during training of the NNs

with GD learning.

• To prove the convergence of the proposed neuro-evolutionary hybrid sys-

tem identification algorithms.

• To achieve improved identification of nonlinear systems including multi-

input multi-output (MIMO) systems introducing a memetic differential

evolution algorithm and to compare its performance with other memetic

algorithms.

• To devise a new variant differential evolution algorithm with improved

search ability for identifying different types of nonlinear systems.

• To propose opposition based mutation differential evolution algorithm

based identification algorithm with application to nonlinear system for

estimating the parameters of an induction motor.

1.5 Motivation of the Present Work

Determination of efficient structure and weights of a NN become a challenge

in the field of nonlinear system identification. The other challenge of applying

evolutionary NN is that most evolutionary algorithms [71, 72, 75, 157, 158, 159]

will not provide good optimal performance if not fine-tuned in local search al-

though they are good at the global search. Hybridization can improve the

efficiency of evolutionary training by incorporating a local search procedure

such as BP [78], LM [69] or other random search algorithm into the evolution,
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i.e., combining global search ability with local search’s ability to fine tune.

1.6 Thesis Organization

Chapter 1, gives an overview of system identification techniques and dis-

cusses about the application of neural networks and evolutionary computation

for system identification. It describes techniques that are suitable for building

models of nonlinear systems. This chapter reviews various representations used

to describe linear systems and the methods used to identify them from measure-

ments of input-output data. Subsequently, it considers different descriptions

of nonlinear systems and the techniques used in system identification. It also

describes about the nonlinear system identification using linear-in-parameter

models such as NARMAX modeling followed by nonlinear- in-parameter mod-

els i.e. neural models. Subsequently it discusses the contribution of the thesis

followed by organization of this thesis.

Chapter 2, starts with discussion about the NNs and their training. A gradi-

ent descent-based optimization algorithm such as back-propagation is discussed

which is used to adjust connection weights in the NN iteratively in order to

minimize the training errors. A weight-updating rule i.e. delta rule which

determines how connection weights are changed has been discussed next. Sub-

sequently, the chapter focuses on different types of evolutionary algorithms

and population based search strategies i.e. how individuals in a population

compete and exchange information with each other in order to perform certain

tasks. The essence of this chapter is to discuss about finding a near-optimal

set of connection weights for a neural network. The chapter is concluded with

discussions about the need of improving training of neural networks so that

optimal set of connection weights can be achieved.

Chapter 3, proposes a nonlinear system identification scheme using DE, neu-
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ral network and LM. Here, DE and LM in a combined framework are used

to train a NN for achieving better convergence of neural network weight op-

timization. In this chapter the LM is used as a local optimizer after the DE

algorithm. This type of algorithms are known as SH where set of algorithms is

applied one after another, each using the output of the previous as its input.

As DE becomes slow near the basin of the global optimization the function of

LM is to enhance the speed of convergence. In this chapter number of exam-

ples including a practical case-study has been considered for implementation

of this algorithm.

Chapter 4, describes a memetic algorithm approach for the training of ar-

tificial neural networks, i.e. how memetic algorithm trained MLP applied to

nonlinear system identification. The MAs are used as an alternative to gradi-

ent search methods, such as BP, which have shown limitations when dealing

with rugged landscapes with many poor local optima. The work described

in this chapter aims at designing a training strategy that is able to cope up

with difficult error manifolds, and to achieve perfectly trained neural networks

that produce small training errors. A rigorous study on the identification of

a nonlinear system using seven different algorithms namely BP, GA, PSO,

DE, genetic algorithm back-propagation (GABP), paricle swarm optimiza-

tion back-propagation (PSOBP) along with the proposed differential evolution

back-propagation (DEBP) approaches has been done. In the proposed system

identification scheme, three global searches have been combined with the gra-

dient descent method i.e. the BP algorithm to overcome the slow convergence

of the evolving neural networks. The local search BP algorithm is used as an

operator like crossover and mutation operator for GA, PSO and DE. These

algorithms have been tested on standard benchmark problems given in [61, 62]

for nonlinear system identification to prove their efficacies.

Chapter 5, presents identification of a 1DOF experimental aerodynamic test
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rig, a twin rotor multi-input multi-output (TRMS) using SH and MA. The

TRMS is a highly nonlinear system which can be considered as an experimen-

tal model of a complex air vehicle. Such vehicles are required to be identified

precisely to ensure satisfactory control performance to meet the demand for

automation. This implies that linear characterization of aircraft’s is not good

to describe the systems characteristics for control purposes and nonlinear mod-

eling techniques are required. Neural network based nonlinear characterization

are promising approaches. This chapter focuses into the development of non-

linear modeling of a TRMS using SH and MA. The system is modeled using

a NARX identification scheme with a feed-forward neural network. In this

chapter the responses of all the identified models are compared with that of

the real TRMS to validate the accuracy of the models.

Chapter 6, discusses a new variant of the DE called ODE. This ODE is

combined with LM algorithm for training the feed-forward neural networks

applied to nonlinear system identification. The ODE uses opposition based

learning that considers simultaneously estimate and its corresponding opposite

estimate (i.e., guess and opposite guess) in order to achieve a better approxi-

mation for the current candidate solution. The proposed combined opposition

based differential evolution neural network (ODE-NN) has been applied to sys-

tems given in [61, 62] results obtained envisage that the ODE-NN approach

to identification of nonlinear system exhibits better model identification ac-

curacy compared to differential evolution neural network (DE-NN) approach.

This ODE-NN approach is applied to obtain dynamics of a twin rotor 1 DOF

MIMO system which is usually highly nonlinear.

Chapter 7, describes how DE technique can also be applied to estimate the

parameters of a physical system for example the rotor resistance (Rr), stator

resistance (Rs), leakage inductance (Ll) and magnetising inductance (Lm) of a

three-phase induction machine. Along with a view to obtain better estimation
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results different variants of DE such as OMDE are also investigated. A set of

steady state equations of the induction motor under consideration were devel-

oped to be used for the simulation of this DE based optimization problem. For

accomplishing the DE and OMDE based system identification of the induction

motor parameters, excitation to the stator and rotor speed were considered as

the input and output data respectively.

Chapter 8, summarizes the work described in the thesis. This chapter also

includes a brief note on scope of further research that can be pursued in future

as extension of this thesis work.

29



Chapter 2

Neural Networks and
Evolutionary Computation
Approaches

2.1 Introduction

Neural networks [9, 10] were first studied to understand and imitate the func-

tion of the human brain. They consist of highly interconnected processing

elements known as neurons that have the ability to respond to input stimuli

and to learn to adapt to the environment. They have the advantageous capa-

bilities of learning from training data, recalling memorized information, and

generalizing to the unseen patterns. These capabilities do show great poten-

tial in such application areas as control [11], signal processing [12], and pat-

tern recognition [13]. There are more than hundred neural network structures

and algorithms proposed from varying standpoints [14]. However, the most

widely used neural networks are limited to just a few. This chapter describes

how training of NNs can be accomplished using evolutionary computing tech-

niques with reference to their applications to system identification. A gradient

descent-based optimization algorithm such as back-propagation is discussed

which is used to adjust connection weights in the NN iteratively to minimize

the error. The chapter discusses different types of evolutionary algorithms that

are population based search/optimization such as GA, PSO, BFO and DE. In

these individuals in a population compete and exchange information with each
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other in order to perform the search tasks. The chapter discusses about finding

a near-optimal set of connection weights for a NN using EAs. The scope of

formalising of hybrid training for neural networks for finding out best set of

connection weights are also hilighted.

Several approaches such as [36, 37] have been applied for combining evolu-

tionary algorithms and neural networks. The most successful of these are

hybrid algorithms that combine an evolutionary algorithm with a gradient-

descent based training algorithm to optimize the NN weights. Their success

lies in the combination of efficient global search with an efficient local search.

Gradient-descent based NN training algorithms require the error of an NN over

the input training patterns to be computable. The error of an NN is the result

of a mean square, sum square or root mean square of the difference between the

actual and the expected outputs. It requires the expected output to be known,

which makes it most suitable to supervised learning tasks. In NN/evolutionary

algorithm approaches applied to supervised learning this error value is often

used as the fitness function. However, this is not a mandatory requirement

for evolutionary algorithms, where the fitness function can be any appropriate

measure of fitness.

2.2 Feed-forward Neural Networks

Figure 2.1 shows the schematic of a single neuron which takes multiple inputs,

sum them and then apply an activation function to the sum before putting

it as output. The information is stored in the weights. The weights can be

positive (excitatory), zero or negative (inhibitory).
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Figure 2.1: Schematic of a single neuron

The argument s of the activation (or squashing) function φ(s) is related to

the inputs through

sj =
m∑
i=0

wj,ixi =
m∑
i=1

wj,ixi + bj (2.1)

where bj is the threshold, which is considered to be an additional input of

magnitude 1 and weight bj. xj is the input to the neuron j. The output of

the neuron j is given by yj = φ(sj). The activation functions with range [0; 1]

(binary) and [-1; 1] (bipolar) that are normally used are shown in Table 2.1.

The constant c represents the slope of the sigmoid functions, and very often it

is taken to be unity. The activation function should not be linear so that the

effect of multiple neurons cannot be easily combined. For a single neuron the

net effect is yj = φ

(
m∑
i=0

wj,ixi

)
.

2.2.1 Training Artificial Neural Networks

Single-layer feed-forward NN

This is also called a single layer perceptron. Figure 2.2 shows the schematic

diagram of a single layer feed-forward neural network.
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Figure 2.2: Schematic of a single layer network

Multilayer feed-forward NN

MLP is a completely connected feedforward neural network having number of

layers. By properly selecting the number of hidden neurons, and the activation

function in the hidden layer (i.e., sigmoid) and in the output layer (i.e., purely

linear), the output of the MLP can be calculated as follows.

yj = φ

(
m∑
k=0

wj,khk

)
= φ

(
n∑
k=0

wj,k

m∑
i=0

φ
(
whk,ixi

))

where,

φ(s) = 1/ [1 + exp(−cs)]

ix

jy

kh
h

ikw ,

kjw ,

Figure 2.3: Schematic of a multi layer network
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Table 2.1: Commonly used activation functions

Function binary φ(s) bipolar φ(s)

Step (Heaviside, threshold)
1 if s > 0
0 if s ≤ 0

1 if s > 0
0 if s = 0
−1 if s < 0

Piecewise linear
1 if s > 0.5
s+ 0.5 if − 0.5 ≤ s ≤ 0.5
0 if s < 0.5

1 if s > 0.5
2s if − 0.5 ≤ s ≤ 0.5
0 if s < 0.5

Sigmoid
{1 + exp(−cs)}−1

Logistic
tanh(cs/2)

2.2.2 Learning Rules

Learning is an adaptive procedure by which the weights are systematically

changed under a given rule. Learning in networks may be of the unsupervised,

supervised, or reinforcement type. In unsupervised learning the network is also

called a self-organizing network. It is provided with a set of data within which

patterns or other characteristic features are to be found out. The output of

the network is not known and there is no feedback from the environment. The

objective is to understand the input data better or extract some information

from it. In supervised learning, on the other hand, there is a set of input-

outputs pairs called the training set which the network tries to adapt itself to.

There is also reinforcement learning with input-output pairs where the change

in the weights is evaluated to be in the right or wrong direction. Figure 2.4

gives the flow chart for the neural network learning process.

Delta rule

This is also called the error-correction learning rule. If yj is the output of a

neuron j when the desired value should be dj, then the error is ej = dj − yj.

The weights wj,k leading to the neuron are modified in the following manner

∆wj,k = ηejhk. The learning rate η is a positive value that should neither be

too large to avoid runaway instability, nor too small to take a long time for
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convergence. One possible measure of the overall error is E = 1
2

∑
(ej)

2, where

the sum is over all the output nodes. For simplicity, we will use the logistics

activation function y = φ(s) = 1
1−e−s . This has the following derivative

dy

ds
=

e−s

(1 + e−s)2
= y(1− y)

Back-propagation Algorithm

According to the delta rule, ∆wj,k = ηδjhk, where δj is the local gradient. We

will consider neurons that are in the output layer and then those that are in

hidden layers.

Neurons in output layer:

If the target output is dj and the actual output is yj, then the error is ej =

dj − yj. The squared output error summed overall output neuron is

E =
1

2

∑
(ej)

2

We can write

yj = φ

(
m∑
k=0

wj,khk

)
= φ

(
n∑
k=0

wj,k

m∑
i=0

φ
(
whk,ixi

))

The rate of change of E with respect to the weight is(
∂E
∂wj,k

)
=
(
∂E
∂ej

)(
∂ej

∂yj

)(
∂yj

∂hk

)(
∂hk

∂wj,k

)
= (ej) (−1) (φ′(yj)) (hk)

Using a gradient descent algorithm ∆wj,k can be written as

∆wj,k = −η ∂E
∂wj,k

= ηejφ
′(yj)hk

= ηδjhk

where δj = ej · yj · (1− yj) is known as the error term.

Neurons in hidden layer:

Consider neurons k in the hidden layer connected to neurons j in the output

35



2.2 Feed-forward Neural Networks

layer. Then the squared error is E = 1
2

∑
(ek)

2. The error term for the respec-

tive hidden unit can be computed as δhk = hk (1− hk)
l∑

j=1

(δjwj,k). The network

ia updated using the following rule

wk,i = wk,i + ∆wk,i

where, ∆wk,i = ηδhkxi. The local gradients in the hidden layer can thus be

calculated from those in the output layer. Figure 2.4 gives the flow chart for

learning process.

back-propagation with momentum

Although frequent updates provide a speed up thr back-propagation, there

are still other algorithms that can be used for improved performance. One of

these is known as standard momentum. Momentum term is a locally adaptive

approach to update the weights of a neural network. At the moment of using

the momentum the update rule is to be modified as

∆wk,i(t) = ηδhkxi + α∆wk,i(t− 1)

where α is the momentum term. Adding the momentum term will typically

results in aspeed up of the training for many applications. Although momen-

tum speeds up the performence, but an improper selection of the momentum

term causes a network to diverge.
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Figure 2.4: Flow chart for learning process

2.3 Variants of Evolutionary Algorithms

The origin of evolutionary algorithms has dated back to early fifties. The ear-

liest EAs that predominated in many engineering and related applications are

GA, GP, evolutionary strategy (ES) and evolutionary programming (EP). Each
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of these varieties implements an evolutionary algorithm in a different manner

which includes the choices of representation for the individual structures, types

of selection mechanism used, forms of genetic operators, and measures of per-

formance.

2.3.1 Genetic Algorithms

Genetic Algorithms are adaptive methods which may be used to solve search

and optimization problems. Over many generations, natural populations evolve

according to the principles of natural selection and survival of the fittest. The

basic principles of GAs [112, 114] were first laid down rigorously by Holland,

in mid sixties. Thereafter, many researchers have contributed to develope this

field. There are many variations of the genetic algorithm but the basic form is

the simple genetic algorithm (SGA). The working principle of SGA is described

in the following section.

Coding

Before a GA can run, a suitable coding for the problem must be devised. It is

assumed that a potential solution to a problem may be represented as a set of

parameters. These parameters (known as ‘genes’) are joined together to form

a string of values (often referred as ‘chromosome’ or ‘Individual’ ). Binary

coded strings having ones and zeros are mostly used. For example, if 8 bits are

used to code each variable in a two-variable function optimization problem,

chromosome would contain two genes, and consists of 16 binary digits. Length

of the string is determined according to the desired solution accuracy. It is not

necessary to code all variables in equal sub-string length.

Fitness function

As pointed out earlier, GAs mimic the survival of the fittest principle of nature

to make a search process. Therefore, GAs are naturally suitable for solving

maximization problems. Minimization problems are usually transformed in

to maximization problems by suitable transformation. In, general, a fitness
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function is first derived from the objective function and used in successive

genetic operations. Certain genetic operators require that the fitness function

be nonnegative, although certain operators do not have this requirement. For

maximization problems, the fitness function can be considered to be the same

as the objective function. For minimization problems, the fitness function is an

equivalent maximization problem chosen such that the optimum point remains

unchanged.

GA operators

The GA works with a set of individuals comprising the population. The initial

population consists of P randomly generated individuals, where, P is the size

of population. At every iteration of the algorithm, the fitness of each individual

in the current population is computed. The population is then transformed in

stages to yield a new current population for the next iteration. The transfor-

mation is usually done in three stages by sequentially applying the following

genetic operators:

Selection : In the first stage, the selection operator is applied as many times

as there are individuals in the population. In this stage every individual is repli-

cated with a probability proportional to its relative fitness in the population.

The population of P replicated individuals replaces the original population.

Crossover: In the next stage, the crossover operator is applied with a proba-

bility pc, independent of the individuals to which it is applied. Two individuals

(parents) are chosen and combined to produce two new individuals (offsprings).

The combination is done by choosing at random a cutting point at which each

of the parents is divided into two parts; these are exchanged to form the two

offsprings which replace their parents in the population. This is known as sin-

gle point crossover.

Mutation: In the final stage, the mutation operator changes the values in
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a randomly chosen location on an individual with a probability pm.

Convergence

If the GA has been correctly implemented, the population will evolve over

successive generations so that the fitness of the best and the average individ-

ual in each generation increases towards the global optimum. The algorithm

converges after a fixed number of iterations and the best individual generated

during the run is taken as the solution. Table 2.2 describes the similarities and

dissimilarities between GA and other evolutionary algorithms.

 
First generation 

Evaluation 

Return best 
solution 

Mutation 

Crossover 

Reproduction 

   Max  

generation 

No 

Yes 

Figure 2.5: Flow chart for GA
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Table 2.2: Similarities and dissimilarities between GA and other evolutionary
algorithms

Genetic Algorithm Evolutionary Pro-
graming

Evolutionary Strate-
gies

First formulated by
Holland for adaptive
search and by his stu-
dents for optimization
from mid 1960s to mid
1970s.

First proposed by Fo-
gel et al. in mid 1960s
for simulating intelli-
gence.

First proposed by
Rechenberg and
Schwefel in mid
1960s for numerical
optimisation.

Binary strings are used
extensively as individ-
uals (chromosomes).

Finite state machines
(FSMs) are used to
represent individuals,
although real-valued
vectors have always
been used in numerical
optimisation.

Real-valued vectors
are used to represent
individuals.

Simulate Darwinian
evolution.

It is closer to Lamarck-
ian evolution.

They are closer to Lar-
mackian evolution.

Search operators are
only applied to the
genotypic representa-
tion (chromosome) of
individuals.

Search operators (mu-
tations only) are ap-
plied to the phenotypic
representation of indi-
viduals.

They do have recombi-
nation.

Emphasise the role
of recombination
(crossover). Mutation
is only used as a
background operator.

It does not use any re-
combination.

They use self-adaptive
mutations.

Often use roulette-
wheel selection.

Usually use tourna-
ment selection.

2.3.2 Bacterial Foraging Optimization

The details of bacteria foraging optimization are given in [161]. A group of

bacteria move in search of food and away from noxious elements known as

foraging. All bacteria try to move upward the food concentration gradient

individually. At the initial location they measure the food concentration and

then tumble to take a random direction and swim for a fixed distance and

measure the concentration there. This tumble and swim make one chemotactic
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step. If the concentration is greater at next location, then they take another

step in that direction. When concentration at next location is lesser than that

of previous location, they tumble to find another direction and swim in this

new direction. This process is carried out up to a certain number of steps,

which is limited by the lifetime of the bacteria. At the end of its lifetime the

bacteria that have gathered good health that are in better concentration region

divide into two cells. Thus in the next reproductive step the next generation of

bacteria start from a healthy position. The better half reproduces to generate

next generation where as the worse half dies. This reproduction step is also

carried out a fixed number of times. In the optimization technique we can

take the variable we want to optimize as the location of bacteria in the search

plane (the plane where the bacteria can move). The specifications such as

number of reproductive steps, number chemotactic steps which are consisted

of run (or swim) and tumble, swim length, maximum allowable swims in a

particular direction are given for a particular problem then the variable can

be optimized using this Bacteria Foraging Optimization technique. The E.coli

bacteria that are present in our intestines have a foraging strategy governed by

four processes, namely, chemotaxis, swarming, reproduction, and elimination

and dispersal.

Chemotaxis:

This process is achieved through swimming and tumbling. Depending upon

the rotation of the flagella in each bacterium, it decides whether it should

move in a predefined direction (swimming) or an altogether different direction

(tumbling), in the entire lifetime of the bacterium. To represent a tumble, a

unit length random direction, φ(j) say, is generated; this will be used to define

the direction of movement after a tumble. In particular,

θi (j + 1, k, l) = θi (j, k, l) + ST (i)φ(j) (2.2)

where θi(j, k, l) represents the ith bacterium at jth chemotactic kth reproduc-

tive, and lth elimination and dispersal step. ST (i) is the size of the step taken
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in the random direction specified by the tumble. ST is termed as the run

length unit.

Swarming:

It is always desired that the bacterium that has searched the optimum path of

food should try to attract other bacteria so that they reach the desired place

more rapidly. Swarming makes the bacteria congregate into groups and hence

move as concentric patterns of groups with high bacterial density. Mathemat-

ically, swarming can be represented by

Jst =
P∑
i=1

J ist (θ, θi(j, k, l))

=
P∑
i=1

[
−dattract exp

(
−ωattract

d∑
m=1

(θm − θim)
2

)]
+

P∑
i=1

[
hrepellent exp

(
−ωrepellent

d∑
m=1

(θm − θim)
2

)] (2.3)

where Jst(θ, P (j, k, l)) is the cost function value to be added to the actual cost

function to be minimized to present a time varying cost function. P is the total

number of bacteria. d is the number of parameters to be optimized that are

present in each bacterium. dattract, ωattract, hrepelent and ωrepelent are different

coefficients that are to be chosen judiciously.

Reproduction:

The least healthy bacteria die, and the other healthiest bacteria each split into

two bacteria, which are placed in the same location. This makes the population

of bacteria constant.

Elimination and dispersal:

It is possible that in the local environment, the life of a population of bacteria

changes either gradually by consumption of nutrients or suddenly due to some

other influence. Events can kill or disperse all the bacteria in a region. They

have the effect of possibly destroying the chemotactic progress, but in contrast,

they also assist it, since dispersal may place bacteria near good food sources.
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Elimination and dispersal helps in reducing the behavior of stagnation (i.e.,

being trapped in a premature solution point or local optima).

2.3.3 Particle Swarm Optimization

Particle swarm optimization [44, 157] is a stochastic global optimization method

which is based on simulation of social behavior. As in GA and ES, PSO ex-

ploits a population of potential solutions to probe the search space. In contrast

to the aforementioned methods in PSO no operators inspired by natural evo-

lution are applied to extract a new generation of candidate solutions. Instead

of mutation PSO relies on the exchange of information between individuals,

called particles, of the population, called swarm. In effect, each particle ad-

justs its trajectory towards its own previous best position, and towards the

best previous position attained by any member of its neighborhood. In the

global variant of PSO, the whole swarm is considered as the neighborhood.

Thus, global sharing of information takes place and particles profit from the

discoveries and previous experience of all other companions during the search

for promising regions of the landscape. Several variants of PSO [45] have been

proposed up to date, following Eberhart and Kennedy who were the first to

introduce this method. Initially, assuming that the search space is d dimen-

sional, so the ith particle of the swarm is represented by a d dimensional vector

Xi = (xi1, xi2, · · · , xid) and the best particle of the swarm, i.e. the particle with

the lowest function value, is denoted by index g. The best previous position

(i.e. the position corresponding to the best function value) of the ith particle

is recorded and represented as posi = (posi1, posi2, · · · , posid) and the position

change (velocity) of the ith particle is Vi = (vi1, vi2, · · · , vid) . The particles are

manipulated according to the following equations (the superscripts denote the

iteration):

V k+1
i = χ

(
wV k

i + c1r
k
i1

(
poski −Xk

i

)
+ c2r

k
i2

(
poskg −Xk

i

))
(2.4)

Xk+1
i = Xk

i + V k+1
i (2.5)
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where i = 1, · · · , P , and P is the size of the population which is used to control

and constrict velocities; w is the inertia weight; c1 and c2 are two positive

constants, called the cognitive and social parameter respectively; ri1 and ri2

are random numbers uniformly distributed within the range [0, 1]. Eq. (2.4)

is used to determine the ith particle’s new velocity, at each iteration, while Eq.

(2.5) provides the new position of the ith particle, adding its new velocity, to

its current position. The performance of each particle is measured according

to a fitness function. In optimization problems, the fitness function is usually

identical with the objective function under consideration. The role of the

inertia weight (w) is considered important for the PSOs convergence behavior.

The inertia weight is employed to control the impact of the previous history of

velocities on the current velocity. A large inertia weight facilitates exploration

while a small one tends to facilitate exploitation, current search area. A proper

value for the inertia weight w provides balance between the global and local

exploration ability of the swarm, and, thus results in better solutions.

2.3.4 Differential Evolution

Price and Storn developed differential evolution [49] to be a reliable and ver-

satile function optimizer that is also easy to use. Like nearly all EAs, DE is

a population-based optimizer that attacks the starting point problem by sam-

pling the objective function at multiple, randomly chosen initial points. Each

vector is indexed with a number from 0 to number of population i.e.P . DE

generates new points that are perturbations of existing points, but these devi-

ations are not the samples from a predefined probability density function, like

those in the ES. Instead, DE perturbs vectors with the scaled difference of two

randomly selected population vectors. To produce the trial vector, DE adds

the scaled, random vector difference to a third randomly selected population

vector. In the selection stage, the trial vector competes against the population

vector of the same index in which the vector with the lower objective func-

tion value is marked as a member of the next generation. Once the last trial

vector has been tested, the survivors of the competitions become parents for
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the next generation in the evolutionary cycle. DE [50, 51] is capable of han-

dling non-differentiable, nonlinear and multimodal objective functions which

has been used to train neural networks having real and constrained integer

weights. In a population of P potential solutions to an optimization problem

within an d-dimensional search space, a fixed number of vectors are randomly

initialized, then evolved over time to explore the search space and to locate

the minima of the objective function. In DE, individuals are represented as

real-valued vectors. For each generation of the evolution process, each indi-

vidual (target individual) of the population competes against a new individual

(trial individual) for survival to the next generation. Only the fitter of the two

survives. The trial individual is created by recombining the target individual

with another individual created by mutation (mutant individual). Mutation

is performed on the best individual found so far in the evolution process. For

each target vector xi,g a mutant vector is produced using the following formula

vi,g+1 = xr1,g + Fz2

z2 = (xr2,g − xr3,g )
(2.6)

where i, r1, r2, r3 ∈ {1, 2, · · · , P} are randomly chosen and must be different

from each other. Considering equation (2.6), it can be seen that the prob-

ability density function (PDF) of the differential population z2 used during

the mutation changes automatically as the generation proceeds and eventu-

ally solution converges towards the global minimum. Referring Fig. 2.6 where

five populations x1, x2, · · · , x5 produce ten numbers of vector differences in one

direction and twenty numbers in both directions which is shown in Fig. 2.7.

Similarly for P populations there will be P (P−1)
2

vector differences in one di-

rection and P (P − 1) in both directions. This implies that the mean of the

PDF is always zero and the shape of the distribution changes automatically

in successive generations depending on the surface of the objective function

being searched which is shown in Fig. 2.8.
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In equation (2.6), F is the mutation factor. Recombination creates an

offspring (trial individual) by selecting parameters from either the target in-

dividual or the mutant individual. There are two methods of recombination
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in DE, namely, binomial recombination and exponential recombination. In

binomial recombination, a series of binomial experiments are conducted to

determine which parent contributes which parameter to the offspring. Each

experiment is mediated by a crossover constant, C, (0 ≤ C ≤ 1). Starting at

a randomly selected parameter, the source of each parameter is determined

by comparing C to a uniformly distributed random number from the interval

[0, 1). If the random number is greater than C, the offspring gets its pa-

rameter from the target individual; otherwise, the parameter comes from the

mutant individual. In exponential recombination, a single contiguous block

of parameters of random size and location is copied from the mutant indi-

vidual to a copy of the target individual to produce an offspring. A vector

of solutions are selected randomly from the mutant individuals when randj

(randj ∈ [0, 1], is a random number) is less than C. This last operator is

referred to as a selection. There are many different variants of DE the vari-

ants are as follows. DE/best/1/exp, DE/rand/1/exp, DE/rand-to-best/1/exp,

DE/best/2/exp, DE/rand/2/exp. Now we explain the working steps involved

in employing a DE cycle.

Step 1: Parameter setup

Choose the parameters of population size P , the mutation factor F , the crossover

rate C, and the stopping criterion of the maximum number of generations g

and the boundary constraints of optimization variables.

Step 2: Initialization of the population

Set generation g = 0. Initialize a population of individuals individuals (real-

valued d-dimensional solution vectors) with random values generated accord-

ing to a uniform probability distribution in the d dimensional problem space.

These initial values are chosen randomly within user defined bounds.
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Step 3: Evaluation of the population

Evaluate the fitness value of each individual of the population. If the fitness

satisfies predefined criteria save the result and stop, otherwise go to step 4.

Step 4: Mutation operation (or differential operation)

Mutation is an operation that adds a vector differential to a population vector

of individuals. For each target vector a mutant vector is produced using the

following relation,

vi,g = xr1,g + F (xr2,g − xr3,g ) (2.7)

In Eqn. (2.7), F is the mutation factor, which provides the amplification to

the difference between two individuals so as to avoid search stagnation and it

is usually taken in the range of [0, 1], where are randomly chosen numbers but

they must be different from each other. is the number of population.

Step 5: Recombination operation

Following the mutation operation, recombination is applied to the population.

Recombination is employed to generate a trial vector by replacing certain pa-

rameters of the target vector with the corresponding parameters of a randomly

generated donor (mutant) vector.

tj,i,g =

 vj,i,g if (randj ≤ C) or j = jrand

xj,i,g otherwise
(2.8)

j = 1, 2, · · · , d where d is the number of parameters to be optimized.

Step 6: Selection operation

Selection is the procedure of producing better offspring. If the trial vector has

an equal or lower value than that of its target vector, it replaces the target

vector in the next generation; otherwise the target retains its place in the
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population for at least one more generation.

xi,g+1 =

 ti,g, if f(ti,g) ≤ f(xi,g)

xi,g, otherwise
(2.9)

Once new population is installed, the process of mutation, recombination and

selection is replaced until the optimum is located, or a specified termination

criterion is satisfied, e.g., the number of generations reaches a predefined max-

imum. The block diagram for DE is given in Fig.2.9 and and its pseudo code

is given in algorithm1.
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Figure 2.9: Block diagram for DE algorithm
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Algorithm 1 DE Algorithm

Require: pop: initial population, F : Mutation constant, C: Cross over con-
stant
while Convergence criteria not met do

for i = 0 to P do
r1 = rand(P )
r2 = rand(P )
r3 = rand(P )
i 6= r1 6= r2 6= r3
vi,g = xr1,g + F (xr2,g − xr3,g )

tj,i,g =

{
vj,i,g if (randj ≤ C) or j = jrand
xj,i,g otherwise

if f(ti,g) ≤ f(xi,g) then
xi,g+1 = ti,g

else
xi,g+1 = xi,g

end if
end for

end while

2.4 Evolutionary Algorithms for Neural Net-

works Training

Neural networks have been applied to a variety of classification and learning

tasks. Any nonlinear optimization method, a local or global one, can be ap-

plied to the optimization of feed-forward neural networks weights. The training

performance varies depending on the objective function and underlying error

surface for a given problem and network configuration. Since the gradient

information of error surface is available for the most of the applied network

configurations, the most popular optimization methods have been variants of

gradient based back-propagation algorithms. Most training algorithms, such

as BP and conjugate gradient algorithms [64, 65, 66, 67] are based on gra-

dient descent. Naturally, local searches are fundamentally limited to local

solutions, while global ones attempt to avoid this limitation. Widely applied

methods for training the neural networks are, modified back-propagation [70],

back-propagation using the conjugate-gradient approach [67], scaled conjugate-
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gradient and its stochastic counterpart [65], the Marquadt algorithm [69], and a

concept learning based back-propagation. Many of these gradient based meth-

ods are studied and discussed even for large networks in. Several methods have

been proposed for network configurations where the gradient information is

not available, such as simulated annealing for networks with non-differentiable

transfer functions [83].

In many studies only small network configurations are considered in training

experiments. Many gradient based methods and especially the Levenberg-

Marquadt method are extremely fast for small networks. The disadvantage of

using gradient based methods are that it often gets trapped in a local mini-

mum of the error function and is incapable of finding a global minimum if the

error function is multimodal and/or non-differentiable. One way to overcome

the shortcomings of gradient descent based training algorithms is to adopt

EANNs, i.e., to formulate the training process as the evolution of connection

weights in the environment determined by the architecture and the learning

task. EAs can then be used effectively in the evolution to find a near-optimal

set of connection weights globally without computing gradient information.

The fitness of a NN can be defined according to different needs. Two impor-

tant factors which often appear in the fitness function are the error between

target and actual outputs and the complexity of the NN. Because EAs can

treat large, complex, non-differentiable, and multimodal spaces, which are the

typical case in the real world, considerable research and application has been

conducted on the evolution of connection weights [74, 75]. Several successful

evolving neural approaches such as the EPNet [41] algorithm are hybrid algo-

rithms combining gradient descent methods such as back-propagation learning

for connection weight training with evolutionary structure search. In these ap-

proaches the fitness function is the generally taken as a mean or sum squared

network output error over input training patterns. The field of EANNs can be

divided into two major areas of research: the evolution of connection weights
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and the evolution of both structure and connection weights. In the first area,

the structure of neural networks is fixed before the evolution begins. In the

second area, both the structure and the connection weights are determined

automatically during the evolutionary process.

The combination of evolutionary algorithm and neural network for weight

training consists of three major phases. The first phase is to decide the rep-

resentation of connection weights, i.e., whether we use a binary strings form

or directly use a real number form to represent the connection weights. The

second step is the evaluation on the fitness of these connection weights by con-

structing the corresponding neural network through decoding each genome and

computing its fitness function and mean square error function. The third one

is applying the evolutionary process such as selection, crossover, and mutation

operations by a evolutionary algorithm according to its fitness. The evolution

stops when the fitness is greater than a predefined value (i.e., the training error

is smaller than a certain value) or the population has converged.

2.4.1 A Comparison between Evolutionary Training and
Gradient-Based Training

An advantage of using EAs for training neural networks is that it can handle

the global search problem better in a vast, complex, multimodal, and non-

differentiable surface. Also, EAs do not rely on calculating the gradient of

the fitness function and thus is particularly appealing when this information

is unavailable or very costly to obtain or estimate. Because of the stochastic

nature of those algorithms the learning process can reach an optimal solution

with much higher probability than many standard neural based techniques,

which are based on the gradient information of the error surface. The evolu-

tionary approach has been used to train recurrent NNs [75], higher order NNs

[76] and fuzzy NNs [77]. Moreover, the same EA can be used to train many

different networks regardless of whether they are feed-forward, recurrent, or

higher order NNs. The general applicability of the evolutionary approach saves
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a lot of human efforts in developing different training algorithms for different

types of NNs. The evolutionary approach also makes it easier to generate NNs

with some special characteristics. The main disadvantage of EAs is that it is

usually slow in comparison with fast variants of BP and conjugate gradient

algorithms [78]. However, EAs are generally much less sensitive to initial con-

ditions of training. They always search for a globally optimal solution, while

a gradient descent algorithm can only find a local optimum in a neighborhood

of the initial solution.

2.5 Hybrid Training

One of the problems through the global search based techniques is the time

complexity of the algorithm. Hence there was a further need for an improve-

ment of this approach in terms of the time complexity by fine tuning the search

within the local neighborhood area of the global solution obtained. Usually

most EAs are rather inefficient in fine-tuned local search although they are

good at global search. For getting the optimal connection weights a local

search procedure should be incorporated into the evolution using the gradient

descent algorithm to find the best connection weights at the local error sur-

face. So the efficiency of evolutionary training can be improved significantly by

incorporating a local search procedure into the evolution, i.e., combining EAs

global search ability with local searchs ability to fine tune. EAs can be used to

locate a good region in the space and then a local search procedure is used to

find a near-optimal solution in this region. The local search algorithm could be

BP, the variations of BP such as conjugate gradient or Levenberg-Marquardt

algorithms. Hybrid training has been used successfully in many application

areas [162]. In [163] the authors used GAs to search for a near-optimal set

of initial connection weights and then used BP to perform local search from

these initial weights. Their results showed that the hybrid GA/BP approach

was more efficient than either the GA or BP algorithm used alone.
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2.5 Hybrid Training

2.5.1 The Memetic Algorithm

A meme is defined to be a noun that conveys the idea of a unit of cultural

transmission, or a unit of imitation [79]. In other words, a meme can be con-

sidered as any unit of information, observable in the environment. They are

similar to genes in that they are self replicating, but memes differ from genes

in that they are transmitted through imitation rather than being inherited.

Furthermore, memes replicate in a Lamarckian manner (rather than in a Dar-

winian manner) in that changes to the meme during its lifetime are passed

on. The population-based search algorithm such as GA, PSO and DE are

commonly used to solve combinatorial optimization problems where the goal

is to find the best solution in a (possibly unknown) solution space. It uses

the principle of biological evolution to generate successively better solutions

from previous generations of solutions. Memetic algorithm is an extension of

the algorithms which incorporates a local-search algorithm for each solution

in between generations. According to Pastorino [80], MA is able to improve

convergence time, hence making it more favorable over the population based

algorithms. In MAs local search is performed in between each generation, in

addition to the techniques operators used by the EA. For this reason, Memetic

Algorithm is also known as Hybrid-Algorithm [81]. Local search is performed

to improve the fitness of the population (in a localized region of the solution

space) so that the next generation has better genes from its parents, hence

the claim that memetic algorithms can reduce convergence time. Memetic al-

gorithms incorporate the concept of memes by allowing individuals to change

before the next population is produced. Individuals may copy parts of genes

from other individuals to improve their own fitness.

The local search algorithm adopted in a memetic algorithm is somewhat de-

pendent on the problem being solved. When memes are transmitted, changes

to them are also passed on. Memes affect the behavior of an individual, and

do not modify the genes themselves. However, as a practical issue, a meme in
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a memetic algorithm must be able to modify genes in order to improve fitness

during local search. The hybridization is meant to either accelerate the discov-

ery of good solutions, for which evolution alone would take too long to discover,

or to reach solutions that would otherwise be unreachable by evolution or a

local method alone.

2.6 EC+NN System Identification

Figure 2.10 shows an EC+NN identification scheme where the neural identifier

is used to estimate the plant. Evolutionary computing techniques such as GA,

PSO and DE are used as optimization algorithm to train the weights of the

NN.
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Figure 2.10: EC+NN identification scheme

2.7 Summary

This chapter reviews types of feed-forward neural network, its learning and

evolutionary computing techniques. It also presents how to combine the evolu-

tionary computing techniques with the conventional gradient based algorithms.

Now a days hybrid algorithms are as good as many advanced EAs in handling

noisy problems. One of the hybrid algorithm known as memetic algorithm is

discussed here which is used to train the weights of a NN for reducing the

convergence time.

57



Chapter 3

A Differential Evolution Trained
Neural Network Scheme for
Nonlinear System Identification

3.1 Introduction

This chapter describes a nonlinear system identification scheme using differ-

ential evolution, neural network and Levenberg Marquardt algorithm. Here,

DE and LM in a combined framework are used to train a neural network for

achieving better convergence of neural network weight optimization. In this

work , we have combined an EA i.e. DE with a local optimizer i.e. LM in a

sequential manner. This type of algorithms are known as sequential hybridiza-

tion algorithm where set of algorithms is applied one after another, each using

the output of the previous as its input. EAs more or less simulate a natural

process. As such, they possess a certain dynamics which is inherent to the

process, regardless of details related to solution representation or the way so-

lutions are acted upon by operators. Starting with a random population, all

its individuals are said to converge i.e. to become more and more uniform after

a certain amount of time. Numbers of options are available to hybridize dif-

ferent EAs and EAs with other local search algorithms. In this thesis, we have

considered two types of algorithms i.e. sequential hybridization and memetic

algorithms for training a MLPNN. The focus of this chapter is on SH algortihm

whilst the later will be described in chapter 4.
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3.1 Introduction

Sequential hybridization

A fundamental and practical remark on EAs is that after a certain amount of

time, the population is quite uniform and the fitness of the population is no

longer decreasing. That is, the process has fallen into a basin of attraction

from which it has a (very) low probability to escape. This point leads to raise

two important issues as follows

• Once the solution falls in a basin, the algorithm is not able to know if

it has found the optimal point, or if it has fallen into a local optimum.

Hence, we need to find ways to escape the optimum in order to try to

find another optimum.

• The exploitation of the already found basin of attraction has to be real-

ized in order to find, as efficiently as possible, the optimal point in the

basin.

The first point may be solved by restarting the EA with a new population

hoping that the EA will not fall into the same basin. Eshelman [82] reports

enhanced results using such a technique. This is quite natural since restarting

is equivalent to performing several runs. Hence the odds to find the optimum

are multiplied by the number of runs. With regards to the second point, it

is experimentally clear that the exploitation of the basin of attraction that

has been found may be more efficiently performed by another algorithm than

by an EA. Hence, it is much more efficient to use a local search algorithm.

This schema of algorithm is known as sequential hybridization. Basically, this

phrase means that a set of algorithms is applied one after another, each using

the output of the previous as its input, acting in a pipeline fashion. Many

authors have used the idea of sequential hybridization. In [83], the authors

introduce simulated annealing to improve the population obtained by an EA.

In [84], the proposed algorithm starts from simulated annealing and uses EAs

to enrich the solutions that have been found. In [85], two genetic algorithms
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are pipelined to solve a problem of routing of macro-cell layouts.

In this chapter SH has been utilised as an optimisation algorithm for train-

ing NNs applied to nonlinear system identification problems. Here, we have

hybridized a global search algorithm i.e. differential evolution with a local

search algorithm i.e. LM algorithm for the training of artificial neural net-

works, more specifically Multilayer Perceptrons, applied to nonlinear system

identification. As DE becomes slow near the basin of the global optimization,

the function of LM is to enhance the speed of convergence. In this work number

of examples including a practical case-study have been considered for imple-

mentation of this algorithm. As local search algorithms are greatly dependent

on the initialization and the global search algorithms are inherently slow, this

type of hybridization enhances the search performed either by the LM or DE

alone.

In neural network training, hybrid algorithms can be introduced at various

levels. At the lowest level, it can be introduced into weight training, where

NN weights are obtained. At the next higher level, it can be introduced into

neural network architecture adaptation, where the architecture (number of

hidden layers, no of hidden neurons and node transfer functions) is found. At

the highest level, the hybrid algorithms can be introduced into the learning

mechanism. In weight training, EAs can be used effectively in the evolution to

find a near-optimal set of connection weights globally without computing gra-

dient information then a gradient descent algorithm finds the local optimum

in a neighborhood of the EAs solution. The fitness of a NN can be defined

according to different needs. Two important factors which often appear in

the fitness (or error) function are the error between target and actual out-

puts and the complexity of the NN. The hybrid approach to weight training

in NNs consists of three major phases. The first phase is to decide the repre-

sentation of connection weights, i.e., whether in the form of binary strings or
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3.2 Identification Using Neural Network

real strings. The second one is the evolutionary process simulated by an EA,

in which search operators such as crossover and mutation have to be decided

in conjunction with the representation scheme. Different representations and

search operators can lead to quite different training performance. The third

phase decides when to apply the local search so that the algorithm can able to

find the global optimum with faster convergence.

3.2 Identification Using Neural Network

In the past, most of the system identification problems exploit neural networks

either multilayer perceptron neural network (MLPNN) or Radial basis function

neural network. Typically, a MLPNN consists of at least two layers of neurons

with weighted links connecting the output of neurons in one layer to the input

of neurons in the next layer. The weights are updated as follows

wj,i(k + 1) = wj,i(k) + ηδj(k)yj(k) (3.1)

where wj,i is the synaptic weight connecting the output of a neuron i to the

input of neuron j at time k. η is the learning rate parameter and δj(k) is the

local gradient of neuron j at time k. The learning parameter should be chosen

to provide minimization of the total error function, E. However, for small

η the learning process becomes slow and large value of η corresponds to fast

learning but leads to oscillation that prevent the algorithm from converging to

the desired solution. A wide class of nonlinear dynamic systems with an input

u and an output yp can be described by the model:

ŷp(k) = f (<(k), θ), where ŷp is the output of the model, <(k) is the regression

vector and θ is the parameter vector. Depending on the choice of the regressors

in <(k), different models can be derived:

NFIR (Nonlinear Finite Impulse Response) model:

<(k) = (u(k − 1), u(k − 2), · · · , u(k − nu))
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3.2 Identification Using Neural Network

where nu denotes the maximum lag of the input.

NARX (Nonlinear Auto Regressive with exogenous inputs) model:

<(k) = (u(k − 1), u(k − 2), · · · , u(k − nu), yp(k − 1), yp(k − 2), · · · , yp(k − ny))

where ny denotes the maximum lag of the output.

NARMAX (Nonlinear Auto Regressive Moving Average with exoge-
nous inputs) model:

<(k) = (u(k − 1), · · · , u(k − nu), yp(k − 1), · · · , yp(k − ny), e(k − 1), · · · , e(k − ne))

where e(k) is the prediction error and ne is the maximum lag of the error.

NOE (Nonlinear Output Error) model:

<(k) = (u(k − 1), u(k − 2), · · · , u(k − nu), ŷp(k − 1), ŷp(k − 2), · · · , ŷp(k − ny))

A neural network based scheme shown in Figure 3.1 is used in this chapter

which is the general block scheme of the NARX model. In this type of identifier,

the output of the neural-network almost coincides with the output of the plant

after learning and the model of the plant is composed in the neural network.

In this figure, error ek denotes the difference between plant actual output and

estimated output. Past values of input and output of the plant form the input

vector to the neural network; ŷp corresponds to estimate the plant output given

by the neural network at any instant of time k.
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Figure 3.1: The general scheme for NARX model system identification

The two-layer feed-forward neural network with sigmoidal activation func-

tion in the hidden layer and linear activation function in output layer has the

ability to approximate nonlinear function if the number of neurons in the hid-

den layer is sufficiently large. The feed-forward neural network (FNN) used in

this work is shown in Figure (3.2). The inputs u(k− 1), u(k− 2), ..., u(k− nu)

and outputs y(k − 1), y(k − 2), . . . , y(k − ny) are multiplied with the weights

wu(i,j) and wy(i,j) respectively, and summed at each hidden node. Then, the

summed signal at a node activates a nonlinear function (sigmoid function).

Thus, the output ŷp at a linear output node can be calculated from its inputs

as follows:

ŷp(k) =

nh∑
i=1

wk,i
1

1 + e
−
(

nu∑
j=1

u(k−j)wu(i,j)+
ny∑
j=1

y(k−j)wy(i,j)+bi

) + b (3.2)

where nu + ny is the number of inputs, nh is the number of hidden neurons,

wu(i,j) is the first layer weight between the input u(k − j) and the ith hidden

neuron, wy(i,j) is the first layer weight between the input y(k − j) and the ith

hidden neuron, wi is the second layer weight between the ith hidden neuron

and output neuron, bi is a biased weight for the ith hidden neuron and b is a

biased weight for the output neuron. It can be seen from Figure 3.2 that the
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3.2 Identification Using Neural Network

FNN is a realization of the NARX model. The difference between the output

of the plant y(k) and the output of the network ŷp is called the prediction error,

e(k) = yp(k)− ŷp(k). This error is used to adjust the weights and biases in the

network via the minimization of the error function E = 1
2

[yp(k)− ŷp(k)]2.
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Figure 3.2: Structure of NN for NARX model system identification

We proposed here an improved neural network based nonlinear system iden-

tification scheme where the training of the NN employed for the identification

has been made faster and accurate. This improved training algorithm was

achieved by virtue of two important benefits of hybrid use of two different

optimization schemes namely a stochastic evolutionary algorithm i.e. DE al-

gorithm which provides a global search whilst the convergence of the proposed

hybrid training has been accelerated by the gradient based optimization tech-

nique i.e. LM algorithm. We clearly demonstrated in this work that our

proposed DE+LM+NN approach has been found to be successful in provid-

ing the best identification performance amongst the other varieties of system
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3.3 Levenberg-Marquardt Algorithm

identification schemes such as NN trained by LM, and NN trained by DE. In

the proposed identification frame work, differential evolution is used only to

find approximate values in the vicinity of the global minimum. These approx-

imate weight values are then used as starting values for a faster convergence

algorithm i.e. Levenberg-Marquardt algorithm

3.3 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm [69] is an approximation to the Newton

method used also for training NNs. The Newton method approximates the

error of the network with a second order expression, which contrasts to the

Back-propagation algorithm that does it with a first order expression. LM

is popular in the NN domain, although it is not that popular in the meta

heuristics field. LM updates the NN weights as follows:

∆w =
[
JT (w) J(w) + µI

]−1
JT (w) e(w) (3.3)

where J(w) is the Jacobian matrix of the error vector e(w) evaluated in w,

and I is the identity matrix. The vector error e(w) is the error of the network

for particular pattern i, that is e(k) = yp(k) − ŷp(k). The parameter µ is

increased or decreased at each step. If the error is reduced, then µ is divided

by a factor β, and it is multiplied by β in other case. Levenberg-Marquardt

performs the steps detailed in Fig. 3.3. It calculates the network output, the

error vectors, and the Jacobian matrix for each pattern. Then, it computes ∆w

using Eqn. (3.3) and recalculates the error with w + ∆w as network weights.

If the error has decreased, µ is divided by β, the new weights are maintained,

and the process starts again; otherwise, µ is multiplied by β, ∆w is calculated

with a new value, and it iterates again.
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The choice of an appropriate objective function is crucial for any data fitting

procedure regardless of the optimization method used. The DE algorithm gives

us a great deal of flexibility in this choice since we need only choose a continuous

function and do not require the function to have continuous derivatives. The

objective function chosen should be fast and simple to calculate.

3.4 Proposed DE+LM+NN Algorithm

In this section we describe how a DE is applied for training neural network in

the frame work of system identification. DE can be applied to global searches

within the weight space of a typical feed-forward neural network. Output of

a feed-forward neural network may be considered as a function of synaptic

weights w and input values x, given by y = f(x,w).

The role of LM in the proposed algorithm is to fine tune the search within

the local neighborhood area of the solution obtained by DE. In the training

processes, given both the input vector x and the output vector y the synaptic

weights in w are adapted to obtain appropriate functional mappings from the

input x to the output y. Generally, the adaptation can be carried out by

minimizing the network error function E which is of the form. In this work

we have taken E as mean squared error i.e. E = 1
N

N∑
k=1

[y − f(x,w)]2, where

N is the number of data considered. The optimization goal is to minimize the

objective function E by optimizing the values of the network weights w. where

w = (w1, · · · , wd)

The algorithm proposed is given below
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Step 1.

Initialize population pop: Create a population from randomly chosen object

vectors with dimension P.

Pg = (w1,g, · · · ,wP,g) g = 1, · · · , gmax

wi,g = (w1,i,g, · · · , wd,i,g) i = 1, · · · , P

where d is the number of weights in the weight vector and in wi,g, i is index to

the population and g is the generation to which the population belongs.

Step 2.

Evaluate all the candidate solutions inside pop for a specified number of iter-

ations.

Step 3.

For each ith candidate in pop select the random variables r1, r2, r3 ∈ {1, 2, · · · , P}

Step 4.

Apply mutation operator to each candidate in population to yield a mutant

vector i.e.

vj,i,g+1 = wj,r1,g + F (wj,r2,g − wj,r3,g) , forj = 1, · · · , d

(i 6= r1 6= r2 6= r3) ∈ {1, · · · , P} andF ∈ (0, 1+]

Step 5.

Apply crossover i.e. each vector in the current population is recombined with

a mutant vector to produce trial vector.

tj,i,g+1 =

 vj,i,g+1 if randj[0, 1) ≤ C

wj,i,j otherwise

where C ∈ [0, 1]
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3.4 Proposed DE+LM+NN Algorithm

Step 6.

Apply selection i.e. between the trial vector and target vector. If the target

vector has an equal or lower objective function value than that of its target

vector, it replaces target vector in the next generation; otherwise, the target

retains its place in the population for at least one more generation

wi,g+1 =

 ti,g+1 if E(y, f(x,wi,g+1)) ≤ E(y, f(x,wi,g))

wi,g otherwise

Step 7.

If E ≤ ε where ε > 0 go to step 8

Step 8.

Initialize the weight matrix of Levenberg-Marquardt algorithm taking the values

of weights obtained after the fixed number of iterations. Find out the value of

E.

Step 9.

Compute the Jacobian matrix J(w).

Step 10.

Find ∆w using the following equation

∆w =
[
JT (w) J(w) + µI

]−1
JT (w) E

Step 11.

Recompute E using w + ∆w if this new E is smaller than that computed in

step 7 then reduce µ and go to step1. where µ is the damping factor.

Step 12.

The algorithm is assumed to have converged when the norm of the gradient i.e.

‖∇E‖ =
∥∥JT (w)y − f(x, w)

∥∥ is less than some predetermined value, or when

the sum of squares of errors has been reduced to some error goal.
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3.5 Convergence Analysis of DE

3.5 Convergence Analysis of DE

Let Pg = (w1,g, · · · ,wP,g) , g = 1, · · · , gmax ( where gmax is the maximum

number of generation) be the random population of size P at step g ≥ 0

and Fg = min {f (Pg,i) : i = 1, · · · , P} being the best fitness value within the

population at step g ≥ 0. As soon as the random variable Fg attains the

value of the global optimum f ∗, it is ensured that the population contains

an individual representing the global solution of the minimization problem.

Ideally, this event should happen after a finite number of steps with probability

one regardless of the initialization of the DE algorithm.

Property 1

In DE, it is known that the best solutions found in the process of evolution

in the current generation earned over to the next generation. This property

of earning good solutions from the previous generation in the next generation

guarantees that the global optimum will be found in finite time and never

be lost once it has been found out. Thus, the property above shows that the

random sequence (Fg : g ≥ 0) converges to the limit f ∗. Let (w1, w2, · · · , wn) ∈

P n denote the population of parents known as target individuals. An offspring

is produced as follows. At first, m number of parents are selected to serve as

mates for the mutation process. This operation is denoted as folows

mat : P n → Pm

where 3 ≤ m ≤ n. In calssical DE minimum 3 indivisuals are required for

mutation operation so we have taken the minimum value of m as 3. These

individuals are then mutated by the following procedure

mut : Pm → P

Thus yielding a mutated individual. Finally by recombination with the
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3.5 Convergence Analysis of DE

target individual yields a trial individual using the following process

reco : P → P

Now the selection is done by the trial and target individual by a selection

procedure given as

sec : P → P

The above selection procedure decides which one will serve as the new par-

ents in the next generation. Thus a single generation of differential evolution

can be described as follows.

∀i ∈ {1, · · · , P} : ti = reco(mut(mat(w1, · · · , wn)))

∀i ∈ {1, · · · , P} : yi = {sel(wi, ti)}

After this operational description differential evolution is in the position of

defining some assumptions about the properties of the variation and selection

operators.

Assumption ( A1)

Every parent may be selected for mating and can be changed to an arbi-

trary other individual by a finite number of successive mutations. i.e. for

every w ∈ P there exists a finite path such that pr {wi+1 = mut (wi)} = 1 for

i = 1, · · · , (g − 1)

Assumption ( A2)

Every mutant individual is altered by the recombination with the minimum

probability pcr > 0

∀i ∈ {1, · · · , P} : pr {ti = reco(mut(mat(w1, · · · , wn)))} ≥ pcr > 0
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3.5 Convergence Analysis of DE

Assumption ( A3)

Every trial individual competing for survival will survive with minimum prob-

ability of 0.5.

∀i ∈ {1, · · · , P} : pr {sel(wi, ti)} = 0.5

Assumption ( A4)

The best individual among the competitors in the selection process will survive

with probability 1.

Theorem1(convergence analysis of the DE algorithm)

If the assumptions (A1), (A2) and (A3) are valid then the differential evolution

visits the global optimum after a finite number of generations with probability

one regardless of the initialization.

Definition

Let random variable T = {g ≥ 0 : Fg = f ∗} denote the first hitting time of the

global solution. An evolutionary algorithm is said to visit the global optimum

in finite time with probability one if pr {T <∞} = 1 regardless of the initial-

ization.

Proof

Let P ∗ = {w ∈ P : f(w) = f ∗} be the set of globally optimal solutions. Using

assumption (A1), ∃ a finite path from an arbitrary w /∈ P ∗ to some w∗ ∈ P ∗

that can be traversed by successive mutations. Let tx be the length of the path

between w /∈ P ∗ to the set w∗ ∈ P ∗.

Now consider an arbitrary parent of some population known as target indi-

vidual. Assumption (A1) ensures that this parent passes the mutation process
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3.6 Results and Discussions

with every change with probability one. The probability that mutated individ-

ual transitions to the next point of the path towards w∗ ∈ P ∗ by recombination

is guaranteed to be at least pcr > 0 by assumption (A2).

By virtue of assumption (A3) this offspring will survive the selection process

at least with probability ps = 0.5. Thus the probability that parent w /∈ P ∗

transitions to a parent representing the next point on the path to w∗ ∈ P ∗

is at least pcr × 0.5 > 0. Consequently the probability that a globally op-

timal solution has not been found is (1− (pcr × 0.5)). A gw fold repetition

of this argumentation shows that a globally optimal solution has not been

found after gw generation at most (1− (pcr × 0.5))gw which converges expo-

nentially fast to zero as gw → ∞.This immediately implies pr {T <∞} = 1

where T = {g ≥ 0 : Fg = f ∗} thus a global optimum will be visited for the first

time after a finite number of iterations with probability one. This proves the

theorem.

3.6 Results and Discussions

We present here the performance achieved through using the proposed DE+LM+NN

scheme to a number of bench-mark problems as follows.

Example-1:

The nonlinear system [61] to be identified is expressed by

yp(k + 1) =
yp(k)[yp(k − 1) + 2][yp(k) + 2.5]

8.5 + [yp(k)]2 + [yp(k − 1)]2
+ u(k) (3.4)

where yp(k) is the output of the system at the kth time step and u(k) is the

plant input which is uniformly bounded function of time. The plant is stable

at u(k) ∈ [−2, 2].The identification model be in the form of

ypi(k + 1) = f(yp(k), yp(k − 1)) + u(k) (3.5)
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3.6 Results and Discussions

where f(yp(k), yp(k−1)) is the nonlinear function of f(yp(k) and yp(k−1). The

inputs to the neural network are yp(k) and yp(k− 1). The output from neural

network is ypi(k + 1). The goal is to train the networks such that when an

input u(k) is presented to the network and to the nonlinear system, the network

outputs ypi(k) and the actual nonlinear system output yp(k) will match as close

as possible. Table 3.1 gives the parameters for simulation studies.

Table 3.1: Parameters for DE+LM+NN

Population size, P 50
Upper and lower bound of weights [ 0 1]
Mutation constant factor , F 0.6
Cross over constant, C 0.5

NN identifier

The neural network identifier structure consisted of eleven numbers of neurons

in the hidden layer. After 1000 epochs the training of the neural identifier has

been stopped. After the training is over, its prediction capability has been

tested for input.

 u(k) = 2 cos(2πk/100) k ≤ 200

u(k) = 1.2 sin(2πk/20) 200 < k ≤ 500
(3.6)
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Figure 3.4: Identified and actual models (NN identifier) (Ex-1)
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Figure 3.5: Error in modeling (NN identifier)(Ex-1)

Fig. 3.4 shows the system identification results obtained with using NN.

The error is more at time steps 100 and 200. Fig. 3.5 shows the identification

error.

DE+NN identifier

Figure 3.6 shows the identification performance of the system using DE+NN

approach. Here the NN is trained by using differential evolution instead of

classical ones such as gradient descent and Levenberg Marquardt algorithm.
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3.6 Results and Discussions

The results obtained with DE+NN indicate no significant improvement over

the previously discussed NN identifier. Here also eleven number of hidden

layer neurons and thousands number of epochs were taken Fig. 3.7 shows the

identification error in the case of DE+NN approach.
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Figure 3.6: Identified and actual models (DE+NN identifier)(Ex-1)
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Figure 3.7: Error in modeling (DE+NN identifier)(Ex-1)
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DE+NN+LM identifier
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Figure 3.8: Identified and actual models (DE+LM+NN identifier)(Ex-1)

Figure 3.8 gives the result of proposed DE+LM+NN scheme. In this case the

network is trained by both DE and Levenberg Marquardt algorithm. Here

eleven number of hidden layer neurons are considered. This result (Figure 3.8)

clearly indicates accurate identification of nonlinear system is achieved i.e.

the superior identification capability of the proposed scheme over the other

methods NN and DE+NN.
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Figure 3.9: Error in modeling (DE+LM+NN identifier)(Ex-1)
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Figure 3.9 shows its identification error curve for DE+LM+NN system

identification. From Fig. 3.9 it is clear that identification error is smaller

compared to error in NN and NN+DE.

Example-2:

The plant [16] to be identified is governed by the difference equation

yp(k + 1) = 0.3 yp(k) + 0.6 yp(k − 1) + f [u(k)] (3.7)

where the unknown function has the form:

f(u) = 0.6 sin(π u) + 0.3 sin(3π u) + 0.1 sin(5π u) (3.8)

In order to identify the plant a series parallel model governed by the difference

Eq. (3.9) was used.

ŷp(k + 1) = 0.3 yp(k) + 0.6 yp(k − 1) + f [u(k)] (3.9)

NN identifier

The neural network identifier structure consisted of eleven numbers of neurons

in the hidden layer. After 1500 epochs, the training of the neural identifier

has been stopped. After the training is over, its prediction capability has been

tested for input given as

u(k) = sin(2πk/250) (3.10)
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Figure 3.10: Identified and actual models (NN identifier)(Ex-2)

Figure 3.10 shows the actual and identified plant outputs for only NN ap-

proach. Figure 3.11 shows the identification error. The figures clearly indicate

the poor identification performance of the neural identifier.
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Figure 3.11: Error in modeling (NN identifier)(Ex-2)
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DE+NN identifier
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Figure 3.12: Identified and actual models (DE+NN identifier)(Ex-2)
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Figure 3.13: Error in modeling (DE+NN identifier)(Ex-2)

Figure 3.12 shows the identification performance of the system using differ-

ential evolution. Here the network is trained by using differential evolution

instead of classical ones such as gradient descent and LM algorithm. The

results obtained with DE+NN indicate no significant improvement over the

previously discussed existing ones.
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DE+LM+NN identifier
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Figure 3.14: Identified and actual models (DE+LM+NN identifier)(Ex-2)

Figure 3.14 gives the result of proposed DE+LM+NN scheme. In this case

the network is trained both by DE and LM algorithm. This result clearly

indicates the superior identification capability of the proposed scheme over the

other two methods discussed i.e. NN and DE+NN approaches. Figure 3.15

shows its identification error curve for DE+LM+NN system identification.
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Figure 3.15: Error in modeling (DE+LM+NN identifier)(Ex-2)

81



3.6 Results and Discussions

Example-3:

Box and Jenkins gas furnace data are frequently used in performance eval-

uation of system identification methods [62]. The example consists of 296

input-output samples recorded with a sampling period of 9 second. The gas

combustion process has one input variable, gas flow u(k), and one output

variable, the concentration of carbon dioxide (CO2), y(k). The instantaneous

values of output y(k) have been regarded as being influenced by ten variables

y(k− 1), y(k− 2), y(k− 3), y(k− 4), y(k− 5), u(k− 1), u(k− 2), u(k− 3), u(k−

4), u(k − 5). In the literature, the number of variables influencing the out-

put varies from 2 to 10. In the proposed method, ten variables were chosen.

Results shown gives a comparison of the identification methods such as neu-

ral networks trained with conventional methods, neural networks trained with

DE+NN and hybrid differential evolution method i.e. DE+LM+NN. For all

the methods eleven number of hidden layer neurons were taken and the results

obtained after 1000 epochs. The number of training data was taken as 100 for

all the cases and rest of the data were taken as test data.

NN identifier
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Figure 3.16: Identified and actual models (NN identifier)(Ex-3)
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Figure 3.16 shows the graphs of the identified obtained with NN and the actual

system. Here, the NN fails to identify the system dynamics at different time

steps thus leads to a big identification error.

DE+NN identifier
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Figure 3.17: Identified and actual models (DE+NN identifier)(Ex-3)

The DE+NN identified system dynamics and the actual system dynamics were

plotted in Fig. 3.17. It is observed that there is no improvement in identifica-

tion with respect to the previous one i.e. the NN identifier.

DE+LM+NN identifier

The DE+LM+NN identified system dynamics and the actual system dynamics

were plotted in Fig. 3.18.
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Figure 3.18: Identified and actual models (DE+LM+NN identifier)(Ex-3)
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Figure 3.19: Comparison of Error in modeling [NN vs. (DE + LM + NN
identifier)](Ex-3)

Figure 3.19 gives the comparison of error in modeling between proposed

DE+LM+NN identifier and NN identifier. In this case the network is trained

both by DE and Levenberg Marquardt algorithm. Figure 3.18 and Fig. 3.19

concludes that the proposed DE+LM+NN scheme has exhibited the expected

identification performance i.e. the error between the true system and the iden-

tified one is minimum. Table 3.2 summaries the performance of the proposed

method of system identification (DE+LM+NN) over the existing ones (NN,
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3.6 Results and Discussions

DE+NN) for different example and case studies.

Hammerstein-Wiener identifier

Hammerstein-Wiener models describe dynamic systems using one or two static

nonlinear blocks in series with a linear block. Only the linear block contains

dynamic elements. The linear block is a discrete-time transfer function and

the nonlinear blocks are implemented using nonlinearity estimators, such as

saturation, wavenet, and deadzone. The input signal passes through the first

nonlinear block, a linear block, and a second nonlinear block to produce the

output signal, as shown in the Fig. 3.20.

 

           Input 

      Nonlinearity 

            Linear 

            Block 

           Output 

      Nonlinearity 

Input  

u(t) 

Output  

y(t) 

Figure 3.20: Hammerstein-Wiener structure

Figure 3.21-3.23 shows the performance of nonlinear Hammerstein-Wiener

model (NLHW) for the examples discussed above. In example-1 and example-2

the model is created based on the first 500 data which is generated randomly

then the estimated output is compared to the actual output for data record

given by equation 3.6 and 3.10 for validation. In example-3 we load data

from box-Jenkins data given in [62]. The input is the gas flow and the output

is the concentration of carbon dioxide gas. First a model is created based

on the first 100 of the data. The simulated output is then compared to the

measured output for the whole data record. The Hammerstein model is tried

out; with saturation nonlinearity. From the identified results it is clear that the

Hammerstein model gives the less performance as compared to the proposed

DE+LM+NN algorithm.
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Figure 3.21: Identified and actual models (Hammer Stein-Wiener identifier)
Ex-1
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Figure 3.22: Identified and actual models (Hammer Stein-Wiener identifier)
Ex-2
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Figure 3.23: Identified and actual models (Hammer Stein-Wiener identifier)
Ex-3

Table 3.2: Performance of the proposed methods

Methods Time of Convergence (Sec) MSE Examples
NN 17.490 0.0047 Example-1

DE+NN 50.112 6.8830 Example-1
DE+LM+NN 24.899 0.0030 Example-1

NN 18.991 0.3115 Example-2
DE+NN 121.148 3.5470 Example-2

DE+LM+NN 30.985 0.0059 Example-2
NN 20.929 0.0038 Example-3

DE+NN 102.347 2.6680 Example-3
DE+LM+NN 54.895 0.0001 Example-3

3.7 Summary

The work has described the scope of improving system identification of non-

linear systems by using proposed DE+LM+NN approach. In the proposed

identification framework, differential evolution is used only to find approxi-

mate values in the vicinity of the global minimum. These approximate weight

values are then used as starting values for a faster convergence algorithm i.e.

Levenberg Marquardt algorithm. As DE becomes slow near the basin of the
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3.7 Summary

global optimization the function of LM is to enhance the speed of conver-

gence. In this work number of examples including a practical case-study has

been considered for implementation of this algorithm. From the results pre-

sented in previous section, it is clear that there is certainly an improvement in

identification performance for nonlinear systems over the existing approaches.

In case of DE+NN and DE+LM+NN 30 independent runs has been taken

into consideration and the average of the results are produced here. In com-

parison to use DE+NN approach proposed DE+LM+NN approach provides

better system identification performance in terms of speed of convergence and

identification capability. Finally all the results are compared with the con-

ventional Hammerstein-Wiener identifier and it is concluded from the results

that the proposed algorithm is having better identification results. Extensive

research is still required to implement different concepts of DE, such as oppo-

sition based differential evolution (ODE) and to verify whether the proposed

learning scheme can bring clear improvement in terms of convergence speedup

and better identification capability.
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Chapter 4

Nonlinear System Identification
Using Memetic Algorithm

4.1 Introduction

This chapter introduces and analyzes a Memetic algorithm approach for the

training of artificial neural networks, more specifically MLP applied to non-

linear system identification. The problem of SH (discussed in chapter 3) lies

on deciding when to stop one algorithm and trigger the next. Waiting for the

stabilization of the search takes more time but it is feasible. However, there

may be a time before actual stabilization when the process is already engaged

in a basin which it cannot escape. Triggering the next algorithm from that

earlier moment might prove more efficient. Furthermore, because of the muta-

tion, there may be further improvements of the solution after a relatively long

stable phase. Triggering the next algorithm during the first stabilization may

lead to miss this further improvement of the evolutionary search which could

be done by the mutation. Our memetic algorithm is proposed as an alterna-

tive to SH algorithms which has limitations when dealing with the switching

from one algorithm to other. The aim of this work is to develope a memetic

training algoritm that is able to deliver trained neural networks that produce

small errors. Here we have studied the identification of a nonlinear system

[61] using seven different algorithms namely BP, GA, PSO, DE, GABP and

PSOBP along with the proposed DEBP approaches. In the proposed system

identification scheme, three global search methods such as GA, PSO and DE
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4.1 Introduction

have been combined with the gradient descent method i.e. the BP algorithm

to overcome the slow convergence of the EANN. The local search algorithm

BP is used as an operator for GA, PSO and DE. These algorithms have been

tested on some standard benchmark problems for nonlinear system identifica-

tion to prove their efficacies. As discussed in chapter 1, there are a number

of benefits that can be gained by combining the global search features of EAs

with the local search for improving and refining an individuals solution. How-

ever, as there are no free lunches these benefits must be balanced against an

increase in the complexity in the design of the algorithm. That is, a careful

consideration must be made on exactly how the hybridization will be done.

Consider for example the memetic algorithm template in Fig. 4.1. This is

a particular structure of memetic algorithm that has been considered in this

work. The hybridization could be done in many ways of applying the local

search inside the global algorithm. For example, the initial population could

be seeded with solutions arising from sophisticated problem specific heuristics,

the crossover (mutation) operator could be enhanced with domain specific and

representation specific constrains as to provide better search ability to the EA.

Moreover, local search could be applied to any or all of the intermediate sets of

solutions. However, the most popular form of hybridization is to apply one or

more phases of local search, based on some probability parameter, to individ-

ual members of the population in each generation. As shown in Fig. 4.1 the

local search is applied before the selection operator i.e. a fine search is applied

to the offsprings before entering to the next generation.
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Figure 4.1: Scheme of the memetic algorithm

4.2 Lamarckianism and Baldwinian Effect in

MA

When integrating the local search with the evolutionary search we face with

the dilemma of what to do with the improved solution that is produced by the

local search. That is, suppose that individual i belongs to the population P

in generation g and that the fitness of i is f(i). Suppose that the local search

produces a new individual inew with f(inew) < f(i) for a minimization prob-

lem. The designer of the algorithm must now choose between two alternative

options.
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4.3 Mechanism of Proposed Memetic Algorithm

• Repacing i with inew, in which case P = P − i + inew and the genetic

information in i is lost and replaced with that of i′,

• The genetic information of i is kept but its fitness altered:f(i) = f(inew).

The first option is commonly known as Lamarckian learning while the second

option is referred to as Baldwinian Learning [73]. It is difficult to decide a

priori what method is the best, and probably no one is better in all cases. In

our study we have considered the Lamarckianism which tends to substantially

accelerate the evolutionary process.

4.3 Mechanism of Proposed Memetic Algorithm

To describe this mechanism with more details, the following formal framework

is introduced. Let us first introduce the number of population as P and the

population at the gth generation, Πg =
{
c1,g, · · · , cP,g

}
. Let H be the operator

may be (mutation/crossover/reproduction) defined as

H|Πg ∈ Rd∗P → x(x1, · · · , xP ) ∈ RP

which is associated to each population the fitness vector of its elements. Let

RE, M be the recombination and the mutation operators respectively. These

operators are called the reproduction operators as well and are defined as

RE|Π ∈ Rd ×RP → Π′ ∈ Rd ×RP

M |Π′ ∈ Rd ×RP → Π′′ ∈ Rd ×RP

Let us denote LS as the local search operator, i.e., the operator which pro-

duces a new population by applying the LS with starting points equal to the

individuals in the current population:

LS|Π′′ ∈ Rd ×RP → Π′′′ ∈ Rd ×RP

where d is the number of parameters and P is the number of population.
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4.3 Mechanism of Proposed Memetic Algorithm

Then applying the selection operator the next generation population can be

determined.

Πg+1 = selection {RE (M [LS (Πg)])}

In a Hybrid Evolutionary Algorithm, the role of the Evolutionary Algorithm

is essentially to explore the searching space and locate the more promising

regions. Figure 4.2 shows how to produce next generation of the proposed

algorithm.
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Figure 4.2: Template for proposed Memetic algorithm

Figure 4.3 shows a NN identification scheme where memetic algorithm

is used as an optimization algorithm to find the best set of neural network

weights.
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Figure 4.3: Memetic identification scheme

4.4 Proposed DEBP Training Algorithm for

Nonlinear System Identification

Here, we describe how a DE is applied for training neural network in the

frame work of system identification. Output of a feed-forward neural network

is a function of synaptic weights w and input values x, i.e. y = f(x,w).

The role of BP in the proposed algorithm is to fine tune the weigts in the

current population. In the training processes, both the input vector x and the

output vector y are known and the synaptic weights in are adapted to obtain

appropriate functional mappings from the input to the output. Generally, the

adaptation can be carried out by minimizing the network error function E

which is of the form E(y, f(x,w)). In this work we have taken E as mean

squared error i.e. E = 1
N

N∑
k=1

[y − f(x,w)]2, where N is the number of data

considered. The optimization goal is to minimize the objective function E by

optimizing the values of the network weights w. where

w = (w1, · · · , wd)

where d is the number of weights in the weight vector
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The proposed DEBP algorithm

Step 1.

Initialize population pop: Create a population from randomly chosen object

vectors with dimension P , where P is the number of population

Pg = (w1,g, · · · ,wP,g)
T , g = 1, · · · , gmax

wi,g = (w1,i,g, · · · , wd,i,g) , i = 1, · · · , P

In wi,g, i is index to the population and g is the iteration (generation) to which

the population belongs.

Step 2.

Evaluate all the candidate solutions inside the pop for a specified number of

iterations.

Step 3.

For each ith candidate in pop, select the random population members, r1, r2, r3 ∈

{1, 2, · · · , P}

Step 4.

Apply a mutation operator to each candidate in a population to yield a mutant

vector i.e.

vj,i,g+1 = wj,r1,g + F (wj,r2,g − wj,r3,g ), for j = 1, · · · , d

( i 6= r1 6= r2 6= r3) ∈ {1, · · · , P} and F ∈ (0, 1+]

where F denotes the mutation factor.
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Step 5.

Apply crossover i.e. each vector in the current population is recombined with

a mutant vector to produce trial vector.

tj,i,g+1 =

 vj,i,g+1 if randj[0, 1) ≤ C

wj,i,g otherwise
where C ∈ [0, 1]

Step 6.

Apply Local Search back propagation algorithm i.e. each trial vector will

produce a lst-trial vector

lstj,i,g+1 = bp : (tj,i,g+1)

Step 7.

Apply selection i.e. between the local search trial (lst-trial) vector and the

target vector. If the lst-trial vector has an equal or lower objective function

value than that of its target vector, it replaces the target vector in the next

generation; otherwise, the target retains its place in the population for at least

one more generation

wi,g+1 =

 lsti,g+1 if E(y, f(x,wi,g+1)) ≤ E(y, f(x,wi,g))

wi,g otherwise

Step 8.

Repeat steps 1 to 7 until stopping criteria (i.e. maximum number of generation)

is reached.

4.5 Results and Discussions

This section compares the performance of the proposed DEBP identification

algorithm with other memetic approaches such as GABP and PSOBP using

the simulation studies on a bench mark problem for the identification. The
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4.5 Results and Discussions

given nonlinear discrete system [61] expressed by

yp(k + 1) =
yp(k)[yp(k − 1) + 2][yp(k) + 2.5]

8.5 + [yp(k)]2 + [yp(k − 1)]2
+ u(k) (4.1)

where yp(k) is the output of the system at the kth time step and u(k) is the

plant input which is uniformly bounded function of time. The plant is stable

at u(k) ∈ [−2, 2]. For the identification of the plant described in Eqn. (4.1),

let the neural model be in the form of

ypi(k + 1) = f(yp(k), yp(k − 1)) + u(k) (4.2)

where f(yp(k), yp(k − 1)) is the nonlinear function of and the inputs to the

neural network are yp(k) and yp(k − 1). The output from neural network is

ypi(k+ 1). In the following discussions, we will present our observation studies

on the nonlinear plant identification scheme using seven different identifica-

tion algorithms and will present their comparative results. Figure 4.3 shows

the scheme of neural identifier for the given plant utilizing proposed memetic

algorithm as an optimizer to train the weights of the neural network.

For plant identification, the morphology of the neural network consisted

of 21 numbers of neurons in the hidden layer. After 100 epochs the training

of the neural identifier has been stopped. During training period, input u(k)

was a random white noise signal, but after the training is over, its prediction

capability were tested for input given by u(k) = 2 cos(2πk/100) k ≤ 200

u(k) = 1.2 sin(2πk/20) 200 < k ≤ 500
(4.3)

Identification using BP

Figure 4.4 shows the system identification results obtained using the back

propagation algorithm for training the feed-forward neural network. Figure

4.5 shows the identification error plot obtained from BP identification.
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Figure 4.4: BP identification performance
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Figure 4.5: Error in modeling (BP identification)

Identification using GA

Figure 4.6 shows the identification performance of the system using genetic

algorithm as learning algorithm for the given neural network. The same neu-

ral network configuration i.e. twenty one number of neurons are taken into

account. After 100 epochs it was found that the squared error is more than

conventional back propagation also taking more time to converge. Figure 4.7

shows the error between actual and GA identification.
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Figure 4.6: GA identification performance
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Figure 4.7: Error in modeling (GA identification)

GABP identification

Figure 4.8 shows the identification performance between the GABP algorithm

and the actual output. The identification error between the actual output and

the GABP output is shown in Fig. 4.9.
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Figure 4.8: GABP identification performance
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Figure 4.9: Error in modeling (GABP identification)

Identification using PSO

Figure 4.10 shows the identification performance between the particle swarm

optimization and the actual output. The identification error between the actual

output and the PSO output is shown in Fig. 4.11.
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Figure 4.10: PSO identification performance

 

 

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

Time Step

Er
ro

r (
PS

O
)

Figure 4.11: Error in modeling (PSO identification)

PSOBP identification

Figure 4.12 shows the result of memetic scheme PSOBP where particle swarm

optimization is hybridized with back propagation. The result clearly indicates

the above scheme does not give better identification of nonlinear system com-

pared to only PSO algortihm. Figure 4.13 shows identification error curve

between actual and PSOBP system output.
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Figure 4.12: PSOBP identification performance
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Figure 4.13: Error in modeling (PSOBP identification)

DE identification

Figure 4.14 shows the identification performance between the differential evo-

lution and the actual output. It was found that the performance is better

than GA and PSO but worst than GABP. The identification error between the

actual output and the DE output is shown in Fig. 4.15.
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Figure 4.14: DE identification performance
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Figure 4.15: Error in modeling (DE identification)

DEBP identification

From Fig.4.16 it is clear that the proposed method i.e. DEBP identification

is more effective than other mentioned approaches as per as identification per-

formance and speed of convergence is concerned. Figure 4.17 shows the error

between the proposed one and the actual one.
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Figure 4.16: DEBP identification performance
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Figure 4.17: Error in modeling (DEBP identification)

Performance comparison of all the seven identification methods

Figure 4.18 depicts the MSE profiles for all the seven different identification

methods (BP, GA, GABP, PSO, PSOBP, DE and DEBP). In these seven meth-

ods, a new identification scheme, namely the DEBP identification approach is

proposed. From this figure it is clear that the MSE with the proposed method

DEBP converges to zero very fast taking only about 20th iteration while the

error curves with the other system identification methods (BP, GA,GABP,

PSO, PSOBP and DE) converges to zero taking over 50th iterations. Hence it
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4.5 Results and Discussions

is important to note that the proposed DEBP system identification exhibits

better convergence characteristics. All the simulations have been performed in

MATLAB using same set of parameters i.e. population size, number of gener-

ations, upper and lower bounds of weights and number of hidden layer neurons

given in Table 4.1.
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Figure 4.18: A comparisons on the convergence on the MSE for all the seven
methods
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4.5 Results and Discussions

Table 4.1: Parameters used in simulation studies

Total sampling period, T 500

Population size, P 50
Number of generations 100

Upper and lower bound of weights [-1 1]
BP learning parameter, η 0.55

Number of hidden layer neurons 21

Parameters for DE and DEBP Algorithms
Mutation constant factor, F 0.6

Cross over constant, C 0.5
BP learning Parameter, η 0.55

Parameters for GA and GABP Algorithms
Mutation probability, pm 0.002

Cross over constant probability, pc 1
BP learning Parameter, η 0.55

Parameters for PSO and PSOBP Algorithms
Learning factor, C1 1.9
Learning factor, C2 1.9

BP learning Parameter, η 0.55

Table 4.2: Comparison of performance of seven methods.

SL
NO

Identification
method

Computation
time in sec-
onds (Sec)

MSE Number of
generation
at which
the MSE
converges
to zero

1 BP 4.76 2.6086 > 100
2 GA 40.42 11.4156 > 100
3 GABP 131.42 0.2852 70
4 PSO 42.15 5.49 > 100
5 PSOBP 142.79 0.2074 50
6 DE 42.19 3.9645 > 100
7 DEBP 136.73 0.0625 20

Table 4.2 gives the comparison of performance of all the seven methods

in terms of MSE which has been obtained after taking the avegarage results
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4.6 Summary

of 30 independent runs. From the results it is clear that for a particular

number of iteration i.e. 100, the proposed DEBP algorithm has a MSE of

0.0625. It is found that the memetic approaches GABP and DEBP are having

faster convergence in comparison to GA and DE. Finally it is concluded that

the proposed memetic DEBP is having better identification performance and

faster convergence in comparison to memetic GABP and PSOBP algorithm

which indicates DE is outperforming than its counterpart GA and PSO.

4.6 Summary

This chapter provides an extensive study of memetic algorithms applied to

nonlinear system identification. From the results presented in this chapter it

has been found that the proposed DEBP memetic algorithm applied to neural

network learning exhibits better result in terms of fast convergence and low-

est MSE amongst all the seven methods (i.e. BP, GA, GABP, PSO, PSOBP,

DE. and DEBP). For each evolutionary approaches the results obtained is the

average of 30 independent runs. The proposed method DEBP exploits the

advantages of both the local search and global search. It is interesting to note

that the local search pursued after the mutation and crossover operation that

helps in intensifying the region of search space which leads to faster conver-

gence. The overall performance of memetic DE was found to be better than

the other memetic approaches i.e. GABP and PSOBP. This shows it is advan-

tageous to use DE over other evolutionary computation such as GA and PSO

in nonlinear system identification.
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Chapter 5

Identification of Twin Rotor
MIMO System (TRMS)

5.1 Introduction

This chapter presents identification of a one degree of freedom experimental

aerodynamic test rig, a twin rotor multi-input-multi-output system using se-

quential hybridization algorithm and memetic algorithm both developed in

this work. The TRMS is a highly nonlinear system which can be considered as

an experimental model of a complex air vehicle. Such vehicles are required to

be identified precisely to ensure satisfactory control performance to meet the

demand for automation. This implies that linear characterization of aircrafts

is not well enough to describe the systems characteristics for control purposes

and nonlinear modeling techniques are required. Neural network based nonlin-

ear characterization look promising in this regard. This chapter focuses into

the development of nonlinear modeling a TRMS system. The system is mod-

eled using a NARX identification scheme with a feed-forward neural network.

Two different types of algorithms discussed in previous chapters used in this

work for supervised leaning of the network and their performances are com-

pared in terms of identification capability and speed of convergence. One uses

Differential evolution algorithm and Levenberg-Marquardt applied one after

other known as SH to train the weights of the neural network. The second

one is the memetic algorithm where three global searches i.e. GA, PSO and

DE are successfully hybridized with gradient based BP algorithm. Here the
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5.2 Description of TRMS

BP acts as an operator in each generation after the crossover and mutation.

The responses of all the identified models are compared with that of the real

TRMS to validate the accuracy of the models.

5.2 Description of TRMS

In classical aircraft applications, the role of system identification is to estimate

the parameters of nonlinear or linearized 6 DOF equation of motion from flight

data, having a known structure. A considerable effort has been made in the

past few years to find methodologies for identifying and control the systems

with nonlinearity and uncertain dynamics. Now a days neural network with

different architecture and learning algorithms has become a successful tool in

this regard, with application to various types of nonlinear systems including

air vehicles. In [86] neural networks have been employed for estimating the

aerodynamic coefficients of unmanned air vehicles (UAVs). Neural networks

were utilized by [87], [88] for dynamic modeling and control of super maneuver-

ing delta wing aircraft. Lately, B-splines have been investigated in modeling

and identification of nonlinear aerodynamic functions [89]. In all these cases

the model structure is known. However, in the present work, no model struc-

ture was assumed a priori i.e. black-box modeling. Such an approach yields

input-output models with neither a prior defined model structure nor specific

parameter settings reflecting any physical aspects. Nonlinear modeling of a

TRMS using radial basis function networks has been addressed in [90], which

presents nonlinear system identification method for modeling air vehicles of

complex configuration. Authors in [91] have carried out dynamic modeling and

optimal control of a TRMS. The extracted model is employed in the design

of a feedback Linear Quadratic Gaussian (LQG) compensator. Performance

analysis of 4 types of conjugate gradient algorithms in the nonlinear dynamic

modeling of a TRMS using feed-forward NNs has been reported by the authors

in [92]. Dynamic modeling of a TRMS has also been presented in [93], which

has investigated the utilization of NNs and parametric linear approaches for
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5.3 Modeling of the TRMS

modeling the system in hovering position. In [94] a parametric modeling of

a TRMS using GA has been proposed. In their approach the global search

technique of GA has been used to identify the parameters of the TRMS based

on one-step-ahead prediction. Nonlinear dynamic modeling of a TRMS using

resilient propagation algorithm (RPROP) algorithm with feed-forward Neu-

ral Networks is discussed in [95]. There the author has proposed a NARX

approach with feed-forward neural network and a RPROP to model the net-

work. In [96] the authors have proposed dynamic modeling of a TRMS using

Analytical and Empirical Approaches where the TRMS is modeled in terms

of vertical and horizontal 1DOF dynamics using Newtonian and Lagrangian

methods based analytical approaches and neural networks based empirical ap-

proaches.

The scope of this chapter is to find out an efficient neural model for a highly

nonlinear TRMS system. The modeling is done assuming no prior knowledge

of model structure or parameters relating to physical phenomena, i.e. black-

box modeling. This is realized by minimizing the prediction error of the actual

plant output and the model output. Different identification algorithms such

as sequential hybridization algorithm and memetic algorithm and neural net-

works discussed previously have been used to model the system. The various

attractive features of DEs such as simplicity and faster convergence motivate

utilization of a DE for this purpose.

5.3 Modeling of the TRMS

The TRMS used in this work is supplied by Feedback Instruments designed

for control experiments. This TRMS setup serves as a model of a helicopter.

It consists of two rotors placed on a beam with a counterbalance. These two

rotors are driven by two D.C motors. The main rotor produces a lifting force

allowing the beam to rise vertically making the rotation around the pitch axis.

The tail rotor which is smaller than the main rotor is used to make the beam
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5.3 Modeling of the TRMS

turn left or right around the yaw axis. Both the axis of either or both axis of

rotation can be locked by means of two locking screws provided for physically

restricting the horizontal and or vertical plane of the TRMS rotation. Thus, the

system permits both 1 and 2 DOF experiments. Although the TRMS system

permits MIMO experiments, this work addresses the problem of identifying

the system in a single-input single-output (SISO) mode in the pitch axis (i.e.

vertical movement) or yaw axis (i.e. horizontal movement). The yaw and pitch

movement caused by the tail and main rotor can be physically locked and as a

result there is no cross-coupling effect between the two channels of the TRMS.

The 1 DOF around the pitch and yaw axis is identified by SH method discussed

in chapter 3. The memetic approach is applied to identify only 1 DOF pitch

movement. The schematic diagram of the laboratory setup is shown in Fig.

5.1

 

Figure 5.1: The laboratory set-up: TRMS system

The modeling in elevation of helicopter is carried out using standard physics

laws of angular momentum [98]. Considering the free body diagram of heli-

copter model, different torque produced by different forces is balanced about
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5.3 Modeling of the TRMS

the pivot point. The different torques produced is gravitational torque, fric-

tional torque, centrifugal torque, main rotor torque and gyroscopic torque.

5.3.1 Gravitational and Centrifugal Torque

Consider the free body diagram shown in Figure (5.2), the weight of the heli-

copter and centrifugal force produce respective torques about the pivot point.

Equation (5.1) describes the gravitational torque produced by the model weight

[98].

τw = lw sinψ = Mgr sinψ (5.1)

where τw = Gravitational torque (N.m)

ψ = Elevation angle (rad)

w = Weight of the helicopter (Kg)

l = Moment arm (m)

Mgr = Gravity momentum parameter(N.m)

Equation (5.2) describes the centrifugal torque produced by centrifugal force

during rotation in horizontal plane.

τc = lFc cosψ (5.2)

Fc = mlϕ̇2 sinψ (5.3)

ϕ̇ = Angular Velocity in horizontal plane (rad/sec)

Fc = Centrifugal Force (N)
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5.3 Modeling of the TRMS

5.3.2 Main Rotor Torque

 

Pivot Point

w  

ψcoscF  

cF  

ψsinw

ψ  

Figure 5.2: Gravitational and centrifugal forces acting of the helicopter in the
vertical plane

The main rotor force produced is the consequence of its angular speed as

shown in Fig. 5.2. The more the angular speed of rotor the more force will be

induced on the helicopter body, which will produce angular torque about the

pivot point. Therefore we can say that

τ1 ∝ F1(ω1) (5.4)

F1 = Main rotor Force (N)

ω1 = Main rotor angular velocity (rad/sec)

τ1 = Main rotor torque (N.m)

The main motor is approximated by the first order transfer function which can

be described as

G1 =
k1

T11s+ T10

u1 (5.5)

The nonlinearity caused by the rotor can be estimated as second order polyno-

mial and finally the torque induced in helicopter body via motor can be given

in equation (5.6).

τ1 = a1G
2
1 + b1G1 (5.6)
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5.3 Modeling of the TRMS

where a1 and b1 are the nonlinearity constant parameters.

5.3.3 Gyroscopic Torque

Gyroscopic torque occurs as a result of Coriolis forces acting on helicopter

elevation dynamics. This torque results when moving main rotor changes its

position in azimuth. Thus resultant gyroscopic torque caused by the main

rotor and azimuth rotation can be calculated from the Fig. 5.3 as

τG = kgyϕ̇τ1 cosψ (5.7)

where ϕ = Azimuth Angle (rad)

ϕ̇ = Angular velocity in Azimuth (rad/sec)

kgy = Constant of proportionality (sec/rad)
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Figure 5.3: Gyroscopic torque due to rate of change of azimuth in vertical
plane

5.3.4 Frictional Torque

The frictional torque can be estimated from the following equation

τf1 = B1ψ̇ (5.8)
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5.3 Modeling of the TRMS

where B1 = Damping Constant (N.m.s/rad)

All the torques produced in the helicopter body discussed above shown in

Fig.5.4. The net torque is given by

I1ψ̈ = τ1 + τc + τG − τw − τf1 (5.9)

I1 = Moment of inertia of the helicopter body around horizontal axis (kg.m2)
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Figure 5.4: Net torques acting on the helicopter in the vertical plane

5.3.5 Azimuth Dynamics

Similar equations can be written for the horizontal plane motion. The net

torques produced in horizontal plane is shown in Fig. 5.5.
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Figure 5.5: Mechanical torques produced in horizontal plane

I2ϕ̈ = τ2 − τr − τf2 (5.10)

τ2 = Side rotor torque (N.m)

τf2 = Frictional torque (N)

τr = Main motor reaction torque (N.m)

I2 = Moment of Inertia in vertical plane (Kg.m2)

The fictional torque and side rotor torque are calculated similarly to elevation

dynamics. As they are proportional to rate of change of angular position

frictional torque can be estimated from the following equation

τf2 = B2ϕ̇ (5.11)

where B2 = Damping Constant (N.m.s/rad)

The main rotor reaction torque acting on azimuth can be estimated by first

order transfer function shown in equation (5.12).

τr =
kc (Tos+ 1)

Tps+ 1
(5.12)
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where To and Tp are the cross reaction momentum parameter.

The tail motor is approximated by the first order transfer function which can

be described as

G2 =
k2

T21s+ T20

u2 (5.13)

The nonlinearity caused by the rotor can be estimated as second order polyno-

mial and finally the torque induced in helicopter body via motor can be given

in equation (5.14)[98].

τ2 = a2G
2
2 + b2G2 (5.14)

where a1 and a2 are the nonlinearity constant parameters and u1 , u2 are the

inputs to main and tail motors respectively.

5.4 Experimental Set-up

The TRMS plant has two degrees of freedom. There are rotors (the main and

tail rotors), driven by DC motors, at both ends of the beam. The two rotors

can rotate the unit about vertical and horizontal axis. With the horizontal axis

locking screw removed the larger rotor weight should cause the rotor arm to

rest at an angle approximately 28 degrees to the horizontal axis. A counterbal-

ance arm with a weight at its end is fixed to the beam at the pivot. The state of

the beam is described by four process variables: horizontal and vertical angles

measured by position sensors fitted at the pivot, and two corresponding angu-

lar velocities. The input to the TRMS are the rotor voltages i.e. Vp, Vy. The

position of the beam is measured with the help of incremental encoders which

provide relative position signal. The model is interfaced with desktop com-

puter via PCI1711 card which is accessible in MATLAB Simulink environment

through Real-time Toolbox and Real Time Windows Target Toolbox. These

toolboxes provide us the liberty to access the encoder values and issue com-

mands to DC motors and servo system. The PCI1711 consists of two blocks

namely Feedback encoder block and Feedback DAC block through which the

external equipments are interfaced. Table 5.1 gives some specification of the

TRMS used.
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5.5 Neuro Modeling of TRMS

Table 5.1: Parameter values for modeling TRMS

Symbols Parameter Value
I1 Moment of inertia of the vertical rotor 6.8× 10−2kg −m2

I2 Moment of inertia of the horizontal ro-
tor

2× 10−2kg −m2

a1 Static characteristic parameter 0.0135
b1 Static characteristic parameter 0.0924
a2 Static characteristic parameter 0.02
b2 Static characteristic parameter 0.09
Mgr Gravity momentum 0.32N −m
B1 Fictional function parameter 6× 10−3kg.m/sec
B2 Fictional function parameter 1× 10−1kg.m/sec
Kgy Gyroscopic parameter 0.05N.m/sec
k1 Motor 1 gain 1.1
k2 Motor 2 gain 0.8
T11 Motor 1 denominator parameter 1.1
T10 Motor 1 denominator parameter 1
T21 Motor 2 denominator parameter 1
T20 Motor 2 denominator parameter 1
Tp Cross reaction momentum parameter 2
To Cross reaction momentum parameter 3.5
kc Cross reaction momentum gain −0.2

5.5 Neuro Modeling of TRMS

In order to model the TRMS in terms of 1DOF pitch and yaw dynamics a MLP

neural network model of 5×11×1 configuration has been used for SH algorithm

but for the memetic approach the configuration is taken as 5×21×1. In other

words, the NN-based model has 5 inputs, 11 or 21 neurons in hidden layer

and 1 neuron in output layer. To find a suitable configuration it is common

to start from a simple configuration, usually only one hidden layer, and then

increase the number of neurons and even the number of layers if necessary.

The inputs are main rotor voltage at present time, Vp(t), main rotor voltage at

previous time, Vp(t− 1), main rotor voltage at two samples before, Vp(t− 2),

pitch angle of the beam at previous time, Ψp(t−1) and pitch angle of the beam
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5.5 Neuro Modeling of TRMS

at two samples before, Ψp(t − 2). Figure 5.6 shows the structure of the NN

based model in terms of 1DOF pitch dynamics. It is noted that the activation

functions used in the hidden layer and output layer are sigmoid and pure linear

respectively. The first 300 data were used for training and the whole 500 data

were use for the test. The Sample time of data is set to be 0.1 second which

implies that the frequency of sampling is 10 Hz. The NN has been trained with

both the algorithms i.e. sequential hybrid algorithm and memetic algorithm

and the results are obtained by taking the average of 30 independent runs. It

is noted that all data for training and testing have been extracted from the

real TRMS.
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Figure 5.6: The structure of the NN based model in terms of 1DOF horizontal
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5.6 Experimental Input-Output Data

In nonlinear system identification, the type of input signal to be used plays a

crucial role and has a direct bearing on the fidelity of the resulting identified

model. The excitation signal should have two important characteristics:

• It should be able to excite all the dynamic modes of interest, that is, the

signal should be persistently exciting.

• It should be rich in amplitude level, that is, have different levels of input

amplitudes over the whole range of operation.

In this work we have taken the input as a summation of sinusoidal signals

which is a noise signal shown in Fig. 5.7 given as:

1.2 + 0.2

 0.5 sin ((2π × 0.5) t− 20) + 0.4 sin ((2π × 0.067) t− 17)

+0.42 sin (2π × 0.15) t+ 0.6 sin ((2π × 0.24) t− 40)

+ rand

 
0 50 100 150 200 250 300 350 400 450 5000.8

1

1.2

1.4

1.6

Time step

In
pu

t

Figure 5.7: Applied input signal to TRMS
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5.7 Results and Discussions

5.7.1 SH Algorithm

In this example we load data from a real time TRMS system. One data

set consists of 1 DOF pitch dynamics where the input is the voltage to the

main motor and the output is the pitch angle. The other data set consist of

1 DOF yaw dynamics where the input is the voltage to the tail motor and

the output is the yaw angle. First a Hammerstein-Wiener model is tried out,

with a sigmoidal nonlinearity. The simulated output is then compared to the

measured output for the whole data record. Figure 5.8 and Fig. 5.9 shows the

measured output and the model simulated output for pitch and yaw dynamics.

It is clear from the results that the conventional Hammerstein-Wiener model

is not adequate to identify the dynamics of a real time TRMS system. Table

5.2 gives the parameter values for DE+LM+NN algorithm.

Table 5.2: Parameters for DE+LM+NN

Total number of iterations 1000
Population size, P 50
Upper and lower bound of weights [ 0 1]
Mutation constant factor , F 0.6
Cross over constant, C 0.5
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Figure 5.8: NLHW identification performance (pitch angle)
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Figure 5.9: NLHW identification performance (yaw angle)

Figure 5.10 shows the identification performance of the TRMS using pro-

posed DE+LM+NN, only DE and NN methods. Figure 5.11 shows the zoomed

version of the results between the time steps of 413 to 435. From the results it

is clear that DE+LM+NN identification results are better than only DE and

NN. Figure 5.12 shows the error between the actual and identified outputs for

NN and DE+LM+NN.
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Figure 5.10: DE+LM+NN dentification performance (pitch angle)
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Figure 5.11: DE+LM+NN zoomed identification performance (pitch angle)
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Figure 5.12: Identification error (pitch angle)

Figure 5.13 shows the identification performance of the yaw dynamics

DE+LM+NN, only DE and NN methods. Figure 5.14 shows the zoomed

version of the results between the time steps of 345 to 385. Clearly the

DE+LM+NN model gives best performance compared to other model. Figure

5.15 shows the error between the actual and identified outputs for NN and

DE+LM+NN.
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Figure 5.13: DE+LM+NN identification performance (yaw angle)
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Figure 5.14: DE+LM+NN zoomed dentification performance (yaw angle)
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Figure 5.15: Identification error (yaw angle)

Figure 5.16 and 5.17 show the Power spectral densities (PSDs) for DE+LM+NN

model and the real time TRMS. It is obvious from these figures that PSDs of

the model and system responses are closely overlapped.

125



5.7 Results and Discussions

0 0.5 1 1.5 2 2.5
−60

−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Power Spectral Density

 

 
PSD of real TRMS
PSD of the model

Figure 5.16: Power spectal density for pitch
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Figure 5.17: Power spectal density for yaw

5.7.2 Memetic Algorithm

DE and DEBP identification

Here we have taken 21 number of hidden neurons and 1000 epochs to train the

neural network. Figure 5.18 compares the actual output y(t), and identified

plant output ŷ(t) of a 1 DOF pitch dynamics of a TRMS within the time

step of 0 to 500. As the identification performances shown in Figure 5.18 are

overlapping each other, in Figure 5.19 we have shown the results within the

time step of 86 to 96. From this it is clear that the proposed DEBP exhibits

better identification ability compared to DE approach. Figure 5.20 and 5.21
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shows the error between the actual and identified model. Figure 5.22 gives

the comparison of SSE between DE and DEBP, where it is found that the

value of SSE for DEBP is 0.0036 whereas for DE identification is 0.0110. The

parameters used in simulation study was same as Table 4.1 given in chapter 4

except the number of epochs which has been taken as 1000 here.

 
0 50 100 150 200 250 300 350 400 450 500-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time step

O
ut

pu
t

 

 

Actual
DEBP
DE

Figure 5.18: DE and DEBP identification performance
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Figure 5.19: DE and DEBP zoomed identification performance
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Figure 5.20: Error in modeling (DEBP identification)
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Figure 5.21: Error in modeling (DE identification)
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Figure 5.22: A comparisons on the convergence on the SSE (DE, DEBP)

GA and GABP identification

Figure 5.23 shows the identification performance of 1 degree of freedom (DOF)

vertical TRMS by GA and GABP based model. As the identification perfor-

mances shown in Fig. 5.23 are overlapping each other, in Figure 5.24 we have

shown the results within the time step of 208 to 221. From this it is clear

that the GABP identification approach exhibits better identification ability

compared to GA approach. Figure 5.25 gives the SSE where it is found that

the value of SSE for GABP is 0.0197 whereas for GA identification is 0.0327.

Figure 5.26 and 5.27 show the error between the actual and identified model

for both the identification scheme.
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Figure 5.23: GA and GABP identification performance
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Figure 5.24: GA and GABP zoomed identification performance
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Figure 5.25: A comparisons on the convergence on the SSE (GA, GABP)
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Figure 5.26: Error in modeling (GA identification)
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Figure 5.27: Error in modeling (GABP identification)
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PSO and PSOBP identification

Figure 5.28 shows the identification performance of 1 DOF vertical TRMS by

PSO and PSOBP based model. In Fig. 5.29 we have shown the zoomed results

within the time step of 87 to 96. From this it is clear that the PSOBP approach

exhibits better identification ability compared to PSO approach. Figure 5.30

gives the SSE where it is found that the value of SSE for PSOBP is 0.0235

whereas for PSO identification is 0.0505. Figure 5.31 and 5.32 shows the error

between the actual and identified model for both the identification scheme.
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Figure 5.28: PSO and PSOBP identification performance
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Figure 5.29: PSO and PSOBP zoomed identification performance
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Figure 5.30: A comparisons on the convergence on the SSE (PSO, PSOBP)
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Figure 5.31: Error in modeling (PSOBP identification)
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Figure 5.32: Error in modeling (PSO identification)
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Finally it has been seen that among all the methods the proposed DEBP

method is having lowest SSE i.e. 0.0036 amongst all the methods disused.

Table 5.3 gives the SSE for different methods.

Table 5.3: SSE for different methods

Sl No Methods SSE
1 PSO 0.0505
2 PSOBP 0.0235
3 GA 0.0327
4 GABP 0.0197
5 DE 0.0110
6 DEBP 0.0036

In this section we have provided an extensive study of MAs applied to

nonlinear system identification. The proposed method DEBP exploits the

advantages of both the local search and global search. It is interesting to note

that the local search pursued after the mutation and crossover operation helps

in intensifying the region of search space which leads to faster convergence. We

investigated the performance of the proposed version of the DEBP algorithm

using a real time multi input multi output highly nonlinear TRMS system. The

simulation studies showed that the proposed algorithm of DEBP outperforms

in terms of convergence velocity among all the discussed algorithms. This

shows it is advantageous to use DE over other evolutionary computation such

as GA and PSO in nonlinear system identification.

5.8 Summary

This chapter discusses the identification of nonlinear systems using different

hybrid approaches. Hybridization of a global search algorithm with a local

search is a challenging approach for optimization problems where the individual

methods without hybridization may suffer from slow convergence and trapped

by local minima. From the identification results and the error graphs it is

found that the proposed approaches are able to identify accurate models of
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different nonlinear systems. The identification performances obtained by both

the SH and MA algorithm were found to be similar but SH found to provide

faster convergence than MAs.
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Chapter 6

An Opposition Based
Differential Evolution Approach
to Nonlinear System
Identification

6.1 Introduction

The concept of opposition-based learning (OBL) was introduced by Tizhoosh

[116]. It is applied to accelerate reinforcement learning [117] and back-propagation

learning in neural networks [118]. The main idea behind OBL is the simul-

taneous consideration of an estimate and its corresponding opposite estimate

(i.e., guess and opposite guess) in order to achieve a better approximation for

the current candidate solution. In this work, OBL has been used to accelerate

the convergence rate of the DE. Hence, the proposed approach described in

this chapter is called opposition-based differential evolution. ODE uses op-

posite numbers during population initialization and also for generating new

populations during the evolutionary process. The opposite numbers have been

utilized to speed up the convergence rate of DE optimization algorithm. Purely

random resampling or selection of solutions from a given population has the

chance of visiting or even revisiting unproductive regions of the search space.

It has been demonstrated in [116, 119] that the chance of this occurring is

lower for opposite numbers than it is for purely random ones. In fact, a math-

ematical proof has already been proposed to show that opposite numbers are
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6.2 Opposition based Differential Evolution

more likely to be closer to the optimal solution than purely random ones [120].

In [124], the usefulness of opposite numbers is investigated by replacing them

with random numbers and it is applied for population initialization and gen-

eration jumping for different versions of DE. However, a little work has been

reported on applying ODE to system identification and its use in training neu-

ral network employed as nonlinear system identifiers. Therefore, it attracts

the attention of the present work for exploiting the use of OBL for effective

neural network training. In this work, an opposition based differential evolu-

tion has been applied as a global optimization method for improving learning

of feed-forward neural networks used for identification nonlinear systems.

Nonlinear system as considered in [61, 62] has been chosen in this work for

demonstrating the efficacy of the proposed ODE-NN system identification ap-

proach in comparison to DE-NN approach. In this chapter, an opposition

based differential evolution method combined with LM has been applied as a

global optimization method for training feed-forward neural networks. In the

proposed scheme, the ODE is used to train the neural network that is chosen

as a suitable candidate for nonlinear system identification. Then the network

is trained using LM after observing the trends of training towards minimum

through ODE. The role of the ODE here is to find the basin of global mini-

mum and then LM is used to move forward to locate the exact minimum point.

This switch over from one algorithm to other can be done after satisfying a

predefined criteria i.e. number of generations or particular value of error cri-

terion. As LM is a gradient based algorithm, it can be exploited to increase

the convergence speed for reaching the global minimum.

6.2 Opposition based Differential Evolution

In most of the situations evolutionary algorithms (e.g. GA, PSO and DE),

weight optimization in a neural network, the learning begins at a random point.

In each iteration, the solution obtained moves towards the optimal solution
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6.2 Opposition based Differential Evolution

and the search process terminates when some predefined criteria is satisfied.

The time of computation generally depends on the initial guess i.e. more is

the distance between the initial guess to optimal solution more time it will

take to terminate and vice versa. If the initial random guess is far away from

the optimal solution, assuming that it is in the exact opposite location of the

optimal solution than the search will take considerably more time to converge.

So in the absence of a-priori knowledge about the solution, random guess

cannot be a best initial guess. Hence, at starting it is always better to look in all

directions simultaneously i.e. more efficiently in opposite direction. Opposition

based learning improves the chance of starting with better initial population

by checking the opposite solutions. According to the probability theory, there

is a 50 percent chance that the random guess is at larger distance than the

opposite guess. So instead of taking the random guess as initial population

the opposite guess is to be found out and the closer of these two guseses are

taken as initial population. Starting with the closer of the two guesses (as

judged by its fitness) has the potential to accelerate convergence. The same

approach can be applied not only to initial solutions but also continuously to

each solution in the current population. Before applying OBL to the problem

of system identification, we first define the concept of opposite numbers [116].

6.2.1 Definition of opposite number and opposite point

Let x ∈ [a, b] be a real number. The opposite number x̃ is defined by

x̃ = a+ b− x

Let p = (x1, x2, · · · , xd) be a point in the d dimensional space, where x1, x2, · · · , xd ∈

R and xi ∈ [ai, bi]. The opposite point p̃ = (x̃1, x̃2, · · · , x̃d) where x̃i =

ai + bi − xi. Figure 6.1 gives the illustration of a point and its opposite point

in one and two dimension.
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Figure 6.1: Illustration of a point and its corresponding opposite in one and
two dimensional spaces

6.2.2 OBL optimization

Let p = (x1, x2, · · · , xd) be a point in the d dimensional space i.e. a candidate

solution. Assume f(.) is the fitness function which is used to measure the

candidates fitness. According to the definition of the opposite point, p̃ =

(x̃1, x̃2, · · · , x̃d) is the opposite of p = (x1, x2, · · · , xd). Now if f(p̃) ≥ f(p) then

point p can be replaced by p̃ otherwise we will continue with p. Hence the

point and its opposite point are evaluated simultaneously in order to continue

with the more fit ones.

6.3 Proposed ODE-NN Algorithm

Similar to all population-based optimization algorithms, two main steps are

distinguishable for DE, namely, population initialization and producing new

generations by evolutionary operations such as mutation, crossover, and selec-
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tion. The objective of using the OBL scheme in SI is to enhance the above

two steps in EAs. The DE is chosen as a parent algorithm and the proposed

opposition-based ideas are embedded into it to accelerate its convergence speed.

The pseudo code for the proposed approach ODE-NN is presented in algorithm

1.

6.3.1 Opposition-Based Population Initialization

After having a review on evolutionary optimization literature discussed in chap-

ter 2, random number generation, in absence of a priori knowledge, is the com-

mon choice to create an initial population. Therefore, by utilizing OBL, we

can obtain fitter starting candidate solutions even when there is no a priori

knowledge available about the solution(s). The following steps are presented

to describe opposition-based initialization for the ODE. Initialize the popula-

tion (P ) represented as pop randomly, Calculate opposite population using the

formula given below.

opopi,j = aj + bj − popi,j

i = 1, 2, · · · , P j = 1, 2, · · · , d

where popi,j and opopi,j denote the jth variable of the ith vector of the popula-

tion and opposite population respectively. Select P fittest individual from the

total of pop and opop i.e. (popUopop) as initial population.

6.3.2 Opposition-Based Generation Jumping

By applying a similar approach to the current population, the evolutionary

process can be forced to jump to a new solution candidate, which is ideally

fitter than the current one. Based on a jumping rate (i.e., jumping probabil-

ity), after generating new populations by mutation, crossover, and selection,

the opposite population is calculated and the fittest individuals are selected

from the union of the current population and the opposite population. Un-

like opposition-based initialization, generation jumping calculates the opposite

population dynamically. In each generation, the search space is reduced so that
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we have to calculate the opposite points by using variables in the current in-

terval in the population using the following expression.

onpopi,j = min (npopj) + max (npopj)− npopi,j

Instead of calculating the opposite points dynamically if it would be calculated

using the initial static boundaries then we would jump outside of the already

shrunken search space and the knowledge of the current reduced space (con-

verged population) would be lost. Hence, we calculate opposite points by using

variables current interval in the population which depends on the maximum

and minimum value of the current population. As the search does progress,

the search space shrinks and the variables will remain within the search space.
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6.4 A Combined ODE-NN Approach to System Identification

Algorithm 2 ODE Algorithm

Require: pop: initial population, F : Mutation constant, C: Cross over con-
stant, Jr: Random number
{Opposition based Initialization }
for i = 0 to P do

for j = 0 to d do
opopi,j = aj + bj − popi,j

end for
end for
Select P fittest individual from (pop ∪ opop)
while Convergence criteria not met do

for i = 0 to P do
r1 = rand(P )
r2 = rand(P )
r3 = rand(P )
ovi,g = xr1,g + F (xr2,g − xr3,g )

tj,i,g =

{
ovj,i,g if (randj ≤ C) or j = jrand
xj,i,g otherwise

if f(ti,g) ≤ f(xi,g) then
xi,g+1 = ti,g

else
xi,g+1 = xi,g

end if
end for
Store in new population npop {Opposition based Generation jumping }
if rand < Jr then

for i = 0 to P do
for j = 0 to d do
onpopi,j = max(npopj) +min(npopj)− npopi,j

end for
end for

end if
Select P fittest individual from the set (onpopi,j ∪ npopi,j)

end while

6.4 A Combined ODE-NN Approach to Sys-

tem Identification

In this section, a brief description is given how an ODE is applied for training

the neural networks in the frame work of system identification. According to

step 10 given below in the proposed algorithm, the value of the cost function

after reaching a particular value of ε, or the number of generation the algorithm
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is switched from global search such of the evolutionary algorithm (ODE) to

local search, LM. In opposition based differential evolution, at the moment

of starting, the differential term is very high. As the solution approaches to

global minimum, the differential term automatically reduces to a low value.

So at the initial period, the convergence speed is faster and search space is

very large but in latter stages nearer to the optimum, due to small differential

term, the algorithm becomes slower which will take more time to converge. As

LM is a gradient based algorithm at that point the role of LM is to increase

the convergence speed for reaching the global minimum. Thus, ODE can be

applied to obtain global searches within the weight space of a typical feed-

forward neural network.

Steps of ODE-NN Algorithm

Step 1.

Initialize population pop: Create a population from randomly chosen object

vectors.

Step 2.

Find out the opposite population opop: Create an opposite population from

the population pop.

Step 3.

Create a fittest population npop from both pop U opop with dimension P .

Pg = (w1,g, · · · ,wP,g)
T , g = 1, · · · , gmax

wi,g = (w1,i,g, · · · , wd,i,g) , i = 1, · · · , P

where d is the number of weights in the weight vector wi,g, i is index to the

population and is the generation to which the population belongs.

Step 4.

Evaluate all the candidate solution inside npop for a specified number of gen-

erations.

Step 5.
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For each candidate in npop select the random variables r1, r2, r3 ∈ {1, 2, · · · , P}.

Step 6.

Apply mutation operator to each candidate in population to yield a mutant

vector i.e.

vj,i,g = wj,r1,g + F (wj,r2,g − wj,r3,g ), for j = 1, · · · , d

( i 6= r1 6= r2 6= r3) ∈ {1, · · · , P} and F ∈ (0, 1+]

Step 7.

Apply crossover i.e. each vector in the current population is recombined with

a mutant vector to produce trial vector.

tj,i,g =

 vj,i,g if randj[0, 1) ≤ C

wj,i,j otherwise

where C ∈ [0, 1]

Step 8.

Apply selection i.e. between the trial vector and target vector. If the target

vector has an equal or lower objective function value than that of its target

vector, it replaces target vector; otherwise, the target retains its place in the

population.

wi,g =

 ti,g if E(y, f(x, ti,g)) ≤ E(y, f(x,wi,g))

wi,g otherwise

Step 9.

If randj < Jr Find the opposite population of wi,g i.e. owi,g Select P fittest

individuals from wi,g ∪ owi,g which gives the populations for the next genera-

tion which is represented by wi,g+1. Else wi,g+1 = wi,g

Step 10.

Evaluate for the weights obtained from step-9 If E ≤ ε where ε > 0 go to

step-8 Else go to step-5.

Step 11.

Initialize the weight matrix of Levenberg-Marquardt algorithm taking the val-

ues of weights obtained after the fixed number of iterations. Find out the value
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of E.

Step 12.

Compute the Jacobian matrix J(w).

Step 13.

Find ∆w using the following equation

∆w =
[
JT (w) J(w) + µI

]−1
JT (w) E

Step 14.

Recompute using if this new is smaller than that computed in step 7 then

reduce and go to step1.where is the damping factor.

Step 15.

The algorithm is assumed to have converged when the norm of the gradient i.e.

is less than some predetermined value, or when the sum of squares of errors

has been reduced to some error goal.

6.5 Results and Discussions

We present here the system identification results of different approaches such as

DE-NN and ODE-NN applied to the systems given in equation (6.1) and Box

and G.M. Jenkins, Time Series Analysis, and an real time TRMS system. The

results obtained on this section are taken as the average of thirty independent

runs with different initialization.

Example: 1

The nonlinear system to be identified is given in [61] expressed by

yp(k + 1) =
yp(k)[yp(k − 1) + 2][yp(k) + 2.5]

8.5 + [yp(k)]2 + [yp(k − 1)]2
+ u(k)

The identification model be in the form of

ypi(k + 1) = f(yp(k), yp(k − 1)) + u(k) (6.1)
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where f(yp(k), yp(k − 1)) is the nonlinear function of and the inputs to the

neural network are yp(k) and yp(k − 1). The output from neural network is

ypi(k+ 1). The neural network identifier structure consisted of eleven numbers

of neurons in the hidden layer. After 500 epochs the training of the neural

identifier has been stopped. After the training is over, its prediction capability

has been tested for input given below.

u(k) =

 2 cos(2πk/100) if k ≤ 200

1.2 sin(2πk/20) if 200 < k ≤ 500

Table-6.1 gives the parameters considered for DE and ODE identification

scheme. Figure 6.2 and 6.3 gives the identification performance between actual

and identified model for DE-NN and ODE-NN respectively. Figure 6.4 and 6.5

gives the identification error and figure 6.6 gives the comparison of MSE for

both the system identification scheme. From the figures it is clear that both

the results are nearly same. The value of MSE is given in Table-6.2. From

this it is clear that the prediction error is slightly less in case of ODE-NN ap-

proach in comparison to the DE-NN system identification technique and the

performances are found to be comparable.

Table 6.1: Parameters for DE and ODE

Population size, P 50
Upper and lower bound of weights [ 0 1]
Mutation constant factor , F 0.6
Cross over constant, C 0.5
Random number Jr 0.3
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Figure 6.2: DE-NN Identification performance(Ex-1)
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Figure 6.3: ODE-NN Identification performance(Ex-1)
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Figure 6.4: DE-NN Identification error(Ex-1)
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Figure 6.5: ODE-NN Identification error(Ex-1)
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Figure 6.6: MSE(Ex-1)

Example: 2 (Box Jenkins Gas Furnace Problem)

Box and Jenkins gas furnace data are frequently used in performance evalu-

ation of system identification methods. This is a time series data set for a

gas furnace. The data consists of 296 input-output samples recorded with a

sampling period of 9 s. The gas combustion process has one variable, gas

flow u(t), and one output variable, the concentration of carbon dioxide (CO2),

y(t). The instantaneous values of output y(t) are being influenced by ten past

input and output variables such as y(t − 1), y(t − 2), y(t − 3), y(t − 4), y(t −

5), u(t− 1), u(t− 2), u(t− 3), u(t− 4), u(t− 5). The original data set contains

296 [u(t), y(t)] data pairs. The number of training data was taken as 100 and

the rest data were considered as the test data. For simplicity two inputs were

considered as follows one is from the furnace output and other is from the

furnace input so we have build 24 models of different input and output. Table

6.1 gives different parameter values and their ranges. These data have been

used for both DE and ODE. Both for DE-NN and ODE-NN approaches eleven

number of hidden layer neurons were taken and the results obtained after 100

epochs.

From Table 6.2, we can conclude that model with y(t − 1) and u(t − 3) as

input has the smallest training and testing error for both the DE-NN and
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ODE-NN identification schemes. It is also clear that in case of ODE training

and testing errors are lower as compared to its DE counterpart. The MSE for

testing data turned out to be the least for twenty cases in ODE-NN approach

whereas it was found to be better only for four cases for DE-NN approach.

Similarly it was found that the training MSE is least for sixteen cases for

ODE-NN and for the rest eight cases, DE-NN was found to be better in terms

of less training error. In some cases even if the training error is less for DE-

NN but the testing error is better for ODE-NN. As it is not possible to show

the identification performance and error curve for all the 24 cases given in Ta-

ble 6.2. We have taken three cases to analyze the MSE and their performances.

Figure 6.7 gives the actual and the identified outputs for a input combina-

tion of (y(t − 1), u(t − 3)). The closer version of this result within the time

step 111 to 116 is shown in Fig. 6.8. From Fig. 6.9, it is clear that MSE of

the proposed ODE-NN approach is converging faster than DE-NN approach.

Further the MSE of ODE-NN starting from a lower vale i.e. around 2.2 where

as for DE-NN it is starting from 2.9. The result shows ODE-NN is having

better identification performance than DE-NN approach.
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Figure 6.7: Identification performance(y(t− 1), u(t− 3)) (Ex-2)
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Figure 6.8: Zoomed identification performance (y(t− 1), u(t− 3)) (Ex-2)
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Figure 6.9: MSE (y(t− 1), u(t− 3)) (Ex-2)

Figure 6.10 gives the MSE for the input y(t − 4) and u(t − 5). We have

considered 20 epochs because there was no change in MSE after 20 epochs. For

the input combination of y(t− 4) and u(t− 5), the ODE-NN MSE starts from

a lower value and also converges to a lower value as compared to the to DE-

NN approach. Figure 6.11 gives the identification performance for the input

combination of y(t− 4) and u(t− 5). The zoomed version of the identification

performance within time step 54 to 58 is shown in Fig. 6.12.
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Figure 6.10: MSE (y(t− 4), u(t− 5)) (Ex-2)
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Figure 6.11: Identification performance (y(t− 4), u(t− 5)) (Ex-2)
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Figure 6.12: Zoomed identification performance (y(t− 4), u(t− 5)) (Ex-2)

Figure 6.13 shows the MSE for the input y(t− 4) and u(t− 4) from which

it is clear that the MSE for ODE-NN exhibits faster convergence speed but

eventually gives a slight loer value of MSE compared to DE-NN approach.

The numerical values of training and testing MSE are mentioned in Table 6.2.

Figure 6.14 shows the identification performance for the input y(t − 4) and

u(t − 4) from which it is found that even if the training error for ODE-NN

approach is slightly higher than that of the DE-NN approach but the former

provides better identification in comparison to DE-NN approach.
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Figure 6.13: MSE (y(t− 4), u(t− 4)) (Ex-2)
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Figure 6.14: Identification Performance (y(t− 4), u(t− 4)) (Ex-2)
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Table 6.2: Comparison of training and testing errors

Training Error (MSE) Testing Error (MSE)
Example-1

Input DE ODE DE ODE
y(k),y(k-1), u(k) 0.0207 0.0190 0.1186 0.1137

Example-2
Input DE ODE DE ODE
y(t-1),u(t-3) 0.4400 0.4194 0.1501 0.1411
y(t-3),u(t-4) 0.7838 0.7773 0.3402 0.2805
y(t-2),u(t-4) 0.6733 0.6602 0.3256 0.2898
y(t-1),u(t-2) 0.4906 0.6801 0.2909 0.2924
y(t-1),u(t-4) 0.5430 0.5132 0.2991 0.2926
y(t-4),u(t-4) 12.259 0.8894 0.3274 0.3428
y(t-2),u(t-3) 1.1340 0.7199 0.2968 0.3051
y(t-1),u(t-1) 0.6183 0.6056 0.4638 0.4151
y(t-4),u(t-3) 1.2405 1.2771 0.7266 0.4301
y(t-1),u(t-6) 0.8469 0.8410 0.6012 0.5661
y(t-3),u(t-3) 1.0067 1.0347 0.5172 0.5176
y(t-2),u(t-2) 0.9889 0.9753 0.6314 0.6261
y(t-1),u(t-5) 0.6873 0.6518 0.6220 0.6303
y(t-4),u(t-5) 1.0149 0.9698 0.7038 0.6373
y(t-2),u(t-1) 1.8368 1.2726 0.8934 0.6844
y(t-2),u(t-5) 0.9176 1.1808 0.7222 0.6804
y(t-3),u(t-5) 0.9536 1.0470 0.7138 0.7338
y(t-3),u(t-2) 1.8184 1.4138 0.8766 0.8600
y(t-4),u(t-6) 1.7628 1.4677 1.3988 1.1126
y(t-2),u(t-6) 1.3352 1.2639 1.6264 1.1945
y(t-4),u(t-2) 1.6725 1.6377 1.1799 1.1963
y(t-3),u(t-6) 27.468 1.4641 1.2063 1.2424
y(t-3),u(t-1) 1.7123 1.6475 1.5725 1.2702
y(t-4),u(t-1) 2.0821 2.0217 1.4250 1.4352

Table-6.2 gives the comparison of training and testing MSEs of two ap-

proaches namely DE-NN and ODE-NN.

For the first example it is found that the training and testing errors are less in

the case of proposed ODE-NN approach. From the table the results marked

in bold indicates less training and testing error for the corresponding input

combinations.

In example-2 we have considered all the possible input combinations i.e. twenty
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6.5 Results and Discussions

four. It is found that the testing error is less for 19 combinations of ODE-NN

approach compared to DE-NN approach. Thus, it is clear from above discus-

sion that ODE-NN identifier is a better identifier compared to DE-NN one.

Example: 3 (Twin Rotor MIMO System)

Next we studied a TRMS considering only 1 DOF around the pitch axis and

identified the system using proposed ODE-NN method. The model has three

inputs and eleven neurons in the hidden layer. The inputs are the main rotor

voltage at the present time V (t), main rotor voltage at previous time V (t− 1)

and the pitch angle of the beam at previous time instant ψ(t − 1). Figure

6.15 shows the identification performance of 1 DOF vertical ODE-NN based

model. A more convincing method of the identification model validation is to

use correlation tests. If the model of a system is adequate then the residu-

als should be unpredictable from (uncorrelated with) all linear and nonlinear

combinations of past inputs and outputs. A number of auto-correlation and

cross-correlation tests between the input and residual given below has been

recommended by the authors in [97].

ξεε = E[ε(t− τ)ε(t)] = δ(τ)

ξuε = E[u(t− τ)ε(t)] = 0 ∀τ

ξu2ε2 = E[u2(t− τ)− ū2ε2(t)] = 0 ∀τ

ξε(εu) = E[ε(t)ε(t− 1− τ)u(t− 1− τ)] = 0 τ ≥ 0

where ξuε indicates the cross-correlation between u(t) and ε(t) and δ(t) is an

impulse function. The test results are given below. In general, if the correla-

tion functions are within the 95 percent confidence intervals, 1.96/N , where,

N is the total number of data points, the model is regarded as accurate. The

correlation analysis of the above model is given in Fig. 6.16-6.19. If the resid-
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6.5 Results and Discussions

uals (model errors) contain no information about the past residuals or about

the dynamics of the system, it is likely that all information has been extracted

from the training set and the model approximates the system well. It is found

that all four correlation functions; Cross-correlation of input and residuals

(Fig. 6.16), Auto-correlation of residuals (Fig. 6.17), Cross-correlation of in-

put square and residuals square (Fig. 6.18), Cross-correlation of residuals and

input×residuals (Fig. 6.19) are within 95 percent of the confidence band in-

dicating that the model is adequate, i.e. the model behavior is closed to the

real system performance.
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Figure 6.15: Identification Performance(TRMS)
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Figure 6.16: Cross-correlation of input and residuals
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Figure 6.17: Auto-correlation of residuals

 
-500 -400 -300 -200 -100 0 100 200 300 400 500-0.1

-0.05

0

0.05

0.1

Lag

C
ro

ss
 c

o-
rr

el
at

io
n 

   
   

(in
pu

t2  a
nd

 re
si

du
al2 ) 

Figure 6.18: Cross-correlation of input square and residuals square

158



6.6 Summary

 
-500 -400 -300 -200 -100 0 100 200 300 400 500-0.1

-0.05

0

0.05

0.1

Lag

cr
os

s c
o-

rr
el

at
io

n 
   

   
   

(in
pu

t a
nd

 in
pu

t x
 re

si
du

al
)

Figure 6.19: Cross-correlation of residuals and input and residuals

6.6 Summary

The chapter has described the scope of improving system identification of non-

linear systems by using proposed ODE-NN approach. The proposed ODE-NN

approach is tested on a real time TRMS identification for testing its effective-

ness. Results proposed demonstrate how the opposition based optimization can

be employed to accelerate the convergence speed of DE by embedding opposi-

tion based population initialization and opposition based generation jumping.

From the results presented in section 6.5, it is clear that there is certainly

an improvement in identification performance for nonlinear systems over the

existing DE-NN approach. These results envisage that ODE provides a higher

performance than the classical DE approach. Further, the proposed ODE-NN

approach provides better system identification performance in terms of speed

of convergence and accuracy in compared to the DE-NN approach. The above

proposed ODE-NN approach is tested on a real time TRMS system. It is

shown that the models obtained ODE-NN methods can generally be consid-

ered adequate in representing the system.
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Chapter 7

Parameter Estimation of
Induction Motor Using DE and
OMDE Algorithm

7.1 Introduction

This chapter describes an evolutionary methodology of identifying the param-

eters of an induction motor in electric drive applications. Here the stator

currents (is) and voltages (vs) and rotor angular speed (ωr) are taken as input-

output data that are used to estimate the parameters of the induction motor.

This chapter investigates the use of differential evolution technique to estimate

the rotor resistance (Rr), stator resistance (Rs), leakage inductance (Ll) and

magnetising inductance (Lm) i of a three-phase induction machine. In order

to obtain results with maximum accuracy, some variations of DE known as

OMDE estimates are investigated.

The parameters of the induction motor model vary as operating conditions

change. Accurate knowledge of these parameters and their dependency on op-

erating conditions is critical for field oriented control. Several approaches are

available for the estimation of the parameter vector. A rich variety of esti-

mation procedures were reported in literature for induction motor parameter

estimation are found in [127, 128, 129]. The simultaneous estimation of in-

duction machine parameters and states are presented in [130, 131, 132]. The
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use of linear techniques based on the dynamic model of the induction motor

is proposed in [139]. The use of NNs and fuzzy methods for induction motor

parameter estimation were proposed respectively in [140] and [141]. The ex-

tended Kalman filter has been employed to accomplish the joint estimation of

the state variables and the machine parameters [142, 143]. The on-line tun-

ing of the stator resistance, stator inductance, transient inductance, and rotor

resistance has been discussed in [144, 145]. In [146] adaptive identification

of rotor resistance is proposed for an indirect stator flux oriented induction

motor drive. All these investigations demonstrate that the performance of the

drive can be improved through accurate estimation of the machine parameters.

For analytical identification, a model is developed from the steady-state equa-

tions of induction motor dynamics. The identification procedure, based on a

simple algorithm derived from least squares techniques, uses only the informa-

tion of stator currents and voltages and rotor angular speed as input-output

data. The machine equations can be expressed in the form, y (k) = θT (k).x(k)

where k is the sample at which a measurement is taken and θ is the vector of

unknown parameters. Many investigations have been presented on nonlinear

models that incorporate nonlinear effects such as magnetic saturation effects

[147] and the induction machine parameters were obtained with various tradi-

tional optimization methods such as least squares and local search. However,

the fundamental problem with traditional techniques is their dependence on

unrealistic assumptions such as unimodal landscapes, differentiability and con-

tinuity of the objective function. Consequently nonlinear problems are often

over simplified to fulfill such assumptions. In contrast EAs seem to be promis-

ing alternative to traditional approaches as they are capable of addressing

problems with nonlinear effects, multimodality, non-differentiability and time

varying components. Authors in [148, 149, 150, 151] have investigated pa-

rameter identification of induction motor using genetic algorithm. Parameter

identification of induction motor using evolutionary algorithm and stochastic

optimization algorithm has been discussed in [154] and [153]. Differential evo-
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motor

lution is one of the variant of EAs which has been prefered in many real world

problems due to its simplicity and less number of operational parameters. It

has the advantage of incorporating a relatively simple and efficient form of

self-adaptive mutation strategy. With its esae of implementation and proven

efficiency, DE is idealy suited to estimate the parameter of an induction mo-

tor. Authors in [155] have used DE to identify the parameters of an induction

motor. This chapter focuses on parameter identification of induction motor

using a different version of DE i.e. OMDE. Here the parameters are identified

in simulation models based on nonlinear differential equations. For analytical

identification, a model is developed from the steady-state equations of induc-

tion motor dynamics. The identification procedure, based on DE and OMDE

algorithm, uses only the information of stator currents and voltages and rotor

angular speed as input-output data. The computer simulation using MATLAB

is used to prove the efficacy of the proposed method.

7.2 Review of some parameter estimation al-

gorithms applied to induction motor

The least mean squares algorithm

The least mean squares algorithm is a gradient-descent method

e (k) = y (k)− θT (k)x (k) (7.1)

θ (k + 1) = θ (k) + µx (k) e (k) (7.2)

where y(k) is the plant output vector (in this case the voltage vector), θT (k)

is the unknown parameter vector, x(k) is the input vector, e(k) is the error

between the plant and the estimator, and µ is a diagonal gain matrix, where

because of the nonlinear plant inputs each of the diagonal elements is a different

constant scalar value. The selection of the values of each diagonal element µ

is input dependant and can be given as 0 < µ < λmax where λmax is the

maximum Eigen value of the autocorrelation matrix of the input vector x(k).

The problem with this is that for the nonlinear case the maximum Eigen
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value spread (the ratio of minimum to maximum Eigen values) is in general

very large, giving slow convergence rates. The advantage of this algorithm is

computational simplicity.

Recursive least squares algorithm

The RLSs algorithm provides an adaptive solution to the least-squares regres-

sion problem

ŷ (k) = θ̂T (k − 1)x (k) (7.3)

e (k) = y (k)− ŷ (k) (7.4)

Cov (k) = Cov (k − 1)− Cov (k − 1)x (k)xT (k)Cov (k − 1)

1 + xT (k)Cov (k − 1)x (k)
(7.5)

θ̂ (k − 1) = θ̂ (k − 1) + Cov (k)x (k) e (k) (7.6)

where ˆy(k) is the plant output vector (in this case the voltage vector), θT (k)

is the unknown parameter vector, x(k) is the input vector, e(k) is the error

between the plant and the estimator. Cov is the covariance matrix. The

RLS algorithm provides superior convergence properties to the LMS algorithm,

however this is at the cost of additional computational expense.

Extended Kalman Filter Algorithm

To apply the Kalman filter to estimation of the induction motor parameters,

measurement of some state variables is necessary [142]. In this case, the mea-

surable state variables are the stator currents, ids and iqs. This measurement

can be expressed

Z = Hy + v (7.7)

v is the assumed to be a zero-mean white Gaussian noise with covariance R.

Kalman filter algorithm as follows:

• Set the initial value ˆy(0) of the estimated state vector ŷ and the initial

value Cov(0) of covariance of estimation error Cov.
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• Calculate the Kalman gain Kk at time stage k :

Kk = CovkH
TR−1 (7.8)

• Measure the values of zk and uk

• Calculate the linearization matrix Fk

Fk =

[
∂f(y, u)

∂y

]
y=yk,u=uk

(7.9)

• Calculate the estimate value

ŷ(k) = f (yk, uk) +Kk (Zk −Hyk) (7.10)

Ĉovk = FkĈovk + ĈovkF
T
k −KkHĈovk +Q (7.11)

An extended Kalman filter approach to rotor time constant measurement in

PWM induction motor drive is discussed in [142]. However, difficulties are

encountered in expressing the equations in regressor form and in turn this

method may not be a viable choice for all situations in induction motor pa-

rameter estimation problems. Therefore, an alternative way of solving the

parameter estimation problem, by using evolutionary method which does not

require the description of equation y (n) = θT (n)x(n). In spite of the consider-

able theoretical foundation of induction motors, few studies have used EAs and

other stochastic search techniques to identify the model parameters. EA inves-

tigations on parameter identification of induction motors can be categorized

in two groups i.e. identification of parameters in simulation models based on

nonlinear differential equations and identification of parameters from equations

describing the load torques. The approach used in the first group determines

the parameters from time-series data, which typically leads to high-accuracy

models that can be used to control the motor. The approach used in the sec-

ond group is less precise, but is independent of available time-series data. In

[145], the authors investigated a 1kW motor and showed that the evolutionary

algorithm outperformed least squares fitting. They determined stator resis-
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tance (Rs), stator inductance (Ls), leakage inductance (Ll), motor load torque

(τr), and moment of inertia (Jm) using a state space model with scaled rotor

flux. In a similar study, authors in [146] identified stator and rotor resistance

(Rs and Rr), stator and rotor self-inductance (Ls and Lr), and magnetizing

inductance (Lm) using a motor model not accounting for saturation effects.

In their paper, they compared the performance of a genetic algorithm to a

random search algorithm under four levels of simulated measurement noise. In

[148] the authors, determined the parameters in a motor load model using a

GA. Authors in [149] used a simple evolutionary algorithm to determine sta-

tor resistance (Rs), rotor resistance (Rr), and combination of stator and rotor

reactance Xlr from the motors specifications provided by the manufacturer. In

a follow-up study, authors in [150] used a GA to determine the parameters of

three motors from equations for the full load torque, the lock rotor torque, and

the breakdown torque. Additionally, they used genetic programming (GP) to

evolve equations modeling these torques the results obtained are somewhat in-

conclusive since the GA outperformed the GP in some cases, but not in other

cases.

7.3 Induction Motor Modeling

A transformation of stator ABC variables to dq variables can be carried out us-

ing Park’s transformation given below. a) 3-phse to stationary ds−qs reference

frame 
vsqs

vsds

vsos

 =
2

3


cos θ cos

(
θ − 2π

3

)
cos
(
θ + 2π

3

)
sin θ sin

(
θ − 2π

3

)
sin
(
θ + 2π

3

)
0.5 0.5 0.5



vas

vbs

vcs

 (7.12)
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or vsqdo = Ksvabcs

where Ks is the transformation matrix. b) ds − qs to 3-phase transformation
vas

vbs

vcs

 =


cos θ sinθ 1

cos
(
θ − 2π

3

)
sin
(
θ − 2π

3

)
1

cos
(
θ + 2π

3

)
sin
(
θ + 2π

3

)
1



vsqs

vsds

vsos

 (7.13)

or vabcs = K−1
s vsqdo

It is convenient to set θ = 0. Ignoring zero sequence component

vsqs = vas (7.14)

vsds =
1√
3

(vcs − vbs) (7.15)

Stationary (ds − qs ) to rotating (de − qe ) and vice versa

de − qe axes are rotating at speed ωe and ds − qs. axes are stationary. Angle,

θe is given by

θe = ωe.t (7.16)

vqs = vsqs cos θe − vsds sin θe (7.17)

vds = vsqs sin θe + vsds cos θe (7.18)

vsqs = vqs cos θe + vds sin θe (7.19)

vsds = −vqs sin θe + vds cos θe (7.20)

Assuming three phase balanced voltages

vas = Vm cos(ωe.t+ φ) (7.21)
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vbs = Vm cos(ωe.t−
2π

3
+ φ) (7.22)

vcs = Vm cos(ωe.t+
2π

3
+ φ) (7.23)

We get ds − qs variables

vsqs = vas = Vm cos(ωe.t+ φ) (7.24)

vsds =
1√
3

(vcs − vbs) = −Vm sin(ωe.t+ φ) (7.25)

A complex space vector, represented by ds − qs variables

−→
V = vsqs − jvsds

= Vm [cos(ωe.t+ φ) + j sin(ωe.t+ φ)]

= Vme
j(ωe.t+φ) (7.26)

The voltage vector rotates at the speed, ωe, from the initial angle φ. Magnitude

of the voltage vector ∣∣∣−→V ∣∣∣ =
√
vsqs

2 + vsds
2 = Vm (7.27)

In the synchronously rotating de − qe frame

vqs = vsqs cos θe − vsds sin θe

= Vm cos(ωe.t+ φ) cos(ωe.t) + Vm sin(ωe.t+ φ) sin(ωe.t)

= Vm cosφ (7.28)

vds = vsqs sin θe + vsds cos θe
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7.3 Induction Motor Modeling

= Vm cos(ωe.t+ φ) sin(ωe.t)− Vm sin(ωe.t+ φ) cos(ωe.t)

= −Vm sinφ (7.29)

vqs = −Vm cosφ and vds = −Vm sinφ are the constant quantities independent of

time. Thus, three sinusoidal variables appear as dc quantities in synchronously

rotating reference frame. This is the main advantage of reference frame the-

ory dynamic model of induction machine in synchronously rotating reference

frame. The stator voltage components vds, vqs and rotor voltages vdr, vqr with

synchronously rotating reference frame variables are given by

vds = Rsids +
dψds
dt
− ωeψqs (7.30)

vqs = Rsiqs +
dψqs
dt

+ ωeψds (7.31)

vdr = Rridr +
dψdr
dt
− (ωe − pωr)ψar (7.32)

vqr = Rriqr +
dψqr
dt

+ (ωe − pωr)ψdr (7.33)

ids(iqs) = d-axis (q-axis)stator current

idr(iqr) = d-axis (q-axis)rotor current

ψds(ψqs) = d-axis (q-axis)stator flux linkage

ψdr(ψqr) = d-axis (q-axis)stator flux linkage

ωe = speed of the reference frame (radian/second )

ωr = mechanical radians/seconds (speed)of the rotor

p = number of poles

The flux linkage expression can written as

ψds = Lsids + Lmidr (7.34)
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7.3 Induction Motor Modeling

ψqs = Lsiqs + Lmiqr (7.35)

ψdr = Lridr + Lmids (7.36)

ψqr = Lriqr + Lmiqs (7.37)

Replacing the flux linkage terms in equations (7.30-7.33) by their expressions

in equations (7.34-7.37), the electrical transient model in terms of voltages and

currents is
vqs

vds

vqr

vdr

 =


Rs + sLs ωeLs sLm ωeLm

−ωeLs Rs + sLs ωeLm sLm

sLm (ωe − pωr)Lm Rr + sLr (ωe − pωr)Lr
(ωe − pωr)Lm sLm (ωe − pωr)Lm Rr + sLr




iqs

ids

iqr

idr


(7.38)

where s is the Laplace operator, which is replaced by d
dt

. For rotor fed machine,

with rotor short circuited vqr = vdr = 0

The torque developed by the machine is

Te =
3

2
pLm (iqsidr − idsiqr) (7.39)

The torque balance equation is

Te = TL + J
dωr
dt

+Bωr (7.40)

Equations (7.38) and (7.39) represent the 5th order model of the electrical dy-

namics of induction motor equations where (7.38) represents the mechanical

dynamics of the motor. Equation (7.38), (7.39) and (7.40) represent the com-

plete model of induction motor, which is of 6th order. Knowing stator input

voltages vds and vqs these equations can be solved to find the transient response

of current and speed. Equation (7.39) can be arranged in state space form with
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7.3 Induction Motor Modeling

stator currents and rotor flux linkages as state variables. From equation (7.39)

idr =
ψdr
Lr
− Lm
Lr

ids (7.41)

Substituting equation (7.41) in equation (7.30) and rearranging

dψdr
dt

=
RrLm
Lr

ids −
Rr

Lr
ψdr + ωseψqr (7.42)

From equation (7.37)

iqr =
ψqr
Lr
− Lm
Lr

iqs (7.43)

Substituting equation (7.43) in equation (7.31) and rearranging

dψqr
dt

=
RrLm
Lr

iqs −
Rr

Lr
ψqr − ωseψdr (7.44)

Substituting equation (7.43) in equation (7.34) and rearranging

ψds = Lsids +
Lm
Lr

ψdr −
L2
m

Lr
ids

= Ls

(
1− L2

m

LrLs

)
ids +

Lm
Lr

ψdr

= σLsids +
Lm
Lr

ψdr (7.45)

where, σ =
(

1− L2
m

LrLs

)
is the leakage coefficient Substituting equation (7.43)

in equation (7.45)

ψds = σLsiqs +
Lm
Lr

ψqr (7.46)

Substituting equation (7.45) and (7.46) in equation (7.30)

vds = Rsids + σLs
dids
dt

+
Lm
Lr

dψdr
dt
− ωe

(
σLsiqs +

Lm
Lr

ψqr

)
(7.47)

Substituting equation (7.44) in equation (7.47)

σLs
dids
dt

= vds−Rsids−
Lm
Lr

(
RrLm
Lr

ids −
Rr

Lr
ψdr + ωseψqr

)
−ωe

(
σLsiqs +

Lm
Lr

ψqr

)
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= −
(
Rs +

RrL
2
m

L2
r

)
ids + σLsωeiqs +

RrLm
L2
r

ψdr +
Lm
Lr

(ωe − ωr)ψqr + vds

dids
dt

= −(RsL
2
r +RrL

2
m)

σL2
rLs

ids+ωeiqs+
RrLm
σLsL2

r

ψdr +
Lm

σLsLr
pωrψqr +

vds
σLs

(7.48)

Similarly, substituting equation (7.47),(7.48)and (7.46) in equation (7.31)

diqs
dt

= −(RsL
2
r +RrL

2
m)

σL2
rLs

iqs−ωeids+
RrLm
σLsL2

r

ψqr−
Lm

σLsLr
pωrψdr +

vqs
σLs

(7.49)

Organizing equation (7.48), (7.49), (7.44) and (7.43) in vector matrix form ,the

state space model is obtained as

d

dt


ids

iqs

ψdr

ψqr

 =


−a1 ωe a2 a3pωr

−ωe −a1 −a3pωr a2

a5 0 −a4 ωse

0 a5 −ωse −a4




ids

iqs

ψdr

ψqr

+


1
σLs

0

0 1
σLs

0 0

0 0


 vds

vqs


(7.50)

where, a1 =
(RsL2

r+RrL2
m)

σL2
rLs

, a2 = RrLm

σLsL2
r
, a3 = Lm

σLsLr
, a4 = Rr

Lr
, a5 = RrLm

Lr

Te =
3

2
p
Lm
Lr

(iqsψdr − idsψqr) (7.51)

7.4 Problem Formulation

Figure 7.1 gives the scheme for parameter estimation of an induction motor.
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Figure 7.1: Formulation of Parameter Estimation Problem

The basic idea in parameter estimation is to compare the time dependent

response of the system and a parameterized model by a norm or some per-

formance criterion giving a measure of how well the model response fits the

system response. Normally, the dynamic response of the induction motor is

given by the solution to a vector differential equation of the form given in

equations (7.50,7.51) which can be written in compact form as:

Ẋ = AX +BU

Y = CX

where

X = [iqs ids λqr λdr]
T

A =


−Rs+Rr

Ll
0 Rr

LlLm
− ωr

Ll

0 − Rs+Rr

Ll

ωr

Ll

Rr

LlLm

−Rr 0 − Rr

Lm
ωr

0 Rr − ωr − Rr

Lm
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B =
1

Ll


1 0

0 1

0 0

0 0



C =

 1 0 0 0

0 1 0 0


U =

 vq

vd


The parameter vector θ is given as follows

θ =
[
Rs Rr Ll Lm

]T
where Ll is the leakage inductance and Lm is the mutual inductance. The

initial condition of the model was established as given below

X(0) =
[
iqs(0) ids(0) λqr(0) λdr(0)

]T
Normally, the system is affected by noise in both states and measurement,

which may be real noise or noise caused by unmodeled dynamics. The param-

eter vector θ is unknown for real systems. Hence, the objective in parameter

estimation is to determine this vector as accurately as possible. The system

response and the model response can then be compared by a performance

criterion, which in the simple case can be quadratic given as follows.

e =

√√√√ N∑
k=1

(
îds(k) − ids(k)

)2

+
(
îqs(k) − iqs(k)

)2

(7.52)

where, e is the error between model and measurements, îds(k) and îqs(k) denotes

the estimated values. The objective of the estimation problem is to determine

θ such that the error given by (7.52) is minimized. In Fig. 7.1, we present the

parameter scheme of the induction motor drive system, where the optimization
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7.5 Opposition Based Mutation Differential Evolution (OMDE)

is to be performed using different variants of DE and OMDE algorithm. The

DE and OMDE will start searching the search space with random initialization.

In each successive generation the search space shrinks and the algorithm will

converge after some generation if the performance index will reach certain

predefined value.

7.5 Opposition Based Mutation Differential Evo-

lution (OMDE)

The concept of OBL has been discussed in chapter 6. As, it also known that

if the crossover is applied between two good parents then there is fair chance

of reproducing better offsprings. So the same opposition based approach can

be applied to each solution after the mutation and before the crossover in the

current population. Two main steps are distinguishable for OMDE, namely,

opposition based initialization and opposition based mutation. We will en-

hance these two steps using the OBL scheme. The original DE is chosen as

a parent algorithm and the proposed opposition-based ideas are embedded in

DE to accelerate its convergence speed. The main advantage of OMDE over

ODE is that it requires less number of tuning parameters i.e. some extra pa-

rameters such as jumping rate Jr to be tuned properly. The convergence of

the ODE algorithm is highly dependent on the jumping rate Jr. The advan-

tage of OMDE is that it does not require any extra parameters to be tuned

which provides more flexibility than its counterpart i.e. ODE. Corresponding

algorithm for the proposed OMDE is explained in algorithm1.

7.5.1 Opposition-Based Population Initialization

According to our review of optimization literature, random number genera-

tion, in absence of a priori knowledge, is the common choice to create an

initial population. Therefore, by utilizing OBL, we can obtain fitter starting

candidate solutions even when there is not a priori knowledge about the solu-

tion(s). The following steps present opposition-based initialization for OMDE
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7.5 Opposition Based Mutation Differential Evolution (OMDE)

that procedure. Initialize the population pop(P ) randomly Calculate opposite

population

opopi,j = aj + bj − popi,j

i = 1, 2, · · · , P j = 1, 2, · · · , d

where popi,j and opopi,j denote the jth variable of the ith vector of the

population and opposite population respectively. Select P fittest individual

from the union of pop and opop as initial population i.e. mpop.

7.5.2 Opposition-Based Mutation

By applying the same approach described above, to the current population,

after the mutation, the evolutionary process can be forced to create new so-

lution candidate, which ideally is fitter than the current one. After generat-

ing populations using mutation, the opposite population is calculated and the

fittest individuals are selected from the union of the current population and the

opposite population. Unlike opposition-based initialization, opposition based

mutation calculates the opposite population dynamically i.e. instead of using

variables within predefined boundaries, opposition based mutation calculates

the opposite of each variable based on minimum and maximum values of that

variable in the current population as given by the equation below.

ompopi,j= min(mpopj) + max(mpopj)−mpopi,j

In each generation the maximum and minimum values of the variables

changes dynamically, as generation increases the search space is reduced so

the boundary values changes for each generation. By staying within vari-

ables interval static boundaries (i.e. initial boundary values), we would jump

outside of the already shrunken search space and the knowledge of the cur-

rent reduced space (converged population) would be lost. Hence, we cal-

culate opposite points by using variables current interval in the population
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7.5 Opposition Based Mutation Differential Evolution (OMDE)

which shrinks with higher generation. Like DE, there exits ten variants of

OMDE which depend on the type of cross over and mutation. The vari-

ants of the OMDE are OMDE/best/1/exp, OMDE/rand/1/exp, OMDE/rand-

to-best/1/exp, OMDE/best/2/exp, OMDE/rand/2/exp, OMDE/best/1/bin,

OMDE/rand/1/bin, OMDE/rand-to-best/1/bin, OMDE/best/2/bin,

OMDE/rand/2/bin.

Algorithm 3 OMDE Algorithm

Require: pop: initial population, F : Mutation constant, C: Cross over con-
stant
{Opposition based Initialization }
for i = 0 to P do

for j = 0 to d do
opopi,j = aj + bj − popi,j

end for
end for
Select P fittest individual from the set (popi,j ∪ opopi,j)
while Convergence criteria not met do

for i = 0 to P do
r1 = rand(P )
r2 = rand(P )
r3 = rand(P )
vi,g = xr1,g + F (xr2,g − xr3,g ) {Srore in mutation population mpop }
{*/ Opposition based mutaion starts */ }
ompopi,j = min(mpopj) +max(mpopj)−mpopi,j
Select P fittest individual from the set (mpopi,j ∪ ompopi,j) which is
denoted by ov
{*/ Opposition based mutaion ends */ }

tj,i,g =

{
ovj,i,g if (randj ≤ C) or j = jrand
xj,i,g otherwise

if f(ti,g) ≤ f(xi,g) then
xi,g+1 = ti,g

else
xi,g+1 = xi,g

end if
end for

end while
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7.6 Parameter Identification of Induction Motor using DE and OMDE

7.6 Parameter Identification of Induction Mo-

tor using DE and OMDE

The objective of the parameter estimation of induction motor is to determine a

mathematical model of the motor with sufficient accuracy. To develop robust

methods for parameter estimation, it is important to quantify the information

content about machine parameters on measured signals. This is of particular

importance when we restrict only to electrical terminal quantities, such as sta-

tor voltages and currents. Most of the existing parameter estimation methods

such as LMS and RLS methods use the regressor equation i.e.

y = xT θ + ε (7.53)

where y is the output vector, x is the regressor matrix, θ is the parameters to

be estimated and ε is the system noise. However, difficulties are encountered

in the regression equation (7.53) and in turn this method may be a viable

choice for all situations in induction motor parameter estimation problems.

Therefore, we explore an alternative way of solving the parameter estimation

problem by using evolutionary method i.e. the DE and OMDE which do not

require the description of equation (7.53) for parameter estimation.

It may be noted that recently DE algorithm has been considered as a novel evo-

lutionary computation technique used for optimization problems. The DE has

been preferred to many other evolutionary techniques such as GA and PSO due

to its attractive characteristics such as its simple concept, easy implementation

and quick convergence. Generally speaking, all population-based optimization

algorithms, no exception for DE, suffer from long computational times because

of their evolutionary/stochastic nature. This crucial drawback sometimes lim-

its their application to offline problems with little or no real-time constraints.

The parameter identification of induction motor using differential evolution

and stochastic optimization algorithm is discussed in [155], [154]. The con-

cept of using OBL for initialization and for generation jumping was given by
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[116] which is known as ODE. Our proposed approach has been called OMDE.

OMDE uses opposite numbers during population initialization and also for

generating new populations after mutation during the evolutionary process.

As in differential evolution the cross over is done after the mutation, we have

put the OBL just after mutation so that better individuals can take part in

crossover as a result we could able to get fitter individuals in the next genera-

tion. The focus of parameter estimation using evolutionary computation here

are as follows.

• Instead of being confronted with difficulties in finding expressions to

represent the system by y = xT θ+ε, the DE and OMDE method estimate

the parameters directly.

• An extensive study on finding of an efficient OMDE strategy with a view

of obtaining faster convergence for parameter estimation of induction

motor has been pursued.

7.7 Results and Discussions

The parameter estimation schemes such as DE and OMDE have been applied

to the induction motor by using the input-output data i.e. the stator volt-

age (transformed d-q axis, equation) and the stator current (d-q transformed,

equation ) to estimate motor resistance and inductance. Table 7.1 gives the

rating of the induction motor and the actual value of the parameters to be

identified. The results obtained is the average of 30 independent runs for each

case.
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Table 7.1: Specification of the induction motor

Voltage 220 V
Power 5 HP

Frequency 50 Hz
Stator resisteance 0.3900 Ohm
Rotor resistance 0.2200 Ohm

Leakage Inductance 0.0060 Henry
Magnetising Inductance 0.0680 Henry

RPM 1750

All the ten variants of the DE and OMDE schemes for identifying the motor

parameters Rs, Rr, Ll and Lm have been implemented using the following

common parameters given in table 7.2.

Table 7.2: Parameters of the proposed DE and OMDE

Number of generation 50
Population size, P 20

Upper and lower bound of stator resistance [0 1]
Upper and lower bound of rotor resistance [0 1]

Upper and lower bound of leakage inductance [0 1]
Upper and lower bound of magnetizing inductance [0 1]

Mutation factor, F 0.6
Crossover constant, C 0.5
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Figure 7.2: RMSE for DE/best/1/exp and OMDE/best/1/exp
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Figure 7.3: RMSE for DE/rand/1/exp and OMDE/rand/1/exp
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Figure 7.4: RMSE for DE/rand-to-best/1/exp and OMDE /rand-to-
best/1/exp
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Figure 7.5: RMSE for DE/best/2/exp and OMDE/best/2/exp
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Figure 7.6: RMSE for DE/rand/2/exp and OMDE/rand/2/exp

Figure 7.2-7.6 shows the RMSE plot for the exponential crossover scheme.

From these figures it is clear that the OMDE strategies outperform over the

corresponding DE strategies in terms of faster convergence and less estimated

error, the RMSE is maximum for DE/rand/2/exp i.e. 25.08 and minimum for

OMDE/best/1/exp i.e. 0.0307.
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Figure 7.7: RMSE for DE/best/1/bin and OMDE/best/1/bin
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Figure 7.8: RMSE for DE/rand/1/bin and OMDE/rand/1/bin
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Figure 7.9: RMSE for DE/rand-to-best/1/bin and OMDE /rand-to-best/1/bin
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Figure 7.10: RMSE for DE/best/2/bin and OMDE/best/2/bin
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Figure 7.11: RMSE for DE/rand/2/bin and OMDE/rand/2/bin

Figure 7.7-7.11 gives the RMSE plot for different DE and OMDE strategies

for the binomial cross scheme. From all the Figures 7.3-7.12 it is clear that

the OMDE has the better convergence characteristic in comparison to classical

DE both for exponential and binomial crossover scheme.
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Figure 7.12: Estimation of stator resistance
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Figure 7.13: Estimation of rotor resistance
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Figure 7.14: Estimation of magnetizing inductance
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Figure 7.15: Estimation of leakage inductance

Figures 7.12-7.15 gives the value of the estimated stator resistance, rotor

resistance, magnetizing inductance and leakage inductance respectively, for the

strategy OMDE/best/1/bin those values becomes approximately equal to its

actual value after 30 iterations. Table-7.3 shows the comparison of the perfor-

mance of all the ten variants of DE and OMDE terms of the means squared

error after fifty iterations. From the results it is found that for DE/best/1/bin

the RMSE is minimum i.e. 0.4060 among all the DE strategies similarly

OMDE/best/1/bin gives the minimum RMSE i.e. 0.0168 amongst all the
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OMDE strategies. This shows that the superiority of proposed OMDE over

the conventional DE. In some cases shown in Table-7.3 the value of the parame-

ters exceed their boundary values because we have defined the boundaries only

for initialization, but when the evolutionary process continues the parameter

values depend on the type of mutation scheme. The process converges to its

optimal value after few numbers of iterations i.e. only 30 number of iterations

as shown in Fig 7.7 for the strategy OMDE/best/1/bin.

Table 7.3: Comparison of estimation results for different strategies

Strategies of DE and
OMDE

Stator
resis-
tance in
Ohm

Rotor
resis-
tance in
Ohm

Leakage
Induc-
tance in
Henry

Magnetizing
Inductance
in Henry

RMSE

DE/best/1/exp 0.3903 0.2204 0.0060 0.0728 0.7778
DE/rand/1/exp 0.3920 0.2157 0.0052 0.0564 7.4396
DE/rand-to-
best/1/exp

0.3894 0.2192 0.0061 0.0503 2.3332

DE/best/2/exp 0.3913 0.2250 0.0063 0.0688 4.8499
DE/rand/2/exp 0.3979 0.1956 0.0077 7.5864 25.0840
DE/best/1/bin 0.3900 0.2202 0.0060 0.0694 0.4060
DE/rand/1/bin 0.3902 0.2051 0.0065 3.1812 14.4818
DE/rand-to-
best/1/bin

0.3899 0.2180 0.0060 0.0855 2.0627

DE/best/2/bin 0.3902 0.2135 0.0066 6.7598 11.7129
DE/rand/2/bin 0.4455 0.1534 0.0145 19.6302 95.6588
OMDE/best/1/exp 0.3900 0.2200 0.0060 0.0683 0.0307
OMDE/rand/1/exp 0.3903 0.2256 0.0062 0.0734 4.0755
OMDE/rand-to-
best/1/exp

0.3900 0.2201 0.0060 0.0672 0.1249

OMDE/best/2/exp 0.3923 0.2194 0.0058 0.0555 3.6979
OMDE/rand/2/exp 0.3884 0.2264 0.0063 -26.3119 10.7830
OMDE/best/1/bin 0.3900 0.2199 0.0060 0.0680 0.0168
OMDE/rand/1/bin 0.3888 0.2196 0.0061 0.2271 6.2502
OMDE/rand-to-
best/1/bin

0.3900 0.2200 0.0060 0.0685 0.0611

OMDE/best/2/bin 0.3902 0.2222 0.0062 0.0980 3.1331
OMDE/rand/2/bin 0.3906 0.2207 0.0059 22.7209 10.1365
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7.8 Summary

7.8 Summary

This chapter presents a new differential evolution algorithm called opposition

based mutation differential evolution. The application of the DE and OMDE

strategies for efficiently solving the identification problem of an induction mo-

tor is described in this chapter. Here ten different DE and OMDE formula-

tions is considered towards estimating the parameters i.e. stator and rotor

resistances, leakage inductance and magnetizing inductance of the Induction

Motor Drive System. For a given induction motor, the unknown parameters

are successively evolved by using DE and OMDE algorithm to approximate

the actual parameters accurately. From results obtained above, it is concluded

that OMDE/best/1/exp gives the better result in terms of faster convergence

and accuracy in estimating parameters.
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Chapter 8

Conclusion

This chapter concludes the thesis and some future research problems that may

be attempted by an interested reader are outlined.

8.1 Summary of the Thesis Work

The thesis has mainly investigated on identification and parameter estimation

of nonlinear systems. In this work a number of neuro-evolutionary hybrid sys-

tem algorithms based on evolutionary strategy have been investigated. We

have used two different fusion strategies for hybridizing EA and GD i.e. se-

quential and memetic hybridization.

• A new SH known as DE+LM+NN approach has been employed for iden-

tification of nonlinear plants where LM is used after DE. This study

presents a promising hybrid optimization technique. Based on a strong

coupling approach between a DE and the LM, a new hybrid optimizer

has been developed. This tool exploits the main advantages of both DE

and LM, namely the ability to deal with problems exhibiting several lo-

cal minima for the former, and the quick convergence to the optimal

solution for the latter. Another advantage of this hybrid optimizer with

respect to a pure DE is that, for a similar quality of results, it allows

the use of a smaller number of function evaluations, and thereby an im-

portant reduction of the computational time. This hybrid optimizer has

successfully solved various nonlinear system identification problems. It
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is shown through extensive study using simulation and analysis that the

new DE+LM +NN has taken less computational overhead and better

identification performance compared to the DE+NN and conventional

Hammer Stein-Wiener identification. The main disadvantage of those

type of SH algorithm is the decision of the point of switching from one

algorithm to other. We have taken the MSE as criteria to switch from

DE to LM.

• The convergence of the DE algorithm has been proved in a stochastic

framework.

• One of the possibilities for hybridization of an evolutionary algorithm

with local search algorithm is explored which is known as MA. From an

optimization point of view, MAs are hybrid evolutionary algorithms that

combine global and local search by using an evolutionary algorithm to

perform exploration while the local search method performs exploitation.

In MAs either some or all the solutions obtained by EA are improved

through local search. In this work all the solutions obtained by GA,

PSO and DE are improved by BP. Different memetic algorithms such

as GABP, PSOBP and DEBP have been developed for identification

of nonlinear systems. Here BP is applied to all populations after the

mutation and cross over. In terms of convergence behavior, and identi-

fication error, it is observed that the DEBP memetic algorithm trained

system identification scheme offer improved identification performance

compared to BP, GA, GABP, PSO, PSOBP, and DE based methods.

Further it is observed that memetic algorithm trained NN approach to

system identification using DE is an efficient method of offering better

optimal solutions compared to GA and PSO based identification schemes.

• The TRMS is a highly nonlinear system which can be considered as an

experimental model whose behavior in certain aspects resembles that of
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a helicopter, with a significant cross coupling between longitudinal and

lateral directional motions, so, it is an interesting identification prob-

lem. A dynamic model of a TRMS is extracted using a black-box system

identification technique. Two neural network based models are devel-

oped using hybrid evolutionary algorithms i.e. sequential hybridization

and memetic approach has been applied to a TRMS system for modeling

with a NARX model structure. The identification results are compared

in terms of identification capability and speed of convergence. The re-

sponses of all the identified models are compared with that of the real

TRMS to validate the accuracy of the models. It is found that the

identification using the above two methods are almost similar but the

DE+LM+NN sequential hybridization method is comparatively taking

less computation time than the memetic DEBP identification.

• Subsequently an opposition-based learning as a new scheme for evolu-

tionary computation is introduced. Optimizing neural network weights

by using the concept of opposite weights is the foundation of this ap-

proach. A variant of the differential evolution ODE basing on OBL is

applied to train a feed-forward neural network that is used for system

identification nonlinear systems. This approach is applied to the nonlin-

ear systems [61], [62] including the real time TRMS. From the simulation

results it was found that the ODE based system identification is faster

and the identification error is less compared to DE based SI approach.

• A new differential evolution algorithm called OMDE have been proposed

to develop a parameter estimation scheme. In this work; the applica-

tion of the DE and OMDE strategies have been described for efficiently

solving the identification problem of an induction motor. Here ten differ-

ent DE and OMDE formulations towards estimating the parameters i.e.

stator and rotor resistances, leakage inductance and magnetizing induc-

tance of the induction motor drive system are considered. For a given

induction motor, the unknown parameters are successively evolved by

191



8.2 Thesis Contributions

using DE and OMDE algorithm to approximate the actual parameters

accurately. Results obtained envisage that OMDE/best/1/exp gives the

better result in terms of faster convergence and accuracy in estimating

parameters. One of the advantages of using DE over other algorithms is

that it requires less number of tuning parameters. The ODE converges

faster than DE but it requires some extra parameters such as jumping

rate Jr to be tuned properly which is difficult to find and varies for

different problems. The advantage of OMDE over ODE is that the pro-

posed method does not require any extra parameters to be tuned which

provides more flexibility than its counterpart i.e. ODE.

The objectives of the thesis proposed in section 1.4 have been thus met in over-

coming the difficulties of existing neural network based system identification

strategies by demonstrating the efficacies of new variants of neuro-evolutionary

system identification algorithms.

8.2 Thesis Contributions

The following are the salient contributions of the thesis.

• Introduction of a new identification framework which combines both DE

and LM, for optimizing the weights of a feed-forward neural network

whose minimization yields an estimated model [168].

• Convergence analysis of the DE algorithm for nonlinear system identifi-

cation in a stochastic frame work has been made.

• Development of a memetic algorithm with the hybridization of DE and

BP for optimizing the weights of neural network applied to nonlinear

system identification problems [169].

• Development of a variation of DE based on opposition based learning i.e.

for enhancing the convergence of DE [170].
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• Improvement of nonlinear system identification performance by propos-

ing an ippositon based mutation differential evolution.

8.3 Future Scope of Work

• The DE applications may divide into two main areas: off-line design-

aid tools and robust on-line search improvement algorithms. A training

method for designing of hybrid DE computing models for nonlinear sys-

tem identification has been proposed here, which is an off-line training

method. Possible improvement and generalization of the algorithm for

the use of online training are needed. The rate at which the DE is ap-

plied to real-world problems is predicted to increase still further during

the next few years so different variants of DE and hybrid DE for speeding

up the training speed needed to be further studied. We have successfully

applied our methods to the identification and control of nonlinear sys-

tems, e.g., some bench mark problems, Box Jenkinns furnace system

and TRMS system. The next step is to evaluate the effectiveness of our

methods in other industrial plants.

• Neural network ensembles are receiving increasing attention in recent

neural network research, due to their interesting features. They are a

powerful tool especially when facing complex problems. Although theo-

retically, a single neural network with a sufficient number of neurons in

the hidden layer would suffice to solve any problem, in practice many

real-world problems are too hard to construct the appropriate network

that solve them. In such problems, neural network ensembles are a suc-

cessful alternative. Network ensembles are usually made up of a linear

combination of several networks that have been trained using the same

data, although the actual sample used by each network to learn can be

different. Each network within the ensemble has a potentially different

weight in the output of the ensemble. Several works have shown that

the network ensemble has a generalization error generally smaller than
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that obtained with a single network and also that the variance of the

ensemble is lesser than the variance of a single network. Identification of

nonlinear system using ensemble hybrid evolutionary learning could be

the future extension of this work.

• Power system small signal, transient, and dynamic stability studies should

be as accurate as possible which depends heavily on the accuracy of the

model parameters of the system components. In practice, the parameters

commonly used in stability studies are manufacturer specified values, or

typical values. These typical values may be grossly inaccurate, as various

parameters may drift over time or with operating condition. Thus, it is

desirable to develop methods for estimating exact component parameters

of an excitation system. Parameter estimation of synchronous machines

has been well documented, parameter estimation of excitation systems

has only begun to receive thorough attention. This work presents a new

method of off-line estimation for the stator and rotor resistances, mag-

netic and leakage inductances of an induction motor drive, using DE and

its variation i.e. OMDE. In this context, it would be quite interesting

to use the same algorithm for estimating the parameters of an excita-

tion system which includes nonlinear saturation function and nonlinear

regulating rectifier function of the main exciter. The method will utilize

the data signals in the time domain and will be used to estimate the

parameters of an IEEE excitation system [166].
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