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ABSTRACT

Solid particle erosion of polymer composites is a complex surface damage process,
strongly affected by material properties and operational conditions. The present
research work is undertaken to study the development, characterization and
erosion wear performance of bamboo fiber reinforced epoxy composites with and
without particulate fillers. Attempts have been made to explore the possible use of
some industrial wastes such as copper slag and red mud as filler materials in these
composites. To make an assessment of their reinforcing potential in terms of wear
performance and mechanical properties, two other conventional ceramic fillers
such as alumina (Al203) and silicon carbide (SiC) are also considered for
comparison. The mechanical properties and erosion wear characteristics of
bamboo based hybrid composites are compared with those of a similar set of
composites reinforced with the most commonly used synthetic fiber (E-glass). A
theoretical model has been proposed for estimation of erosion damage caused by
solid particle impact on bamboo fiber reinforced epoxy composites. The
experimental results are found to be in good agreement with the theoretical
values. This study indicates that erosion wear performance of bamboo based
composites is better than that of the glass fiber reinforced composites. The
morphology of eroded surfaces is examined by using scanning electron

microscopy (SEM) and possible erosion mechanisms are discussed.
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Chapter 1
INTRODUCTION

1.1 Background and Motivation

In recent years, the concept of ‘eco-materials’ digised key importance due to
the need to preserve our environment. The meaningco-material includes

‘safe’ material systems for human and other lifenfe at all times. Past
experiences have shown that it is necessary toactaize materials and
determine those which are safe for both short ang-term utilization. Selection

of a material system that satisfies not only indaktequirements but also this
wider definition of eco-materials, as describedva)as an urgent necessity.
Here, the most appropriate concept for materiacsign is composite materials
with natural fiber reinforcement. The interest imtural fiber reinforced

composites is growing rapidly both in terms of thadustrial applications and
fundamental research. Their availability, renewghilow density and price as
well as satisfactory mechanical properties makentlaa attractive ecological
alternative to glass, carbon and other man-maderdibused for the

manufacturing of composites.

Basically, composites are materials consistingwaf or more chemically distinct

constituents, on a macro-scale, having a distmetrfiace separating them. One
or more discontinuous phases are, therefore, engldeidda continuous phase to
form a composite [1]. The discontinuous phase isallg harder and stronger
than the continuous phase and is called theforcement, whereas, the

continuous phase is termed as thegrix. The matrix material can be metallic,
polymeric or can even be ceramic. When the magrix polymer, the composite

is called polymer matrix composite (PMC).

Over the past few decades, it is found that polgnmave replaced many of the
conventional metals/materials in various appligaior his is possible because of

the advantages such as ease of processing, pnatyctost reduction etc.
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offered by polymers over conventional materialsniast of these applications,
the properties of polymers are modified by usingefs to suit the high
strength/high modulus requirements. Fiber reinfdrceomposite materials
consist of fibers embedded in or bonded to a ma#tith distinct interfaces
(boundaries) between them. In this form, both 8band matrix retain their
physical and chemical identities, yet they prodaceombination of properties
that cannot be achieved with either of the coretitsi acting alone. In general,
fibers are the principal load-carrying members, levhhe surrounding matrix
keeps them in the desired location and orientafitie. matrix also acts as a load
transfer medium between them and protects the sfifewm environmental
damages due to elevated temperatures, humiditp et€hus, even though the
fibers provide reinforcement for the matrix, thétda also serves a number of
useful functions in a composite material. Many fibenforced polymers (FRPS)
offer a combination of strength and modulus th& either comparable to or
better than many traditional metallic materials.akidition, fatigue strength as
well as fatigue damage tolerance of many compdaitenates are excellent. For
these reasons, FRPs have emerged as a major tlagsabural materials and
find applications in almost all material domainsclsuas house furnishing,
packaging, sports, leisure and in many other weigkital components in

aerospace, automotive and other industries.

All synthetic polymers (thermoplastics, thermosats elastomers) can be used
as matrices in PMCs. As far as the reinforcemeabigerned, extensive use has
been made of inorganic man-made fibers such as glas organic fibers such as
carbon and aramid. As all these reinforcing fibems expensive, various fibers
like cellulose, wool, silk etc. abundantly avaikbh nature are also used in
composites. Cellulosic fibers like henequen, sisalgonut fiber (coir), jute,

palm, bamboo and wood, in their natural conditiand several waste cellulosic
products such as shell flour, wood flour and pubenh also been used as
reinforcing agents of different thermosetting ahdrioplastic resins. It is well

known that natural fibers impart high specific fetfss, strength and

Department of Mechanical Engineering, NIT Rourkela Page 2
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biodegradability to polymer matrix composites. Alscellulosic fibers are
readily available from natural sources and mostortgntly, they have low cost

per unit volume.

Historically, the origin of the concept of compesimaterial is based on natural
resources such as bamboo and wood. These are g@mdples of natural
composites where cellulosic fibers are in clos@a@asion with hemi-celluloses
to reinforce the lignin matrix. Our ancestors halso used this concept in
building houses that consisted of bamboo, straw @ayg in building walls.
Being a conventional construction material sincelemt times, bamboo fiber is
a good candidate for use as natural fibers in caitgpamaterials. As the
development of modern material science progressksge amount of masonry,
concrete and steel are used in the building strechut bamboo and some other
non-conventional natural materials still exist sam@ being used due to their
natural characteristics and good mechanical prigserBamboo is available
everywhere around the world and is an abundantalatesource. It is a giant
grass-like plant and not a tree as commonly bedielelonging to the family of
the Bambusoideae. Besides, bamboo is one of the fastest renewddtespwith a
maturity cycle of 3 to 4 years. It has excellentchanical properties in
comparison with its weight due to its longitudiyadiligned fibers. Although the
utilization potential of this material for a numbef applications has been
explored, such superior mechanical properties heotebeen adequately well
drawn for polymer-based composites. The use of banfiber can also help to
reduce the demand for wood fibers and environmeantpacts associated with
wood fiber harvesting [2]. In view of this, the pemt research work is
undertaken to study the reinforcement potentiabamboo fibers in polymer

composites.

Major constituents in a natural fiber reinforcednpmsite are the reinforcing
fibers and a matrix, which acts as a binder forfihers. In addition, particulate

fillers can also be used with some polymeric mafiprimarily to reduce cost

Department of Mechanical Engineering, NIT Rourkela Page 3
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and improve their dimensional stability. So, altbbua judicious selection of
matrix and the reinforcing phase can lead to a s with a combination of
strength and modulus comparable to or even bditer those of conventional
metallic materials [3], the physical and mechanataracteristics can further be
modified by adding a solid filler phase to the mabody during the composite
preparation. The fillers play a major role in datgring the properties and
behaviour of particulate reinforced composites. Tdren ‘filler’ is very broad
and encompasses a very wide range of materials.dtbitrarily defined as a
variety of natural or synthetic solid particulatesrganic, organic) that may be
irregular, acicular, fibrous or flakey. The impeal performance of polymers
and their composites in industrial and structuggli@ations by the addition of
particulate fillers has shown a great promise antias lately been a subject of

considerable interest.

Hard particulate fillers consisting of ceramic oetal particles and fiber-fillers
made of glass are being used these days to drathatioprove the mechanical
and wear properties of many composites. But in toistext, the potential of
ceramic-rich industrial wastes for such use in p@yic matrices has rarely been
explored. Rapid industrial development over thea escades has led to the
generation of large amounts of solid wastes inftren of ash, mud or slag,
which has now come to a stage of environmentalathaeexd needs disposal
and/or utilization. Most of these wastes are burredandfills, which is costly
and environmentally unsatisfactory. Therefores issential to seek new options
to recycle or reuse these inorganic residues.dvident from the characteristics
of some of these wastes, generated from differerdgsses, that they have good
potential for recycling and for utilization in ddeping various value-added
products. To this end, an attempt has been maddisnresearch work to
effectively utilize a couple of industrial wastes articulate fillers for making

composites.
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Another possibility that the incorporation of boglarticulates and fibers in
polymer could provide a synergism in terms of inye@ properties and wear
performance has not been adequately explored sdHfawever, some recent
reports suggest that by incorporating filler paecinto the matrix of fibre

reinforced composites, synergistic effects maydieesved in the form of higher
modulus and reduced material cost, yet accompanidd decreased strength
and impact toughness [4, 5]. Such multi-componemmosites consisting of a
matrix phase reinforced with a fiber and filled kvparticulates are termed as

hybrid composites.

Polymer composites are often used as engineeringvels as structural
components functioning in hostile workplaces whéney are subjected to
different wear situationsWear is defined as the damage to a solid surface
usually involving progressive loss of materials, imyv to relative motion
between the surface and a contacting substanagoetasices [6]. It is a material
response to the external stimulus and can be mmehanr chemical in nature.
The effect of wear on the reliability of industriabmponents is recognised
widely and the cost of wear has also been recodnasbe very high. Systematic
efforts in wear research were started in 1960sdustrialized countries. The
direct costs of wear failures (i.e. wear part reptaents), increased work and
time, loss of productivity as well as indirect lessof energy and the increased
environmental burden are real problems in everydayk and business. In
catastrophic failures, there is also the possybiithuman losses. Although wear
has been extensively studied scientifically, swlear problems persist in
industrial applications. This actually reveals tbhemplexity of the wear

phenomenon [7].

There are quite a few terms to describe variousr veades which can be
clubbed into four principal categories viz. abrasi@dhesion, erosion and
surface fatigue [8]. Generally, abrasive wear oscwhen two surfaces in

contact move against each other and the hardeaclpairt one cut through the
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other. This form of wear comes into play when rmgtntial motion causes the
material removal by the simultaneous micro-ploughand micro-cutting [6].

However, wear due to localised bonding between amiimyg solid surfaces
leading to material transfer between the two sedaor the loss from either
surface is termed as adhesive wear. Similarly,aserffatigue is another wear
process that takes place when tiny wear partickeslislodged from a surface by
fracture on repeated rolling or sliding on the aod. Owing to a repeated
loading action subsurface cracks grow from pretagsdefects, join hands with
other vicinal cracks and finally come to the sugfaemoving a small chunk of
material [8]. Finally in the erosion wear mode, ragrvessive loss of material
occurs from a solid surface due to mechanical actgsn between that surface

and a fluid, a multi-component fluid, or impingihguid or solid particles [9].

Solid particle erosion (SPE), a typical erosion weade, is the loss of material
that results from repeated impact of small, soéidiples. In some cases SPE is a
useful phenomenon, as in sandblasting and highdsplekasive water jet cutting
but it is a serious problem in many engineeringesys including steam and jet
turbines, pipelines and valves carrying particulatatter and fluidized bed
combustion systems. Solid particle erosion is toekpected whenever hard
particles are entrained in a gas or liquid mediampinging on a solid at any
significant velocity. In both cases, particles t@naccelerated or decelerated and

their directions of motion can be changed by thelfl

Polymers and their composites form a very importdas$s of tribo-engineering
materials and are invariably used in mechanical pmrents, where wear
performance in non-lubricated condition is a keyapaeter for the material
selection. Nowadays much attention is devoted towards the ysiofd solid

particle erosion behaviour of polymer composites ttuthe high potential use of
these materials in many mechanical and structymaliGtions. Hence, erosion
resistance of polymer composites has become anriamgomaterial property,

particularly in selection of alternative materialsd therefore the study of solid
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particle erosion characteristics of the polymewenposites has become highly
relevant. Differences in the erosion behaviour afiaus types of composite
materials are caused by the amount, type, oriemtaéind properties of the
reinforcement on one hand and by the type and piiepeof the matrix and its
adhesion to the fibers/fillers on the other handfulA understanding of the
effects of all system variables on the wear rateeisessary in order to undertake
appropriate steps in the design of machine or wtraccomponent and in the

choice of materials to reduce/control wear [10].

Statistical methods have commonly been used folysisa prediction and/or
optimization of a number of engineering proces§&sh methods enable the
user to define and study the effect of every singdadition possible in an
experiment where numerous factors are involvedidSoérticle erosion is a
complex wear phenomenon in which a number of corigrctors collectively
determine the performance output (i.e. the erosid@) and there is enormous
scope in it for implementation of appropriate statal techniques for process
optimization. But unfortunately, such studies hae¢ been adequately reported
so far. The present research work addresses toadpect by adopting a
statistical approach called Taguchi experimentalgte This technique provides
a simple, systematic and efficient methodology tfe analysis of the control

factors.

The present research work thus is undertaken talystine processing,
characterization and erosion wear performance ohbo@ fibre reinforced
epoxy composites with and without particulate fgleAttempts have also been
made to explore the possible use of some industagtes such as copper slag
and red mud as filler materials in these compasitée specific objectives of

this work are clearly outlined in the next chapter.
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1.2 Thesis Outline

The remainder of this thesis is organized as fatow

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Includes a literature review designeg@rtavide a summary of the
base of knowledge already available involving gwies of interest.
It presents the research works on fiber as wellpasgiculate
reinforced polymer composites by various investgat
Includes a description of the raw materials andtéis¢ procedures.
It presents the details of fabrication and charazgon of the
composites under investigation and also an exptamatf the
Taguchi experimental design.

Presents the physical and mechanicaefies of the composites
under study.

Proposes a theoretical model for estimation ofierowear rate.

Includes the erosion characteristics bEmboo/glass-epoxy
composites (with and without different particulatdélers). It
establishes the validation of the proposed thezakeérosion model
through experimentation and studies the effechefftllers on the
erosion behaviour of the composites.

Provides summary of the findings of tieisearch work, outlines
specific conclusions drawn from both the experiraenand
analytical efforts and suggests ideas and direstitor future

research.

k*kkkkkkk
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Chapter 2
LITERATURE REVIEW

The purpose of this literature review is to proviekground information on the
issues to be considered in this thesis and to esigEhdhe relevance of the
present study. This treatise embraces various espdécpolymer composites
with a special reference to their erosion wear attaristics. This chapter

includes reviews of available research reports:

On natural fibers and natural fiber reinforced posites

On mechanical properties of natural fiber compssite

On bamboo and bamboo fiber reinforced composites

On particulate filled polymer composites

On utilization of industrial wastes like coppergknd red mud

On erosion of polymer composites

vV V V V V V V

Onerosion wear modelling

At the end of the chapter a summary of the litemagurvey and the knowledge
gap in the earlier investigations are presentetds&guently the objectives of the

present research work are also outlined.

2.1 On Natural Fibersand Natural Fiber Reinforced Composites

In polymer composites, the reinforcing phase caheeibe fibrous or non-
fibrous (particulates) in nature and if the fibease derived from natural
resources like plants or some other living specdlesy are called natural-fibers.
Natural fibers as reinforcement in composite matsrhave recently attracted
the attention of researchers because of their akadvantages. These fibers can
be divided into three groups based on their origm, vegetable/plant fibers
(flax, hemp, sisal, etc.), animal/protein fibergithwool, silk, chitin, etc.) and
mineral fibres (asbestos, wollastonite etc.). Pfd@rs are renewable with good

mechanical properties, which justify their use&sforcement for polymers.
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These natural fibers are low-cost fibers with loensity and high specific
properties which are comparable to those of symthébers used as
reinforcements. Unlike other man-made fibers, thase readily available,
biodegradable and nonabrasive in nature. It is latgovn that natural fibers are
non-uniform with irregular cross sections, which keaheir structures quite
unique and much different from man-made fibers saglglass fibers, carbon

fibers etc. The properties of some of these filbeepresented in Table 2.1 [11].

Table 2.1 Properties of Natural Fibers [11]

Fiber Tensile strength Young's modulus| Elongation at Density
(MPa) (GPa) break (%) (g/cn)
Abaca 400 12 3-10 1.5
Alfa 350 22 5.8 0.89
Bagasse 290 17 - 1.25
Bamboo 140-230 11-17 - 0.6-1.1
Banana 500 12 5.9 1.35
Coir 175 4-6 30 1.2
Cotton 287-597 5.5-12.6 7-8 1.5-1.6
Curaua 500-1,150 11.8 3.7-4.3 1.4
Date palm 97-196 2.5-5.4 2-4.5 1-1.2
Flax 345-1,035 27.6 2.7-3.2 1.5
Hemp 690 70 1.6 1.48
Henequen 500+ 70 13.2+3.1 48+1.1 1.2
Isora 500-600 - 5-6 1.2-1.3
Jute 393-773 26.5 1.5-1.8 1.3
Kenaf 930 53 1.6 -
Nettle 650 38 1.7 -
Oil palm 248 3.2 25 0.7-1.55
Piassava 134-143 1.07-4.59 21.9-7.8 1.4
Pineapple 400-627 1.44 14.5 0.8-1.6
Ramie 560 24.5 2.5 1.5
Sisal 511-635 9.4-22 2.0-2.5 1.5
E-Glass 3400 72 - 2.5

As can be seen from Table 2.1, the tensile streofgthiass fiber is substantially
higher than that of natural fibers even thoughrttealulus is of the same order.
However, when the specific modulus of natural fdgnodulus/specific gravity)

Is considered, the natural fibers show valuesahatomparable to or better than
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those of glass fibers. These higher specific pitggeare the major advantages
of using natural fiber composites for applicatioviserein the desired properties
also include weight reductiofmable 2.2shows the areas where the natural fibers
have distinct advantages over the most commonlg gsyethetic fiber i.e. E-
glass fiber [12].

Table 2.2 Comparison between natural and glass fibres [12]

Natural fibres Glass fibers
Density Low Twice that of natural fibers
Cost Low Low, but higher than natural fibers
Renewability Yes No
Recyclability Yes No
Energy consumption Low High
Distribution Wide Wide
CO, neutral Yes No
Abrasion to machines No Yes
Health risk when inhaled No Yes
Disposal Biodegradable Not biodegradable

In recent years, natural fiber reinforced polymemeposites have attracted
increasing research interests owing to their pakrds an alternative for
composites reinforced with synthetic fibers likagd or carbon [13-17]. The
potential of natural fibres such as jute, sisaheppple, abaca and coir as
reinforcement and filler in composites has alrebdgn studied in the past [18-
27]. Saheb and Jog [12] have also presented a elaborate and extensive
review on natural fiber reinforced composites vapecial reference to the type
of fibers, matrix polymers, treatment of fibers diilaer-matrix interface. The
most commonly used natural fibers and matrices clmmposites are shown

schematically in Figure 2.1[28].
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2.2 On Mechanical Properties of Natural Fiber Composites

Most of the studies made on natural fiber compsesiteveal that their
mechanical properties are strongly influenced byyniactors such as volume
fraction of the fibers, fiber aspect ratio, fiberimx adhesion, fiber orientation,
stress transfer at the interface etc. [29]. A neimif investigations have been
made on various natural fibers such as kenafphéax and jute to study the
effect of these fibers on the mechanical properiesomposite materials [30-
32]. Gowda et al. [32] evaluated the mechanicalperties of jute fabric-
reinforced polyester composites and found thay tive better strengths than
those of wood based composites. Similarly, an iyagon on pulp fiber
reinforced thermoplastic composite exhibited thailevthe stiffness is increased
by a factor of 5.2, the strength of the compostencreased by a factor of 2.3
relative to the virgin polymer [15]. A number ofperts are available on
investigations carried out on various aspects dyrper composites reinforced
with banana fibers [13, 33-35]. Dynamic mechangadlysis of natural fibers
like sisal, palf (pineapple leaf fiber), oil palnmpty fruit bunch fiber etc. in
various matrices has been made by Joseph et 3laf®6 George et al. [37].
Amash and Zugenmaier [38] reported on the effentgs of cellulose fiber in
improving the stiffness and reducing the dampingoalypropylene-cellulose
composites. Luo and Netravali [39] studied the iterend flexural properties of
green composites with different pineapple fiberteahand compared them with
the virgin resin. Cazaurang et al. [40] carried ausystematic study on the
properties of henequen fiber and pointed out thasd fibers have mechanical
properties suitable for reinforcement in thermofitasesins. Schneider and
Karmaker [41] developed composites using jute anehak fiber in
polypropylene resin and reported that jute fibeovptes better mechanical
properties than kenaf fiber. Srivastav et al. [42\ve studied the effect of
different loading rate on mechanical behaviour wkfglass reinforced epoxy
hybrid composites. Shinichi et al. [43] have inigmsted the effects of the
volume fraction and length of natural fibers likenlaf and bagasse on flexural

properties of some biodegradable composites. $apnd Leenie [44] carried
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out tensile and flexural tests on natural fiberni@iced musaceae/epoxy

composites.

Several investigators have also reported on mecabpioperties of natural fiber
composites prepared by different manufacturing riggles. Chawla and Bastos
[45] studied the effect of fiber volume fraction ¥oung’s modulus, maximum
tensile strength and impact strength of untreatdd fibers in unsaturated
polyester resin, made by a leaky mould techniquepworth et al. [46] made
unidirectional hemp fiber reinforced epoxy compesitwith a fiber volume
fraction of 0.2, a tensile strength of 90 MPa araliYg’'s modulus of 8 GPa, by
pinning-decortications and hand combing. Harrietteal. [47] studied the
mechanical properties of flax/polypropylene compigjnmanufactured both
with a batch kneading and an extrusion processe sktuctural characteristics
and mechanical properties of coir fiber/polyestmposites were evaluated and
the effect of the molding pressure on the flexstedngth of the composites was
studied [48].

A number of studies have also been devoted tonipact behaviour of natural
fiber reinforced composites. Santulli [49] studitb@ post-impact behaviour of
plain-woven jute/polyester composites subjectedots velocity impact and
found that the impact performance of these comgesias poor. Pavithran et al.
[50] determined the fracture energies for sisateppple, banana and coconut
fiber reinforced polyester composites using Charppact tests. They found
that, except for the coconut fiber, increasing ffitmighness was accompanied
by increasing fracture energy of the compositeshid® [51] examined the
influence of fiber content and fiber length in baaafiber reinforced epoxy
composites and noticed that the impact strengtheased with higher fiber
content and lower fiber length.

2.3 On bamboo and Bamboo Fiber Reinforced Composites

Bamboo is widely recognized as one of the most mapd non-timber forest

resources because of the high socio-economic henieéim bamboo based
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products. It is a natural composite, which cons$tignin matrix and cellulose
fibers. Cellulose fibers provide high tensile, flexl strengths and rigidity in its
longitudinal direction. Because the strength andiuhes of bamboo fiber are at
least one order of magnitude greater than thosdigafn matrix, the bulk
mechanical properties of the outer surface regiahe reformed bamboo should
be much higher than those of the inner surface.l®®@nhas many advantages,
such as ample availability, fast growth rate, Wgkight, low cost and low energy
consumption in the processing and biodegradalfig]. It is known to be one
of the fastest growing plants in the world. There about 1250 species of
bamboo worldwide [53], covering a total area of @22 million hectares with
an annual yield of 2000 million tons [54]. Mosttbem grow in Asia, Africa and
Latin America. Bamboo based products are widelydusehousing, furniture,
packing, transport and other fields. With the depeient of advanced
processing technologies, the utilization of bambased construction materials

has significantly increased.

Liese [55] studied the anatomic structure alondhwiite chemical, physical as
well as the mechanical properties of bamboo angdtdnat the poly-lamellate

wall structure of the bamboo fiber is responsildeifs extremely high strength.
Godbole and Lakkad [56] determined the effects atew absorption on

mechanical properties of bamboo. The tensile strengpmpressive strength,
tensile modulus and inter-laminar shear strengtbhamhboo stem were found to
be reduced after soaking or boiling in distilledtera However, they suggested
that an epoxy coating covering the surface of bamten effectively prevent

water absorption. Lakkad et al. [2] further congmathe mechanical properties
of bamboo specimens with those of mild steel ardgteinforced plastics and
found that the specific modulus and strength of th@mnare higher than that of
those materials. Thus, they have concluded thatbbamhas considerable
potential as reinforcement for composite materidilse literature available on
bamboo fiber reinforced composites is extremelyitédh some of which are

briefly summarized below.
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Shin et al. [57-59] investigated the mechanical pprtes and fracture
mechanisms of bamboo-epoxy composites under diffdaading conditions.
They also compared the mechanical properties abwsitypes of composites of
different combination of fibers and resins. In drewtinvestigation, Chen [60]
studied the structure, morphology and propertiedaiboo fiber reinforced

polypropylene compaosites in details.

Research in the development of bamboo fiber retefdrcomposites has been
increasing over the past decade [61-64], but thehamdcal properties of
bamboo fibers are not fully exploited in polymemygmosites. Research on the
study of bamboo fiber reinforced composites usimgyrnosetting plastics such
as epoxy and polyester have been reported by fegasiigators. Rajulu et al.
[65] investigated the effect of fiber length on ttensile properties of short
bamboo fiber epoxy composites. Chen et al. [66}etesthe mechanical
properties of bamboo fiber reinforced polypropylearel compared them with
those of commercial wood pulp. Thwe et al. [67]dsd the effect of
environmental aging on the mechanical propertiesbafmboo-glass fiber
reinforced polymer hybrid composites. In anothardgt Okubo et al. [68]
reported that the tensile strength and modulus olyppopylene based
composites using steam-exploded bamboo fibersighehthan the composites
using mechanically extracted fibers by about 15% 30% respectively. The
properties such as tensile strength, modulus,dieangth and elongation at the
break of bamboo fiber reinforced natural rubber posites, with and without
the presence of a bonding agent, were studied sixtdn by Ismail et al. [69].
They reported that the presence of bonding ageulsléo shorter curing time
and enhanced mechanical properties. Similar stumhethe flexural behavior of
bamboo fiber reinforced mortar laminates were a&lawied out by Yu and Li
[70]. The fracture of bamboo/polymer compositedasninated by the cracking
behavior of the matrix surrounding the fiber bundle order to improve the

mechanical properties of bamboo fiber compositeanymresearchers have
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sought to tailor the fiber/matrix interfacial praopes [71-83], modify the fiber

morphology [84, 85] and develop biodegradable pelymatrix materials [86].

2.4 On Particulate Filled Polymer Composites

Particulate filled composites have been used extelysin various fields due to
their low production costs and the ease with whiody can be formed into
complex shapes. Besides, they behave isotropiealty are not as sensitive as
long fiber composites to the mismatch of thermadagsion between the matrix
and the reinforcement [87, 88]. Generally fillen®e aised in polymers for a
variety of reasons such as cost reduction, imprgredessing, density control,
optical effects, thermal conductivity, control dietmal expansion, electrical
properties, magnetic properties, flame retardamoproved hardness and wear

resistance.

Hard particulate fillers consisting of ceramic oetal particles and fiber-fillers
made of glass are being used these days to imphevpeerformance of polymer
composites to a great extent [89]. Various kindpafmers and polymer matrix
composites reinforced with metal particles have idewange of industrial
applications such as heaters, electrodes [90], ositgs with thermal durability
at high temperature etc. [91]. Similarly, cerafilied polymer composites have
also been the subject of extensive research intvestdecades. When silica
particles are added into a polymer matrix, theyypéan important role in
improving electrical, mechanical and thermal prtipsrof the composites [92,
93]. The mechanical properties of particulate dillgolymer composites depend
strongly on the particle size, particle-matrix méee adhesion and particle
loading. Sumita et al. [94] underlined the inté@sreplacing micro-scale silica
by its nano-scale counterpart, since nano-scaleagilarticles possess superior
mechanical properties. Smaller particle size yiélidder fracture toughness also
for calcium carbonate filled high density polyetaye (HDPE) [95]. Similarly,
epoxy filled with smaller alumina trihydrate paltis shows higher fracture

toughness [96]. Thus, particle size is being redu@pidly and many recent
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studies have focused on how single-particle sitectf mechanical properties
[97-103]. Yamamoto et al. [104] reported that theicture and shape of silica
particle have significant effects on the mechanmalperties such as fatigue
resistance, tensile and fracture properties. Nakaratial. [105-107] discussed
the effects of size and shape of silica particletlo® strength and fracture
toughness based on particle-matrix adhesion amdfalsnd an increase in the
flexural and tensile strength as specific surfaceaaof particles increased.
Usually the strength of a composite strongly depend the stress transfer
between the particles and the matrix [108]. Forldwehded particles, the
applied stress can be effectively transferred ® plarticles from the matrix
resulting in an improvement in the strength. Howet@ poorly bonded micro-
particles, reduction in strength is found to havecusred. Nicolais and
Nicodemo [109] studied the effect of particle shaype tensile properties of
glassy thermoplastic composites. While most of eéh@svestigations have
focused either on the particle shape or on parsite, the study made by
Patnaik et al. [110] reported that the mechanicapgrties of polyester based
hybrid composites are highly influenced also bytipe and content of the filler

materials.

2.5 0n Utilization of Industrial Wastes like Copper Slag and Red Mud
Pollution is the major problem associated with daphndustrialization,
urbanization and rise in the living standards ajge. While industrialization is
must for uplifting nation’s economy in developinguantries, it has also caused
the generation of significant quantities of solicastes that lead to serious
problems relating to environmental pollution. THere, wastes seem to be a by-
product of growth. But a country like India canaliford to lose them as sheer
waste. Moreover, with increasing demand for raw emals for industrial
production, the non-renewable resources are dwigdiiay-by-day. Therefore,
efforts are to be made for controlling pollutionsarg out of these unwanted
wastes by their conversion into utilizable materifdr various beneficial uses.

Limited waste landfill space, increasing cost ofsteadisposal in combustion
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facilities and landfills, depletion of the naturedsources and the need for
sustainable development have all amplified the neettuse the materials that
were once regarded as wastes. Over recent dedatlassive research works
have been carried out to explore all possible rensthods of a wide range of
waste materials. Up to now, construction wastestblarnace and steel slag, coal
fly ash and bottom ash have been accepted in m#ames as alternative
aggregates in embankment, road, pavement, foumdadod building

construction.

Production of industrial slag dates back to theid@gg of extracting of metals
from ores through metallurgical processes. Coppey & such a by-product
obtained during the matte smelting and refiningcopper [111]. It has been
estimated that production of one ton of copper geere approximately 2.2-3
tons of copper slag. In the United States, the amnoficopper slag produced is
about four million tons and in Japan, it is abaub tmillion tons per year [112,
113]. Approximately 360,000, 244,000 and 60,000sta@f copper slag are
produced in Iran, Brazil and Oman respectively F11Z]. Current options for
management of copper slag include recycling, rewogef metal, production of
value added products and disposal in slag dumptoakpiles. Some research
papers have reviewed the use of copper slag irptbeuction of value-added
products such as abrasive tools, abrasive matecigfsng tools, tiles, glass and
roofing granules [118, 119]. They also reportedgbeential use of copper slag
as a partial substitute of cement and aggregatesnarete and asphalt mixtures.
The use of copper slag in cement and concrete geevypotential environmental
as well as economic benefits for all related indest particularly in areas where
a considerable amount of copper slag is produdedcently, Shi et al. [120]
have reported a detailed review on utilization obpmer slag in the

manufacturing of cement and concrete.

Similarly, production of alumina from bauxite byethBayer's process is

associated with the generation of red mud as thermeste material in alumina
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industries. Till today, almost all over the worlgéd mud is disposed off the
plant site in two main ways depending on the faesi available and the
surroundings. In countries such as France, Engl@sdmany or Japan where
availability of land for dumping is less and sean&arby; the practice is to
discharge the mud into the sea. Where free lamgtadable nearby, as in India,
the mud is pumped into pools and ponds constructethis purpose. Probably
the easiest use for the mud is some sort of usaidfill instead of just dumping.
Some attempts in this direction are: filling maaéfor mined or quarrying areas,
land fill cover, road bed and levee material, al¢ive to natural marsh

sediment, agricultural land soil neutralizationigsting domestic waste, etc.

Attempts have been made over the years to studyishge of red mud as a
partial substitute of clay in ceramic products likecks, tiles etc. [121] and as an
additive for mortar and concrete [122]. Use of reuid in agricultural
applications such as in acidic soils or as a treatrnfor iron deficient soils has
also been reported [123]. Red mud finds some agpics in ceramic industries
as well. Yalcin et al. [124] experimented with thed mud from Seydischir
Aluminium Plant, Turkey and attempted to use ittlie making of ceramic
glazes such as porcelain, vitreous (sanitary wdezeg), tile and electro
porcelain glazes in the ceramic industry. ReceBdiasubramanian et dl125]
used specific mixtures of red mud, fly ash and sjpen liner to prepare glass-
ceramic products, which showed excellent propewriad aesthetic appearance
for possible applications as decorative tiles ia Huilding industry. A recent
experimental study by Mahata et al. [126] confirmiedmation of aluminium
titanate-mullite composite from red mud rich inatiium. This material has
potential uses as liquid metal flow regulatorsenss thermocouple sleeves,

burner nozzles, ceramic filters etc.

A lot of efforts are being made globally to findtauitable uses of red mud so
that alumina industry may end up with no residualaf127]. For complete

utilization of red mud, Kovalenko [128] proposedeaues such as building
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material production as an additive to cement, pcodo of colouring agent for
paint works, of toned paper in the wood-pulp angdepandustry, of iron ore
sinter and pellets in the ferrous metallurgy anagmiculture for the purpose of
improvement of the soil structure and as a neagralof pesticides. Satapathy et
al. [129] have reported the coating potential of meud for deposition on various
metal substrates using plasma spray technology.exams other uses for red
mud have been reported and well documented by Thakd Das [130]. The
uses range from making various building mater@disorbents, colouring agents

to even preparation of exotic ceramic glass mdteria

2.6 On Erosion of Polymer Composites

The widest definition of wear, which has been rexped for at least 50 years,
includes the loss of material from a surface, tiensf material from one surface
to another or movement of material within a singleface [131]. Although a
narrower definition of wear has been proposed emyiessive loss of substance
from the operating surface of a body occurring assallt of relative motion at
the surface’ [132], the wide range of engineeripgli@ations of concern to the
tribologists is served better by a broader debniti A simple and useful
statement is that wear is ‘damage to a solid sarfagenerally involving
progressive loss of material, due to relative motetween that surface and a
contacting substance or substances’ [133]. Theeeqaite a few terms to
describe various wear modes which can be clubltedaur principal categories

viz. abrasion, adhesion, erosion and surface fatigu

Solid particle erosion, a typical wear mode, isyaainic process that occurs in
different machine parts due to the impingement afdsparticles leading to
material removal and surface degradation. Similar ather tribological
processes, solid particle erosion is also a condbgmecess: the mechanical load
may be associated with secondary thermal, chenaindl physical reactions
between the counterparts involved in the tribolabgisystem. Attempts to

understand the basic mechanisms of the erosiotedtar the last half of the

National Institute of Technology, Rourkela, India Page 21



Ph.D. Thesis 2010

20th century and have continued to the presenti€ifi34] after 40 years of
involvement with erosion presented an article oa gast and the future of
erosion in 1995. In this article, the influencingr@gmeters and dominating
mechanisms during solid particle erosion of me#sald ceramic materials were
reviewed. In the same year, another article wadighdadl by Meng et al. [135]
providing information about the existing wear madahd prediction equations.
This article was more general as it discussedalFiictional phenomena termed
to wear including also the solid particle erosidime main conclusion of this

publication was that no universal predictive equagxists.

It has been reported in the literature that polygreerd their related composites
are extensively used in erosive wear situationsis€quently, many researchers
have investigated the solid particle erosion behavof various polymers and
their composites. Erosion characteristics of polgrihat have been reported in
the literature include polystyrene [136], polyprtgne [137, 138], nylon [139],
polyethylene [140], ultra high molecular weight yethylene [141], poly-ether-
ether-ketone [142], polycarbonate and poly-methgtitacrylate [143], epoxy
[144], bismileimide [145], elastomers [146, 147Hanbber [148]. Barkoula and
Karger-Kocsis [149] have also presented a detaredew on important
variables in erosion process and their effectsiffardnt classes of polymers and
composites. Miyazaki and Hamao [150] studied tHecebf matrix materials,
reinforcement fibers, fiber-matrix interface strémgimpact angle and particle
velocity on the solid particle erosion behaviorfiber reinforcedolastics. They
observed that the erosion rate of a fiber reinfdnocelymer composite decreases
with the increasef the interface strength between matrix materrad &bers.
Further, Miyazaki and Hamao [151] carried out apotkimilar study on the
erosion behavior of short fiber reinforced thernagpl resinswith special
attention focussed on an incubatiperiod of erosion. Harsha et al. [152]
reported the influence of impingement angles angaih velocities on solid
particle erosion of various poly-aryl-ether-ketorsasd their composites with

short fiber reinforcement. In another investigatiBarkoula and Karger-Kocsis
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[153] studied the effects of fiber content and trea fiber orientation on the
solid particle erosion of glass fiber/polypropylesemposites. A study by
Tewari et al. [154], on the influence of impingerhangle and fiber orientations
concludes that unidirectional carbon and glas®fiemforced epoxy composites
show semi ductile erosion behaviour, with the maximerosion rate occurring
at 60° impingement angle. In another study, Arjated Harsha [155] have
discussed the usefulness of the erosion efficiggazgmeter to identify various
mechanisms in solid particle erosion. This studgsents extensively on the
erosion response, erosion efficiency and wear nmesims of various polymers

and composites.

It is evident from the available literature thae thresence of particulate fillers
has significant influence on various propertiegpofymer composites. But as
far as the erosion behaviour of composites reienwith both particulates and
fibers is concerned, in fact, very limited work heeen reported in the literature.
As a result, there is no clear understanding ofntleehanism of erosion in such
polymer composites. Thus, a possibility that theomporation of both particles
and fibers in polymer could provide an improved mgarformance has not been
adequately explored so far. However, few receniigations by Patnaik et al.
[156-160] on erosion wear characteristics of glagiyester composites filled
with different particulate fillers suggest thatsach hybrid composites, the rate
of material loss due to solid particle erosion significantly with the
addition of hard particulate fillers into the matrirhis improvement in the wear

resistance depends on both the type and the carftéher.

An overview of the recent studies carried out bgougs investigators on erosion
characteristics of polymer composites along with éxperimental conditions is

presented in Table 2.3.
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Table 2.3 Overview of erosion wear studies performed on pe@lymatrix

composites after 2002.

Erodent
Fiber / Filler / V¢/ W; | Erodent | Size Angle |Velocity | Year
Matrix | % Material | (Mm) °) (m/s) of publ| Ref
15, 30,
65% CF, (Vy), Steel 45, 60,

PEEK unidirectional fibres balls 300-500 | 75,90 | 45, 85 2002 161

0%, 20% GF, 30%
PEEK, | GF,(10% CF +10%

PEK, PTFE +10% Graphite) | Silica 15,30, | 30, 68,
PEKK | (Wy), short fibres sand 150-212 | 60,90 | 90 2003 162
15, 30,
56% CF, 53% GF, (V;), Steel 45, 60,
EP unidirectional fibres balls 300-500 | 75, 90 45 2003 154
EP,
uncoated
& two
layer
coated Carbon-Kevlar Al,O3 10 20, 90 229 2003 163
PUR AlL,Os3 (0-64%), (W) SiO, 40-70 45 24.8 2005 164

Mat GF (9.4%,
17.1%, 24.5%), Cloth
GF (12%, 27.9%,
32.4%), UD GF
27.8%, (V;), chopped

strand mats, plain crashed
weave, unidirectional | glass
Resin | (UD) powder 350 20-90 24.5 2006 165
55.8% AF, 53.8%
EP PBO, (Vj), cross ply SiC 100-150 | 15-90 57.8 2006 166
EP, EP +
Flyash Silica 30, 45, | 24, 35,
(1:4) GF, cross ply sand 150-250 | 60,90 | 52 2006 167
Coatings: Pl + WC-
PI, Co powder, Pl +WC-

uncoate Co powder + zinc
d& "binding" layer, Fibre:

coated CF Al,O4 50 20, 90 100 2006 168
40% GF + 25% 15, 30,
CaCOg, (Wjy), short Silica 45, 60, | 20, 40,
PPS fibre sand 150-200 | 75, 90 60 2007 169
55% GF, (V;), [45/- 30, 60,
EP 45/0/45/-45/0]s SiC 400-500 90 425 2007 170
15, 30,
40% CF, (Vy), plain Silica 45, 60,
PEI weave sand N/S 75,90 | 26.88 2007 171
Arizona
Test
Dust,
Sieved 15, 30,
CF, unidirectional Runway 45, 60, | 61, 97.5,
PEEK fibres Sand 10,100 | 90 152.4 2007 172
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15, 30,
CF, unidirectional Silica 45, 60, 1.96,
PEI fibres sand 150-200 | 75,90 2.88 2007 173
0%, 20% GF, 30%
GF, 40% GF, 25%
CF, 25% GF +15%
PTFE +15% (MoS,
+graphite), (Wjy), short | Silica 15, 30, | 30, 52,
PEI fibres sand 150-300 | 60,90 | 60, 88 2007 174
51% CF, (Vy), cross Silica 20, 40,
PPS ply sand 150-200 | 15-90 60 2008 175
60% CF, (Vy), Silica 15, 30,
PEI unidirectional fibres sand 150-250 | 60, 90 25-66 2008 176
55% GF, (V;), [45/- 30, 60,
EP 45/0/45/-45/0]s SiC 400-500 90 42.5 2008 177
66.4% GF, 59.4%
GF, 64% CF, (Vy),
unidirectional & Silica 25, 37,
EP bidirectional fibres sand 150-200 90 47, 60 2008 178
30% GF, 40% GF, 300,
50% GF, (W;), cross Silica 500, 30, 60, | 32,45,
PET ply sand 800 90 58 2008 156
50% GF + 0%, 10%, 300,
20% Alumina, (W), Silica 500, 45, 60, | 32,45,
PET cross ply sand 800 90 58 2008 157
50% GF + 0%, 10%, 300,
20% SiC (Wy), cross Silica 500, 45, 60, | 32,45,
PET ply sand 800 90 58 2008 158
30% GF, 40% GF, 300,
50% GF, (W;), cross Silica 500, 30, 60, | 32,45,
PET ply sand 800 90 58 2008 159
50% GF + 0%, 10%, 300,
20% Alumina, (Wjy), Silica 500, 45, 60, | 32,45,
PET cross ply sand 800 90 58 2008 160

2.7 0n Erosion Wear Modelling

Several erosion models/correlations were develdpednany researchers to
provide a quick answer to design engineers in tisemce of a comprehensive
practical approach for erosion prediction. The thdocal model developed by
Rabinowicz [179] was used to calculate the volurhenaterial removed from
the target surface due to impact of solid partidesgained in a liquid jet. The
results indicated that the sand particle trajeesoappeared to be governed by
the secondary flows and that there was no simgliedivelocity profile that can
be used to calculate the particle trajectories fideo to make an accurate
prediction of the location of the point of maximwvear. One of the early

erosion prediction correlations is that developgd-lmnie [180] expressing the
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rate of erosion in terms of particle mass and irhpatocity. In that correlation,
the rate of erosion was proportional to the impeaelocity squared. In a
subsequent study, Nesic [181] found that Finnie’'sdeh over-predicts the
erosion rate and presented another formula foretiosion rate in terms of a
critical velocity rather than the impact velocifyhe erosion model suggested by
Bitter [182, 183] assumed that the erosion occumetivo main mechanisms;
the first is caused by repeated deformation dugotlisions that eventually
results in the breaking loose of a piece of malt&riale the second is caused by
the cutting action of the free-moving particlesn@arison between the obtained
correlations and the test results showed a gooskamgnt. It was concluded that
cutting wear prevails in places where the impadlesiare small (such as in
risers and straight pipes) and it is sufficienuse hard material in such places to
reduce erosion. Other erosion models were suggéstéditone [184], Salama
and Venkatesh [185], Bourgoyne [186], Chase e{1&17], Mc Laury [188],
Svedeman and Arnold [189] and Jordan [190]. Regefthirazi and McLaury
[191] presented a model for predicting multiphasesien in elbows. The model
was developed based on extensive empirical infoomagathered from many
sources and it accounts for the physical variabléscting erosion, including

fluid properties, sand production rate and thedflstream composition.

In most erosion processes, target material rentypatally occurs as the result
of a large number of impacts of irregular angulartiples, usually carried in
pressurized fluid streams. The fundamental mechemnisf material removal,
however, are more easily understood by analysieefmpact of single particles
of a known geometry. Such fundamental studies t@m tbe used to guide
development of erosion theories involving partstieeams, in which a surface is
impacted repeatedly. Single particle impact studess also reveal the rebound
kinematics of particles, which are very importaat fmodels which take into
account the change in erosive potential due tastmhiis between incident and
rebounding particles [192, 193]. A number of recemhpers contain

investigations on the rebound kinematics of spla#aagular particles [194-
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199]. These works have demonstrated that the tompeof the particle while
impacting the material surface is of prime interagtredicting the material loss,
since this determines the manner in which a crétecarved out. Further
Sundararajan and co-workers [200-202] have alspgs®d a ductile erosion
model and have studied the effect of material ppeat the edge of the crater on

the rebound kinematics of the spherical particles.

In order to develop a mathematical model for sphdticle erosion of composite
materials, it is important to understand the meidmas responsible for the same.
For a composite material, its surface damage bgi@modepends on many
factors, including the impact velocity, particleeiand shape of the erodent,
mechanical properties of both the target matendlthe erodent and the volume
fraction, size and properties of the reinforcingagd as well as the bonding
between the matrix and the reinforcing phase. Mnergism of all these factors
makes it difficult to experimentally investigateetrerosion mechanism for
composite materials. Fortunately, computer simataprovides an effective and
economic approach for such investigation. Computerdels proposed to
simulate wear process may be broadly classifiedl iwb groups: macro-scale
models and atomic-scale models. The macro-scalelneckre proposed based
on various assumptions or theories such as thmgutiechanism [180] and the
platelet mechanism [203]. The cutting mechanisrbased on the assumption
that individual erodent particle impinges a targatface, cutting out a swath of
the material. However, this mechanism is only &léaor ductile materials.
Regarding the platelet mechanism, plastic defoonadnd work hardening prior
to fracture are taken into account and this maketoser to reality. However,
this mechanism is also suitable only for ductildenals. Few investigators have
used the finite element analysis for erosion situig204, 205]. Another group
of models based on fundamental physics laws ammipnog for wear modelling,
such as the molecular dynamics simulation [206,] 20 the first-principle
technique [208]. Besides, a micro-scale dynanodehwas also proposed for

wear simulation, which has been applied to investigabrasive wear [209, 210].
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This model was later applied to simulation of sofpa@rticle erosion of

homogeneous materials [211].

The correlations between wear resistance and deaisic properties of
polymers have been discussed in terms of varioos-empirical equations by
some pioneers [212, 213]. Although these equatwegjuite helpful to estimate
the wear behaviour of polymers in some special ;asear normally is very
complicated as it depends on many more mechamchbther parameters. This
means that simple functions cannot always covethallprevailing mechanisms
under wear. For predictive purposes, an artifioi@ural network (ANN)
approach has, therefore, been introduced recentty the field of wear of
polymers and composites by Velten et al. [214] Zhdng et al. [215]. An ANN
is a computational system that simulates the miarogire (neurons) of
biological nervous system. The multi-layered neoeawork is the most widely
applied neural network, which has been utilizedniost of the research works
related to polymer composites [216]. Recently,nBikt et al. [159, 160]
developed a theoretical model to estimate the @nogiear rate of polymer
composites under multiple impact condition. This delois based on the
assumption that the kinetic energy of the impingwagticles is utilized to cause
micro-indentation in the composite material andrtiegerial loss is a measure of
the indentation. The erosion is the result of cativwé damage of such non-

interacting, single particle impacts.

Statistical methods have commonly been used folysisa prediction and/or
optimization of a number of engineering proces3émse methods enable the
user to define and study the effect of every singdadition possible in an
experiment where numerous factors are involved.Mdeazcesses in composites
are such complex phenomena involving a number efaimg variables and it is
essential to understand how the wear characterigifcthe composites are
affected by different operating conditions. Selagtithe proper operating

conditions is always a major concern as traditiaglerimental design would
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require many experimental runs to achieve satigfgctesult. Thus, several
mathematical models based on statistical regrestohniques have been
constructed to select the proper testing conditi@ig-222] in order to obtain
minimum wear rate. Taguchi and Konishi [223] adtedahe use of orthogonal
arrays and Taguchi [224] devised a new experimelgsign that applied signal-
to-noise ratio with orthogonal arrays to the robdssign of products and
processes. In this procedure, the effect of a fastmeasured by average results
and therefore, the experimental results can beodepible. Phadke [225], Wu
and Moore [226] and others [227-230] have subsetjuapplied the Taguchi
method to design the products and process parandihis inexpensive and
easy-to-operate experimental strategy based onchédgwparameter design has
been applied successfully for parametric appraséarosion wear of polyester

based composites [160].

2.8 The Knowledge Gap in Earlier Investigations
The literature survey presented above reveals dbewing knowledge gap in

the research reported so far:

o0 Though much work has been done on a wide varietyatiral fibers for
polymer composites, very less has been reportedhenreinforcing
potential of bamboo fiber in spite of its severdi/antages over others.
Many low-end application areas such as housingitiie, packing,
transport etc. are cited in the literature for bamibased products, but
there is hardly any mention of their potential uséribological situations
where synthetic fibers are widely usedoreover, there is no report
available in the literature on the erosion charssties of bamboo based
polymer composites.

o A number of research efforts have been devotedhe¢omechanical and
wear characteristics of either fiber reinforced posites or particulate
filled composites. However, a possibility that tineorporation of both

particulates and fibers in polymer could providsyaergism in terms of
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improved performance has not been adequately asfltesd far. Besides,
the potential of solid industrial wastes to be uasdoarticulate fillers in
polymer composites has rarely been reported.

o Though a number of avenues are being implementedtiization and
disposal of solid industrial wastes there is noorem@vailable in the
existing literature on the use of wastes like rasdmand copper slag in
polymer composites.

o Though many investigators have proposed a numberootels to predict
erosion behaviour of polymer composites, none efrthave considered
the erodent temperature as a parameter influenthm@rosion rate. As a
result, no specific theoretical model based oncthreservation of both the
kinetic and thermal energy of the erodent has sbdan developed.

o0 Studies carried out worldwide on erosion wear b&havof composites
have largely been experimental and the use ofsstati techniques in
analyzing wear characteristics has been rare. Taguethod, being a
simple, efficient and systematic approach to op@nidesigns for
performance, quality and cost, is used in manyrexeging applications.
However, its implementation in parametric appraisalwear processes
has hardly been reported.

2.9 Objectives of the Present Work
The knowledge gap in the existing literature sumpear above has helped to set

the objectives of this research work which areioetl as follows:

1. Fabrication of a new class of epoxy based hybridmusites reinforced with
bamboo fibers and four different particulate filefred mud, copper slag,
alumina and silicon carbide).

2. Development of a theoretical model to estimateierowear rate of polymer
matrix composites under multiple impact conditioasd its validation

through experimentation.
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3. Evaluation of mechanical properties and erosion rwaeracteristics of
bamboo based hybrid composites and comparisontiatse of a similar set
of composites reinforced with the most commonlydusgnthetic fiber (E-
glass).

4. Statistical analysis based on Taguchi experimedésign for parametric
appraisal of the erosion process in the compositeder study and

development of predictive equations.

Chapter Summary
This chapter has provided
* An exhaustive review of research works on variogjgeats of polymer
composites reported by previous investigators
» The knowledge gap in earlier investigations

» The objectives of the present work

The next chapter describes the materials and metheeld for the processing of

the composites, the experimental planning and #ggudhi method.

k*kkkkkkhk
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Chapter 3
MATERIALSAND METHODS

This chapter describes the materials and methcel$ fes the processing of the
composites under this investigation. It presentésdibtails of the characterization
and erosion tests which the composite samples atgeded to. The
methodology based on Taguchi experimental desigd #me statistical
interpretations by analysis of variance (ANOVA) atso presented in this part

of the thesis.

3.1 Materials

3.1.1 Matrix Material

Matrix materials are of different types like metateramics and polymers.
Polymer matrices are most commonly used becausesifefficiency, ease of
fabricating complex parts with less tooling costlahey also have excellent
room temperature properties when compared to naatdl ceramic matrices.
Polymer matrices can be either thermoplastic omtlbset. Thermoset matrices
are formed due to an irreversible chemical tramsédion of the resin into an
amorphous cross-linked polymer matrix. Due to humgelecular structures,
thermoset resins provide good electrical and themsalation. They have low
viscosity, which allow proper fiber wet out, exegit thermal stability and better
creep resistance. Normally, these resins can lmeulated to give a wide range

of properties upon the requirement [231].

The most commonly used thermoset resins are epaiyester, vinyl ester and
phenolics. Among them, the epoxy resins are beimdelw used for many
advanced composites due to their excellent adhdasiomde variety of fibers,
superior mechanical and electrical properties amatgperformance at elevated
temperatures. In addition to that they have lown&iage upon curing and good
chemical resistance. Due to several advantagesotiver thermoset polymers as

mentioned above, epoxy (LY 556) is chosen as th&ixmenaterial for the
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present research work. Its common name is Bisphiiiglycidyl-Ether and
it chemically belongs to the ‘epoxide’ family. Thepoxy resin and the

corresponding hardener HY-951 are procured frona@kigy India Ltd.

3.1.2 Fiber Material

Generally, fiber is the reinforcing phase of a cosife material. The present
investigation employs bamboo as the natural fiberthe epoxy matrix to
fabricate a series of hybrid composites. The sifienbame of the type of
bamboo used for this work iBendrocalamus strictus [232]. This species
occupies about 53 per cent of total bamboo arelmdra. This is one of the
predominant species of bamboo in Uttar Pradesh,hiymdPradesh, Orissa and
Western Ghats in India. In general, bamboo is alskl everywhere around the
world and is an abundant natural resource. It hasnba conventional
construction material since ancient times. The k@mbulm, in general, is a
cylindrical shell, divided by transversal diaphragat the nodes. Bamboo is an
orthotropic material with high strength along aond Istrength transversal to its
fibers. The structure of bamboo itself is a comigosiaterial, consisting of long
and aligned cellulose fibers immersed in a lignemasrix. In this work, roving
bidirectional bamboo fiber mats are used as thefaomiing phase in the
composites. The extracted fiber mats are drieahioween at 105°C for 72 h prior
to composite making to remove moisture. The avetiaigkness of each bamboo

fiber is about 1.5 mm.

Though the present research is focused mainly erb#mboo fiber reinforced
composites, their relative evaluation can only lsenon comparing them with
a similar set of composites with some conventiogghthetic fiber. Some
commonly used synthetic fibers for composites #aegy carbon and aramid etc.
Among them, glass fibers are the most commonly ddests for engineering
composites. Hence, glass fiber is chosen as thex adinforcing material in this
work. Glass fiber is commercially available in adlance with good mechanical

properties; thus is widely used in composite stmed [231]. Based upon
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different applications, glass fibers (silica-oxygesiwork) are classified into E
glass, C glass and S glass fibers. E glass isased insulator and mostly used
in electrical industry, hence got the name ‘E’ befthe word ‘glass’. E-glass
also has good mechanical properties in additidoocost and ease of usability.
The letter ‘S’ in S-glass stands for structural leggpions. S-glass got different
chemical formulation and it has higher strengthweight ratio and higher
elongation strain percentage but it is quite expensC-glass fibers are
advantageous in resisting chemical corrosion. Gl#ssrs are available in

different forms like continuous, chopped and wofagorics.

In the present work, woven roving E-glass fibergpfdied by Saint Gobain Ltd.
India) have been used as the reinforcing matamidhé composites. The major
constituents of E-glass are silicon oxide (54 wi.&iminum oxide (15 wt.%),
calcium oxide (17 wt.%), boron oxide (8 wt.%) andgnesium oxide (4.5
wt.%). E-glass fiber has an elastic modulus of @Fa and possesses a density

of 2.59 gm/cc.

The pictorial views of bi-directional roving bambeaad E-glass fiber mats used

for composite fabrication for this study are giverrigure 3.1.
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(a) bamboo fiber mat (b) E-glass fiber mat

Figure 3.1 Bidirectional roving bamboo and E-glass fiber mats
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3.1.3 Particulate Filler Materials

A variety of natural or synthetic solid particulatédoth organic and inorganic is
already being commercially used as reinforcinggffdlin polymeric composites.
While ceramic powders such as alumina @), silicon carbide (SiC) , silica
(SiOy), titania (TIQ) etc. are widely used as conventional fillers, tise of
industrial wastes for such purpose is hardly foundziew of this, in the present
work two industrial wastes such as red mud and eogag are chosen as
particulate fillers to be used in the composites.nfake an assessment of their
reinforcing potential in terms of wear performarased mechanical properties,
two other conventional ceramic fillers such as ahamand SiC are also
considered for comparison. While alumina and Si@eheonventionally been
used in composites, the wastes red mud and cofgzeare not known for being

used as filler material in any polymeric matrix doef.

Production of alumina from bauxite by the Bayersqess is associated with the
generation of red mud as the major waste matenablumina industries
worldwide. Depending upon the quality of bauxitee tquantity of red mud
generated varies from 55-65% of the bauxite pramk$233]. The enormous
guantity of red mud discharged by these induspieses an environmental and
economical problem. The treatment and disposalhif tesidue is a major
operation in any alumina plant. Red mud, as theenanggests, is brick red in
colour and slimy having average particle size au80-100um. It comprises
of the iron, titanium and the silica part of thega ore along with other minor
constituents. It is alkaline, thixotropic and passs high surface area in the
range of 13-16 Algm with a true density of 3.3 gm/cc. Dependinghmsource,
these residues have a wide range of compositigi:F20-60%, A}O; 10-30%,
SiO, 2-20%, NaO 2-10%, CaO 2-8%, Titraces 2-8%. The red mud used in
this work has been collected from the site of NALGIumina plant at
Damanjodi in India. The other industrial waste usedthis investigation is
‘copper slag’, which is produced during matte simgltand conversion steps in

the pyro-metallurgical production of copper. Duringatte smelting, two
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separate liquid phases, copper-rich matte (sulghidad slag (oxides) are
formed. It has been estimated that for every toveefined copper produced,
about 2.2 tonne of slag is generated and every, g@aroximately 24.6 million
tonne of slag is generated in copper productionldwode. The major slag
producing regions are presented in Table 3.1 [234dg containing < 0.8%
copper are either discarded as waste or sold akigi®with properties similar
to those of natural basalt (crystalline) or obsid{amorphous). In the present
study, copper slag collected from the plant sitélmidustan Copper Limited, at
Ghatsila, India, is sieved to obtain average partsize of about 80 -100m.
The composition of the copper slag used in thiskwisras follows: FgOs:
35.3%, SiQ: 36.6%, CaO: 10%, ADs: 8.1%, CuO: 0.37%, MgO: 4.38%,
N&a,0:0.47%, KO: 3.45%, PbO: 0.12%, Zn: 0.97% and Cu: 0.24%.

Table 3.1 Copper slag generation in various regions [234]

Regions Copper slag generation/annum in million
ton
Asia 7.26
North America 5.90
Europe 5.56
South America 4.18
Africa 1.23
Oceania 0.45

Alumina is an inorganic material that has the po#rio be used as filler in
various polymer matrices. Aluminium oxide ¢®8k) commonly referred to as
alumina, can exist in several crystalline phaseishvall revert to the most stable
hexagonal alpha phase at elevated temperatures.iSTthe phase of particular
interest for structural applications. Alumina i ttmost cost effective and widely
used material in the family of engineering ceramltss hard, wear-resistant,
has excellent dielectric properties, resistancsttong acid and alkali attack at

elevated temperatures, high strength and stiffnéssth an excellent

National Institute of Technology, Rourkela, India Page 36



Ph.D. Thesis 2010

combination of properties and a reasonable prige,no surprise that fine grain

technical grade alumina has a very wide range plicgiions.

Similarly, the other conventional filler chosen tbis work is SiC, which has a
great potential to be used in various polymericrivas. It is the only chemical
compound of carbon and silicon. It was originallyoguced by a high

temperature electro-chemical reaction of sand anddon. Today the material
has been developed into a high quality technicatigrceramic with very good
mechanical properties. It is used in abrasivesacébries, ceramics and in
numerous high-performance structural and wear egodns. This can also be
made an electrical conductor and has application®sistance heating, flame
igniters and electronic components. SiC is compadedtrahedra of carbon and
silicon atoms with strong bonds in the crystalid¢att This produces a very hard
and strong material. SiC is not attacked by angsaalkalis or molten salts up
to 800°C. It has low density of about 3.1 gm/@wy thermal expansion, high
elastic modulus, high strength, high thermal cotigitg, high hardness,

excellent thermal shock resistance and superianida inertness.

3.2 Composite Fabrication

Cross plied bamboo and E-glass fibers are reinfoseparately in epoxy resin to
prepare the fiber reinforced compositesaBd Z in which no particulate filler is
used. The other composite samples-BBy and %2 — Z; with four different
particulate fillers of varied amount but with fixdédber loading (50 wt %) are
fabricated. The composition and designation ofatposites prepared for this
study are listed in Table 3.2. The fabrication led tomposite slabs is done by
conventional hand-lay-up technique followed by tiglompression moulding
technique. The fillers are mixed thoroughly in tepoxy resin before the
respective fiber mats are reinforced into the matody. The low temperature
curing epoxy resin and corresponding hardener (HY@%e mixed in a ratio of
10:1 by weight as recommended. Each ply of fibesfisimension 200 x 200

mn¥. A stainless steel mould having dimensions of 210 x 40 mris used.
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A releasing agent (Silicon spray) is used to ftat#i easy removal of the
composite from the mould after curing. The casteath composite is cured
under a load of about 50kg for 24 h before it reatbfrom the mould. Then this
cast is post cured in the air for another 24 hragenoving out of the mould.
Specimens of suitable dimension are cut using eaha cutter for physical/
mechanical characterization and erosion wear tgsfiitmost care has been

taken to maintain uniformity and homogeneity of toenposites.

Table 3.2 Designations and detailed compositions of the csnes

Designation Composition
B, Epoxy (50 wt% ) + Bamboo Fiber (50wt%)
B, Epoxy (40 wt%) + Bamboo Fiber (50wt%) + Red muwt%)
Bs Epoxy (30 wt%) + Bamboo Fiber (50wt%) + Red muawi®o)
B, Epoxy (40 wt%) + Bamboo Fiber (50wt%) + Coppegqa0wt%
Bs Epoxy (30 wt%) + Bamboo Fiber (50wt%) + Coppegq20wt%
Be Epoxy (40 wt%) + Bamboo Fiber (50wt%) + Alumin®yi%)
B- Epoxy (30 wt%) + Bamboo Fiber (50wt%) + Alumin®{&%)
Bs Epoxy (40 wt%) + Bamboo Fiber (50wt%) + SiC (10Wt%
Bg Epoxy (30 wt%) + Bamboo Fiber (50wt%) + SiC (20wt%)
Zy Epoxy (50 wt%) + Glass Fiber (50wt%)
Z Epoxy (40 wt%) + Glass Fiber (50wt%) + Red mudwd)
Z3 Epoxy (30 wt%) + Glass Fiber (50wt%) + Red mudwt2a)
Zy Epoxy (40 wt%) + Glass Fiber (50wt%) + Copper gEQwt%)
Zs Epoxy (30 wt%) + Glass Fiber (50wt%) +Copper g2@wt%)
Zg Epoxy (40 wt%) + Glass fiber (50wt%) + Alumina (ii%6)
Z; Epoxy (30 wt%) + Glass Fiber (50wt%) + Alumin®¢&%)
Zg Epoxy (40 wt%) + Glass Fiber (50wt%) + SiC (10wt%)
Zg Epoxy (30 wt%) + Glass Fiber (50wt%) + SiC (20wt%)

3.3 Mechanical Characterization
3.3.1 Density

The theoretical densitf{p; ) of composite materials in terms of weight fraction

of different constituents can easily be obtainedasthe following equation

given by Agarwal and Broutman [1].
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1
Pot =
t (Wf/pf)+(Wm/pm)

(3.1)

where, W andp represent the weight fraction and density respelgti The
suffixes f and m stand for the fiber and matrixpesgively. Since the composites
under this investigation consist of three composier@mely matrix, fiber and

particulate filler, the expression for the densigs been modified as

= 1 . X
pCt B (Wf/pf)+(Wm/pm)+(Wp/pp)

(3.2)

where, the suffix p stands for the particulateefdl The actual densityp() of

the composite, however, can be determined expetaihgrby simple water

immersion technique. The volume fraction of voidé,( in the composites is

calculated using the following equation:

VV — pCt pCe (3.3)
Pt

3.3.2 Micro-hardness

Micro-hardness measurement is done using a Leitzodiardness tester. A
diamond indenter, in the form of a right pyramidhwa square base and an angle
136° between opposite faces, is forced into theenstunder a load F. The two
diagonals X and Y of the indentation left on theface of the material after
removal of the load are measured and their ariticrmeéan L is calculated. In
the present study, the load considered F = 24.5#tNVackers hardness number
is calculated using the following equation.

H, = o.1889L52 (3.4)

+
and_:X Y

where, F is the applied load (N), L is the diagarfadquare impression (mm), X
is the horizontal length (mm) and Y is the vertiesgth (mm).
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3.3.3 Tenslle Strength

The tensile test is generally performed on flatcapens. The dimension of the
specimen is 150 mm x10 mm x 4 mm and a uniaxia isaapplied through
both the ends. The ASTM standard test method fasile properties of fiber-
resin composites has the designation D 3039-7thdmpresent work, this test is
performed in the universal testing machine Instdd®5 (Figure 3.2a) at a
crosshead speed of 10 mm/min and the results &k toscalculate the tensile
strength of composite samples. The loading arraegéns shown in Figure
3.2b. Here, the test is repeated three times dm eamposite type and the mean

value is reported as the tensile strength of tbatposite.

3.3.4 Flexural and Inter-Laminar Shear Strength (ILSS)

The flexural strength of a composite is the maximiemsile stress that it can
withstand during bending before reaching the bragalpoint. The three point
bend test is conducted on all the composite samplebe universal testing
machine Instron 1195. The dimension of each spetimé&0 mm x10 mm x 4
mm. Span length of 40 mm and the cross head spE&eld anm/min are
maintained. The loading arrangement is shown imtféi@.2c. For both flexural
strength and ILSS, the test is repeated three tioresach composite type and
the mean value is reported. The flexural strendtthe composite specimen is

determined using the following equation.

FlexuralStrength= 2;'; 3.%)

where, L is the span length of the sample (mm)
P is maximum load (N)
b the width of specimen (mm)
t the thickness of specimen (mm)
The data recorded during the 3-point bend tessésl io evaluate the ILSS also.

The ILSS values are calculated as follows:

3p
ILSS=>"
Abi (3.6)
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INITRON

‘a) Universal testing machine Instron 11 (c) Loading arrangement for flexural test

Figure 3.2 Universal testing machine (Instron 1195) and logdanrangement

for tensile and flexural tests

3.3.4 Impact Strength

Low velocity instrumented impact tests are carreat on the composite

specimens. The tests are done as per ASTM D 256 asi impact tester (Figure
3.3). The pendulum impact testing machine ascextie notch impact strength
of the material by shattering the V-notched speaiméh a pendulum hammer,
measuring the spent energy and relating it to thescsection of the specimen.
The standard specimen size as per ASTM D 256 4 12.7 mm x 3.2 mm

and the depth under the notch is 10 mm. The respecilues of impact energy
of different specimens are recorded directly friwa dial indicator.
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Figure 3.3 Schematic diagram of an impact tester

3.4 Scanning Electron Microscopy

The surfaces of the specimens are examined dirdwtlyscanning electron
microscope JEOL JSM-6480LV (Figure 3.4). The contposamples are
mounted on stubs with silver paste. To enhancedh€euctivity of the samples,
a thin film of platinum is vacuum-evaporated ontberh before the

photomicrographs are taken.

3.5Erosion Test Apparatus

The set up for the solid particle erosion wear tisstd in this study is capable of
creating reproducible erosive situations for asegssrosion wear resistance of
the prepared composite samples. The pictorial \aed the schematic diagram
of the erosion test rig are given in Figure 3.5 &mglre 3.6 respectively. The

test rig consists of an air compressor, an airngryinit, a conveyor belt-type

particle feeder and an air particle mixing and &re#ing chamber. In the

present study, dry silica sand (assumed to be sgpwramidal shaped) of

different particle sizes (300um, 450um and 600um)uaed as the erodent. The
dried and compressed air is mixed with the eroddmch is fed constantly by a

conveyor belt feeder into the mixing chamber arahtis accelerated by passing
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the mixture through a convergent brass nozzle ofn3 internal diameter. The
erodent particles impact the specimen which cahdb@ at different angles with
respect to the direction of erodent flow using avelwand an adjustable sample
clip. The velocity of the eroding particles is detened using the standard
double disc method [235]. The apparatus is equippitld a heater which can
regulate and maintain the erodent temperatureyapesrdetermined fixed value
during an erosion trial. The samples are cleaneacétone, dried and weighed
before and after the erosion trials using a precisglectronic balance to an
accuracy of+ 0.1 mg. The weight loss is recorded for subseqoaiculation of
erosion rate. The process is repeated till thei@masite attains a constant value
called steady state erosion rate. The erosionisatiefined as the ratio of this

weight loss to the weight of the eroding partictassing the loss.

Figure 3.4 Scanning Electron Microscope (JEOL JSM-6480LV)
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Figure 3.6 A schematic diagram of the erosion test rig
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3.6 Taguchi Method

In any experimental research, since test procecanegenerally expensive and
time consuming, the need to satisfy the designatibgs with the least number
of tests is clearly an important requirement. Irs tbontext, Taguchi method
provides the designer with a systematic and efficieapproach for
experimentation to determine near optimum settiogslesign parameters for
performance and cost. This method involves laying the experimental
conditions using specially constructed tables knawrorthogonal arrays’. Use
of orthogonal arrays significantly reduces the namlof experimental
configurations to be studied. The conclusions drafvmm small scale
experiments are valid over the entire experimenmeigion spanned by the control
factors and their settings. The most importantesiagthe design of experiment
lies in the selection of the control factors. THere, initially a large number of
factors are included so that non-significant vdgabcan be excluded at the
earliest opportunity. Exhaustive literature reviesveals that parameters viz.,
impact velocity, impingement angle, fiber loadiridjer content, erodent size,
stand-off distance etc. largely influence the enogiate of polymer composites
[159, 160]. However, the author has not come aaagseport on the influence
of a factor like erodent temperature on wear peréorce of polymer
composites. Therefore, in this work, to explore pussible effect of erodent
temperature, it is also considered as a contralofam addition to impact
velocity, impingement angle, filler content, erotlsize and stand-off distance.
Thus, the impact of six parameters are studiedgusin(3"*) orthogonal design.
The control factors and the parameter setting&rfosion test are given in Table
3.3. Table 3.4 presents the selected levels fapwsrcontrol factors. The tests
are conducted as per the experimental design giv8iable 3.5. The standard
linear graph, as shown in Figure 3.7, is used sggaghe factors and interactions

to various columns of the orthogonal array [225].
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Table 3.3 Parameter settings for erosion test.
Control Factors Symbols Fixed parameters
Impact velocity Factor Al Erodent Silica sand
Filler content Factor B Erodent feed rate (g/min}0.0+ 1.0
Erodent Temperature| Factor C Nozzle diameter (mm) 3
Impingement angle Factor D Length of nozzle (mm)| 0 8
Stand-off distance Factor E
Erodent size Factor F
Table 3.4 Levels for various control factors
Control factor Level
I Il 1l Units
A: Impact velocity 43 54 65 m/sec¢
B: Filler content 0 10 20 %
C: Erodent Temperature 40 50 60 °C
D: Impingement angle 30 60 90 degree
E: Stand-off distance 65 75 85 mm
F: Erodent size 300 450 600 nm

B(2)
(3,4) (6,7)
DO) E@0) F@12) (13)
AQ)  (811) C(5)
Figure 3.7 Linear graph for byorthogonal array
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Table 3.5 Orthogonal array for 4; (3**) Taguchi Design
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The selected parameters viz., impact velocityerfidontent, erodent temperature,
stand-off distance, impingement angle and erodegrt sach at three levels, are
considered in this study. These six parametens aathree levels would require
3° = 729 runs in a full factorial experiment wherégsguchi’'s experimental
approach reduces it to 27 runs only offering a tgaglvantage. The plan of the
experiments as shown in Table 3.5 is as follows: fitst, second, fifth, ninth,
tenth and twelfth columns are assigned to impalcicity (A), filler content (B),
erodent temperature (C), impingement angle (D)ndstEf distance (E) and
erodent size (F) respectively. The third and fouwrthumn are assigned to

(AxB); and (AxB), respectively to estimate interaction between impaticity
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(A) and filler content (B), the sixth and seventiiuznn are assigned to ¢€),
and (BxC), respectively to estimate interaction between rfitentent (B) and
erodent temperature (C), the eighth and elevertimooare assigned to ¢C),
and (AxC), respectively to estimate interaction between thegaich velocity (A)
and erodent temperature (C) and the remaining cuare used to estimate

experimental errors.

The experimental observations are transformedsigoal-to-noise (S/N) ratios.

There are several S/N ratios available dependinghertype of characteristics

such as:

‘ , .. S 1 2

Smaller-the-better characterlstlcﬁ-—1OIogH(Zy ) (3.7)

. . , . . S Y

Nominal-the-better charactenstmN =10log [z ) J (3.8)
S

‘ ; i S _ 1 1

Larger-the-better characterlstlcﬁ— -10log F(Z —2} (3.9

y

where n the number of observations, y the obsedatay the mean and S the
variance. The S/N ratio for minimum erosion ratenes under ‘smaller is better’
characteristic, which can be calculated as logaiititransformation of the loss

function by using Eqg. (3.7).

Chapter Summary

This chapter has provided:
» The descriptions of materials used in the expertmen
* The details of fabrication and characterizatiomhef composites
» The description of erosion wear test

* An explanation of the Taguchi experimental design.

The next chapter presents the physical and medagmoperties of the polymer

composites under this study.

k*kkkkkkk
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Chapter 4

RESULTS AND DISCUSSION:
MECHANICAL CHARACTERIZATION

This chapter presents the measured values of tlysigah and mechanical
properties of the bamboo fiber reinforced epoxy posites filled with different
particulate fillers. These results are compareth wWibse of a similar set of glass
fiber reinforced composites filled with same partate fillers. The relative
effects of different filler materials on variousoperties of the composites have
also been discussed.

4.1 Density and Void Fraction

Density is a material property which is of primepontance in several weight
sensitive applications. Thus, in many such appboat polymer composites are
found to replace conventional metals and matenmimarily for their low
densities. Density of a composite depends on tlative proportion of matrix
and the reinforcing materials. There is alwaysfiedince between the measured
and the theoretical density values of a composite W the presence of voids
and pores. These voids significantly affect sorhéhe mechanical properties
and even the performance of composites. Higher coigtents usually mean
lower fatigue resistance, greater susceptibility water penetration and
weathering [1]. The knowledge of void content isiceble for estimation of the
guality of the composites. In the present reseavornk, the theoretical and
measured densities of bamboo-epoxy and glass-epomposites, along with
the corresponding volume fraction of voids are @nésd in Table 4.1 and Table
4.2 respectively. It is found that the compositengiy values calculated
theoretically from weight fractions using Eq. (3.2ye not equal to the
experimentally measured values, as expected.dvigent from Table 4.1 that
the density values for bamboo-epoxy compositeseas® with the particulate
filler content. It is further observed that withetlincorporation of particulate
fillers, the void fractions in these compositesoailscrease. Similar trends are
noticed for the glass-epoxy composites as welspeetive of the filler type.
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Table 4.1 Measured and theoretical densities along withvthié fractions of the
bamboo-epoxy composites with different particufdters

Measured | Theoretical | Volume
Composition density density fraction of
voids
(gm/cc) (gm/cc) (%)
B: | Bamboo-Epoxy + 0 wt% filler 1.243 1.255 0.956
B, | Bamboo-Epoxy + 10 wt% Red mud 1.29¢6 1.358 5683.
Bs | Bamboo-Epoxy + 20 wt% Red mud 1.372 1.482 27.4
B4 | Bamboo-Epoxy + 10 wt% Copper slag 1.354 1.452 6.749
Bs | Bamboo-Epoxy + 20 wt% Copper slag 1.368 1.476 7.317
Bs | Bamboo-Epoxy + 10 wt% Alumina 1.348 1.421 5.137
B; | Bamboo-Epoxy + 20 wt% Alumina 1.643 1.746 95
Bs | Bamboo-Epoxy + 10 wt% SiC 1.297 1.355 4.281
By | Bamboo-Epoxy + 20 wt% SiC 1.345 1.472 8.627

Table 4.2 Measured and theoretical densities along withvthé fractions of the
glass-epoxy composites with different particulaters

Measured | Theoretical | Volume
Composition density density fraction
of voids
(gm/cc) (gm/cc) (%)
Z; | Glass-Epoxy + 0 wt% filler 1.530 1.544 0.906
Z, | Glass-Epoxy + 10 wi% Red mud 1.650 1.705 2.2
Z3 | Glass-Epoxy + 20 wt% Red mud 1.752 1.900 4 .89
Z, | Glass-Epoxy + 10 wt% Copper slag 1.693 1.809 A1D
Zs | Glass-Epoxy + 20 wt% Copper slag 1.701 1.846 .854
Zs | Glass-Epoxy + 10 wt% Alumina 1.627 1.717 5.241
Z; | Glass-Epoxy + 20 wt% Alumina 1.800 1.933 86.8
Zg | Glass-Epoxy + 10 wt% SiC 1.620 1.702 4.817
Zy | Glass-Epoxy + 20 wt% SiC 1.742 1.894 8.025

4.2 Micro-hardness

Hardness is considered as one of the most impddaturs that govern the wear

resistance of any material. In the present worlgrorhardness values of the
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bamboo-epoxy composites with different particulifers have been obtained
and are compared with those of a similar set cdsglgpoxy composites. The test
results (Figure 4.1) show that with the presenceaticulate fillers, micro-
hardness of the bamboo-epoxy composites is imprawedthis improvement is
a function of the filler content. This trend of ingpement of hardness with filler
content is also observed in case of the glass-eporyposites. As far as the
comparison between the composites with bamboo &% diber reinforcement
Is concerned, the bamboo-epoxy composites exhupersor micro-hardness
values for all filler materials except SiC. Evere thamboo-epoxy composite
without any particulate filler possesses greatedmass than the unfilled glass-
epoxy composite. Among all the composites undes thivestigation, the
maximum hardness value is recorded for bamboo-egoxyposite filled with

20 wt% alumina.

@ 0 wt% filler

801 BFRC: Bamboo Fiber Reinforced Composites B 10 Wt% red mud
GFRC: Glass Fiber Reinforced Composites 0 20 wt% red mud
0O 10 wt% copper slag
70+ W 20 wt% copper slag
@ 10 wt% alumina
B 20 wt% alumina
60 | 0 10 wt% SiC
| 20 wt% SiC
50 - 4723 4692 4192 4672 4746 4519

38.8 39.9

39.2
40 365 380

30

Micro-hardness (H\

20 1

10+

BFRC GFRC
Composite Type
Figure 4.1 Micro-hardness of composites with different parate fillers
4.3 Tensile Properties

The variation of tensile strength of both the bambpoxy and glass-epoxy

composites with different fillers is presented i#figure 4.2. Marginal
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improvement in tensile strength for the bamboo-gpormposites with the
addition of 10 wt% of filler as compared to the illefl ones is observed.
However, with the incorporation of 20 wt% of thée€fi, the tensile strengths of
these composites are found to be decreasing icegpeof the filler type. In

case of glass-epoxy composites, the variation oéil@ strength with filler

content shows a different trend. As seen in Figu& the tensile strengths of
these composites decrease invariably with increasiler content irrespective
of the type of filler. Similar observation has alseen reported by previous

investigators [110]

This decline in strength may be attributed to t@asons: one possibility is that
the due to the presence of pores at the interfateeen the filler particles and
the matrix, the interfacial adhesion may be tookanearansfer the tensile stress;
the other is that the corner points of the irregslaaped particulates result in

stress concentration in the matrix body

700

B 0 wt% fil . , .
= 1<;N wtgA)Ireerd mud BFRC: Bamboo Fiber Reinforced Composites

600 | 220 wt% red mud GFRC: Glass Fiber Reinforced Comnos
00 10 wt% copper slag

W 20 wt% copper slag

O 10 wt% alumina 516 294

500 B 20 wt% alumina 268

0 10 wt% SiC 447

B 20 wt% SiC 427 412
400 = s
353

300

Tensile strength (Mp

200 153 160

146

100~

BFRC GFRC

Composite Type

Figure 4.2 Tensile strength of composites with different gartate fillers
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The variation of tensile modulus with filler contefior both bamboo-epoxy as
well as glass-epoxy composites with different fglés shown in Figure 4.3. It is
observed that the tensile moduli of bamboo-epoxynmusites improve
significantly with 10 wt% of filler content irrespgve of filler type. But in case
of glass-epoxy composites, similar trend is obstreely for copper slag and
SiC fillers. Previous reports demonstrate that raiynthe fibers in the
composite restrain the deformation of the matriyyper, reducing the tensile
strain [236,237]. So even if the strength decreastsfiller addition, the tensile
modulus of the composite is expected to increaskaasbeen observed in the
present investigation. But further increase irefilcontent up to 20 wt%, the
tensile moduli of the composites are found to berekesing. It is further noted
that as far as the tensile properties are concebadboo-epoxy composites are
found not as good as the glass-epoxy compositel tath and without
particulate fillers.

O 0 wt% filler . . . .
14 B 10 wi% red mud BFRC: Bamboo Fiber Reinforced Composites

0 20 wt% red mud GFRC: Glass Fiber Reinforced Comnos
0 10 wt% copper slag

12 4 W20 wt% copper slag

0 10 wt% alumina

W 20 wt% alumina

0 10 wt% SiC 064

101 =20 wi% SiC :

8.77
8.24 8.32

Tensile modulus (GP
0]

4.87

44 362

BFRC GFRC

Composite Type

Figure 4.3 Tensile modulus of composites with different pardate fillers
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4.4 Flexural Strength

Composite materials used in structures are profalton bending and therefore
the development of new composites with improvedutal characteristics is
essential. In the present work, the variation ekdiral strength of both the
bamboo-epoxy and glass-epoxy composites with @iffeparticulate fillers is
shown inFigure 4.4. A gradual improvement in flexural strengithh filler
content is recorded in case of red mud filled bamadpoxy composites. But for
the composites with copper slag, there is a drdfexural strength with 10 wt%
of filler content followed by a marginal rise witt0 wt% of filler content.
However, in case of the bamboo-epoxy compositesifivith alumina and SiC,
it is noticed that while the flexural strengths noye with 10wt% of filler

content, further increase up to 20 wt%, the stilengte found to be decreasing.

500

0O 0 wt% filler
M 10 wt% red mud
450 - 434
0O 20 wt% red mud 429 ]
0 10 wt% copper slag 393 402
4001  m 20 wt% copper slag 378
0 10 wt% alumina
& 350- M 20 wt% alumina
= 0 10 wt% SiC
= 3004 W20wt% SiC 276 286
=2 258
S 5. 241
=
I
% 2001 164
o 160 15 51 149
150 135 133 197 136
100 ~
50 A
0
BFRC GFRC

Composite Type

Figure 4.4 Flexural strength of composites with different madate fillers

The reduction in the flexural strengths of the cosiges with filler content is
probably caused by an incompatibility of the paiates and the epoxy matrix,
leading to poor interfacial bonding. The lower \edwf flexural properties may

also be attributed to fiber to fiber interactiorgids and dispersion problems.
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However, it also depends on other factors sucheasikze, shape and type of the
filler material. Influence of the particulate fite on the flexural strength is
noticed also for the glass-epoxy composites. Reatdek improvement in
flexural strength is observed in copper slag (1% Willed glass-epoxy and SiC
(10 wt%) filled glass-epoxy composites as compdeethe unfilled one. It is
evident from this study that as far as the flexstedngth is concerned, bamboo-
epoxy composites are found not as good as the-gfa®sy composites either

with or without particulate fillers.

4.5 Inter-Laminar Shear Strength (ILSS)

Short beam shear test is carried out on the congsowiith different particulate
fillers to determine the inter-laminar shear sttbngLSS). The variation of
ILSS of bamboo-epoxy and glass-epoxy composites Milter content is
presented in Figure 4.5. It is observed that wighadddition of 10 wt% red mud,
the ILSS of bamboo-epoxy composite increases $ighit starts decreasing on
further addition. In case of glass-epoxy compositeish the addition of red
mud, no improvement of the ILSS value is noticechir Bamboo-epoxy
composites filled with copper slag, the ILSS insesamonotonically as the filler
content increases from 0 wt% to 20 wt%. But tleadrexhibited by the copper
slag filled glass-epoxy composites is just oppoditeere is a gradual reduction
in ILSS with the copper slag weight percentagehi@ tomposites. With the
addition of alumina, ILSS of the bamboo-epoxy cosies decreases
substantially. Similar trend is observed in casealimina filled glass-epoxy
composites as well. As far as the SiC filled conmgssare concerned, it is noted
that the ILSS is increasing with the addition dfefi up to 10 wt% and is
decreasing with further increase in filler contempt to 20 wt%. This trend is
exhibited by both bamboo-epoxy as well as glassegpomposites filled with
SIC particles. This reduction may be due to thenfron of voids in the matrix
which is generally located at the inter-laminarioegof composites. It is
interesting to note that the inter-laminar sheaergjths of bamboo-epoxy

composites with different particulate fillers arengparable to and often even
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superior to those of glass-epoxy composites. & present investigation, the
maximum value of ILSS has been recorded for thebdmarepoxy composite

with 20 wt% of copper slag.

200
O 0 wt% filler

B 10 wt% red mud

0 20 wt% red mud

0 10 wt% copper slag
160 M 20 wt% copper slag
O 10 wt% alumina

B 20 wt% alumina

0O 10 wt% SiC

B 20 wt% SiC

120 A 112.8

180

140

99.75 101.74
100 -
85.8 88.73

80 | 77.21

59.
60

Inter-laminar shear strength (MF
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20 A

0
BFRC GFRC

Composite Type
Figure 4.5 Inter-laminar shear strength of composites witledént fillers

4.6 Impact Strength

The impact strength of a material is its capaatglbsorb and dissipate energies
under impact or shock loading. Figure 4.6 pres#rgsmeasured impact energy
values of the various particulate filled composiesler this investigation. It is
seen from this figure that the impact energieshef lamboo-epoxy composites
increase gradually with the filler content incregsirom 0 wt% to 20 wt% for
all the fillers except SiC. In the SIC filled congies, the impact energy is found
to be increasing initially with filler content o0Iwt%, but with further addition
(20 wt%), there is reduction in the impact energiue. The variation of impact
energy with filler content is not uniform in cask glass-epoxy composites as
well. For copper slag filled glass-epoxy and alumnifilled glass-epoxy

composites, gradual improvements in the impactgnealue with filler content
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are recorded. However, for red mud filled glassxgpand SiC filled glass-
epoxy composites, the impact energy is found tainbeeasing with 10 wt% of

filler and then with further filler addition (20 o), it is seen to decrease.

2

O 0 wt% filler
18- @ 10 wt% red mud
) 0O 20 wt% red mud 1.652
O 10 wt% copper slag ‘
1.6 W20 wt% copper slag
O 10 wt% alumina
14- B 20 wt% alumina
—~ ’ 0 10 wt% SiC
3 B 20 Wt% SiC
o 1.2
()
g
g 1]
©
Q.
E 08
0.6
0.4
0.2
0

BFRC GFRC

Composite Type

Figure 4.6 Impact strength of composites with different padiate fillers

It is clear from this investigation that the bamisgmoxy composites have lower
impact strength than their glass fiber counterparéspective of the filler type.
However, bamboo fiber composites demonstrate betipact properties than
composites reinforced with other natural fibershsas jute and kenaf [238].
Hence, for high performance applications, it is ampnt to find ways to
improve various strength properties of compositegh woamboo fiber

reinforcement.

Chapter Summary
This chapter has provided:
* The mechanical characterization of the bamboo-epmyposites with
different particulate fillers and a comparison wahsimilar set of glass-
epoxy composites
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* The relative effects of type and content of différparticulate fillers on
various properties of these composites

The next chapter presents the development of adtieal model for estimation

of erosion wear rate of polymer composites

*kkkkkkk
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Chapter 5

DEVELOPMENT OF A THEORETICAL MODEL
FOR EROSION WEAR RATE ESTIMATION

This chapter focuses on the issues related to mexhaof material removal
from the surface of a composite due to erosion waad presents the
development of a theoretical model for estimatimg érosion wear rate caused

by solid particle impact.

5.1 Nomenclature
The following symbols are used:

a Characteristic dimension of the square pyramidapsld erodent (m).
d indentation depth (m)

e volumetric wear loss per impact {n
E, total volumetric erosion rate {fsec)

a angle of impingement (degree)

U impact velocity (m/sec)

P force on the indenter (N)

H  hardness (N/f)

m mass of single erodent particle (kg)

M mass flow rate of the erodent (kg/sec)
N number of impact per unit time (SBc

0 erodent temperature (°C)

0o room temperature (°C)

pc  density of composite (kg/n

p  density of erodent (kg/h

Nnormal €0SioN efficiency with normal impact
n erosion efficiency
S specific heat of silica sand (J/Kg K)
E erosion ratékg/kg)
Ew  theoretical erosion wear rate (kg/kg)
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Solid particle erosion is a wear process in whighhaterial is removed from a
surface by the action of a high velocity streanemfdent particles. The particles
strike against the surface and promote materia. I&airing flight, a particle
carries momentum and kinetic energy which can bsigiated during the impact
due to its interaction with a target surface. Asda erosion study of polymer
matrix composites is concerned, no specific modsl lbeen developed and thus
the study of their erosion behaviour has been mastperimental. However,
Mishra [239] proposed a mathematical model for mi@teremoval rate in
abrasive jet machining process in which the mdte&sieemoved from the work
piece in a similar fashion. This model assumes thatvolume of material
removed is same as the volume of indentation cabgdatlie impact. This has a
serious limitation as in a real erosion processvtilame of material removed is
actually different from the indentation volume. thar, this model considers
only the normal impact i.e = 90° whereas in actual practice, particles may
iImpinge on the surface at any angle<{Qi < 90°). The proposed model
addresses these shortcomings in an effective mannheonsiders the real
situation in which the volume of material removeddrsosion is not same as the
volume of material displaced and therefore, an taddil term ‘erosion
efficiency’ (n) is incorporated in the erosion wear rate formatatin the case of
a stream of particles impacting a surface normélly. ata = 90°), erosion

efficiency fnorma) defined by Sundararajan et al. [240] is given as

_ 2ErH

Mhormal =, 2 (5.1)
pU

But considering impact of erodent at any angléo the surface, the actual

erosion efficiency can be obtained by modifying £ql) as

2ErH

nN=——s—a— 5.2
pUZSinza (52)

Another model proposed recently by Patnaik etl&i9] assumes that the kinetic
energy of the impinging particles is utilized tousa indentation on the

composite surface and the material loss is a measfuthis indentation. It also
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assumes that both the erodent material and thettangterial are at same
temperature and therefore there is no exchangeythrermal energy between
them during the impact. This may be true for a rommperature erosion
situation, but when the erodent is at an elevaatperature, as in the case of hot
air carrying pulverised coal powders in a pipereheill be dissipation of the
kinetic energy as well as the thermal energy frobendrodent body to the target.
Research on erosion of composite materials by h&hperature erodent
particles is rare and there is no specific modad ticludes the possibility of this
thermal energy contributing to the magnitude of mweaesides, while all
previous models have been developed assuming theesbf erodent to be
spherical, in the real situation, the erodent pkasi are actually irregular shaped

bodies having sharp edges (Figure 5.1).

Figure 5.1 Shape of the erodent used

Considering the erodent particles to be squarerpga shaped bodies is a
more realistic assumption as compared to assurhim simply spherical. The
model proposed in the present work addresses toha#ie shortcomings. It
assumes the erodent particles to be rigid, squaaaypdal shaped bodies of
height and base length equal to the average get # is further based on the
assumption that the loss in both kinetic as welltlesrmal energy of the
impinging particles is utilized to cause micro-intiion in the composite
material and the material loss is a measure oinentation. The erosion is the

result of cumulative damage of such non-interactggle particle impacts. The
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model is developed with the simplified approactenérgy conservation which
equals the loss in erodent kinetic energy and takemergy during impact to the

work done in creating the indentation. It proceasi$ollows.

At time t after initial contact, the particle of ssam will have indented the
surface to a depth x; the cross-sectional arebeoindentation at the surface will
be A(x), where A(x) is normally determined by theape of the erodent. The

material removal mechanism is schematically showRigure 5.2.

dx
== | L
\| \
2 S
4
t=0 fine . t=Tﬂﬁ:0
dt

Figure 5.2 Scheme of material removal mechanism

The upward force decelerating the particle willthat due to the plastic flow

pressure acting over A(x); and the equation of amotof the particle can

2
therefore be written asn 2 5 = - HAX) (5.3)
dt

For simple particle shapes, this equation can heéeéi solved analytically. But
to know the final volume of indentation when thetijgde comes to rest at a
depthd at time t =T, as shown in Figure 5.2, the work ddéyethe retarding

force will be equal to the sum of the kinetic eneand the loss of thermal
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energy of the particle. The conservation of energy be represented by the

equation

p 1

[HAX dx:Em.U2+m.S(6—60) (54)
0

The impact velocity will have two components; or@mal to the composite
surface and another parallel to it. At an impingetranglea = 0°, it is assumed
that there is negligible wear because eroding @astido not practically impact
the target surface [241]. Consequently, there Wl no erosion due to the
parallel component and the indentation is assurdaketcaused entirely by the
component normal to the composite surface as showigure 5.3,

Parallel Component
(no erosion)

U Cosa.

Normal Component
(erosion)

0(

Figure 5.3 Resolution of impact velocity in normal and pagkdirections

Thus, in case of oblique impact, the kinetic enazggresponding to the normal

component of velocity is considered and Eq. (5etdmes:

)
[HA®) dx:%m.uz sin%a+m.SO-0,) (5.5
0
S 8 5 53
Now, [A(x)dx=[x“dx=— (5.6)
0 0 3

So, the volumetric wear loss per particle impacfiven by
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3
e, = Volume of indentatiorn = n-%

Considering N number of particle impacts per uinitet the volumetric erosion

wear loss will be

83
Ev=N-—n (5.7)

3
Now applying conservation of energy to the singhgpact erosion process, the
sum of the kinetic energy associated with the nbrkmkcity component and the
loss of thermal energy of a single erodent parti€lequal to the work done in
the indentation of composite. The energy of impattbduces a force P on the

indenter to cause the indentation in the compogheas,

%-Px?‘): %m.uz.sin2a+m.8(9—90) ®.
2 ain2 —
1ia =M.V’ sin’a+2.m.SO-0,) (5.9)
2 2
_ | mU%sinfa+2.m.Sp-90,) 5.10
- 2 (5.10)
U2 sin%a+2.S.(0-0
For multiple impactE, :ﬂ-m-N{ 0t3H ( 0)} (5.11)
U? sin%a+2.S.(0-0
OrF. =n-M{ a3H ( 0):| (5.12)

The non-dimensional erosion rate, defined as thmeposite mass loss per unit
time due to erosion divided by the mass of the embdausing the loss, is now

expressed as

Er:%[uzsin2a+2.8(9—eo)] (513)

The mathematical expression in Eq. (5.13) can ke @@ predictive purpose to

make an approximate assessment of the erosion @éamam the composite
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surface. When the erodent temperature is sameoas t@mperature, Eq. (5.13)

reduces to:

E,=1PC [ U 2sin2q (5.14)
3H

Chapter Summary

This chapter has presented the development ofoaetieal model for estimating
the erosion wear rate caused by solid particle anpBut since, material

removal by impact erosion wear involves complex maecsms; a simplified

theoretical model for such a process may appeadefuamte unless its
assessment against experimental results is maddoiSthe validation of the

proposed model, erosion tests on the compositetodre conducted at various

operating conditions.

The next chapter presents the erosion test rekultde composites and their

statistical interpretation.

k*kkkkkkk
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Chapter 6

RESULTS AND DISCUSSION:
EROSION WEAR CHARACTERISTICS

This chapter reports on the effects of differentipalate fillers on the erosion
wear characteristics of bamboo-epoxy composites @edents a comparison
with those of a similar set of glass-epoxy commssiunder identical test
conditions. The experimental results of erosioaldrcarried out on these hybrid
composites are presented and compared with thelatdd values obtained from
the theoretical model proposed in Chapter 5. Bssithe critical analysis of the
test results using Taguchi method and analysisaobmce (ANOVA) are also
given. The relative wear performance of compositgl industrial waste fillers
(red mud and copper slag) against the conventifilierls (alumina and silicon
carbide) is discussed. Consequently this chaptdivided into four parts, each
part describing the erosion study of compositdedilwith a different filler

material.

6.1 PART 1. RED MUD FILLED COMPOSITES

This part presents the analysis and comparisomogia response of bamboo-
epoxy and glass-epoxy composites filled with reddmUhe experiments have
been carried out using Taguchi experimental de@ignorthogonal array) given
in Table 3.5 and the subsequent analysis of theréssilts is made using the
popular software specifically used for design gbexxment applications known
as MINITAB 14. Finally, the micro-structural feaés of the composite samples
eroded under different operating conditions areculesd based on SEM

micrographs.

6.1.1 Taguchi Experimental Analysis
The results of erosion experiments carried out @icg to the predetermined
design on red mud filled bamboo-epoxy and glassegpoomposites are

presented in Table 6.1. This table provides theeexental erosion rate along
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with the signal-to-noise ratio for each individuabkt run. Each value of the
erosion rate is the average of three replicatibtexe the ninth and eleventh
columns represent S/N ratio of the erosion ratesbéonboo-epoxy and glass-

epoxy composites respectively.

Table 6.1 Comparison of erosion rates of bamboo-epoxy coitgmowith those
of glass-epoxy composites under different test ttmmd as per by orthogonal
array

Expt{ A B C D E F E: (b) SIN E (9) SIN
No. |(m/sec| (%) | (°C) |(Degree) (mm) | (um) | (mg/kg) | ratio (b) | (mg/kg) | ratio ()
(db) (db)
1 43 0 40 30 65| 30(¢ 150.000 | -43.5218| 204.348| -46.2074
2 43 0 50 60 75| 45( 133.330 | -42.4986| 342.029| -50.6813
3 43 0 60 90 85 600 250.000 | -47.9588| 413.720| -52.3341
4 43 10| 40 60 75| 60(¢ 150.000 | -43.5218| 256.522| -48.1825
5 43 10| 50 90 85| 30(¢ 201.000 | -46.0639| 376.124| -51.5066
6 43 10| 60 30 65| 45( 137.220 | -42.7483| 266.667| -48.5194
7 43 20| 40 90 85| 45( 200.000 | -46.0206| 222.663| -46.953
8 43 20| 50 30 65| 60(¢ 350.000 | -50.8814| 121.739| -41.7086
9 43 20| 60 60 75| 300 140.000 | -42.9226| 175.362| -44.8787

10 54 0 40 60 85 45(Q 277.770 | -48.8737| 226.087| -47.0855

11 54 0 50 90 65 600 225.000 | -47.0437| 353.623| -50.9708

12 54 0 60 30 75 300 290.000 | -49.2480| 382.147| -51.6446

13 54 10| 40 90 65 300 165.000 | -44.3497| 139.130| -42.8684

14 54 10| 50 30 75 45( 152.220 | -43.6494| 157.342| -43.9369

15 54 10| 60 60 85 60(¢ 182.500 | -45.2253| 191.304| -45.6345

16 54 20| 40 30 75 60( 125.000 | -41.9382| 140.192| -42.9345

17 54 20 50 60 85 30( 320.000 | -50.1030| 274.638| -48.7752

18 54 20| 60 90 65 45( 211.111 | -46.4902| 226.087| -47.0855

19 65 0 40 90 75 600 175.000 | -44.8608| 163.768| -44.2846

20 65 0 50 30 85 30( 390.000 | -51.8213| 359.420| -51.112

21 65 0 60 60 65 45( 322.220 | -50.1630| 443.712| -52.942

22 65 10| 40 30 85 45( 244.440| -47.7634| 173.913| -44.8066

23 65 10| 50 60 65 60(¢ 215.000 | -46.6488| 198.193| -45.9418

24 65 10| 60 90 75 300 250.000 | -47.9588| 168.116| -44.5122

25 65 20| 40 60 65 30( 330.000 | -50.3703| 318.152| -50.0527

26 65 20| 50 90 75 45( 155.550 | -43.8374| 214.493| -46.6283

27 65 20| 60 30 85 60(¢ 275.000 | -48.7867| 295.652| -49.4156

Note: Er (b): Erosion rate of bamboo-epoxy compm@ssit
Er (9): Erosion rate of glass-epoxy cosifes

The overall mean of the S/N ratios is found to #@.49 db for bamboo based
composites and -47.47db for the glass based dnesn lbe seen from Table 6.1

that for similar test conditions, bamboo-epoxy cosifes exhibit much lower
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wear rates than those by glass-epoxy compositgsrds 6.1 and 6.2 illustrate
the effect of control factors on erosion rate ombao-epoxy and glass-epoxy
composites respectively. Analysis of the resulsd¢éeto the conclusion that
factor combination of Almpact velocity: 43m/sec ), BFiller content: 10wt%),
C,(Erodent temperature: 40°C),;0lmpingement angle: 90°%., (Stand-off
distance: 75mm) and,HErodent size: 450m) gives minimum erosion rate
(Figure 6.1) for bamboo-epoxy composites and tlwofacombination of A
(Impact velocity:54m/sec ), BFiller content: 10wt%), Erodent temperature:
40°C), D (Impingement angle: 30°k, (Stand-off distance: 75mm) and F
(Erodent size: 6Q0m) gives minimum erosion rate (Figure 6.2) for glapoxy
composites. The respective interaction graphs laoes in the Figures 6.3 and

6.4 for bamboo epoxy and glass-epoxy compositgeotisely.

Main Effects Plot for SN ratios

Data Means
A B C
-44-
45+
i \ /‘\ \
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O 471 \ / e Ne——
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48_
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T T T T T T T T T
30 60 %0 65 75 85 300 450 600

Signal-to-noise: Smaller is better

Figure 6.1 Effect of control factors on erosion rate (For redd filled bamboo-
epoxy composites)
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Main Effects Plot (data means) for SN ratios

A B C

8

8 -4
[}

-

Z -50- T T T T T T T T

(7))

- 43 54 65 0 10 20 40 50 60
° D E F
c
c 7]

Q
=

-50- T T T T T T T T T
30 60 90 65 75 85 300 450 600

Signal-to-noise: Smaller is better

Figure 6.2 Effect of control factors on erosion rate (For radd filled glass-
€epoxy composites)

Interaction Plot for SN ratios
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Figure 6.3 Interaction graph between impact velocity anefitontent (4B)
for erosion rate (For red mud filled bamboo-epoggnposites)
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Interaction Plot (data means) for SN ratios
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Figure 6.4 Interaction graph between impact velocity anefitontent (AB)
for erosion rate (For red mud filled glass- epogynposites)

6.1.2 ANOVA and the Effects of Factors

In order to find out statistical significance ofriaus factors like impact velocity
(A), red mud content (B), erodent temperature (@)pingement angle (D),
stand-off distance (E) and erodent size (F) onienosate, analysis of variance
(ANOVA) is performed on experimental data. Tabl2 &nd Table 6.3 show the
results of the ANOVA for the erosion rate of bamispmxy composites and
glass -epoxy composites respectively. The lastnoplwf the table indicates
percentage contribution of the control factors dhdir interactions on the

performance output i.e erosion rate [242].

From Table 6.2, it can be observed for the red rfileld bamboo-epoxy
composites that stand-off distance (p=0.342), ihpatocity (p = 0.450), filler
content (p = 0.615), erodent size (p= 0.726) awndent temperature (p=0.782)
have considerable influence on erosion rate. Theraotion of impact velocity
and red mud content (p=0.861) as well as red mudteod anderodent

temperature (p=0.864) show significant contributmnthe erosion rate but the
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remaining factors and interactions have relativedg significant contribution on
erosion rate.

Table 6.2 ANOVA table for erosion rate
(For red mud filled bamboo-epoxy composites)

Source| DF Seq| AdjSS | AdjMS F P
SS

A 2 | 38.14| 38.14 19.07 1.22 0.450
B 2 | 19.55| 19.55 9.77 0.63 0.615
C 2 8.71 8.71 4.35 0.28 0.782
D 2 2.46 2.46 1.23 0.08 0.927
E 2 | 59.93| 59.93 29.97 1.92 0.342
F 2 | 11.79| 11.79 5.89 0.38 0.726

AxB 4 | 18.56| 18.56 4.64 0.30 0.861

AxC 4 | 10.98| 10.98 2.75 0.18 0.932

BxC 4 | 18.19| 18.19 4.55 0.29 0.864

Error 2 | 3117 | 31.17 15.59

Total | 26 | 219.48

"DF: degree of freedoni’Seq SS: sequential sum of squaféglj. SS: extra
sum of squaréd Seq MS: sequential mean squaress: F-test,”*P: percent

contribution

Table 6.3 ANOVA table for erosion rate

(For red mud filled glass-epoxy composites)

Source| DF| SeqS$ AdjSS AdjMH F P
A 2 6.633 | 6.633 3.316 10.97 0.084
B 2 67.430| 67.430 | 33.715 111.52 0.009
C 2 33.668| 33.668 | 16.834 55.68 0.018
D 2 10.717| 10.717 | 5.358 17.72 0.053
E 2 22.225| 22.225| 11.112 36.76 0.026
F 2 6.069 | 6.069 3.034 10.04 0.091

AxB 4 67.335| 67.335| 16.834 55.68 0.018

AxC 4 7.254 | 7.254 1.813 6.00 0.148

BxC 4 | 43.687| 43.687 | 10.922 36.13 0.027

Error 2 0.605 | 0.605 0.302

Total | 26 | 265.621

"DF: degree of freedoni’Seq SS: sequential sum of squaféglj. SS: extra
sum of squaréd Seq MS: sequential mean squaress: F-test,”P: percent

contribution
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Similarly, from Table 6.3, it can be observed fbe tred mud filled epoxy
composites with glass reinforcement that red muctesd (p=0.009), erodent
temperature (p = 0.018), stand-off distance (pG2®), impingement angle (p=
0.053) and impact velocity (p=0.084) have greaugrice on erosion rate. The
interaction of impact velocity aneéd mud content (p=0.018) as well as red mud
contentand erodent temperature (p=0.08Rpw significant contribution on the
erosion rate but the remaining factors and inteyast have relatively less

significant contribution on erosion rate.

6.1.3 Confirmation Experiment

The optimal combination of control factors has bdetermined in the previous
analysis. However, the final step in any desigregperiment approach is to
predict and verify improvements in observed valttl@®ugh the use of the
optimal combination level of control factors. Thenfirmation experiment is
performed by taking an arbitrary set of factor comabon AB;C,E;F;. Here,
factor D has been omitted for being the least figant. Similarly, for glass-

epoxy composites the arbitrary set of factor coratiam A;B3;C,DsE; is taken.

The estimated S/N ratio for erosion rate can beutated with the help of

following prediction equation:

T_]BF-redmud:'I_' + (Kz -T)+ (§3 -T) +[(K2§3 -T) _(KZ =) _(§3 T+ (62 -
#1(ByCy ) ~(B3~T)~(C, I+ & -+ (3~ o
T_]GI-'-redmud:T"'(K3__-I_-)"'(§3_T)4-[(5?'@3_?)_(K3_T-)_(Eff'_-_r)]-'- G
(B, =T~ (By~ N =GN+ O3-T)+(E-T) ©2)

MBErec muc \GErec muc- Predicted average for red mud filled bamboo-epoxy

composites and glass-epoxy composites respectively.
T : Overall experimental average
Ay Ag BS,CZ,D3,E1andF3

designated levels.

: Mean response for factors and interactions at

By combining like terms, the equation reduces to
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NBRrecmuc-\2B3 ¥ B3Cy "By B +F=2T (6.3)
NGRrecmuc-~3B3 tB3Cy ~B3 +D3+E; =2T (6.4)

A new combination of factor levels,AA;, Bz, C,,
Ds, E; and R is used to predict erosion rate through predicéiquation and it is
be - 47.8828dB

found to

"BE-redmud ~

and N reqmud = - 47-80331B respectively.

For each performance measure, an experiment isuctetd for the same set of
factor combinations and the obtained S/N ratio ealsl compared with that

obtained from the predictive equation as shownahl& 6.4.

The resulting model seems to be capable of predicgrosion rate to a
reasonable accuracy. An error of 4%3and 3.61% for the S/N ratio of erosion
rate is observed for bamboo-epoxy composites aadsgdpoxy composites
respectively. If the observed S/N ratios under theommended settings are
close to their respective prediction, then we cotelthat the chosen design is
functionally adequate. Otherwise, a new designecyall be initiated since this
will indicate that some of the assumptions madenduthe analysis may not be
valid, for example, the effects of ignoring intefan between different design
factors. However, the error can be further reduckdthe number of
measurements is increased. This validates the matiwl model for predicting

the measures of performance based on knowledde anput parameters.

Table 6.4 Results of the confirmation experiments for ernsiate

Optimal control parameters | Optimal control parameters
(For bamboo-epoxy composites)For glass-epoxy composites)

Prediction

Experimenta

Prediction

Experimenta

=

Level

Ao B3CoE,F3

Az B3CoE F3

A3zB3C,D3E;

A3z B3C,D3E;

S/N ratio for
Erosion rate
(db)

-47.8828

-45.6658

-47.8035

-46.0779

)
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6.1.4 Effect of Impingement Angle and Erodent Temperature on Erosion
Generally, the erosion behavior of materials isadip classified as either ductile
or brittle depending on the variation of erosioteraith impingement angle.
Ductile behavior is characterized by maximum enosioccurring at low
impingement angles in the range of 10-30°. On tteerohand, if maximum
erosion occurs at 90°, then the behavior is saidetdrittle. However, most of
the reinforced polymer composites have been founaxhibit semi-ductile
behavior with maximum erosion rate at intermediatgles typically in the
range of 45-60f225]. In the present study, the variation of evosrate of the
red mud filled bamboo-epoxy and glass-epoxy comessiith impingement
angle is obtained by conducting experiments undeecified operating
conditions (Figure 6.5). It shows the peak erosi@aking place at an
impingement angle of 60° for the unfilled as wedl #r the red mud filled
bamboo-epoxy and glass-epoxy composites. This |gleadicates that these
composites respond to solid particle impact neithes purely ductile nor in a
purely brittle manner. This behaviour can be terraedsemi-ductile in nature

which is in agreement with the trend observed avijmus investigations [243].

325
—o— Bamboo-epoxy with Owt% red mud
300 —=— Bamboo-epoxy with 10wt% red mud _
—o— Bamboo-epoxy with 20wt% red mud ~ Peak erosiol
o751 —*— Glass-epoxy with Owt% red mud
2 —— Glass-epoxy with 10wt% red mud
FS) —a— Glass-epoxy with 20wt% red mud
£ 250 A
g
© 225
S
g 200
L

125 I T T T T 1
15 30 45 60 75 90

Impingement angle (Degree)

Figure 6.5 Effect of impingement angle on the erosion ratthefcomposites
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Similarly, erosion trials are conducted at seveifietBnt erodent temperatures
under normal impact condition and the variatioreadsion rate of unfilled and
red mud filled composites with erodent temperatsirghown in Figure 6.6. It is
evident from the figure that for all the compos#amples, the erosion rates
remain almost unaffected by the change in erodamperature from ambient to
40°C. However, the effect of erodent temperatureexsion rate is significant
above 40°Cand the rate of increase in erosion rate is grestbigher erodent
temperatures. The increase in erosion rate witldegrio temperature can be
attributed to increased penetration of particlegngpact as a result of dissipation
of greater amount of particle thermal energy tottrget surface. This leads to
surface damage, enhanced crack growth and condgguerthe reduction in
erosion resistance.

275
—o— Bamboo-epoxy with Owt% red mud
—— Bamboo-epoxy with 10wt% red mud
2501 —— Bamboo-epoxy with 20wt% red mud
R —e— Glass-epoxy with 0wt% red mud
> —— Glass-epoxy with 10wt% red mud
E 295| —=—Glass-epoxy with 20wt% red mud .
Q
g A
c . 0 -
9 200
(%2}
o
L

30 35 40 45 50 55 60
Erodent temperature (Deg. celcius)

Figure 6.6 Effect of erodent temperature on the erosion rhteedcomposites

6.1.5 Erosion Efficiency

The hardness alone is unable to provide suffict@ntelation with erosion rate,
largely because it determines only the volume dsgdl by each impact and not
really the volume eroded. Thus a parameter whidhreflect the efficiency with

which the volume that is displaced is removed shooé combined with
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hardness to obtain a better correlation and the@reefficiency is obviously one
such parameter. This thought has already beercteda@uring the development
of the theoretical model proposed in Chapter 5, that evaluation of erosion
efficiency can only be made on the basis of expented data. Hence, the values
of erosion efficiencies of these composites catedlausing Eq. (5.2) is
summarized in Table 6.5 for bamboo-epoxy compositesTable 6.6 for glass-

epoxy composites along with their density and apegaconditions.

Table 6.5 Erosion efficiency of red mud filled bamboo-epagmposites

Expt. | Impact Density of Hardness of Erosion Erosion
No. | Velocity | eroding material | eroding material rate efficiency
(V) m/sec (p) kg/n™ (Hy) (Enmgkg| ()%
1 43 1255 33.13 150.000 16.801
2 43 1255 33.13 133.330 4.978
3 43 1255 33.13 250.000 7.000
4 43 1358 27.50 150.000 4.296
5 43 1358 27.50 201.000 4.317
6 43 1358 27.50 137.220 11.790
7 43 1482 47.23 200.000 6.761
8 43 1482 47.23 350.000 47.328
9 43 1482 47.23 140.000 6.310
10 54 1255 33.13 277.770 6.576
11 54 1255 33.13 225.000 3.995
12 54 1255 33.13 290.000 20.597
13 54 1358 27.50 165.000 2.247
14 54 1358 27.50 152.220 8.293
15 54 1358 27.50 182.500 3.314
16 54 1482 47.23 125.000 10.718
17 54 1482 47.23 320.000 9.146
18 54 1482 47.23 211.111 4.525
19 65 1255 33.13 175.000 2.144
20 65 1255 33.13 390.000 19.117
21 65 1255 33.13 322.220 5.265
22 65 1358 27.50 244.440 6.383
23 65 1358 27.50 215.000 2.695
24 65 1358 27.50 250.000 2.350
25 65 1482 47.23 330.000 6.510
26 65 1482 47.23 155.550 2.301
27 65 1482 47.23 275.000 16.274

It clearly shows that erosion efficiency is not lesovely a material property; but
also depends on other operational variables suchmpgigement angle and

impact velocity. The erosion efficiencies of thesemposites under normal
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Impact fnorma) vary from 3-6%, 6-9% and 9-12% for impact vdies
65m/sec, 54m/sec and 43m/sec respectively. Theevaliy for a particular
impact velocity under oblique impact can be obtdisanply by multiplying a
factor 1/Siffo. with Nnormat SiMilar observation on velocity dependence of enosi
efficiency has previously been reported by few stigators [159, 160].

Table 6.6 Erosion efficiency of red mud filled glass-epoxantposites

Expt. | Impact Density of Hardness of Erosion Erosion
no. Velocity | eroding material| eroding material rate efficiency
(V) m/sec (p) kg/m® (Hv) (Er) mg/kg )
1 43 1530 24.80 204.348 14.054
2 43 1530 24.80 342.029 7.841
3 43 1530 24.80 413.720 7.113
4 43 1650 37.05 256.522 8.147
5 43 1650 37.05 376.124 8.959
6 43 1650 37.05 266.667 25.407
7 43 1752 43.05 222.663 5.803
8 43 1752 43.05 121.739 12.692
9 43 1752 43.05 175.362 6.094
10 54 1530 24.80 226.087 3.286
11 54 1530 24.80 353.623 3.855
12 54 1530 24.80 382.147 16.665
13 54 1650 37.05 139.130 2.101
14 54 1650 37.05 157.342 9.505
15 54 1650 37.05 191.304 3.852
16 54 1752 43.05 140.192 9.268
17 54 1752 43.05 274.638 6.052
18 54 1752 43.05 226.087 3.736
19 65 1530 24.80 163.768 1.232
20 65 1530 24.80 359.420 10.818
21 65 1530 24.80 443.712 4.452
22 65 1650 37.05 173.913 5.035
23 65 1650 37.05 198.193 2.754
24 65 1650 37.05 168.116 1.752
25 65 1752 43.05 318.152 4.839
26 65 1752 43.05 214.493 2.446
27 65 1752 43.05 295.652 13.490

The theoretical erosion wear ratey(Eof the red mud filled bamboo-epoxy
composites are calculated using Eq. (5.13). Thedees are compared with

those obtained from experiments(f) conducted under similar operating
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conditions. Table 6.7 presents a comparison amdregy theoretical and
experimental results and the associated perceetages for both red mud filled
bamboo-epoxy as well as glass-epoxy composites.€eftms in experimental

results with respect to the theoretical ones litherrange 0-14%.

Table 6.7 Comparison of theoretical and experimental erosaias along with
the percentage errors for red mud filled bamboocgpand glass-epoxy
composites

Expt. Erbth (b) Erbexpt.(b) Error (b) Erth (g) Erexpt.(g) Error (g)
No. | (mglkg) | (mglkg) | (%) | (mg/kg) | (mg/kg) (%)
1 170.086] 150.000 11.809 | 231.712 204.34§ 11.809
2 151.192] 133.330 11.814 | 387.851 342.02¢ 11.814
3 289.180| 250.000 13.548 | 479.506 413.72( 13.719
4 163.365| 150.000 8.181 | 248.364 256.524 03.284
5 194.286] 201.000 3.455 | 346.136 376.124 08.663
6 141.383| 137.220 2.945 | 244.771 266.664 08.945
7 186.695| 200.000 7.126 | 254.253 222.663 12.424
8 343.939] 350.000 1.762 | 137.891 121.739 11.713
9 158.371| 140.000 11.600 | 203.632 1/5.364 13.883
10 281.179| 277.77Q 1.2126 | 236.07§ 226.08] 4.230
11 209.197| 225.000 7.553 | 329.054 353.623 07.466
12 271.586| 290.000 6.780 | 358.521 382.1471 06.589
13 158.914| 165.000 3.829 | 132.813 139.13( 04.755
14 139.181] 152.220 9.367 | 169.921] 157.347 07.403
15 208.016] 182.500 12.266 | 218.533 191.304 12.460
16 122.924| 125.000 1.688 | 134.217] 140.197 04.451
17 337.898] 320.000 5.296 | 264.1/4 274.63§ 03.960
18 192.654] 211.111 9.580 | 206.321] 226.087 09.580
19 162.100] 1/75.000 7.957 | 159.040 163.76§ 02.972
20 372.461| 390.000 4.708 | 417.574 359.42( 13.926
21 289.323| 322.220 11.370 | 475.002 443.717 6.587
22 235.579| 244.440 3.761 | 168.002 173.913 03.518
23 204.757| 215.000 5.002 | 205.786 198.193 03.689
24 232.623| 250.000 7.469 | 169.358 168.114¢ 00.733
25 293.379| 330.000 12.482 | 307.745 318.157 03.381
26 164.858| 155.550 5.646 | 189.435 214.493 13.227
27 260.542| 275.000 5.549 | 310.147] 295.657 04.673

Note: (b): bamboo-epoxy composites
(9): glass-epoxy composites

The magnitude ofy can be used to characterize the nature and mechaofi

erosion. For example, ideal micro-ploughing invotyijust the displacement of
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the material from the crater without any fractuaead hence no erosion) will
result inn=0. In contrast, if the material removal is by ideacro-cutting,n =
1.0 or 100%. If erosion occurs by lip or plateletrhation and their fracture by
repeated impact, as is usually in the case of léuttaterials, the magnitude of
will be very low, i.en < 10%. In the case of brittle materials, erosionuosc
usually by spalling and removal of large chunksnatterials resulting from the
interlinking of lateral or radial cracks and thyscan be expected to be even
greater than 100% [155]. The erosion efficiencieshe composites under the
present study indicate that at low impact velotity erosion response is semi-
ductile 1=10-100%). On the other hand at relatively higmepact velocity the

composites exhibit ductile|(< 10%) erosion behaviour [225].

6.1.6 Surface Mor phology

To ascertain the wear mechanism in composites ngtgrelectron microscopy
(SEM) has been done and the micrographs of thecesfof unfilled and red
mud filled composites eroded at different impingeiangles are shown in
Figures 6.7 and 6.8 respectively. Figure 6.7 prissdre SEM of the unfilled
bamboo-epoxy composite surfaces eroded under variest conditions. In
Figure 6.7a, no cracks or craters are seen ondimpasite surface after erosion
due to impact of dry silica sand particles (temhem40°C) of smallest erodent
size (300 um) with a lower impact velocity (43 najsat an impingement angle
of 90°. But as the erosion tests are carried outiglter erodent temperature
(60°C) and erodent size (450 upm), the morphologyth&#f eroded surface
becomes different as in Figure 6.7b. Generallyduttile erosion response,
repeated impacts lead to plastic indentation aravihestrained regions on the
surface while in the case of brittle response,iapagation of cracks towards
the surface and their intersection to form a weatigde separated from the
surface lead to material loss. As seen in Figura,&oth processes appear to be
operative. Initially the surface is strained ansptaced in the plane by repeated
impacts of the erodent particles. Regions are fdrrdee to simultaneous

generation of cracks exhibiting a brittle respon3ée extent of plastic
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indentation, however, decreased as the angle ahgement is lowered as seen

in other micrographs (Figures 6.7b-f).

Figure 6.7 SEM graph of bamboo fiber reinforced epoxy comiassi

When the impingement angle is changed to 60°, dsufes seen are quite
different (Figure 6.7b). The normal component o impact force was still

effective in producing plastic indentation creatpajches similar to Figure 6.7a.
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The tangential component, on other hand is now atper in cutting action.

Most parts of the micrograph show evidence of nitéiow in the direction of

impingement. As seen in Figures 6.7c, d and e imitact velocity of 65 m/sec
and at an erodent temperature of 60°C, the domeafhplastic indentation

reduce with impingement angle, though micro-cragkpersists. Figure 6.7f
shows unique features as the entire surface iriche dominance of the micro-
cutting process, a characteristic failure featureductile materials at very low
angle. This mechanism is responsible for the highesterial removal at an
erodent temperature of 50°C and impact velocityp4iin/sec. It is also evident
from these microstructures that for higher erodsmhperature and impact

velocity, the damage to the surface is also redftigreater.

Morphologies of the worn surfaces of red mud filmboo-epoxy composites
are shown in Figure 6.8. The removal of matrix matérom the impact surface
of the composite with 10wt % of red mud erodedoatdr impingement angle
(30°), lower impact velocity (43m/sec) resultingarposure of small amount of
fibers to erosive environment can be clearly sdegufe 6.8a). The fibers are
still held firmly in place as yet by the matrix sounding them (Figure 6.8b).
The fiber-matrix debonding, brittle fracture of matand pulverization of fibers
are also reflected in the micrograph (Figure 6.8)hen impact velocity
increases to 54m/sec, impingement angle chang&@°terodent temperature at
60°C and filler content 20wt%, the fibers are cosbgly broken by means of
shearing action and protruding of fibers from matne seen in Figures 6.8c and
6.8d. Figures 6.8e and 6.8f show worn surfacebamhboo-epoxy composite
with 20 wt% red mud at higher impact velocity (65ew), higher impingement
angle (90°) and higher erodent temperature (6d49€j)e, the erosion mechanism
Is characterized by clean removal of the matrix arplosure of bamboo fibers.
Further damage is characterized by separation atatliment of broken fibers
from the resin matrix. There is an evidence of rfibemoval leaving behind
cavities along the length of fibers (Figure 6.8Aj}. higher impact velocity

(65m/sec) due to continuous exposure of fibergasien environment results in
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fiber thinning, detachment of fibers from the matnd cavities left after fiber
being dislodged may also be seen (Figure 6.8f)rdAocacking, micro-cutting
and pulverization of matrix and fibers appear tothe main features in the
micrograph. The damage at higher impact velocityn@e severe, because of

excessive wear and the fibers seem to be washegfeava the surface (Figures

83 oW &P
¢, Pulverizatign of fibres, .~

- 5 -

‘ SHE KM

Figure 6.8 SEM micrographs of the eroded bamboo-epoxy comgmditled

with red mud
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The magnitude of erosion rates caused by sanctleairinpact in bamboo-epoxy
composites is found to be different from that iseaf glass-epoxy composites
although the same filler material i.e. red mudresspnt in both. So, in an attempt
to get an insight to the material removal mechanisrthese composites, SEM

study of some of the eroded samples of glass-epomposites is also done.

Crater formation =

-
L

Figure 6.9 SEM images of eroded surfaces of the unfilled gissxy

composites

Figure 6.9 presents the SEM of surfaces of thelleadfglass-epoxy composite
eroded under various test conditions. In Figura @@ matrix is chipped off and
the glass fibers are clearly visible beneath the&irmiayer after the impact of dry
silica sand particles (temperature 40°C) of siZ@0(Bm) with a lower impact
velocity (43 m/sec) at a low impingement angle 0f.3The micrograph with a
higher magnification presented in Figure 6.9b dddty illustrates a crater
formed due to material loss and the arrays of broked semi-broken glass

fibers within. Due to repeated impact of hard aimghhhemperature sand particles
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there is initiation of cracks on the fibers andeassion progresses, these cracks
subsequently propagate on the fiber bodies botkransverse as well as in
longitudinal manner. But when the erosion tests @mied out with higher
erodent temperature (60°C), impingement angle 6f &t erodent size (450
Kum), the morphology of the eroded surface is diffieias shown in Figures 6.9c
and 6.9d. From the SEM observations of the erode@ces of the glass-epoxy
composites filled with different red mud contenhown in Figure 6.10, it
appears that composites under consideration exdalsgral stages of erosion and
material removal process. Very small craters arattstracks are seen on the
eroded surface of the composite with 10 wt% red mdatating the initiation of
matrix material loss from the surface (Figure 6)1Fagures 6.10a and 6.10b
also show signs of plastic deformation of the matmaterial and when
impacting at a low angle (30°), the hard erodemtigdas penetrate the surface
and cause material removal mostly by micro-ploughkigure 6.10c shows the
micrograph of the same composite surface erodexdh ampingement angle of
60° and an impact velocity of 54 m/sec. The matoxering the fiber seems to
be chipped off and the crater thus formed showdiblee body which is almost
intact. Repeated impact of the erodent has causeghening of the surface.
Fragmentation of the fibers as a result of cracid multiple fractures are also
distinctly shown in Figure 6.10d. Figures 6.10erb the SEM images for the
glass-epoxy composites filled with 20 wt% red m@éd.low impact velocity
(43m/sec) and impingement angle (30°), the damageet surface is minimal as
seen in Figures 6.10e and 6.10f. After the localaeal of matrix, the arrays of
fibers are normally exposed to erosive environmeantl subsequently the
material removal becomes faster. The wear tradesisctly visible and there is
protrusion of fibers beneath the matrix layer anse Figure 6.10g. The broken
fiber and fragmented red mud patrticles, seen inr€i@.10h, are mixed with the
matrix micro-flake debris and the damage of the posite is characterized by

the separation and detachment of this debris.
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Figure 6.10 SEM micrographs of eroded glass-epoxy composilies fwith red

mud
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6.2 PART 2: COPPER SLAG FILLED COMPOSITES
This part presents the analysis and comparisomosia response of bamboo-
epoxy and glass-epoxy composites filled with cogbag.

6.2.1 Taguchi Experimental Analysis

The results of erosion experiments carried out m@icg to Taguchi
experimental design on copper slag filled bamboaxgpand glass-epoxy
composites are presented in Table 6.8. The ovadin for the S/N ratio of the
erosion rate is found to be -47.08 db for bambas®btaomposites and -47.62 db
for glass based ones (Table 6.8).

Table 6.8 Comparison of erosion rates of bamboo-epoxy coitgmwiith those
of glass-epoxy composites under different test tmms$ as per k; orthogonal
array

Expt. A |B |C D E F E-(b) | SIN E () SIN
No. |m/sec|(%) |(°C) |(Degree)(mm) (um) | (mg/kg) ratio (b) mg/kg) |ratio (g)
(db) (db)
43 0| 40 30 65 300 150.00| -43.521|204.348 | -46.2071
43 0| 50 60 75 450 133.33| -42.498|342.029 | -50.681
43 0| 60 90 85 600 250.00 | -47.958|413.720 | -52.334
43 10| 40 60 75 600 237.50| -47.513|273.913| -48.75Z
43 10| 50 90 85 300 139.00| -42.860|284.058 | -49.06§
43 10| 60 30 65 450 233.33| -47.359/389.247| -51.804
43 | 20| 40 90 85 450 211.11| -46.490(163.768 | -44.284
43 | 20| 50 30 65 600 287.50| -49.172|234.319| -47.396
43 | 20| 60 60 75 300 170.00| -44.609|239.192| -47.574
10 54 0| 40 60 85 450 277.77| -48.873|226.087 | -47.085
11 54 0| 50 90 65 600 225.00| -47.043|353.623| -50.97G
12 54 0| 60 30 75 300 290.00 | -49.248|382.147 | -51.644
13 54 10| 40 90 65 300 172.00 | -44.710(307.246 | -49.749
14 54 10| 50 30 75  45Q0 244.44| -47.763|156.522 | -43.891
15 54 10| 60 60 85 600 187.50 | -45.460/200.197 | -46.029
16 54 | 20| 40 30 75 600 262.50 | -48.382(204.348 | -46.207
17 54 | 20| 50 60 85 300 240.00 | -47.604|214.493 | -46.628
18 54 | 20| 60 90 65 450 133.33 | -42.498(276.371| -48.829
19 65 0| 40 90 75 600 175.00| -44.860(163.768 | -44.284
20 65 0| 50 30 85 300 390.00| -51.821|359.420| -51.117
21 65 0| 60 60 65 450 322.22| -50.163|443.712 | -52.9472
22 65 10| 40 30 85 450 255.55]| -48.149|121.739 | -41.708
23 65 10| 50 60 65 600 262.50 | -48.382{197.101| -45.893
24 65 10| 60 90 75 300 247.00| -47.853|221.890| -46.922
25 65 20| 40 60 65 300 360.00| -51.126)|144.928 | -43.223
26 65 20| 50 90 75 450 200.00 | -46.020{202.899 | -46.145
27 65 20| 60 30 85 600 287.50| -49.172/167.89. | -44.500
Note: Er (b): Erosion rate of bamboo-epoxy compssit
Er (g): Erosion rate of glass-epoxy cosifs

OO INO|O|AWIN|F
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The effect of control factors on erosion rate gbmer slag filled bamboo-epoxy
composites is shown in Figure 6.11. Analysis of tlesults leads to the
conclusion that factor combination; Aimpact velocity = 43 m/sec), Hfiller
content = 10 wt%), £(erodent temperature = 50°C); Dmpingement angle =
90°), B (stand-off distance = 75 mm) and {erodent size = 45@Qm) gives
minimum erosion rate. But in case of copper sldgdiglass-epoxy composite
the factor combination: Aimpact velocity = 65 m/sec),sKfiller content = 20
wt %), C (erodent temperature = 40°C), Dmpingement angle = 30°),3E
(stand-off distance = 85mm) and (erodent size = 600 um)) gives minimum
erosion rate as shown in Figure 6.12. The respedtiteraction graphs are
shown in the Figures 6.13 and 6.14 for bamboo-epary glass-epoxy
composites respectively. It is observed that fonilar test conditions copper
slag filled bamboo-epoxy composites exhibit muckdo wear rates than those

by glass-epoxy composites.

Main Effects Plot for SN ratios
Data Means
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Figure 6.11 Effect of control factors on erosion rate (For cepglag filled

bamboo-epoxy composites)
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Main Effects Plot for SN ratios
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Figure 6.12 Effect of control factors on erosion rate (For ceppslag filled
glass-epoxy composites)
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Figure 6.13 Interaction graph between impact velocity ancfilkontent (AB)
for erosion rate (For copper slag filled bambooxgpmomposites)

National Institute of Technology, Rourkela, India Page 88



Ph.D. Thesis 2010

Interaction Plot for SN ratios
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Figure 6.14 Interaction graph between filler content and emdemperature
(BxC) for erosion rate (For copper slag filled glaps»y composites)

6.2.2 ANOVA and the Effects of Factors

Table 6.9 and Table 6.10 show the results of th©XN for the erosion rate of

bamboo-epoxy composites and glass-epoxy compoetgeectively. The last

column of the table indicates percentage contmoutf the control factors and
their interactions on the performance output i@sien rate [224]. From Table
6.9, it can be observed for the copper slag filachboo-epoxy composites that
impact velocity (p=0.358), impingement angle (p37®), stand-off distance (p
= 0.800), erodent size (p = 0.848) and copper stagent (p = 0.901) have
considerable influence on erosion rate. The intemacof impact velocity and

copper slag conter(p = 0.613) as well as copper slag content and egrod
temperature (p = 0.805) show significant contribiton the erosion rate but the

remaining factors and interactions have relative$g significant effect.

Similarly, from Table 6.10, one can observe thaipsr slag content (p=0.008),
erodent temperature (p = 0.009), impact velocity0(p19), stand-off distance (p
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= 0.041) and impingement angle (p= 0.125) havetgnlaence on erosion rate.
The interaction of copper slag content and erodemiperature (p = 0.033) as
well as impact velocity andopper slag content (p = 0.042) show significant
contribution on the erosion rate but the remairfacfor and interactions have
relatively less significant contribution.

Table 6.9 ANOVA table for erosion rate
(For copper slag filled bamboo-epoxy composites)

Source| DF| Seq S5AdjSS | AdjMS F P
A 2 37.06 | 37.06 18.53 1.79 0.358
B 2 2.27 2.27 1.14 0.11 0.901
C 2 0.08 0.08 0.04 0.00 0.996
D 2 33.85| 33.85 16.93 1.64 0.379
E 2 5.18 5.18 2.59 0.25 0.800
F 2 3.69 3.69 1.85 0.18 0.848
AxB 4 16.33 | 16.33 4.08 0.40 0.613
AxC 4 11.97 | 11.97 2.99 0.29 0.865
BxC 4 34.05| 34.05 8.51 0.82 0.805
Error 2 20.65| 20.65 10.33
Total 26 | 165.14

"DF: degree of freedoni/Seq SS: sequential sum of squaféelj. SS: extra
sum of squaré® Seq MS: sequential mean squaress: F-test,”P: percent
contribution.

Table 6.10 ANOVA table for erosion rate
(For copper slag filled glass-epoxy compojites

Source| DF Seq SS| AdjSS AdjM$ F P
A 2 26.3417| 26.3417| 13.1709| 50.40 | 0.019
B 2 62.4257| 62.4257| 31.2129| 119.44| 0.008
C 2 55.3305| 55.3305| 27.6652| 105.86| 0.009
D 2 3.6664 | 3.6664 | 1.8332 | 7.01 | 0.125
E 2 12.3650| 12.3650| 6.1825 | 23.66 | 0.041
F 2 2.1053 | 2.1053| 1.0527 | 4.03 | 0.199

AxB 4 23.8847| 23.8847| 5.9712 | 22.85| 0.042

AxC 4 22.8317| 22.8317| 5.7079 | 21.84 | 0.044
BxC 4 30.5954| 30.5954| 7.6489 | 29.27 | 0.033

Error 2 0.5227 | 0.5227| 0.2613

Total 26 240.0692

"DF: degree of freedoni’Seq SS: sequential sum of squaféglj. SS: extra
sum of squaré® Seq MS: sequential mean squaress: F-test,”*P: percent

contribution
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6.2.3 Confirmation Experiment

The confirmation experiment is performed for bamlepoxy composites by
taking an arbitrary set of factor combinationBAC;D,E;F3. Although factor C
has the least effect on performance characteristigs not omitted from this
series since its interaction with factor B has sigant effect as evident from
Table 6.9. Similarly, for glass-epoxy composites, abitrary set of factor
combination AB,C,D,E;z is considered. Factor F has been omitted sincast h
least effect on performance characteristics. Thienated S/N ratio for erosion

rate can be calculated with the help of followimgdiction equation:

ﬁBFcoppeslagzﬂ(Kz'T) +(B3~T)+[(A,B3~T)=(A,—T)=(B3-T)]+(C3-T) +
[(B3C3-T)=(B3—T)=(C3-MI+({D,-T)+E-T)+(F5-T) (6.5)

ﬁGlicoppelslagZT A=)+ By~ +(AB, ") =(Ay~T) - (B~ +(C-T)+
[(B,C,~T)=(B,~T)=(C,—T)]+(D,~T)+(E;~T) (6.9

ﬁBF—coppetsIagand ﬁBF—coppelsIag: Predicted average for copper slag filled

bamboo fiber based and glass fiber based compasgpsctively.

T : Overall experimental average

B,,B3,C,,C3,D5,E; EgandF, Mean response for factors and interactions

at designated levels.

By combining like terms, the equation reduces to
ﬁBF—coppelslag:A 2B3+B3C3-B

NGRcoppeslag™#2B2 + BpCy =By + Dy +E3 =2T (6.8)

A new combination of factor levels,ABs;, B,, C,,Cs, D3, E;, Es and K is used to
predict erosion rate through prediction equationd ait is found to
-45.1391b and TGRcopperslag -45.118abrespectively.

beﬁBF—coppetsIag =
For each performance measure, an experiment isucted for the same set of
factor combinations and the obtained S/N ratio ealsl compared with that
obtained from the predictive equation as shown abld 6.11. The resulting
model seems to be capable of predicting erosiantoata reasonable accuracy.

An error of 4.96% and 6.63% for the S/N ratio of erosion rate is observed for
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bamboo-epoxy composite and glass-epoxy composggsectively. However,

the error can be further reduced if the number easnrements is increased.

This validates the mathematical

performance based on knowledge of the input paemet
Table 6.11 Results of the confirmation experiments for erogmte

model for predgctithe measures of

Optimal control parameters
(For bamboo-epoxy composit

Optimal control parameters
efror glass-epoxy Composites

Prediction Experimental Prediction Experiments
Level A2B3C3 D2 EiFs| A2B3C3 D2 EsFs | A2BoCoD2Es | A2 BoCoDoEs
S/N ratio for -45.1397 -42.9007 -45.1182 -42.1268

Erosion rate (db

6.2.4 Effect of Impingement Angle and Erodent Temperature on Erosion

The variation of erosion rate of the copper sligdibamboo-epoxy and glass-

epoxy composites with

impingement angle

iIs obtainegd conducting

experiments under specified operating conditionguiie 6.15). The results

show that the peak erosion takes place at an irepiegt angle of 60° for the

unfilled composites whereas for the copper sldgditomposites it occurs at 45°

impingement angle for both glass and bamboo fibarforcement. This clearly

indicates that these composites respond to soliticlgaimpact neither in a

purely ductile nor in a purely brittle manner, ®ththe erosion behaviour is

semi-ductile. This behaviour may be attributedht® incorporation of fibers and

copper slag particles within the epoxy body. Santy, the variation of erosion

rate of unfilled and copper slag filled compositeish erodent temperature is

shown in Figure 6.16. This figure also presentsoanmarison between the

erosion rate of bamboo-epoxy composites and glagsye composites for

different erodent temperatures. It is seen, infigisre, that for all the composite

samples, the erosion rates remain almost unaffdayethe change in erodent

temperature from ambient to 40°C. The effect oflerdt temperature on erosion

is significant above 40°@nd the rate of increase in erosion rate is gresdter

higher temperatures. The increase in erosion réte evodent temperature can

be attributed to increased penetration of partidesimpact as a result of
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dissipation of greater amount of particle thermadrgy to the target surface.
This leads to more surface damage, enhanced didakdrack growth etc. and
consequently to the reduction in erosion resistag®bserved in case of red

mud filled bamboo-epoxy and glass-epoxy composites.

—e— Glass-epoxy with Owt% copper slag
—a— Glass-epoxy with 10wt% copper slag
300 —=— Glass-epoxy with 20wt% copper slag
280 —o— Bamboo-epoxy with Owt% copper slag
—— Bamboo-epoxy with 10wt% copper slag
—o— Bamboo-epoxy with 20wt% copper sl

Peak erosion for
unfilled composites

Erosion rate (mg/kp

eak erosion for copper slag

filled composites
100 I T T T T 1

15 30 45 60 75 90
Impingement angle (Degree)

Figure 6.15 Effect of impingement angle on the erosion wea adtcopper slag
filled bamboo-epoxy and glass-epoxy composites

300

—e— Glass-epoxy with Owt% copper slag
280 {1 —a— Glass-epoxy with 10wt% copper slag
—a— Glass-epoxy with 20wt% copper slag
—o— Bamboo-epoxy with Owt% copper slag
240 4 —&— Bamboo-epoxy with 10wt% copper slag
—o— Bamboo-epoxy with 20wt% copper slag

260 -

220 1

200 -

180

Erosion rate (mg/ky

160
140

120 T T T T T T 1
30 35 40 45 50 55 60
Erodent temperature (Deg.celcius)

Figure 6.16 Effect of erodent temperature on the erosion watg of copper
slag filled bamboo-epoxy and glass-epoxy composites
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6.2.5 Erosion Efficiency

The values of erosion efficiencies of copper sihgd bamboo-epoxy and glass-
epoxy composites calculated using Eq. (5.2) ismgive Table 6.12 and Table
6.13 respectively. The erosion efficiencies of éheemposites under normal
impact fnorma) Vary from 3-6%, 6-9% and 9-12% for impact vel@st65m/sec,
54m/sec and 43m/sec respectively.

Table 6.12 Erosion efficiency of copper slag filled bambomep composites

Expt.| Impact Density of Hardness of Erosion | Erosion
No. | velocity | eroding material Eroding materia rate efficiency
(U) m/sec|  (pc) kg/n? (Hy) (Emglkg| ()%
1 43 1243 33.13 150.00 16.964
2 43 1243 33.13 133.33 5.026
3 43 1243 33.13 250.00 7.068
4 43 1354 36.25 237.50 8.993
5 43 1354 36.25 139.00 3.947
6 43 1354 36.25 233.33 26.506
7 43 1368 39.00 211.11 6.384
8 43 1368 39.00 287.50 34.778
9 43 1368 39.00 170.00 6.855
10 54 1243 33.13 277.77 6.640
11 54 1243 33.13 225.00 4.033
12 54 1243 33.13 290.00 20.796
13 54 1354 36.25 172.00 3.097
14 54 1354 36.25 244.44 17.60Y
15 54 1354 36.25 187.50 4.502
16 54 1368 39.00 262.50 20.134
17 54 1368 39.00 240.00 6.136
18 54 1368 39.00 133.33 2.556
19 65 1243 33.13 175.00 2.1685
20 65 1243 33.13 390.00 19.302
21 65 1243 33.13 322.22 5.316
22 65 1354 36.25 255.55 8.822
23 65 1354 36.25 262.50 4.350
24 65 1354 36.25 247.00 3.069
25 65 1368 39.00 360.00 6.353
26 65 1368 39.00 200.00 2.646
27 65 1368 39.00 287.50 15.220

The theoretical erosion wear rate{)Eof the copper slag filled bamboo-epoxy

composites are calculated using Eq. 5.13. Thesgesare compared with those
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obtained from experiments {&,) conducted under similar operating conditions.
Table 6.14 presents a comparison among the thearatnd experimental results
and the associated percentage errors for both cefaefilled bamboo-epoxy as
well as glass-epoxy composites. The errors in exygartal results with respect
to the theoretical ones lie in the range 0-14%. &rasion efficiencies of the
composites under the present study indicate thdovatimpact velocity the
erosion response is semi-ductilg=10-100%). On the other hand at relatively
higher impact velocity the composites exhibit dectin < 10%) erosion
behaviour [225].

Table 6.13 Erosion efficiency of copper slag filled glass-gpaomposites

Expt.| Impact Density of Hardness of Erosion | Erosion
No. | Velocity | eroding material eroding materia rate efficiency
(U) m/sec|  (p) kg/n? (Hy) (Enmglkg| ()%
1 43 1530 24.80 204.348 14.054
2 43 1530 24.80 342.029 7.841
3 43 1530 24.80 413.720 7.113
4 43 1650 37.05 256.522 8.147
5 43 1650 37.05 376.124 8.959
6 43 1650 37.05 266.667 25.407
7 43 1752 43.05 222.663 5.803
8 43 1752 43.05 121.739 12.692
9 43 1752 43.05 175.362 6.094
10 54 1530 24.80 226.087 3.286
11 54 1530 24.80 353.623 3.855
12 54 1530 24.80 382.147 16.66%
13 54 1650 37.05 139.130 2.101
14 54 1650 37.05 157.342 9.505
15 54 1650 37.05 191.304 3.852
16 54 1752 43.05 140.192 9.268
17 54 1752 43.05 274.638 6.052
18 54 1752 43.05 226.087 3.736
19 65 1530 24.80 163.768 1.232
20 65 1530 24.80 359.420 10.818
21 65 1530 24.80 443.712 4.452
22 65 1650 37.05 173.913 5.035
23 65 1650 37.05 198.193 2.754
24 65 1650 37.05 168.116 1.752
25 65 1752 43.05 318.152 4.839
26 65 1752 43.05 214.493 2.446
27 65 1752 43.05 295.652 13.490
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Table 6.14 Comparison of theoretical and experimental erosaes along with
the percentage errors for copper slag filled bardmaoxy and glass-epoxy

composites
EXpt. Erbth (b) Erbexpt.(b) Error (b) Erth (g) Erexpt.(g) Error (g)
No. (mg/kg) (mg/kg) (%) (mg/kg) (mg/kg) (%)
1 170.086 150 11.809 231.712 204.348 11.809
2 151.192 133.33 11.814 387.851 342.029 11.814
3 350.180 250.00 28.608 469.506 413.720 11.881
4 210.328 237.50 12.918 265.710 273.913 3.087
5 125.526 139.00 10.733 266.306 284.058 6.66%
6 226.655 233.33 2.945 353.057 389.247 10.250
7 227.400 211.11 7.163 154.613 163.768 5.92]
8 269.664 287.50 6.614 245.847 234.319 4.68¢
9 193.736 170.00 12.252 241.431 239.192 0.927
10 281.179 277.77 1.212 246.075% 226.087 8.122
11 229.197 225.00 1.831 343.054 353.623 3.080
12 300.586 290.00 3.521 368.521 382.147 3.697
13 158.565 172.00 8.472 312.463 307.246 1.669
14 222.552 244.44 9.834 148.202 156.522 5.613
15 173.989 187.50 7.765 219.157 200.197 8.651
16 295.140 262.50 11.059 191.910 204.348 6.480
17 278.423 240.00 13.800 229.461 214.493 6.523
18 121.673 133.33 9.580 252.209 276.371 9.58(
19 162.100 175.00 7.957 160.040 163.768 2.329
20 372.461 390.00 4.708 327.574 359.420 9.721
21 292.323 322.22 10.227 395.002 443.712 12.331
22 299.923 255.55 14.795 137.601 121.739 11.528
23 240.110 262.50 9.324 175.203 197.101 12.498
24 260.671 247.00 5.244 244.337 221.890 9.187
25 380.050 360.00 5.275 132.226 144.928 9.605
26 183.392 200.00 9.055 204.601 202.899 0.831
27 290.567 287.50 1.055 153.271 167.892 9.538
6.2.6 Surface Mor phology

Microstructures of the un-eroded surfaces of a eogiag filled bamboo-epoxy
composite are presented in Figures 6.17a and 6Qd@pper slag particles are
seen to be scattered on the upper surface and distiibution is reasonably
uniform although at places the particles are seemave formed small and big
clusters. In the case of the worn surface of thepmsite eroded at low impact
velocity (Figures 6.17c and 6.17d), however, frextiand often plastic

deformation are visible. Fiber fracture and failunrgide the matrix is not clearly
observed at an impingement angle of 30° althougly omatrix cracks and

deformation are evident.
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(e) (f)
Figure 6.17 SEM images of the eroded copper slag filled bamdyomxy
composites

Figure 6.17e for the composite eroded at #5ws mainly matrix fracture. At
this impingement angle, there is no parallel congmbrof impact velocity of the
particle and hence, no wear is expected. Figuréf presents the SEM image of
the eroded surface of the same composite wheresfdre seen to have cracked
into small fragments and they are removed fromrtptces partly with the
surrounding matrix like spalled fragments. The waurface exhibits crater
formation and sign of plastic deformation in the tmxaregime. Repeated
impacts gradually form larger craters and fibrenmmatebonding.
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Figure 6.18a shows the micro-structural featuresopiper slag filled (10 wt%)
glass-epoxy composite eroded at an impingemenearfgd0° and a velocity of
43 m/sec at room temperature. In this case theeatog@articles and the
composite specimen are at same ambient conditMfneen the composite is
subjected to erosion trial by a stream of sandiglest having an elevated

temperature of 50°C, the micro-structure of thedetb surface appears quite

different. These differences are illustrated inufeg 6.18a and 6.18b.

%o

(b)
Figure 6.18 Scanning electron micrograph of the glass-epoxypmsite (with
10 wt% copper slag) at 43 m/sec impact velocity aratlent size 450m (a)
erodent at room temperature and (b) erodent terer&a0°C

Y

. Array of exoosed fib

=1c RN 3z JE

(a) (b)
Figure 6.19 Scanning electron micrograph of the glass-epoxypmsite (with
10 wt% copper slag ) eroded at 43 m/sec impactcitglo(a) C = 50°C, D =
90°, E =85 mm, F =3Q@0n and (b) C = 60°C, D = 60°, E =75 mm, F = p00

The deformation of the surface eroded by the erogerticles at room
temperature appears to be mostly due to plastiorehetion and occasional
micro-cracking. It is evident from Figure 6.18a aéd8b that the matrix is

chipped away and the material left in its locats@@ms to be in the glassy phase
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in plastically deformed condition. Some morphol@gidifferences can also be
seen in the halo zone of the erosion crater formgsdhown in Figure 6.18b. The
damaged surface gives an appearance of localizedled features and there is
some evidence of ploughing. Figure 6.19a shows Hraterodent particle
penetrated deeply into the surface forming a cr@teubstantial size showing an
array of almost intact fibers. There are no crassen on the fiber body and the
surrounding material has undergone severe plastarmhation. The copper slag
filled epoxy matrix covering the glass fibers hasei chipped off due to
repeated impact of hard silica sand particles. rAttie local removal of matrix
this array of fibers is exposed to erosive envirentn This is the case of
maximum material loss due to erosion at normal rhp@imilarly, Figure 6.19b
shows fragments of copper slag particles and theksron the fiber body which
are results of continued sand impact. The brokkeerfand filler fragments are
mixed with the matrix micro-flake debris and themdme of the composite is

characterized by separation and detachment ofléhbss.

}r g - Sy - B T 3

ZE M

(a) (b)
Figure 6.20 Scanning electron micrograph of the glass-epoxypmsite (with
10wt% copper slag) eroded at 60° impingement aagk® erodent size 600
um, (a) A =54 m/sec, C = 60°C, E = 85mm and (b)6&m/sec, C = 50°C, E
= 65mm.

Figures 6.20 and 6.21 show worn surfaces of glpegyecomposites filled with
copper slag (10 wt %). The erosion trials are edrout at room temperature
while the erodent temperatures are kept at 60°C H€ respectively. It is

evident that the erosion proceeds by clean renwividlle matrix and exposure of
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glass fibers. Further damage is characterized pgraéon and detachment of
broken fibers from the matrix and cavities left inehalong the length of fibers
(Figure 6.20a). The fibers are often half embeddeitie matrix as can be seen
in Figure 6.20b. At higher impingement angle, fitl@nning and detachment of

fibers occur and cavities form in the matrix assieeFigures 6.21a and 6.21b

Iz e

(b)
Figure 6.21 Scanning electron micrograph of the glass-epoxypmsite (with
10wt% copper slag) eroded at (a) A = 54 m/sec,4D€, D = 90°, E = 65mm,
F =300um and (b) A = 65 m/sec, C =50°C, D = :

(a) (b)
Figure 6.22 Scanning electron micrograph of the glass-epoxypmsite (with
20 wt% copper slag) eroded at 90° impingement aagteerodent size 4pf,
(@) A = 65 m/sec, C = 50°C, E = 75mm and (b) A =mdéec, C = 60°C, E =
65mm.
Figure 6.22 illustrates the surface morphology lé glass-epoxy composite
sample using 20 wt% copper slag. At normal impéet,damage to the surface
is not so high even with a high impact velocity (@®%ec). No large craters or
cracks are visible although there are signs oftiola®formation on the surface.

This may be attributed to the higher weight perageat(20 wt%) of hard copper
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slag fillers (Figure 6.22a). Similarly, Figure 6t22hows a relatively small
fraction of the material being removed from theface although formation of
large amount of grooves is visible. However, crimknation and propagation is

not seen.

(a) (b)
Figure 6.23 Scanning electron micrograph of the glass-epoxypmsite (with
20 wt% copper slag) eroded at 30° impingement an@te m/sec impact
velocity and erodent temperature 60°C, SOD 85 mahesiadent size 6Q0n.

Surface morphologies of the same composite erodetbrua different test
condition (impingement angle 30°, erodent tempeea@0°C) are found to be
distinctly different (Figure 6.23). There are plastieformations as well as
cracks in the matrix resin leading to exposure pradrusion of fibers. In Figure
6.23a, the fibers are still held firmly in place the matrix surrounding them.
Some of the occurrences during erosion like fibatrim debonding, brittle
fracture of matrix and pulverization of fibers ette reflected in the micrograph
shown in Figure 6.23b. On impact, the kinetic egeagd a part of thermal
energy of the erodent particles are transferrédgéaomposite body that leads to
crater formation and subsequently material loss. akeady mentioned, the
presence of hard copper slag particles in the maglps in absorbing a good
fraction of this energy and therefore energy awdldor the plastic deformation
of matrix becomes less. This also delays the tiotaof fiber exposure as
compared to the composite without any filler. AHese factors combined
together result in exhibition of fairly good erasicesponse by the copper slag

filled composites both for bamboo and glass fileemforcements.
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6.3 PART 3: ALUMINA FILLED COMPOSITES
This part of the chapter presents the analysiscangparison of erosion response

of bamboo-epoxy and glass-epoxy composites filléd alumina (AbOs).

6.3.1 Taguchi Experimental Analysis

Table 6.15 shows the experimental results for erosf alumina filled bamboo-

epoxy and glass-epoxy composites. The overall nieathe S/N ratio of the

erosion rate is found to be -47.73db for the bambased composites and

-47.47db for the glass based ones.

Table 6.15 Comparison of erosion rates of bamboo-epoxy coitggowith those
of glass-epoxy composites under different test tmms$ as per k; orthogonal
array

Expt. A B | C D E F E: (b) SIN E (9) SIN
No. |(m/sec| (%)  (°C) |(Degree) (mm) | (um) | (mg/kg) ratio | (mg/kg) | ratio
(b) (db) (9) (db)
1 43 0 | 40 30 65| 300 150.00 -43.521 | 204.348 -46.207
2 43 0| 50 60 75| 450 133.33 | -42.498| 342.029 -50.681
3 43 0| 60 90 85 600 250.00 | -47.958 413.720 -52.334

4 43 10| 40 60 75| 600 275.00 | -48.786 220.290 -46.86
5 43 10| 50 90 85| 30C 360.00 -51.126| 183.333 -45.265
6 43 10| 60 30 65| 450 244.44 -47.763| 197.134 -45.895
7 43 20 40 90 85| 45(C 144.44 -43.193| 289.855 -49.244
8 43 20| 50 30 65| 60C 200.00 | -46.020 173.913 -44.807
9 43 20| 60 60 75| 30C 300.00 | -49.542| 207.891 -46.357

10 54 0 40 60 85 450 277.77 | -48.873| 226.087 -47.086

11 54 0 50 90 65 600 225.00 -47.043 353.623 -50.971

12 54 0 60 30 75 300 290.00  -49.248 382.147 -51.645

13 54 10| 40 90 65 30( 160.00 @ -44.082 | 150.725 -43.564

14 54 10| 50 30 75 45( 264.44 -48.446 4 289.855 -49.244

15 54 10| 60 60 85 60( 175.00 -44.860 301.159 -49.576

16 54 20| 40 30 75 60( 300.00 | -49.542| 226.087 -47.086

17 54 20| 50 60 85 30( 230.00 | -47.234| 376.812 -51.523

18 54 20 60 90 65 45( 166.66 -44.4364 271.053 -48.661

19 65 0| 40 90 75 60C 175.00 -44.860 163.768 -44.285

20 65 0 50 30 85 300 390.00 -51.821  359.420-51.112

21 65 0 60 60 65 450 322.22 -50.163 443.712 -52.942

22 65 10| 40 30 85 45( 344.44  -50.742| 202.899 -46.146

23 65 10| 50 60 65 60( 325.00 -50.237| 161.739 -44.176

24 65 10| 60 90 75 30( 340.00  -50.629 142.973 -43.105

25 65 20| 40 60 65 30( 390.00 | -51.821| 144.928 -43.223

26 65 20| 50 90 75 45( 166.66 -44.436 284.058 -49.068

27 65 20| 60 30 85 60( 312.50 -49.897| 293.158 -49.342

Note: Er (b): Erosion rate of bamboo-epoxy compssit
Er (9): Erosion rate of glass-epoxy cosifes
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Analysis of the results leads to the conclusion taetor combination A B,, C,,
Ds, E; and B gives minimum erosion rate for alumina filled bamkepoxy
composites (Figure 6.24). Similarly, analysis oé tiesult further leads to the
conclusion that factor combination;,AB,, C,, D3, E; and k gives minimum
erosion rate for alumina filled glass-epoxy comfessi(Figure 6.25). The
respective interaction graphs are shown in therEg6.26 and 6.27 for bamboo-
epoxy and glass-epoxy composites respectively.

Main Effects Plot for SN ratios
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Figure 6.24 Effect of control factors on erosion rate
(For alumina filled bamboo-epoxy composites)
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Figure 6.25 Effect of control factors on erosion rate
(For alumina filled glass-epoxy composites)
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Interaction Plot for SN ratios
Data Means
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Figure 6.26 Interaction graph between impact velocity anefitontent (4B)
for erosion rate (For alumina filled bamboo-eporynposites)
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Figure 6.27 Interaction graph between filler content and embdemperature
(BxC) for erosion rate (For alumina filled glass-epawynposites)
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6.3.2 ANOVA and the Effects of Factors

Table 6.16 and Table 6.17 show the ANOVA resultstfe erosion rate of
bamboo-epoxy and glass-epoxy composites respectiVee last column of the
table indicates percentage contribution of the mdnfactors and their
interactions on the performance output i.e erosia [224]. From Table 6.16, it
can be observed for the alumina filled bamboo-epoomposites that impact
velocity (p =0.366), erodent temperature (p = 0)4&todent size (p = 0.537)
and alumina content (p = 0.725) have consideratfileence on erosion rate. The
interaction of impact velocity and alumina contgnt 0.586) as well as alumina
content ancerodent temperature (p=0.657) show significant ridomtiion on the
erosion rate. The remaining factor and interastidrave relatively less
significant contribution.

Table 6.16 ANOVA table for erosion rate
(For alumina filled bamboo- epoxy composites)

Source| DF Seq| AdjSS | AdjMS F P
SS
A 2 38.19| 38.19 19.09 1.73 0.366
B 2 8.35 8.35 4.18 0.38 0.72b
C 2 4.66 4.66 2.33 0.21 0.481
D 2 23.81| 23.81 11.91 1.08 0.825
E 2 6.69 6.69 3.35 0.30 0.76[7
F 2 18.98| 18.98 9.49 0.86 0.537
AxB 4 39.83| 39.83 9.96 0.90 0.586
AxC 4 18.26| 18.26 4.56 0.41 0.795
BxC 4 31.18| 31.18 7.80 0.71 0.657
Error 2 22.05 22.05 11.03
Total 26 | 212.02

"DF: degree of freedoni/Seq SS: sequential sum of squaréglj. SS: extra
sum of squaréd Seq MS: sequential mean squaress: F-test,”P: percent
contribution.

Similarly, from Table 6.17, it can be observedttoe alumina filled glass-epoxy
composites that alumina content (p =0.044), erodemiperature (p = 0.059),
stand-off distance (p = 0.102), erodent size (p15®) and impact velocity (p =

0.159) have considerable influence on erosion rEbe. interaction of alumina
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content and erodent temperature (p = 0.163) as agelimpact velocity and
erodent temperature (p = 0.205) show significanttrdoution on the erosion
rate. The remaining factor and interactions havatively less significant
contribution on erosion rate.

Table 6.17 ANOVA table for erosion rate
(For alumina filled glass-epoxy composites)

Sourcel DF SeqSS| AdjSS AdjM$ F P
A 2 15.170 | 15.170 7.585 5.27 0.159
B 2 62.209 | 62.209 31.104 21.62 0.044
C 2 45522 | 45522 22.761 15.82 0.089
D 2 2.255 2.255 1.127 0.78 0.561
E 2 25.464 | 25.464 12.732 8.85 0.102
F 2 16.073| 16.073 8.036 5.59 0.152
AxB 4 7.449 7.449 1.862 1.29 0.480
AxC 4 23.668| 23.668 5.917 4.11 0.205
BxC 4 31.027| 31.027 7.757 5.39 0.163
Error 2 2.877 2.877 1.438
Total 26 231.713

" DF: degree of freedoni"Seq SS: sequential sum of squaréglj. SS: extra
sum of squaré® Seq MS: sequential mean squaress: F-test,””P: percent
contribution.

6.3.3 Confirmation Experiment

The confirmation experiment is performed by takang arbitrary set of factor
combination AB,C,EsF; for bamboo-epoxy composites andBAC,E;F, for
glass-epoxy composites, but factor D has been edhnitt both bamboo and glass
fiber reinforced epoxy composites as it has thestledfect on performance
characteristics. The estimated S/N ratio for thenpaosites with alumina filler,

the erosion rate can be calculated with the helpfatfbwing prediction

equations:
TgF-alumina™ 1 * (A3~ T)+ (B ~T)*[(AgB, ~T)=(A3~T)= (B, ~T)I* (C,~T)
+[(ByCy =N =(B,~T)=(C, TN+ Eg-T)+ (R - T) (69
GRaluming™ 1 * A2 =D +B3-T+H(AzB3 ~T)=(A;~T)=(B3~T)+ (C; - T)
+(BaC, =)~ (B3-T)~(C, - TN+ €T+ (=) (610

MBE-alumine * TG -alumine - Predicted average of alumina filled bamboo-epoxy

composites and glass-epoxy composites respectively.
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T : Overall experimental average

A, A,,B,,B,,C, E,andF ,F,: Mean response for factors and interactions at

designated levels.

By combining like terms, the Eq. (6.9) and Eq. (§.deduces to
MaEalumina="3B2 * BoCy =B, +Eg +F 2T (6.11)
NeRaluminsA2B3 * B3Cy ~By +Eg+F, —2T (6.12
A new combination of factor levels;AA,, B,, Bs, C,, E;, F; and k is used to
predict erosion rate through prediction equatiod i&rs found to

beng e Jjuming™ - 23-493B and M o iming™ - 22- 7645Brespectively.

For each performance measure, an experiment isuctet for the same set of
factor combinations and the obtained S/N ratio ealls compared with that
obtained from the predictive equation as shown abld 6.18. The resulting
model seems to be capable of predicting erosiantoata reasonable accuracy.
An error of 5.45% and 6.63% for the S/N ratio of erosion rate is observed for
bamboo-epoxy composites and glass-epoxy compasgeectively. However,
the error can be further reduced if the number ehsarements is increased.
This validates the mathematical model for predgtithe measures of
performance based on knowledge of the input paemet
Table 6.18 Results of the confirmation experiments for erogmte

Optimal control parameters Optimal control parameters
(For bamboo-epoxy compositeqFor glass-epoxy composites)

Prediction ExperimentalPrediction Experimental
Level A; B,CExF A3z B,CoEF A, B3CoEsF | A, BsCoEsF
S/N ratio for -53.4930 -50.5776 -52.7645 -49.2661]
Erosion rate (db)

6.3.4 Effect of Impingement Angle and Erodent Temperature on Erosion

The erosion wear rates of alumina filled bambooxgpand glass-epoxy
composites as a function of impingement angle a@va and compared in
Figure 6.28. The figure shows the peak erosiomtpkiace at an impingement
angle of 60° for the unfilled as well as the aluanifiiled bamboo-epoxy and

glass-epoxy composites. This clearly indicates thase composites respond to
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solid particle impact neither in a purely ductilernn a purely brittle manner.
This behaviour can be termed as semi-ductile inreawvhich may be attributed
to the incorporation of bamboo/glass fibers andnaha particles within the
epoxy body.

Similarly, the variation of erosion rate of unfdleand alumina filled composites
with erodent temperature is shown in Figure 6.2BisTiigure also presents a
comparison between the erosion of composites wattmidmo fiber reinforcement
against glass fiber reinforcement for differentdeat temperatures. Erosion trials
are conducted at seven different temperatures umatenal impact condition. It is
seen that for all the composite samples, the amnasites remain almost unaffected
or very marginally affected by the change in erademperature from ambient to
40°C. The effect of erodent temperature on erosasignificant above 40°@nd
the rate of increase in erosion rate is greatligier temperatures. It also becomes
evident from this figure that the alumina filledosy composites with bamboo fiber
reinforcement exhibit better erosion wear resistaac compared to glass reinforced

composites under similar operating environment.

450

—e— Glass-epoxy with 0 wt% alumina
400 - —a— Glass-epoxy with 10 wt% alumina

—a— Glass-epoxy with 20 wt% alumina

—0— Bamboo-epoxy with 0 wt% alumina .
350 | POy ’ Peak erosion

—A— Bamboo-epoxy with 10 wt% alumina
—o— Bamboo-epoxy with 20 wt% alumina

300

250+

Erosion rate (mg/ky

100 T T T T T 1
15 30 45 60 75 90

Impingement angle (degree)

Figure 6.28 Effect of impingement angle on the erosion weae raf the
composites
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375
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Figure 6.29 Effect of erodent temperature on the erosion ratbeocomposites

6.3.5 Erosion Efficiency

The values of erosion efficiencies of these contpsesitalculated using Eq. (5.2)
are given in Table 6.19 for bamboo based compoaitdsn Table 6.20 for glass
based composites. The erosion efficiencies of tlieseposites under normal
Impact finorma) Vary from 3-6%, 6-9% and 9-12% for impact velmst65m/sec,
54m/sec and 43m/sec respectively. The erosiociefities of the composites
under the present study indicate that at low imppeed the erosion response is
semi-ductile §=10-100%). On the other hand at relatively highempact
velocity the composites exhibit ductiley (< 10%) erosion behavior. The
theoretical erosion wear rate(f of the alumina filled glass-epoxy composites
Ew(g) and bamboo-epoxy composites,(B) are calculated using Eq.
(5.13).These values are compared with the correspgrvalues E,,{(g) and
EexpD) respectively obtained from experiments condilictender similar
operating conditions. Table 6.21 presents a comparbetween the theoretical
and experimental results and the associated pagemrrors for both alumina

filed bamboo-epoxy as well as glass-epoxy compsesitThe errors in
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experimental results with respect to the theorktcees for the entire set of
composites lie in the range 0-14%.

Table 6.19 Erosion efficiency of alumina filled bamboo-epamgmposites

Expt. | Impact Density of Hardness of | Erosion| Erosion
No. | Velocity | eroding materia eroding rate efficiency
(V) (p) material (En) (M) (%)
(m/sec) (kg/m’) (Hy) (mg/kg)
1 43 1243 33.13 150.00 16.9641
2 43 1243 33.13 133.383  5.02656P9
3 43 1243 33.13 250.00  7.06837p
4 43 1348 38.63 275.00 11.14708
5 43 1348 38.63 360.00 10.9437p
6 43 1348 38.63 244.44  29.7232p
I 43 1723 42.37 144.44 3.767818
8 43 1723 42.37 200.00  20.8685p
9 43 1723 42.37 300.00 10.4348P
10 54 1243 33.13 277.77 6.64016
11 54 1243 33.13 225.00  4.033773
12 54 1243 33.13 290.00  20.79634
13 54 1348 38.63 160.00  3.084135
14 54 1348 38.63 264.44  20.38953
15 54 1348 38.63 175.00  4.4979611
16 54 1723 42.37 300.00 19.8487p
17 54 1723 42.37 230.00  5.07275b6
18 54 1723 42.37 166.66 2.75666
19 65 1243 33.13 175.00 2.165349
20 65 1243 33.13 390.00  19.30254
21 65 1243 33.13 322.22  5.316263
22 65 1348 38.63 344.44  12.72874
23 65 1348 38.63 325.00 5.765299
24 65 1348 38.63 340.00  4.52327[7
25 65 1723 42.37 390.00 5.93665%
26 65 1723 42.37 166.66  1.902585
27 65 1723 42.37 312.50  14.26996
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Table 6.20 Erosion efficiency of alumina filled glass-epoxgneposites

Expt. | Impact Density of Hardness of | Erosion| Erosion
No. | Velocity | eroding materia eroding rate efficiency
(8)] (p) material (Er) m
(m/sec) (kg/n) (Hy) (mg/kg) (%0)
1 43 1530 24.80 204.348 14.05465
2 43 1530 24.80 342.029 7.841816
3 43 1530 24.80 413.720 7.113708
4 43 1627 39.92 220.290 7.645242
5 43 1627 39.92 183.333 4.771697
6 43 1627 39.92 197.134 20.52361
7 43 1800 47.46 289.855 8.107095
8 43 1800 47.46 173.913 19.45703
9 43 1800 47.46 207.891 7.753261
10 54 1530 24.80 226.087 3.286841
11 54 1530 24.80 353.623 3.855488
12 54 1530 24.80 382.147 16.66592
13 54 1627 39.92 150.725 2.487522
14 54 1627 39.92 289.855 19.13473
15 54 1627 39.92 301.159 6.627377
16 54 1800 47.46 226.087 16.03871
17 54 1800 47.46 376.812 8.910926
18 54 1800 47.46 271.093 4.807155
19 65 1530 24.80 163.768 1.232335
20 65 1530 24.80 359.420 10.81837
21 65 1530 24.80 443.712 4.452102
22 65 1627 39.92 202.899 6.419776
23 65 1627 39.92 161.739 2.456526
24 65 1627 39.92 142.973 1.628533
25 65 1800 47.46 144,928 2.365436
26 65 1800 47.46 284.0598 3.476976
27 65 1800 47.46 293.158 14.35345
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Table 6.21 Comparison of theoretical and experimental erosaes along with
the percentage errors for alumina filled bambooxgp@nd glass-epoxy

composites
Expt. Erbth (b) Erbexpt.(b) Error (b) Erth (g) Erexpt.(g) Error (g)
No. | (mg/kg) | (mg/kg) | (%) | (ma/kg) | (mg/kg) (%)
1 170.087| 150.00] 11.8096 231.712 204.348 11.8006
2 151.193| 133.33| 11.8144 387.851 342.029 11.8144
3 280.18 250.00| 10.7717 479.506 413.720 13.7195
4 246.17 275.00| 11.7115 198.0%58 220.290 11.2248
5 332.156| 360.00 8.3828 168.967 183.333 8.5016
6 220.681| 244.44| 10.7662 185.092 197.134 6.5059
7 148.167| 144.44 2.5157 296.660 289.855 2.2939
8 213.679| 200.00 59338 168.416 173.913 3.2634
9 323.653| 300.00 6.6902 183.665 207.891 13.1903
10 281.18 277.77 1.2126 206.0Y5 226.087 9.7109
11 | 229.198, 225.00 1.8314 333.054 353.623 6.1757
12 | 300.586/ 290.00 3.5218 378.521 382.147 0.9579
13 | 147.736/ 160.00 8.301%5 135.548 150.725 11.1966
14 | 254.498| 264.44 3.9080 277.781 289.855 4.3465
15 | 179.057, 175.00 2.2655 339.767 301.159 11.36(32
16 | 283.018, 300.00 6.0003 208.0y1 226.087 8.6583
17 | 240.989, 230.00 45601 380.1834 376.812 0.8739
18 152.09 166.66 9.5801 247.356 271.053 9.5801
19 | 162.101, 175.00 7.9576 160.040 163.768 2.3292
20 | 372.462| 390.00 47088 327.5Y4 359.420 9.7215
21 | 292.323| 322.22 10.227 395.002 443.712 12.331
22 | 334.681| 344.44 29158 179.386 202.899 13.138
23 293.47 325.00] 10.7437 186.329 161.739 13.19]71
24 | 321.168| 340.00 5.8637 153.003 142.973 6.5553
25 | 366.722| 390.00 6.3477 132.226 144.928 9.6057
26 | 169.491| 166.66 1.6708 268.441 284.058 5.8174
27 | 350.616| 312.50| 10.8714 304.157 293.158 3.6163
6.3.6 Surface Mor phology

The SEM image (Figure 6.30a) of the un-eroded serfaf alumina filled

bamboo-epoxy composite shows scattered aluminaiclesrton the upper

surface.

Figure 6.30b showing the worn surfacthefcomposite eroded at 90°

reveals mainly the matrix fracture. The eroded ae$ exhibit sign of plastic

deformation in the matrix regime at an impact vsjoof 54 m/sec and erodent

temperature of 60°C which indicate the initiationsarface damage as seen in

National Institute of Technology, Rourkela, India Page 112



Ph.D. Thesis 2010

Figure 6.30c. Similarly, the most visible domin&satures as noticed in Figure
6.30d are the fracture and cutting of fibers. Mé&hgrs have cracked into small
fragments and they are removed from their place8ypaith the surrounding
matrix like spalled fragments. Subsequently undemilar condition as
mentioned above there is removal of matrix matdr@h the surface resulting
in exposure of broken fibers to erosive environm@figure 6.30e). In this
micrograph, the fibers are still held firmly in p&aby the matrix surrounding
them. Repeated impacts gradually cause fiber-md&bonding, brittle fracture
of matrix and pulverization of fibers. The fiberg droken by means of shearing
action that can be seen from the micrograph dumpingement of particles at

higher impact velocity (Figure 6.30f).
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(f)

Fig. 6.30. SEM images of eroded surfaces of alumina fillednboo-epoxy
composites.

Matrix removal
between theflbers

(d)
Fig. 6.31 Scanning electron micrograph of alumina filled sgldiber epoxy
matrix composite surfaces erodent at impact velogBm/sec, impingement

angle 30°, filler content 10wt%, erodent tempem®°C, erodent size 45
and S.0.D 65mm.
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Figure 6.31a shows a portion of the alumina fillglhss-epoxy composite
surface before the erosion has occurred. Small lgdclusters of alumina
particles are observed on the upper surface ofdhgosite. The SEM image of
the eroded surface of the composite at impingemaegie of 30° is seen in
Figure 6.31b. Here, the erodent particles are alewated temperature of 60°C
impacting the composite surface with a speed on43 Because of the smaller
normal component of the erodent impact velocitihat low impingement angle,
the fibers resist to cracking and as expected nathnfiber cracking is seen to
have occurred. At higher impingement angle of @gres 6.31c and 6.31d),
however, large craters are noticed in the matuciting surface damage due to

erosion.

(c) (d)

Fig. 6.32 Scanning electron micrograph of alumina filled sgldiber epoxy
matrix composite surfaces eroded at impact velodByn/sec, impingement
angle 60°, filler content 20wt%, erodent tempem®°C, erodent size 30
and S.0.D 75mm.
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Figures 6.32a-d show SEM micrographs of alumirladilglass fiber reinforced
epoxy composites eroded at’6Mpingement angle where maximum wear rate
is recorded. For transverse particle impact (F6g32a and 6.32b), the resistance
to bending is lower and bundles of fibers gettlzamd break easily. Moreover,
in case of transverse erosion, high interfaciakitenstresses are generated by
particle impacts. This causes intensive fiber-madiebonding and breakage of
the fibers, which are not supported by the mairhe continuous impact of sand
particles on the composite surface breaks thedibecause of the formation of
cracks. Figures 6.32c and 6.32d show featuresifidlentation on the matrix
body leading to local removal of resin materiahfirthe impacted surface which

results in the exposure of the fibers.

(d)

Fig. 6.33 Scanning electron micrograph of alumiiled glass fiber epoxy
matrix composite surfaces erodent at impact velostm/sec, impingement
angle 90°, filler content 20wt%, erodent tempemt®°C, erodent size 30
and S.0.D. 85mm.
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As the impingement angle of the particles changdarger values, the effects of
normal force become dominant. Figures 6.33a-dtibiis the wear morphology
of the material after erosion at normal impact witgh impact velocity of 65
m/s. At this impingement angle there is no paralt@hponent of impact force.
Hence, no wear is likely to occur. Fibers are ceackto small fragments and
they are removed from their places partly with therounding matrix like

spalled fragments.

6.4 PART 4. SCFILLED COMPOSITES

This part of the chapter presents the analysiscangparison of erosion response

of bamboo-epoxy and glass-epoxy composites fillgd silicon carbide (SiC).

6.4.1 Taguchi Experimental Analysis

The results of erosion experiments carried out @icg to the predetermined
design on SiC filled bamboo-epoxy and glass-ep@yosites are presented in
Table 6.22. The overall mean for the S/N ratiehef erosion rate is found to be
-47.75 db for bamboo based composites and -48.&ddihe glass based ones.
Analysis of the results leads to the conclusion taetor combination 4 B,, C,,
D3, E3 and R gives minimum erosion rate (Figure 6.34) for baoyepoxy
composites and the factor combination B,, C,, D3, E; and K gives minimum
erosion rate (Figure 6.35) for glass epoxy compssithe respective interaction
graphs are shown in the Figures 6.36 and 6.37dooo epoxy composites and

Figures 6.38 and 6.39 for glass-epoxy composites.
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Table 6.22 Comparison of erosion rates of SiC filled bambpo»y against
glass-epoxy composites under different test cambtias per 4; orthogonal

array
Expt A B C D E F E; (b) SIN E: (9) S/N
.No/(m/sec) (%) | (°C) | (Degree) (mm) | (um) | (mg/kg) | ratio (b) = (mg/kg) ratio (g)
(db) (db)
1 43 0 40 30 65 300 150.00 | -43.521 204.348 -46.207
2 43 0 50 60 75 45( 133.33| -42.498 342.029 -50.681
3 43 0 60 90 85 60C 250.00| -47.958 413.720 -52.334
4 43 10| 40 60 75 60( 300.00 -49.542 202.899 -46.145
5 43 10 50 90 85 300 130.00 -29.542 180.145 -45.112
6 43 | 10| 60 30 65 45( 200.00 -46.020| 183.892 -45.291
7 43 20| 40 90 85 45( 211.11 -46.490 250.435 -47.973
8 43 | 20| 50 30 65 60( 325.00 -50.237 248.696 -47.913
9 43 20 60 60 75 300 390.00 -51.821 213.853 -46.602
10 54 0 40 60 85 45( 277.77 | -48.873 226.087 -47.085
11| 54 0 50 90 65 60( 225.00 -47.043 353.623 -50.970
12 54 0 60 30 75 300 290.00 | -49.248 382.147 -51.644
13 54 10 40 90 65 30( 140.00| -42.922 173.913 -44.806
14| 54 10 50 30 75 45( 233.33| -47.359 284.058 -49.068
15| 54 | 10| 60 60 85 60( 487.50 -53.759| 293.167 -49.342
16 54 20| 40 30 75 60( 312.50| -49.897 237.681 -47.519
17 54 20 50 60 85 30( 220.00| -46.848 281.159 -48.979
18 54 | 20| 60 90 65 45( 200.00 | -46.020 263.132 -48.403
19 65 0 40 90 75 60( 175.00| -44.860 163.768 -44.284
20 | 65 0 50 30 85 30C 390.00| -51.821 359.420 -51.112
21 65 0 60 60 65 45( 322.22 | -50.163 443.712 -52.942
22 65 10/ 40 30 85 45( 244.44 | -47.763 187.536 -45.461
23 65 10 50 60 65 60( 425.00| -52.567 295.652 -49.415
24 | 65 10 60 90 75 30( 360.00| -51.126 298.152 -49.488
25| 65| 20| 40 60 65 30( 430.00 -52.669 289.855 -49.243
26 65 20 50 90 75 45( 233.33| -47.359 347.826 -50.827
27| 65| 20| 60 30 85 60( 362.50 -51.186 | 349.283 -50.863

Note: Er (b): Erosion rate of bamboo-epoxy comgssit

Er (g): Erosion rate of glass-epoxy cosifss
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Main Effects Plot for SN ratios

Data Means
A B C

-45.0

“ \ ./\ /\
»n -48.01
.0
hd
© 4954
z T T T T T T T T T
s 43 54 65 0 10 20 40 50 60
o D E
5 -450-
Q
=

-46.5 -
| T

-48.0 1 ‘\./
-49.5+1
T T T T T T T T
30 60 20 65 75 85 300 450 600

Signal-to-noise: Smaller is better

Figure 6.34 Effect of control factors on erosion rate (For Sied bamboo-
€epoxy composites)
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Figure 6.35 Effect of control factors on erosion rate (For $i@d glass-epoxy
composites)
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Interaction Plot for SN ratios
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Figure 6.36 Interaction graph between impact velocity ancefiltontent (AB)
for erosion rate (For SiC filled epoxy compositesthw bamboo-fiber
reinforcement)
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Figure 6.37 Interaction graph between impact velocity anefitontent (4B)
for erosion rate (For SiC filled epoxy compositathwvglass-fiber reinforcement)
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Interaction Plot for SN ratios
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Figure 6.38 Interaction graph between filler content and emddemperature
(BxC) for erosion rate (For SiC filled epoxy compes with bamboo-fiber
reinforcement)
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Figure 6.39 Interaction graph between filler content and emdemperature
(BxC) for erosion rate (For SIiC filled epoxy compaositeith glass-fiber
reinforcement)
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6.4.2 ANOVA and the Effects of Factors

In order to find out statistical significance ofriaus factors like impact velocity
(A), SIC content (B), erodent temperature (C), ing@ment angle (D), stand-off
distance (E) and erodent size (F) on erosion eatalysis of variance (ANOVA)

is performed on experimental data. Table 6.23 atulel6.24 show the results of
the ANOVA with the erosion rate of bamboo-epoxy agldss-epoxy based
composites taken in this investigation. The ladummm of the table indicates
percentage contribution of the control factors dhdir interactions on the

performance output i.e erosion rate [224].

From Table 6.23, it can be observed for the Si€dibamboo-epoxy composites
that impingement angle (p=0.255), impact velocity £ 0.301), erodent
temperature (p = 0.419) and erodent size (p=0.488¢ considerable influence
on erosion rate. The interaction of impact veloeity SiC content (p=0.612) as
well as impact velocityand erodent temperature (p=0.640) show significant
contribution on the erosion rate. The remainingdiesc and interactions have
relatively less significant contribution.

Table 6.23 ANOVA table for erosion rate
(For SiC filled bamboo-epoxy composites)

Source | DF| SeqSS AdjS5 AdjMS F P
A 2 98.31 98.31 49.16 2.32 0.301
B 2 29.01 29.01 14.51 0.69 0.593
C 2 58.65 58.65 29.33 1.39 0.419
D 2 123.61 | 123.61 61.80 2.92 0.255
E 2 5.34 5.34 2.67 0.13 0.888
F 2 50.66 50.66 25.33 1.20 0.455

AxB 4 69.84 69.84 17.46 0.83 0.612
AxC 4 63.46 63.46 15.87 0.75 0.640
BxC 4 39.88 | 39.88 9.97 0.47 0.765
Error 2 42.32 | 42.32 21.16

Total 26 581.07

"DF: degree of freedoni’Seq SS: sequential sum of squaféglj. SS: extra
sum of squaréd Seq MS: sequential mean squaress: F-test,”P: percent
contribution
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Similarly, from Table 6.24, it can be observed teabdent temperature (p =
0.054), SiC content (p=0.091), impact velocity (©.484), impingement angle
(p = 0.545) and erodent size (p = 0.607) have denable influence on erosion
rate. The interaction of SiC content and erodemiptrature (p = 0.178) as well
as impact velocity and SiC content (p = 0.376msbk@nificant contribution on

the erosion rate while the remaining factor andrattions have relatively less

significant contribution.

Table 6.24 ANOVA table for erosion rate
(For SIC filled glass-epoxy composites)

Source | DF| SeqSS AdjS5 AdjMH F P
A 2 13.396 13.396 6.698 4.42 0.184
B 2 30.234 | 30.234 15.117 9.98 0.091
C 2 53.519 | 53.519 26.760 17.66 0.054
D 2 2.531 2.531 1.265 0.84 0.545
E 2 0.540 0.540 0.270 0.18 0.849
F 2 1.962 1.962 0.981 0.65 0.607

AxB 4 11.412 11.412 2.853 1.88 0.376
AxC 4 10.944 10.944 2.736 1.81 0.387
BxC 4 29.476 | 29.476 7.369 4.86 0.178
Error 2 3.030 3.030 1.515

Total 26 | 157.043

" DF: degree of freedoni"Seq SS: sequential sum of squaréslj. SS: extra
sum of square®® Seq MS: sequential mean squaress: F-test,”*P: percent
contribution

6.4.3 Confirmation Experiment

The confirmation experiment is performed for bamlepoxy composites by
taking an arbitrary set of factor combinationBAC,D,F,. Here, factor E has
been omitted since it has the least effect on pedace characteristic as evident
from Table 6.23. Similarly, for the glass-epoxy qmsites, the confirmation
experiment is performed by taking another arbitrsey of factor combination
A,B3C,DsF,. Here also, factor E has been omitted for beimgléast significant
(Table 6.24). The estimated S/N ratio for erogiate can now be calculated

with the help of following prediction equation:
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ﬁBF—SiC:T +(K§—T) +(§3 -7 +[(,§3§3 -7) —(Ks -T) —(ES -+ (El_f)

+[(§3C1 -T) _(§3 _T) _(Cl —-_l_)] + (52 —T) + (I_:Z —T) 613
Mgisic =T +HA, T +(B3-T)+[(A,B3-T)-(A,-T)-(B3-T)]+ (C,-T)

*(B3C, M -(B3~T)=(C, -+ (D5 -T)+(F, - T) (614)
ersicGESIC: Predicted average for SiC filled bamboo fiber baaed glass

fiber based composites respectively.

T -Overall experimental average

A,,A; B,;,C,,C,,D,,D,andF, : Mean response for factors and interactions at

designated levels.

By combining like terms, the equation reduces to

A new combination of factor levels,AAs;, Bs, C;,C,, Dy, D3 and k is used to
predict erosion rate through prediction equationd ait is found to
beﬁBF—SiC =-50.2095B and gEsic = -48.703B respectively.

For each performance measure, an experiment isuctet for the same set of
factor combinations and the obtained S/N ratio ealls compared with that
obtained from the predictive equation as shown abld 6.25. The resulting
model seems to be capable of predicting erosiantoata reasonable accuracy.
An error of 2.42% and 1.1% for the S/N ratio of erosion rate is observed for
bamboo-epoxy composites and glass epoxy compassgectively. However,
the error can be further reduced if the number ehsarements is increased.
This validates the mathematical model for predgtithe measures of

performance based on knowledge of the input paremet
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Table 6.25 Results of the confirmation experiments for ernsate

Optimal control parameters| Optimal control parameters
(For bamboo-epoxy compositeg)-or glass-epoxy composites)

Prediction ExperimentalPrediction Experimental
Level A; B;C1DsF A3 B3C.D,F, A, B3CoDsF | A, B3sCoDsF,
S/N ratio for -50.2095 -51.4269 -48.7032 -49.2661
Erosion rate(dh)

6.4.4 Effect of Impingement Angle and Erodent Temperature on Erosion

The erosion wear rates of SiC filled bamboo-epaxy glass-epoxy composites
as a function of impingement angle are shown inuigg.40 at constant impact
velocity (54m/sec), erodent temperature (50°Chdsaiff distance (75mm) and
erodent size (450m). It can be seen that the presence of SiC redheewear
rate of the composites quite significantly. Furttveile the maximum erosion is
noticed to be occurring at impingement angle of &@°the unfilled bamboo-
epoxy composite and it occurs at impingement aofiés° for composites filled
with SiC. This shift in the erosion behavior is iadication of loss of ductility
and is obviously attributed to the brittle nature bmmboo fibers and SiC
particulates embedded in the matrix body. Similandyviour is also shown by
glass fiber reinforced epoxy composites filled wBiC particles. It is also
important to note that the composites with highberf content exhibit better

erosion resistance.

Similarly, the variation of erosion rate of unfdl@nd SiC filled composites with
erodent temperature at constant impact velocityn{Séc), impingement angle
(90°), stand-off distance (75mm) and erodent sig(m) is shown in Figure
6.41. Erosion trials are conducted for seven diffieerodent temperatures under
normal impact condition. From this figure, it caa bbserved that for all the
composite samples, the erosion rates remain alomagtected by the change in
erodent temperature from ambient to 40°C. The etiEerodent temperature on
erosion is significant above 40°@nd the rate of increase in erosion rate is

greater at higher temperatures. The observati@nsianilar as in the cases of red
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mud, copper slag and alumina filled bamboo-epoxywadi as glass-epoxy
composites.

500
—0— Bamboo-epoxy with Owt%SiC ]
450 1  —a— Bamboo-epoxy with 10wt% SiC Peak erosion for
—— Bamboo-epoxy with 20wt% SiC unfilled composites
4001 _e— Glass-epoxy with Owt% SiC
R 350 A Glass-epoxy with 10wt%SiC
=) —— Glass-epoxy with 20wt% SiC
£ 3001
9
© 250
&
S 200
o
w 150
100
Peak“erosion for SiC
50 : .
filled composites
O I T T T T

15 30 45 60 75 90
Impingement angle (Degree)

Fig. 6.40 Effect of impingement angle on the erosion wear raf the
composites

300
250
g
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g
® 150
IS —0— Bamboo-epoxy with Owt% SiC
% 100 —— Bamboo-epoxy with 10wt% SiC
0 —— Bamboo-epoxy with 20wt% SIC
50 —e— Glass-epoxy with Owt% SiC
—— Glass-epoxy with 10wt% SiC
—— Glass-epoxy with 20wt% SiC
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30 35 40 45 50 55 60

Erodent temperature (Deg.celcius)

Fig. 6.41 Effect of erodent temperature on the erosion wede of the
composites
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6.4.5 Erosion Efficiency

The values of erosion efficiencies of these contpsesitalculated using Eq. (5.2)
IS given in Table 6.26 for bamboo-epoxy compos#érd Table 6.27 for glass-
epoxy composites along with their filler contentdamperating conditions. The
erosion efficiencies of these composites under abrmpact (norma) Vary from

3 to 6%, 6-9% and 9-12% for impact velocities 6%0/$H4m/sec and 43m/sec
respectively.

Table 6.26 Erosion efficiency of SiC filled bamboo-epoxy coosfies

Expt. | Impact Density of Hardness of Erosion Erosion
No. | Velocity | eroding material eroding materia rate efficiency
(U) m/sec|  (p) kg/n?’ (H) (E) mg/kg| (n)%
1 43 1243 33.13 150.00 16.9641
2 43 1243 33.13 133.33 5.0265
3 43 1243 33.13 250.00 7.0683
4 43 1297 35.07 300.00 9.5108
5 43 1297 35.07 230.00 5.4684
6 43 1297 35.07 200.00 19.0206
7 43 1345 38.50 211.11 6.4102
8 43 1345 38.50 325.00 39.4739
9 43 1345 38.50 390.00 15.7905
10 54 1243 33.13 277.77 6.6401
11 54 1243 33.13 225.00 4.0337
12 54 1243 33.13 290.00 20.7963
13 54 1297 35.07 140.00 2.1106
14 54 1297 35.07 233.33 14.0706
15 54 1297 35.07 487.50 9.7999
16 54 1345 38.50 312.50 24.06772
17 54 1345 38.50 220.00 5.6481
18 54 1345 38.50 200.00 3.8507
19 65 1243 33.13 175.00 2.1653
20 65 1243 33.13 390.00 19.3025
21 65 1243 33.13 322.22 5.3162
22 65 1297 35.07 244.44 7.0650
23 65 1297 35.07 425.00 5.8965
24 65 1297 35.07 360.00 3.7458
25 65 1345 38.50 430.00 7.6192
26 65 1345 38.50 233.33 3.1006
27 65 1345 38.50 362.50 19.2684
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Table 6.27 Erosion efficiency of SiC filled glass-epoxy consfies

Expt.| Impact Density of Hardness of | Erosion | Erosion
No. | Velocity | eroding material eroding materia rate efficienc
(U) m/sec|  (p) kg/n (H) (Enmg/kg| y ()%
1 43 1530 24.80 204.348 14.054
2 43 1530 24.80 342.029 7.841
3 43 1530 24.80 413.72( 7.113
4 43 1620 38.07 202.899 6.744
5 43 1620 38.07 180.145 4.49(
6 43 1620 38.07 183.892 18.336
7 43 1742 46.19 250.435 7.044
8 43 1742 46.19 248.696 27.980
9 43 1742 46.19 213.853 8.020
10 54 1530 24.80 226.087 3.286
11 54 1530 24.80 353.623 3.855
12 54 1530 24.80 382.147 16.665
13 54 1620 38.07 173.913 2.749
14 54 1620 38.07 284.058 17.960
15 54 1620 38.07 293.167 6.179
16 54 1742 46.19 237.681 16.956
17 54 1742 46.19 281.159 6.686
18 54 1742 46.19 263.132 4.693
19 65 1530 24.80 163.768 1.232
20 65 1530 24.80 359.420 10.818
21 65 1530 24.80 443.712 4.452
22 65 1620 38.07 187.536 5.683
23 65 1620 38.07 295.652 4.30(
24 65 1620 38.07 298.152 3.252
25 65 1742 46.19 289.855 4.757
26 65 1742 46.19 347.826 4.281
27 65 1742 46.19 349.283 17.197

The theoretical erosion wear rate (E of the SiC filled bamoo-epoxy
composites are calculated using Eq. (5.13). Thedees are compared with
those obtained from experiments(f) conducted under similar operating
conditions. Table 6.28 presents a comparison amibeg theoretical and
experimental results and the associated percergages for both SiC filled
bamboo-epoxy as well as glass-epoxy composites.€eftms in experimental
results with respect to the theoretical ones li¢ghim range 0-14%. The erosion

efficiencies of the composites under the presemtysindicate that at low impact
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speed the erosion response is semi-duct#el@-100%). On the other hand at
relatively higher impact velocity the compositeshiext ductile §; < 10%)

erosion behavior [225].

Table 6.28 Comparison of theoretical and experimental erosaes along with
the percentage errors for SiC filled bamboo-epaxy glass-epoxy composites

Expt. Erbth (b) Erbexpt.(b) Error (b) Erth (g) Erexpt.(g) Error (g)
No. | (mg/kg) | (mg/kg) | (%) (mg/kg) | (mg/kg) (%0)

1 170.087] 150.00 11.809¢ 231.71 204.348 11.809
2 151.193] 133.33 11.8144 387.85 342.029 11.814
3 265.18 250.00 5.7245 479.50 413.7R0 13.719
4 326.731| 300.00 8.1812 185.71 202.899 9.254
5 226.013| 230.00 1.7640 166.20 180.145 8.388
6
7
8

)

180.577| 200.00 10.7561 193.54 183.892 4.988
193.400] 211.11 9.1569 283.51 250.435 11.667
362.229| 325.00 10.277Y 232.83 248.696 6.811
9 379.749| 390.00 2.6994 244.66 213.853 12.594
10 | 281.180, 277.77 1.2126 236.07 226.087 4.230
11 | 239.198] 225.00 5.9354 323.05 353.623 9.462
12 | 286.586, 290.00 1.1917 338.52 382.147 12.887
13 | 133.019] 140.00 5.2483 161.01 173.913 8.009
14 | 239.257| 233.33 24771 295.62 284.058 3.912
15 | 482.372] 487.50 1.0630 310.22 293.167 5.497
16 | 332.310] 312.50 5.9613 226.69 237.681 4.848

S

0

NN[SN[RF ORI

17 | 223.555] 220.00 1.5907 279.02 281.159 0.76
18 | 182.515/ 200.00 9.5801 240.12
19 | 162.101] 175.00 7.9576 160.04
20 | 372.462| 390.00 4.7088 327.57
21 | 294.323| 322.22 9.4781 395.00
22 | 235.580] 244.44 3.761(0 173.32
23 | 406.846] 425.00 4.4621 267.80
24 | 334.1/8] 360.00 7.7271 293.94
25 | 395.616] 430.00 8.6917 264.45
26 227.29 233.33 2.6574 345.03
27 | 370.715] 362.50 2.2159 338.96

263.132 9.58
163.768 2.329
359.420 9.721
443.712 12.331
187.536 8.196
295.652 10.397
298.152 1.430
289.855 9.605
347.826 0.810
349.283 3.043

QO[NP [OIN[N[O|O|O1N[O]h~]O1

o[Olw|o

6.4.6 Surface Mor phology
Figure 6.42 shows scanning electron micrographSi6ffilled bamboo-epoxy
composite surface eroded at impact velocity of 3dem It is evident from the

micrographs (Figures 6.42a and 6.42b) that the nmahteemoval in bamboo-
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epoxy composite with 10wt% SIiC is dominated by fitasdeformation.
Formation of micro-cracks and embedment of fragmseritsand particles is
evident from the micrograph in Figure 6.42c showithg erosion at 60°

impingement angle.

—~

Fig. 6.42 SEM micrographs of the eroded bamboo-epoxy comgm$ited with
SiC

However, during the normal impact the largest pérthe initial energy of the

erodent is converted into heat and hence matrsoftened which resulted in
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embedment of sand particles (Figure 6.42d). Themdicfes control further
erosion of the target surface. Figures 6.42e ad@f6show micrographs of
eroded surfaces of composites with 20 wt% SiC.ndmal impingement angle,
removal of matrix along the length of the fiber autbsequent exposure of fibers
can be seen from the micrograph (Figure 6.42e)natingpact velocity of
54m/sec. At higher impact velocity (65m/sec), thhedent particles possess
higher kinetic energy that results in increasedtmaleformation and removal of

matrix leading to protrusion of fibers out frone timatrix (Figure 6.42f).

Atay bf SiC particulgtes
ay, parti

.
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Fig. 6.43 SEM micrographs of the eroded glass-epoxy comg®s$ited with SiC

Scanning electron micrographs of the worn surfaifeboth unfilled and SiC
filled glass-epoxy composites are shown in Figuk86The SEM image of the
composite without filler eroded at an impingemengla of 30° and an impact
velocity of 43 m/sec is shown in Figure 6.43a. Wimapacting at low angles,
the hard erodent particles penetrate the surfatteecsamples and cause material
removal by micro-cutting and micro-ploughing (Figsir6.43a and 6.43b). And it
is possible to investigate the particle flow diresteasily from the wear trace of
the particles, which are indicated by black arrowshe micrographs. Figures
6.43c and 6.43d illustrate the worn surfaces of f8li€ composites subjected to
higher erodent impact velocity of 54 m/sec. Theserographs show the
distribution of filler particles in the matrix arfdatures like surface roughening.
Figure 6.43e shows a portion of the eroded surféoere matrix covering the
fiber seems to be chipped off and the crater tluméd shows an array of
almost intact fibres. Similarly, in Figure 6.43ffiete is local removal of matrix
material from the impacted surface resulting ine@xpe of fibers to the erosive
environment. Figures 6.43g and 6.43h show the ed@oBbres getting
fragmented and dislodged from the matrix body legdb a greater degree of
surface damage. This is a case of the erodentlesrtstriking aggressively the
composite surface at high impingement angle wigghhmpact velocity. Due to
repeated impact of the erodent carrying higher ggnethe fibers beneath the
matrix layer break and the SiC patrticles in thermdtody and along the matrix-

fiber interface also undergo fragmentation resgliim loose debris. The matrix
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shows multiple fractures and material removal. Ekposed fibres are broken

into fragments and thus can be easily removed frmworn surfaces.

6.5 Relative Effect of Different Fillerson Erosion Response

Table 6.29 provides the erosion wear rates forb#@boo-epoxy composites
with the four different filler materials.
Table 6.29 Comparison of erosion rates of bamboo-epoxy congmsivith

different fillers

Expt. A B C D E F E; (b) E; (b) E: (b) E; (b)
No. | (m/sec) (%) (°C) (Degree) (mm) | (um) | (mg/kg) | (mg/kg) (mg/kg) | (mg/kg)

Red Copper sl{ Alumina SiC

mud

1 43 0 40 30 65 300 150.000{ 150.00 150.00| 150.0d
2 43 0 50 60 75 45( 133.330f 133.33 133.33| 133.33
3 43 0 60 90 85 60(¢ 250.000{ 250.00 250.00| 250.00
4 43 10| 40 60 75 60(¢ 150.000| 237.50 275.00| 300.00
5 43 10| 50 90 85 30¢ 201.000{ 139.00 360.00| 130.0C
6 43 10| 60 30 65 45( 137.220| 233.33 244.44| 200.00
7 43 20| 40 90 85 450 200.000{ 211.11 144.44| 211.11
8 43 20| 50 30 65 60( 350.000( 287.50 200.00| 325.00
9 43 20| 60 60 75 30(¢ 140.000{ 170.00 300.00| 390.0C
10 54 0 40 60 85 45Q 277.770( 277.77 277.77| 277.771
11 54 0 50 90 65 60(¢ 225.000| 225.00 225.00| 225.0C
12 54 0 60 30 75 30(¢ 290.000( 290.00 290.00| 290.0d
13 54 10| 40 90 65 30( 165.000{ 172.00 160.00| 140.0d
14 54 10| 50 30 75 45( 152.220| 244.44 264.44 233.33
15 54 10| 60 60 85 60( 182.500| 187.50 175.00| 487.50
16 54 20| 40 30 75 60( 125.000f 262.50 300.00f 312.5¢
17 54 20| 50 60 85 30(¢ 320.000{ 240.00 230.00| 220.0C
18 54 20| 60 90 65 45( 211.111| 133.33 166.66| 200.00
19 65 0 40 90 75 60¢ 175.000f 175.00 175.00f 175.00
20 65 0 50 30 85 30(¢ 390.000| 390.00 390.00f 390.04
21 65 0 60 60 65 45( 322.220| 322.22 322.22| 322.22
22 65 10| 40 30 85 45( 244.440| 255.55 344.44| 244.44
23 65 10| 50 60 65 60( 215.000f 262.50 325.00f 425.00
24 65 10| 60 90 75 30(¢ 250.000{ 247.00 340.00f 360.04
25 65 20| 40 60 65 30( 330.000| 360.00 390.00| 430.00
26 65 20| 50 90 75 45( 155.550/ 200.00 166.66| 233.33
27 65 20| 60 30 85 60( 275.000f 287.50 312.50f 362.50
Mean erosion rate 222.865 | 225.817 | 243.403| 261.40
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Table 6.30 Comparison of erosion rates of glass-epoxy come®sivith
different fillers

Expt. A B C D E F E; (b) E; (b) E: (b) E (b)
No. |(m/sec) (%) (°C) (Degree) (mm) | (um) | (mg/kg) | (ma/kg) | (mg/kg) | (ma/kg)
Red mud| Copper sl§ Alumina SiC
1 43 0 40 30 65 300 204.348 | 204.348 | 204.348| 204.348
2 43 0 50 60 75 450 342.029 | 342.029 | 342.029| 342.029
3 43 0 60 90 85 600 413.720 | 413.720 | 413.720| 413.72(
4 43 10| 40 60 75 600 256.522 | 273.913 | 220.290| 202.899
5 43 10| 50 90 85 3004 376.124 | 284.058 | 183.333| 180.145
6 43 10 60 30 65 450 266.667 | 389.247 | 197.134| 183.892
7 43 20| 40 90 85 450 222.663 | 163.768 | 289.855| 250.435
8 43 20| 50 30 65 600 121.739| 234.319 | 173.913| 248.696
9 43 20 60 60 75 300 175.362 | 239.192 | 207.891| 213.853
10 54 0 40 60 85 450 226.087 | 226.087 | 226.087| 226.087
11 54 0 50 90 65 600 353.623 | 353.623 | 353.623| 353.623
12 54 0 60 30 75 30Q 382.147 | 382.147 | 382.147| 382.147
13 54 10| 40 90 65 300 139.130| 307.246 | 150.725| 173.913
14 54 10 50 30 75 450 157.342 | 156.522 | 289.855| 284.058
15 54 10 60 60 85 60(¢ 191.304 | 200.197 | 301.159| 293.167
16 54 20| 40 30 75 600 140.192 | 204.348 | 226.087| 237.681
17 54 20 50 60 85 300 274.638 | 214.493 | 376.812| 281.159
18 54 20 60 90 65 450 226.087 | 276.371 | 271.053| 263.132
19 65 0 40 90 75 600 163.768 | 163.768 | 163.768| 163.768
20 65 0 50 30 85 300 359.420| 359.420 | 359.420| 359.42(¢
21 65 0 60 60 65 45(Q 443.712 | 443.712 | 443.712| 443.712
22 65 10| 40 30 85 450 173.913 | 121.739 | 202.899| 187.536
23 65 10 50 60 65 60C¢ 198.193 | 197.101 | 161.739| 295.652
24 65 10 60 90 75 300 168.116 | 221.890 | 142.973| 298.152
25 65 20| 40 60 65 30( 318.152 | 144.928 | 144.928| 289.855
26 65 20 50 90 75 450 214.493 | 202.899 | 284.058| 347.826
27 65 20 60 30 85 600 295.652 | 167.892 | 293.158| 349.283
Mean erosion rate | 252.042 | 255.147 | 259.508| 276.673

The values are obtained by conducting 27 erositalstras per the pre-
determined experimental scheme. The values of arosites for experiment
numbers 1,2,3,10,11,12,19,20 and 21 in the TaB® &.e same in the respective
rows as they represent composites with out anycpdate filler. The mean value
of erosion rates of composites with each individiiiedr has been calculated.
On comparing these mean values it is found thatctmposite with red mud
gives the minimum erosion rate. Among the two comemal fillers, however,

alumina is found to be better in this respect asallimina filled bamboo-epoxy
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composites exhibit a lower mean erosion rate agpeoed to the silicon carbide

filled composites.

A similar comparison among the particulate fillevéh respect to the erosion
performance has been made for the glass-epoxy itap@s well (Table 6.30).
It is noted in this case also that the compositéh ved mud have minimum
mean erosion rate. It is interesting to note tedtmud and copper slag, in spite
of being industrial wastes, show lower erosion gagés compared to the

conventional fillers i.e. alumina and SiC.

Further, among the four filler materials considefed this study, red mud
emerges as the best candidate to be used in epsry ltomposites, irrespective

of fiber type, as far as the resistance to soliigla erosion is concerned.

Chapter Summary
This chapter has provided:
1. The results of erosion tests for bamboo-epoxy ardsseepoxy
composites with different particulate fillers ameitr comparison
2. The analysis of the experimental results using €hgmethod
3. The effect of impingement angle and erodent tentperaon erosion
response of composites
4. The surface morphologies of eroded composites Bkg
5. The comparison of different particulate fillers vitegard to the erosion

performance of composites under similar test caorbt

The next chapter presents the summary of reseandings and conclusions
drawn from this investigation along with recommemulezs for potential

applications and future work.
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Chapter 7
SUMMARY AND CONCLUSIONS

The research reported in this thesis broadly ctsefstwo parts:

o The first part has provided the description of tmaterials used, the
experimental details and various mechanical charngtits of particulate
filled bamboo-epoxy hybrid composites. An assesgnof bamboo fiber
as a potential reinforcing element has been madecdiyparing the
properties and performance of bamboo based comgositth those of a

similar set of glass fiber reinforced composites.

o The second part has reported the effect of fidierent particulate fillers
l.e. red mud, copper slag, alumina and silicon idarlon the solid particle
erosion characteristics of these composites. Whéeprimary focus of this
research has remained on erosion wear performahdsmrmboo based
hybrid composites, it has also attempted, at theesame to open up a new
avenue for value added utilisation of the two indakwastes (red mud and

copper slag).

7.1 Summary of Research Findings

The performance of an engineering material is jddbg its properties and
behaviour under tensile, compressive, shear argf static or dynamic loading
conditions in both normal and adverse test enviems) This information
becomes essential for selecting the proper materelgiven application as well
as for designing a composite structure with thectetl material. To this end, the
present work has reported the performance of a cless of polymer based
hybrid composites with emphasis on the generaldseobserved in their
properties and behaviour. A wealth of property da#s been generated for a
series of bamboo-epoxy and glass-epoxy composited fvith four distinctly

different kinds of particulates. These materialpamies have been determined
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by conducting physical and mechanical tests undamtrolled laboratory

conditions.

By incorporating the chosen particulate fillersointhe bamboo/glass-fiber
reinforced epoxy, synergistic effects, as expeaexl achieved in the form of
modified mechanical properties and improved erogiear resistance. Inclusion
of fiber in neat epoxy improved the load bearingamaty (tensile strength) and
the ability to withstand bending (flexural strengtf the composites. But with
the incorporation of particulate fillers, the tdasstrengths of the composites are
found to be decreasing in most of the cases. Téddirgg in strength may be
attributed to two reasons: one possibility is tin&t due to the presence of pores
at the interface between the filler particles aheé imatrix, the interfacial
adhesion may be too weak to transfer the tensiksst the other is that the
corner points of the irregular shaped particula¢gssilt in stress concentration in

the matrix body.

Hardness values have been found to have improvedriably for all the
composites on addition of particulate fillers, gpective of the type of filler. The
reduction in tensile strength and the improvemamt hardness with the
incorporation of fillers can be explained as followinder the action of a tensile
force, the filler-matrix interface is vulnerable webonding depending on
interfacial bond strength and this may lead to eakrin the composite. But in
case of hardness test, a compression or presgiegssis in action. So the
polymeric matrix phase and the solid filler phasauld be pressed together and
touch each other more tightly. Thus, the interfaae transfer pressure more
effectively although the interfacial bond may bepadrhis might have resulted

in an enhancement of hardness.

In the present investigation, it is noticed tha¢ tomposites with particulate
fillers have higher void fraction compared to timdilled composites. Among the
particulate filed bamboo-epoxy composites, leastu® of void content is

recorded for the composites with silicon carbidkerfi However, for the glass-
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epoxy composites, minimum void fraction is noted ttee composites with red
mud filler. The presence of pores and voids in ttmposite structure
significantly affect some of the mechanical projsrand even the performance
of the composites. Higher void contents usually mieaver fatigue resistance,
greater susceptibility to water penetration andthve@ng. However, presence of

void is unavoidable in composite making particylanrough hand-lay-up route.

The erosion wear rates of particulate filled bambpoxy composites are found
to be lower than those of the unfilled compositedar similar test conditions.
This has led to the conclusion that the presengaudiculate fillers improves the
erosion wear resistance of fiber reinforced epoomposites. The reduction in
material loss in these particulate filled compasitan be attributed to two
reasons. One is the improvement in the bulk haslimésthe composite with
addition of these hard filler particles. Secondlyying the erosion process, the
filler particles absorb a good part of the kinedind thermal energy associated
with the erodent. This results in less amount ofrgy being available to be
absorbed by the matrix body and the reinforcing@rfiphase. These two factors
together lead to the enhancement of erosion wessstaace of the composites.
Similar trend in the erosion behaviour is noticddoafor the glass-epoxy
composites although bamboo based composites exkilgierior erosion
resistance as compared to composites with glasssfiobnder identical test

conditions.

The erosion wear rates of the composites are fdande dependent on the
impingement angle. The findings of this researchthir suggest that, this
dependency is also influenced by the nature offitteg material. In fact, the

angle of impact determines the relative magnitudin® two components of the
impact velocity namely, the component normal toghdace and parallel to the
surface. The normal component will determine homglthe impact will last (i.e.

contact time) and the load. The product of thistaontime and the tangential

(parallel) velocity component determines the amairdliding that takes place.
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The tangential velocity component also providesi@as loading to the surface,
which is in addition to the normal load that thermal velocity component
causes. Hence, as this angle changes the amoahdiofy that takes place also
changes the nature and magnitude of the stressnsy&oth of these aspects
influence the way a composite wears out. This sttithrefore implies that
composites with fillers of different type and camttevould exhibit different

angular dependency.

7.2 Conclusions
This analytical and experimental investigation onartigulate filled

bamboo/glass-epoxy composites has led to the foilpwspecific conclusions:

1. Successful fabrication of multi-component hybrid nmiEo/glass-epoxy
composites with reinforcement of conventional cecarilers such as
Al,O3 and SiC is possible. Industrial wastes like reddrand copper slag
can also be gainfully utilized as fillers in compesnaking.

2. Incorporation of these fillers modifies the tensflexural, impact and inter-
laminar shear strengths of the composites bothh&mnboo as well as for
glass fiber reinforcement. The tensile modulus,rattardness and density
of the composites are also greatly influenced ey tifpe and content of
fillers. The particulate filled bamboo-epoxy compes possess higher
hardness values compared to the glass-epoxy cotepasespective of the
filler type. However, their strength properties ace found as good as those
of the glass fiber reinforced composites. This gs¢g that bamboo fiber
has the potential to replace glass fiber in som@iagiions that do not
require very high load bearing capabilities. Howewehile fabricating a
composite of specific requirements, there is a niwdthe choice of
appropriate fiber and filler material for optimigithe composite system.

3. A theoretical model based on conservation of particnetic energy and
thermal energy during multiple impact erosion pssckas been developed.

To overcome the shortcomings of the existing thimak models an
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‘erosion efficiency’ term has been introduced. dtdemonstrated that if
supported by an appropriate magnitude of erosi@niefcy, the proposed
model can perform well for polymer based hybrid posites for normal as
well as oblique impacts.

4. Erosion characteristics of these composites carsuoeessfully analyzed
using Taguchi experimental design scheme. Taguathod provides a
simple, systematic and efficient methodology fa #malysis of the control
factors. Significant factors affecting the erosiaate of composites are
identified through successful implementation of AW It is found that
impact velocity and impingement angle are the twastsignificant factors
for all bamboo-epoxy composites except the red filledi ones for which
impact velocity and stand-off-distance are the petars most significantly
influencing the erosion rate. Similarly, the anayseveals that for all the
glass-epoxy composites considered in this invetsbigairrespective of the
filler type, the two most significant factors cahtrting to the erosion are
filler content and erodent temperature. It is natgiw that while the
factors (impact velocity, impingement angle, stafiddistance) identified
as significant for bamboo-epoxy composites are aipey variables, the
significant factors (filler content, erodent termguere) obtained for the
glass-epoxy composites are material variables.

5. This study reveals the semi-ductile response fostnod these particulate
filled bamboo/glass-epoxy composites with respecerosion wear. The
peak erosion rate is found to be occurring at 6@fingement angle for the
unfilled composites as well as for red mud and a@hanfilled composites
with both bamboo as well as glass reinforcemeng iftpingement angles
corresponding to peak erosion for SiC and copaay lled composites are
75° and 45° respectively. The erosion rate of latise composites is also
affected by the erodent temperature.

6. The erosion efficiencyn(, in general, characterizes the wear mechanism of
composites. The particulate filled composites untteés study mostly

exhibit semi-ductile erosion responsg £ 3 - 48%) for low impact
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velocities and = 1 - 20%) for relatively high impact velocity éspective
of the fiber type.

7. Several wear mechanisms have been observed mipioalp which
explained the way bamboo and glass fibers respmedosion. For bamboo
fiber composites, severe deterioration of both rfia@d matrix, micro-
ploughing in the matrix, transverse shearing, ptng and fibrillation of
fiber are identified as the predominant damage mu@sims. Whereas fiber-
matrix debonding, fiber-pulling and fracture are haracteristic features
of damage in glass fiber based composites.

8. The presence of particulate fillers in these compssmproves their erosion
wear resistance and this improvement depends otyfigeand content of
the fillers. It is interesting to note that red marad copper slag, in spite of
being industrial wastes, show lower erosion ratescampared to the
conventional fillers i.e. alumina and SiC. Furthemong the four filler
materials considered in this study, red mud emeagdbe best candidate to
be used in epoxy based composites, irrespectiviberf type, as far as the

resistance to solid particle erosion is concerned.

7.3 Recommendations for Potential Applications

The particulate filled bamboo/ glass-fiber reinfdc hybrid composites
fabricated and experimented upon in this invesbgatare found to have
adequate potential for a wide variety of applicagigparticularly in erosive

environment. When solid particle erosion is not firedominant degrading
factor, only bamboo-epoxy or glass-epoxy composiégblout any particulate

filler can be recommended. Manufacturing of liglgight sports goods such as:
cricket bat, tennis racquets etc. are few such plesn Of course, the weight
fraction of fiber in the composite is to be decidedm the view point of

required strength.

If the place of use is erosive in nature then paldie filled bamboo-fiber

reinforced composites are to be preferred due eéo tleasonably high erosion
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resistance. The present study has establishedethatud and copper slag can be
excellent candidates as particulate fillers in ybcomposites. When cost
reduction is the prime consideration, industriaktea like red mud and copper
slag can effectively replace the conventional agldtively expensive materials
like Al,Os; and SiC. Their use may be suggested in applitatike engineering
structures in dusty environment and low cost bonddmaterials in deserts.
However, the type and content of fillers are todeeided judiciously keeping
the strength and intensity of erosion attack indnidse of these composites, in
general, may also be recommended for applicatidespartition boards, false
ceilings, pipe lines carrying coal dust, exhaustlftades, nozzles and diffusers,

light weight vehicles etc.

7.4 Scope for Future Work
The present research work leaves a wide scopeaitioref investigators to explore
many other aspects of such hybrid composites. Smnemmendations for
future research include:
» Study on the response of these composites to @thar modes such as
sliding and abrasion.
» Possible use of other ceramic/metallic fillers,ypetric resins and natural
fibers in the development of new hybrid composites.
» Cost analysis of these composites to assess tbefromic viability in

industrial applications.

k*kkkkkkk
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