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Abstract

Iris is one of the most reliable biometric trait due to its stability and randomness.

Conventional recognition systems transform the iris to polar coordinates and perform

well for co-operative databases. However, the problem aggravates to manifold for

recognizing non-cooperative irises. In addition, the transformation of iris to polar do-

main introduces aliasing effect. In this thesis, the aforementioned issues are addressed

by considering Noise Independent Annular Iris for feature extraction. Global feature

extraction approaches are rendered as unsuitable for annular iris due to change in

scale as they could not achieve invariance to transformation and illumination. On the

contrary, local features are invariant to image scaling, rotation and partially invariant

to change in illumination and viewpoint. To extract local features, Harris Corner

Points are detected from iris and matched using novel Dual stage approach. Harris

corner improves accuracy but fails to achieve scale invariance. Further, Scale Invari-

ant Feature Transform (SIFT) has been applied to annular iris and results are found

to be very promising. However, SIFT is computationally expensive for recognition due

to higher dimensional descriptor. Thus, a recently evolved keypoint descriptor called

Speeded Up Robust Features (SURF) is applied to mark performance improvement in

terms of time as well as accuracy.

For identification, retrieval time plays a significant role in addition to accuracy.

Traditional indexing approaches cannot be applied to biometrics as data are un-

structured. In this thesis, two novel approaches has been developed for indexing iris

database. In the first approach, Energy Histogram of DCT coefficients is used to

form a B-tree. This approach performs well for cooperative databases. In the second

approach, indexing is done using Geometric Hashing of SIFT keypoints. The latter

indexing approach achieves invariance to similarity transformations, illumination and

occlusion and performs with an accuracy of more than 98% for cooperative as well as

non-cooperative databases.
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Chapter 1

Introduction

The terrorist attacks in US on 11 September 2001 has focussed more attention on

personal identification. In addition to this, identification is also required in large range

of civilian applications like passports, driver licenses, banking, refraining imposters

from hacking into networks, stealing mails etc. There exists traditional methods

for authentication like (i) token based systems: where imposters are prevented from

accessing protected resources using ID cards, smart cards etc, (ii) knowledge based

systems: where identity is claimed using piece of information like user id and password

associated with it. Some systems use combination of token based and knowledge based

approaches. However, there are various disadvantages inherent to traditional means of

authentication. The problem with token based systems is that the possession could be

lost, stolen, forgotten or misplaced. The drawbacks of knowledge based approaches

is that it is difficult to remember passwords/PINs and easily recallable passwords

can be guessed by intruders. Thus, even the combination of knowledge and token

based systems could not satisfy security requirements [8]. Biometrics identification,

or biometrics provides a trustworthy solution to the problems faced by traditional

authentication approaches. It is inherently more reliable and capable compared to

traditional approaches.

Biometrics is the science of establishing the identity of an individual based on

physiological and behavioural characteristics. It offers reliable solution to identity

management by utilising fully automated or semi-automated schemes to recognise an

individual [9]. The primary advantage of biometrics over token based and knowledge

based approaches is that, it cannot be misplaced, forgotten or stolen. The character-

1



Introduction

Figure 1.1: Various forms of authentication. Traditional methods of authentication
using token based and knowledge based approaches (left). Use of biometrics to claim
identity (right)

istics are distinct and has capability to distinguish between authorised persons and

imposters. It is very difficult to spoof biometric systems as the person to be authen-

ticated needs to be physically present. Various forms of authentication are shown

in Figure 1.1. A generic biometric system operates by taking an input image from

the user, preprocessing the image to find region of interest, extracting features, and

authenticating an individual based on the result of comparison [10]. The modules

involved in the biometric system is given in Figure 1.2. An important issue to be con-

sidered while designing a biometric system is how a person is recognised. Depending

upon the application context a biometric system operates in two different modes [11].

In verification mode, a person is authenticated by comparing captured biometric data

with his own pre-stored template. The system conducts one to one comparison to

know whether the identity claimed by an individual is genuine or not. The concept

of authentication is based on “Am I whom I claim I am?”. The diagrammatic repre-

sentation of verification system is given in Figure 1.3 (a). During identification mode,

the system searches the entire database to find the identity of an individual. The sys-

tem conducts one to many comparison to establish the identity of an individual. The

concept of identification is based on “Who am I?”. The diagrammatic representation

2



1.1 Iris Biometrics Introduction

Preprocessing Feature Extraction
Enrollment/
Matching

Database

Enrollment

Matching &
Decision MakingSensor Module Preprocessing Module

Feature Extraction 
Module

Matching and Decision 
Making Module

Matching

Figure 1.2: Different modules of biometrics system

of identification is given in Figure 1.3 (b).

There exists several traits like face, fingerprint, iris, ear etc. Looking at the nature

of the underlying modalities, two basic categories can be identified as: Physiological

(or passive) and Behavioral (or active) biometrics. Physiological biometrics are based

on measurements and data derived from direct measurement of a part of the human

body. Fingerprint, iris, retina, hand geometry, and face recognition are leading phys-

iological biometrics. Behavioral characteristics on the other hand, are based on an

action taken by a person. Behavioral biometrics, in turn, are based on measurements

and data derived from an action, and indirectly measure characteristics of the human

body. Voice recognition, keystroke dynamics, and signature are leading behavioral

biometric technologies. A good biometric trait is characterised by use of features that

are highly unique, stable, easy to capture and prevents circumvention.

1.1 Iris Biometrics

Reliability is particularly dependent upon the ability to acquire unique features that

can be captured in an invariant fashion over change in time [12]. Although, each

biometrics has several strengths and limitations and their deployment is dependent

upon the application scenario. For example, fingerprint features remain unique over

passage of time while face features though being unique can vary significantly with

change in time and place. In addition to this, as few constraints as possible should be

imposed on the user giving biometric data. Thus, fingerprint acquisition is invasive

as it requires the user to make physical contact with the sensor.

3
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1.1 Iris Biometrics Introduction

Amongst various available biometric traits, iris plays a significant role to provide

a promising solution to authenticate an individual using unique texture patterns [3].

Taking reliability and invasiveness into consideration, iris is proved to be the most

efficient technique. From the point of view of reliability, the spatial patterns are

unique to each individual. From the point of view of invasiveness, iris is protected

internal organ whose random texture is stable throughout life. It can serve as a kind

of living password that one need not remember but always carries along. The purpose

is to provide the real-time high confidence recognition of an individual’s identity by

mathematical analysis of the random patterns that are visible within the iris of an eye

from some distance. The randomness of iris patterns has very high dimensionality and

it is one of the most reliable biometric trait available. Recognition decisions are made

with confidence levels high enough to support rapid and reliable exhaustive searches

through national level databases.

The most promising and significant feature in the eye image is iris (shown in Figure

1.4). The iris is in the form of circular ring that contains many interlacing minute

characteristics such as freckles, coronas, stripes, furrows, crypts and so on. These

minute patterns in the iris are unique to each individual and are not invasive to their

users. Inside the iris, there is a central dark circle known as pupil. The iris has muscles

that cause the pupil to constrict in bright light and dilate in dim light. This pupillary

motion controls the amount of light entering the eye. The circumference of pupil and

iris is known as pupil and iris boundary respectively. Sclera is the white portion, a

tough and leather-like tissue surrounding the iris. Apart from these features, eyeball

is covered by upper and lower eyelids. The upper eyelid is a stretchable membrane

that can form a cover over the eye. It has a great freedom of motion, ranging from

wide open to close. The lower eyelid on the other hand has a smaller degree of motion

which is caused by deformation due to eyeball [13]. An eyelash is one of the hairs

that grow at the edge of the eyelid and protects the eye from dust.

Image processing techniques can be employed to extract the unique iris pattern

from the acquired image of an eye, and generate biometric template, which can be

stored in the database. This biometric template contains a mathematical represen-
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1.2 Various Performance Measures Introduction

Eyelids

Iris

Sclera
Pupil 
Boundary Iris Boundary

Eyelashes

Light spots

Pupil

Figure 1.4: Image #: S1001R01 from CASIA database [1] that depicts the anatomy
of human eye

tation of unique texture information stored in the iris, and allows comparisons to be

made between individuals. When a subject wishes to be identified by an iris recogni-

tion system, their eye is first photographed, and then a template is created for their

iris region. This template is then compared with the other templates stored in a

database until either a matching template is found and the subject is identified, or

no match is found and the subject remains unidentified.

1.2 Various Performance Measures

The correspondence between two passwords is obtained by finding a perfect match

between two alphanumeric strings. However, biometrics very rarely compares exactly

same templates. There is difference between two templates due to scanning conditions,

change in characteristics with respect to aging, change in acquisition conditions etc.

Thus, the feature sets originating from same individual does not look same. When two

different biometric templates originating from same individual are different then it is

known as intra-class variations. However, variations that occurs between templates

originating from two different individuals are known as inter-class variations [14].

When the two biometric templates are compared to find intra-class variations

then such scores are known as similarity scores/genuine scores. However, when two
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1.2 Various Performance Measures Introduction

biometric traits are compared to find inter-class similarity, then scores are known as

imposter scores. The scores that exceed a predefined threshold value (τ), results in

false acceptance. The genuine score that lies below τ results in false rejection. Figure

1.5 shows the representation of performance measures. The commonly used measures

to evaluate the performance of biometrics system are:

1.2.1 False Acceptance Rate (FAR)

FAR is the frequency of fraudulent access to imposters claiming identity [15]. This

statistic is used to measure biometric performance when operating in the verification

mode. A false accept occurs when an individual is incorrectly matched to another

individual’s existing biometric template.

1.2.2 False Rejection Rate (FRR)

FRR is the frequency of rejections relative to people who should be correctly verified.

This statistics is used to measure biometric performance when operating in the ver-

ification mode. A false reject occurs when an individual is not matched correctly to

his/her own existing biometric template.

1.2.3 Equal Error Rate (EER)

ERR is the point where FAR is equal to FRR. In general, the lower the equal error

rate value, the higher the accuracy of the biometric system. Note, however, that most

operational systems are not set to operate at the equal error rate, so the measure’s true

usefulness is limited to comparing biometric system performance. EER is sometimes

referred to as the Crossover Error Rate.

1.2.4 Genuine Acceptance Rate (GAR)

GAR is the fraction of genuine scores exceeding the threshold τ . It is defined as

GAR = 1 − FRR (1.1)

7
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Threshold

Equal 
Error 
Rate

False 
Rejection 
Rate

False 
Acceptance 
Rate

Figure 1.5: Genuine and imposter matching score distribution of biometric database
showing various performance measures

1.2.5 Receiver Operating Characteristic (ROC) Curve

ROC curve is a comprehensive way to analyze the performance of a biometric system.

It depicts the dependence of FAR with GAR for change in the value of threshold.

The curve is plotted using linear, logarithmic or semi-logarithmic scale. In some

cases, ROC can also be represented by plotting FAR against FRR at change in the

threshold value.

1.2.6 Penetration Coefficient (PR)

In case of identification, the input feature set is compared to all the templates in the

database. Search efficiency can be achieved by partitioning the database based on

some criteria. Thus, during identification, the query template is compared to only

selected templates in the appropriate partitions. The portion of total database to be

scanned on an average for each search is called penetration coefficient PR, which can

be defined by

PR =
E

N
(1.2)

where E is the expected number of comparisons required for single input and N is
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1.3 Iris Databases used in the Research Introduction

the total number of comparisons. On encountering the match, search does not stop

but continues through the entire partition [14].

1.2.7 Bin Miss Rate (BM)

A bin error occurs when an attempt is placed in a bin which is not compared with

the correct bin for the biometric entity used, and hence will fail to match. The error

occurs due to misplacing of biometric template in the wrong bin during identification.

1.2.8 Cumulative Match Characteristic (CMC) Curve

The rank-k identification indicates the number of correct identities that occur in

top k matches. Let Rk denote the number of elements of probe set in top k, then

the probability of identification is given by I = Rk/N . CMC curve represents the

probability of identification I at various ranks K [16].

1.3 Iris Databases used in the Research

To measure the performance of automated iris biometric system, extensive experi-

ments have been carried out at various levels. This section discusses in detail about

the databases used in experiments. Experimental results are obtained on various

available datasets such as UBIRIS version 1 [17], BATH [18], CASIA version 3 [1]

and Indian Institute of Technology Kanpur (IITK) [19] to take all possible factors

into consideration like rotation, illumination, scaling and noise. These databases are

classified into cooperative and non-cooperative categories based upon the restrictions

imposed on the user while capturing images.

1.3.1 Cooperative Databases

These databases are acquired under ideal conditions with less imposition on the user.

Such databases consider less noise factors during image acquisition. BATH and CA-

SIA version 3 fall under this category.

9



1.3 Iris Databases used in the Research Introduction

BATH Database

Database available from BATH University [18] includes images from 50 subjects. For

each subject, both left and right iris images are obtained, each containing 20 images

of the respective eyes.

CASIA version 3

CASIA version 3 (CASIAV3) is acquired in an indoor environment. Most of the

images have been captured in two sessions with an interval of atleast one month. The

database comprises 249 subjects with total of 2655 images from left and right eyes.

CASIAV3 is a superset of CASIAV1. The pupil regions of all iris images in CASIAV1

were automatically detected and replaced with a circular region of constant intensity

to mask out the specular reflections [20].

1.3.2 Non-cooperative Databases

Non-cooperative databases are collected to bring noisy factors into consideration with

less constrained image acquisition environment. UBIRIS version 1 and few images of

IITK database are considered under this category.

UBIRIS version 1

UBIRIS version 1 (UBIRIS.v1) database is composed of 1877 images collected from

241 persons in two different sessions. The images for this database are acquired under

noisy conditions with less restriction on the user.

Indian Institute of Technology Kanpur (IITK)

The database collected at IITK consists of over 1900 right iris images taken from 600

subjects (≈ 3 images per person). The images are acquired using CCD based iris

camera along with uniform light source. In addition to this, IITK database consists

of few images taken in non-cooperative conditions as well. The images are acquired

for change in gaze of an individual, difference in illumination, occlusion due to eyelids,

etc.
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(a)

(b)

(c)

(d)

(1) (3)(2) (4) (5) (6)

Figure 1.6: Sample iris images from various available databases: (a) BATH, (b)
CASIA, (c) UBIRIS, (d) IITK.

Sample irises from various available databases are shown in Figure 1.6. BATH

database is collected in controlled environmental conditions. Images a(5) and a(6) are

from same subject that show the effect of illumination on iris. The size of pupil varies

for both the images. Further, b(3) and b(4) depict the effect of occlusion due to eyelids.

Change in orientation can be explained precisely with b(5) and b(6). The irises from

UBIRIS database show the effect of blurring, noise and illumination. Images c(1) and

c(2) are from same eye, collected at two different sessions with change in illumination.

The iris images from IITK database are taken under controlled conditions with an

exception to few samples. In order to test the robustness of proposed system, iris data

for 20 subjects are collected with change in gaze and occlusion. Irises d(1), d(2) and

d(3) are for same subject with less imposition on the user during image acquisition.

1.4 Problem Definition

The acquired iris image is used for detection of annular ring underlying inner pupil

and outer iris boundary. This annular ring is transformed from Cartesian coordinates

into doubly dimensionless polar coordinates [3]. The main objective is to achieve

invariance to scale, position and orientation. Further, the images should maintain

reference to same region of iris texture irrespective of camera to eye distance. Given
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1.4 Problem Definition Introduction

an input iris image I, the center of pupil (xc, yc), pupil radius rp and iris radius ri,

normalisation is given by

N(ρ, θ) = I(x(ρ, θ), y(ρ, θ))

where,

x(ρ, θ) = (1 − ρ)xp(θ) + ρxi(θ)

y(ρ, θ) = (1 − ρ)yp(θ) + ρyi(θ)

(1.3)

x(ρ, θ) and y(ρ, θ) are defined as linear combination of points lying on pupillary

boundary (xp(θ), yp(θ)) and points lying on iris boundary (xi(θ), yi(θ)). The value

of ρ ∈ [0, 1] and θ ∈ [0◦, 360◦]. However, traditional approaches do not take care of

the problems that occurred due to polar transformation. As the size of pupil changes

according to the amount of light entering the eye, variable size of pupil causes lin-

ear deformation of iris patterns and creates aliasing effect. Hugo et. al. [21] have

raised the problem of aliasing that occurs during polar transformation. It has been

observed that due to change in area, the recognition accuracy reduces considerably.

After preprocessing, features are extracted using global transforms [22, 23, 24, 25, 26].

Global feature extraction techniques fail due to transformation of features between

two image samples [7].

During identification, the number of false acceptance grows geometrically with in-

crease in the size of the database. If FAR and FRR indicate the false accept and reject

rates during verification, then rates of false accepts (FARN) and rejects (FRRN) in

the identification mode for database of size N are given by [27]

FARN = 1 − (1 − FAR)N ≈ N × FAR

FRRN = FRR

Then, total number of False Acceptance = N × (FARN )

≈ N2 × FAR

(1.4)

There are two approaches to reduce error rates during identification. First is by

reducing FAR of matching algorithm and second is by reducing search space during

identification. The FAR is limited by performance of an algorithm and cannot be

reduced significantly. Thus, accuracy and speed of a biometric identification system
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can be improved by reducing the number of templates against which the query has to

be compared. The effect of reducing the search space during identification is given by

mathematical formulation. Suppose the entire search space is reduced by a fraction

L. Thus, the resultant FAR and FRR after search space reduction is given by

FARN×L = 1 − (1 − FAR)N×L ≈ N × L × FAR

FRRN×L = FRR
(1.5)

This minimises the number of records against which search has to be performed

which in turn reduces FAR during identification. So more emphasis is required to

develop an indexing scheme for retrieving the query image with less time [28].

1.5 Literature Review

The idea of automated biometrics system was proposed in 1987 by Flom and Safir

[29]. The authors have suggested highly controlled conditions that includes headrest,

an image to direct gaze and manual operator. To account for variation in size of

iris due to expansion and contraction of pupil, the illumination has been changed to

make pupil of predetermined size. In addition to this, the authors have suggested

significant benchmarks that have regulated the research later. They have proposed

pattern recognition tools to extract iris features and an initial method of detecting

pupil using static threshold.

The first operational iris biometric system has been developed at University of

Cambridge by Daugman [30]. The digital images of eye has been captured using near-

infrared light source so that illumination could be controlled, that remains unaffected

to users. The image acquisition system is highly robust where the algorithm maximises

the spectral power by adjusting focus of the system. The next step is to find the iris

in the image that uses deformable templates. A deformable template is trained with

some parameters and shape of the eye to guide the detection process [31]. Daugman

presumed iris and pupil boundaries to be circular thus the boundary of circle can

be described with three parameters: radius r, center of the circle x0, y0 [22]. The

operator is defined as
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max(r, x0, y0)|Gσ(r) ∗ ∂

∂r

�
r,x0,y0

I(x, y)

2πr
ds| (1.6)

where Gσ(r) is a smoothing function and I(x, y) is the image of the eye. The operator

searches over the image domain (x, y) for the maximum in the blurred partial deriva-

tive with respect to increasing radius r of the normalised contour integral of I(x, y)

along a circular arc ds of radius r and centre coordinates (x0, y0). After iris segmenta-

tion, the next step is to describe features of iris for comparison. The first difficulty lies

in iris comparison is that, all iris images are not of same size. The iris representation

should be invariant to change in size, scale, orientation, etc. The distance between

camera and eye affects the size of iris in an image. The iris pattern undergoes linear

deformation due to change in illumination that causes pupil to dilate or contract and

change in orientation of iris due to head tilt, camera position, movement of eyeball,

etc. Daugman has addressed this problem by mapping iris into dimensionless polar

coordinate system [22]. The normalised iris image is further used to extract phase

information using 2D Gabor filters. The similarity between two iris representations

generates the matching score.

An iris biometric system was developed at Sarnoff labs [23] that uses different ap-

proach compared to Daugman. For image acquisition, the authors have used diffused

source of light with low level light camera. Hough transform is used for pupil and iris

segmentation. For matching two iris images the system uses Laplacian of Gaussian

filter at multiple scales to produce template and computes normalised correlation as

a similarity measure [23]. These three models for iris recognition are taken as base

and significant research is done based on the ideas laid by Flom and Safir, Daugman

and Wildes. This section discusses in detail about work done in three most significant

areas like preprocessing, feature extraction and identification as shown in Figure 1.2.

1.5.1 Preprocessing

Iris preprocessing involves finding the pupillary and iris boundaries that are presumed

to be circular. However, few authors have also worked on detecting eyelids/eyelashes

to further improve localisation performance [7]. As mentioned earlier, Daugman has
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used integro-differential operator for iris localisation but the location of iris varies

from image to image; so global search reduces speed. In order to improve localisation

time, coarse to fine strategy is proposed by Huang et. al [32]. In the coarse stage, the

technique finds outer iris boundary in the rescaled image, then using that informa-

tion iris circles are found using intergro-differential operator. Further authors have

proposed the method for detection of eyelids and eyelashes. Eyelids are detected by

searching two curves that satisfies polynomial equation of the form x(t) = at2 +bt+c,

t ∈ [0, 1]. Eyelashes are also detected by checking variance for each block.

There are various approaches developed as an improvement over traditional Hough

transform. In [33], the authors have used canny edge detector with Hough transform to

improve localisation speed. By means of canny edges, normal line algorithm is created

for finding center and inner edge. Homocentric circle algorithm is used to find outer

edge. The authors in [34] have used bisection method to find inner boundary. It is

quite difficult to locate the boundary between the iris and the sclera when the iris

image is blurred. Hence, eyelid position is used to find the outer boundary. Further,

histogram equalisation and statistical information is used to find correlate boundary.

In addition to this, the authors in [35] provided an improvement over Hough transform

for circle to restrict votes for center location based on direction of edges. For eyelid

detection, the detected portion of iris is divided into four parts. There is an overlap

of half of the pupil radius between each window. The eyelid in each of these four

windows is detected and results are connected together. The algorithm proposed in

[36] is used to overcome the drawback of traditional iris localisation approaches that

are affected by eyelid occlusion and are time consuming. In the coarse localisation of

inner boundary, the lower contour of pupil is used for estimation of parameters. In

coarse localisation of outer boundary the average intensity signals on both sides of

pupil are used to estimate the parameters. In fine stage, Hough transform is used to

localise boundaries precisely.

Some authors have used thresholding based approaches to find coarse localisation

of pupil. The authors in [37] search for pixels below a threshold as pupil and then use

Hough transform and edge detection to find circles in the limited area. Further, an
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Figure 1.7: Binarizing the image using adaptive threshold (taken from [2])

automatic iris segmentation based on local areas is proposed in [2]. In this approach,

iris image is divided into rectangular grid and mean is obtained for each block. The

minimum value of mean is taken as threshold for binarizing the image as shown in

Figure 1.7. Further, split and merge algorithm is used in [38] to detect connected

regions in the image. Authors in [39] have used a concept similar to Daugman for

iris segmentation. Firstly, the irregularities are removed using bilinear interpolation.

Secondly, candidate locations are generated to provide initial conditions for pupil and

iris boundary. Thirdly, for each seed (x, y) pupil and iris parameters are recovered.

In [40], author finds the pupil using least significant bit planes.

Some work has been proposed in the direction of non-cooperative iris localisation.

The authors in [41] have implemented the segmentation methodology proposed by

Tuceryan [42] using the moments in small windows of the image as texture features

and then applying a clustering algorithm to segment the image. Further a robust

segmentation approach for non-ideal images has been developed using graph cuts

[43]. Performance of some selected localisation approaches is given in Table 1.1.

1.5.2 Feature Representation

Several approaches have been developed for mathematical analysis of random texture

patterns that are visible within the eye. Daugman has used Gabor filter to produce

binary representation of iris [3] as shown in Figure 1.8. In [44] Gaussian filter is used

for texture representation. The gradient vector field of an iris image is convolved

with a Gaussian filter, yielding a local orientation at each pixel from normalised iris

image. They quantize the angle into six bins. This method has been tested on CASIA

database with 2255 images. Dyadic wavelet transform of a sequence of 1-D intensity

signals around the inner part of the iris has been used in [24] to create a binary
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Table 1.1: Performance of some selected localisation approaches (taken from [7])

First Author Approach Database Results

Camus [39] Multiresolution
coarse to fine
strategy

670 images without
glasses and 30 with
glasses

99.5% without
glasses and 66.6%
wearing glasses

Sung [34] 3176 images Bisection method,
canny edge detec-
tor and histogram
equalisation

100% inner boundary
and 94.5% for col-
larette boundary

Bonney [40] 108 CASIA
v1 and 104
UNSA

Least significant bit
planes

Pupil detection
99.1% and limbic
detection 66.5%

Liu [35] Modification
to Hough
transform

4249 images 97.08% Rank 1 recog-
nition

Proenca [41] Moments 1214 good quality
images, 663 noisy im-
ages

98.02% good dataset
and 97.88% noisy
dataset

Pundlik [43] Graph Cuts WVU Non-ideal
database

Pixel label error rate
5.9%

iris code. The system achieves 0.07% of EER. In [45] modified Log-Gabor filters are

used because Log-Gabor filters are strictly bandpass filters but Gabor filters are not.

Discrete Cosine Transform (DCT) is used for feature extraction in [26]. DCT is applied

to rectangular patches rotated at 45 degrees from radial axis. The dimensionality of

feature set is reduced by keeping three most discriminating binarized DCT coefficients.

The authors in [46] have done texture analysis by computing the analytic image. The

analytic image is the sum of the original image signal and Hilbert transform of the

original signal. Table 1.2 shows the performance of some well known feature extraction

approaches.

1.5.3 Identification

Iris based identification needs more attention because existing state-of-the-art shows

that very few contributions have been made in this direction. There already exist

few indexing schemes to partition the biometric database. Indexing hand geome-

try database using pyramid technique has been proposed in [27]. The authors have
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Figure 1.8: Phase demodulation process used for encoding normalised iris image
(taken from [3])

Table 1.2: Performance of some well known feature representation approaches

First Author Approach Database Results

Daugman [3] 2D Wavelet
Demodula-
tion

4258 different iris im-
ages

Correct Match Rate
100%

Sun [44] Gaussian fil-
ter

CASIA 100% Correct Recog-
nition Rate

Ma [24] Dyadic
wavelet
transform

CASIA 100% Correct Recog-
nition Rate with
EER of 0.07%

Yao [45] Log-Gabor fil-
ters

EER of 0.28%

Monro [26] DCT 2156 CASIA images 100% Accuracy

claimed to prune the database to 8.86% of original size with 0% FRR. In [47], an effi-

cient indexing scheme for binary feature template using B+ tree has been proposed. In

[48], the authors have proposed the modified B+ tree for biometric database indexing.

The higher dimensional feature vector is projected to lower dimensional feature. The

reduced dimensional feature vector is used to index the database by forming B+ tree.

Further, an efficient indexing technique that can be used in an identification system

with large multimodal biometric database has been proposed in [49]. This technique

is based on KD-tree with feature level fusion which uses the multi-dimensional feature

vector. In [50], two different approaches of iris indexing have been analysed. First one
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Table 1.3: Performance analysis of well known identification approaches

Author Approach Database Results

Mhatre [27] Pyramid
Technique

1000 palmprint im-
ages

Penetration rate
8.86% Bin miss rate
0%

Gupta [47] B+ Tree 360 ear images 95.8% Accuracy with
penetration rate 34%

Jayaraman [48] Modified B+
Tree

Iris database: BATH
and IITK

BATH: 52.7% reduc-
tion with FRR 0%
IITK: 45.6% reduc-
tion with 6.0% FRR

Jayaraman [49] KD-Tree 5400 images of 150
subjects from IITK
Multimodal database
(ear, face, iris and
signature)

97.4% Accuracy with
penetration rate 23%

Mukherjee [50] PCA and
block based
image statis-
tics

CASIA v3.0 PCA-based: average
penetration for a 80%
hit rate is 17% and
Block based: pene-
tration for a 80% hit
rate is only 8%

uses the iris code while second one is based on features extracted from iris texture.

In [51], authors have proposed an iris indexing technique based on the iris color for

noisy iris images. The performance measures shows the effectiveness of iris color for

indexing very large database. The performance analysis of well known identification

approaches is given in Table 1.3.

1.6 Motivation

Change in illumination causes non-affine pattern deformation due to pupillary dilation

and contraction [22]. Further, transformation of iris from Cartesian to polar plane

creates aliasing effect [21]. Thus, there is a stringent requirement to extract features

devoid of aliasing.

Analyzing the texture of the iris has been the most popular area of research in iris

biometrics [7]. The global feature extraction approaches fail to work under change in

rotation, scaling, illumination and viewpoint of two iris images. The area underlying
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annular iris image changes due to illumination hence global transforms are not suitable

for matching two iris images of variable size. Thus, local feature descriptors are

required that are invariant to change in scale, rotation, occlusion and viewpoint of

two iris images.

In last few decades, good amount of work has been done for recognition but iris

based identification is still in its infancy and needs careful attention. An efficient clas-

sification, clustering or indexing scheme is required to reduce the search space during

identification [52, 53]. There already exist few indexing schemes to partition the bio-

metric database. The existing indexing approaches perform well for cooperative iris

databases but fail to achieve desired performance for non-cooperative images. Based

on the current research directions from the literature, investigations have been made

in this thesis to propose novel preprocessing, keypoint extraction and identification

schemes for iris. Contributions made in the aforementioned areas are discussed below

briefly in sequel.

1. During preprocessing, the problem of aliasing is removed by directly considering

the annular region of iris without normalisation. Further, the annular region

contains noise due to eyelids and eyelashes that should be detected and removed.

In a normal gaze, the edge of the upper eyelid intersects the sclera and approx-

imately half of the upper iris circle whereas, lower eyelid covers one-fourth of

the lower iris circle. However, the left and the right regions are independent

of such occlusions. Depending upon their degree of motion, upper eyelid adds

more noise to the transformed strip as compared to lower eyelid. A novel sector

based approach is proposed which considers these regions free from occlusions.

It has been observed that, for the range of angular values θ, the regions that

are not occluded due to eyelids are of range [35◦, 145◦] and [215◦, 325◦]. For

the upper and lower regions, only partial values of iris radius are taken from

a sector. This generates a fixed size mask to remove eyelids from annular iris

image.

2. To extract robust attributes, local features around special points known as key-

points are obtained and compared to find the similarity between the images. The
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most valuable property of a keypoint detector is its repeatability, i.e., whether it

reliably finds the same interest points under different viewing conditions [6]. To

extract features around keypoints the neighbourhood of every detected point

is represented by a feature vector (descriptor). In the proposed work, novel

keypoint descriptors has been applied to iris to extract features robust to trans-

formations, illumination and partial occlusions.

3. From the literature available, it can be inferred that an efficient indexing scheme

is required that is invariant to possible transformations and occlusions. In this

work, Geometric Hashing of keypoint descriptors is proposed for indexing large

biometric database. The proposed approach uses local features and achieves

invariance to various possible transformations and occlusions.

1.7 Thesis Organization

The rest of the thesis is organized as follows.

A novel preprocessing approach is given in Chapter 2. Many researchers have used

variations of edge detection and Circular Hough Transform (CHT) for finding pupil

and iris boundary [37]. But CHT requires range of radius as input and is computa-

tionally expensive. Thus, localisation approach is proposed that performs for change

in rotation and viewpoint of two iris images. Further, to remove the effect of aliasing

and noise due to eyelids, a novel sector based approach is proposed to form noise

independent annular iris image. It has been observed that the proposed approach

performs better in terms of accuracy compared to existing Masek’s approaches.

Chapter 3 presents application of keypoint descriptors for iris. These descriptors

have been used for object detection but their applicability to personal identification

does not exist. Firstly, a Dual stage approach for keypoint detection using Harris

corner detector [54] is proposed. To further improve accuracy, Scale Invariant Fea-

ture Transform (SIFT) [4] is used for extracting keypoint descriptors from annular

iris. However, it has been observed that the proposed approaches are computationally

expensive and hence needs more time. Thus, to further improve accuracy and reduce
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computational cost an efficient keypoint descriptor called Speeded Up Robust Fea-

tures (SURF)[5] has been applied to extract robust features from iris. The approaches

proposed in this chapter are compared to existing global feature extraction techniques

and performance analysis has been made.

The techniques presented in Chapter 4 are used for indexing large biometric database.

In this chapter two approaches are developed for search space reduction. In the first

approach, energy features are extracted from the rectangular block using multiresolu-

tion subband coding of DCT coefficients. The energy histogram on extracted features

are used to form keys. This key is used to traverse the B-Tree for searching the

database. DCT is a global feature extraction approach and fails to work accurately

for iris images taken under non-cooperative conditions. Thus, geometric hashing ap-

proach is used to index a large iris biometric database. The geometric hashing scheme

allows for retrieval of model images that differ from query image by some kind of sim-

ilarity transformation and occlusion.

Finally Chapter 5 presents the concluding remarks, with scope for further research

work.
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Chapter 2

Noise Independent Annular Iris

The image acquisition system captures iris as a larger portion of image that also con-

tains data from immediately surrounding eye region [23]. Thus, prior to performing

feature extraction it is necessary to localise only that portion of the image that con-

tains exclusively iris. Specifically it is important to localise the region between inner

pupil and outer iris boundary. If iris is occluded by eyelids then portion below the

upper eyelid and above the lower eyelid should be considered for feature extraction.

Further, there exists some specular highlights on pupil region. Preprocessing is an

important step that involves the process of converting the raw acquired input image

into feature extraction form. The conventional steps involved in preprocessing are (i)

to remove the effect of specularities lying on the pupillary area, (ii) to localise the

inner and outer iris circles, (iii) to transform the iris into a rectangular block using

Cartesian to polar conversion and (iv) to remove eyelids usually modelled as noise

from the annular region. However, it has been observed in [21] that during polar

transformation the texture features are lost due to aliasing. Hence, in the proposed

research the annular region of iris is considered directly for feature extraction. Eyelids

are removed from the annular ring using sector based approach to minimise occlusion.

This noise independent annular iris is considered directly for feature extraction. The

detailed description of steps involved in preprocessing are given as follows:

23



2.1 Removal of Specular Highlights Noise Independent Annular Iris

(a) (b)

Figure 2.1: Adaptive image thresholding using grid based approach: (a) Iris image
with blocks to compute threshold (b) Binary image obtained using adaptive threshold

2.1 Removal of Specular Highlights

Pupil is modelled as a dark circular disk in the eye with significantly low occlusion.

However, it has been noticed that pupil contains non-singular features known as spec-

ular highlights with high gray levels. The position of specular reflection is determined

by the position of light source. As pupil contains redundant information, thus the

spot of light is made to fall on pupillary region. This light spot makes a hole that

has to be detected and filled up to alleviate pupil segmentation process. To begin

with hole filling, input iris image is binarized using adaptive threshold. The reason

behind choosing an adaptive value of threshold is that static threshold cannot work

for images taken under varying illumination conditions. To obtain suitable value of

threshold, an input image is divided into blocks of size w×w (shown in Figure 2.1(a)).

For each block, mean is obtained using the intensity values. The minimum value of

mean is taken as value of threshold (T ) [2]. As pupil is the darkest portion in an

image, the block with minimum value of mean will lie on pupil area. The input image

is compared against T to obtain the binary image as shown in Figure 2.1(b).

The image obtained in Figure 2.1(b) contains light spots known as specular high-

lights. These spots needs to be detected and filled because pupil localisation works

more efficiently for completely filled circle. Morphological region filling approach is

used to fill holes in the image [55]. To begin with hole filling operation the complement

of the binary image is obtained. The convention adopted here is that the boundary

pixels are labelled as 1. If non-boundary pixels are labelled as 0 then beginning with

a point p inside the boundary a value of 1 is assigned. The following transformation
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2.2 Iris Localisation Noise Independent Annular Iris

fills the region with ones

Xk = (Xk−1 ⊕ B) ∩ Ac (2.1)

where X0 = p, k = 1, 2, 3.... ⊕ is used for dilation of Xk−1 by B which is defined as

Xk−1 ⊕ B = {z|(B̂)z ∩ Xk−1 �= φ} (2.2)

B is the symmetric structuring element defined as⎡
⎢⎢⎢⎣

0 1 0

1 1 1

0 1 0

⎤
⎥⎥⎥⎦

This algorithm terminates at kth iteration if Xk = Xk−1. The image generated from

last iteration Xk is combined with A using bitwise OR that contains the boundary

filled image. The diagrammatic representation of hole filling algorithm is given in

Figure 2.2. Algorithm 1 describes the steps involved in hole filling.

2.2 Iris Localisation

Raw input image contains pupil the darkest circular region encircled by iris that

consists of unique flowery pattern. The objective behind localisation is to detect the

part of the image that contains iris. This is done by localising the pupil as well as

iris boundary. The pupil and iris are most discriminating features of the eye with

Algorithm 1 Hole Filling

Require: A: Binary Image, B: Structuring element, p: Point inside the boundary,
r: Rows, c: Columns

Ensure: H : Hole filled Image
C ⇐ Ac {Complement of an image}
X0 = zeros(r, c)
X0(p) = 1
k ⇐ 0
repeat

k ⇐ k + 1
Xk = (Xk−1 ⊕ B) ∩ C

until Xk �= Xk−1

H = Xk ∪ A
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sharp variations at boundaries. The shape of iris is far more predictable compared to

other biometric traits. However, iris is obscured by undesirable features like eyelids,

eyelashes, eyewears etc. Thus, a robust detection approach is required that performs

well under such occlusions. The important steps involved in iris localisation are —

2.2.1 Pupil Detection

Many researchers have used variations of edge detection and Circular Hough Trans-

formation (CHT) for finding pupil and iris boundary [37]. The major drawback of

Hough transform is that it requires range of radius as input from the user. Further,

the transformation works in R3 domain thus it is computationally expensive. In this

work an efficient pupil detection approach is proposed that performs faster compared

to Hough transformation without any estimation for radius.

In this approach, the hole filled image is re-complemented to detect center of pupil.

The distance of every pixel in the binary image is obtained with nearest non-zero pixel

[56]. By computing the distance between non-zero pixels, the spectrum showing the

largest filled circle can be formed within the set of foreground pixels. Since the pupil is

the largest filled circle in the image the overall intensity of this spectrum is maximum

Figure 2.2: A: Block of binary image with holes, Ac: Complement of A, X0: Image
with first pixel in the boundary, X1: Image after first iteration, Xk: Image after kth

iteration, H: Hole filled image, B: Structuring element

26
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(a) (b) (c)

Figure 2.3: Pupil Detection: (a) Spectrum image (b) Edge detected image with pupil
center (c) Pupil localised image

at the center. The spectrum image is shown in Figure 2.3 (a). Thus, the position of

maximum value in the spectrum image is pupil center. To compute the pupil radius,

an edge map of the hole filled binary image is obtained as shown in Figure 2.3 (b).

In the edge map, the distance from the detected pupil center to the nearest non-zero

pixel is the pupil radius (rp). The pupil detected image is shown in Figure 2.3 (c).

The algorithm for detecting pupil center and radius is given in Algorithm 2.

2.2.2 Iris Detection

For iris detection, the intensity image is blurred to remove external noise. But too

much blurring may make it difficult to detect the outer iris boundary, separating the

eyeball and sclera. Thus, a special smoothing filter such as the median filter is used

on the original intensity image. This type of filtering eliminates sparse noise while

preserving image boundaries [55]. After filtering, the contrast of image is enhanced

to have sharp variation at image boundaries using histogram equalisation as shown

in Figure 2.4 (a). This contrast enhanced image is used for finding the outer iris

boundary by drawing concentric circles (Figure 2.4 (b) shows an example) of different

radii from the pupil center and the intensities lying over the perimeter of the circle

are summed up [24]. Among the candidate iris circles, the circle having maximum

change in intensity with respect to the previous drawn circle is the iris outer boundary

as shown in Figure 2.4 (c). The algorithm for detection of iris radius (ri) is given in

Algorithm 3.
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Algorithm 2 Pupil Detect

Require: H : Hole Filled Image
Ensure: xc: xcenter of pupil, yc: ycenter of pupil, rp: Radius of pupil {Estimation

of pupil center}
C ⇐ Hc {Complement of hole filled image}
[x y] = find(C == 1) {Find location of ones in an image}
l ⇐ length(x) {To find the number of elements in an array}
for i = 1 to r do

for j = 1 to c do
for k = 1 to l do

Dk ⇐√
(xk − i)2 + (yk − j)2

end for
DN = sort(D) {Sort the values in D in increasing order}
Si,j = DN1 {Take the smallest value of DN}

end for
end for
[xc yc] ⇐ max(S)
E = edge(C) {Edge detection using Canny}
j ⇐ yc {Estimation of pupil radius}
rp ⇐ 0
while Exc,j �= 1 do

rp = rp + 1
j = j + 1

end while

2.3 Annular Iris

The iris patterns should be represented in the form which must achieve invariance

to transformations in size, position and orientation. The size of iris depends upon

the camera optical magnification factor and distance between camera and eye. The

scale of iris changes due to expansion and contraction of pupil that introduces non-

affine deformation of texture patterns. Further, the patterns undergo transformation

due to location of iris in an image and orientation of eye. Such transformations are

dependent upon head tilt and change in gaze of eye with respect to camera.

Daugman has introduced a doubly dimensionless polar coordinate system for rep-

resentation of iris patterns. The coordinate system is doubly dimensionless with re-

spect to angular variable (θ) and radial variable (ρ). The value of θ ∈ [0, 2π] whereas

ρ ∈ [0, 1]. The coordinate system assigns to each point on iris a location in polar

coordinate regardless of its size and pupillary dilation. The mapping of image points
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(a) (b) (c)

Figure 2.4: Iris Detection: (a) Contrast enhanced image (b) Concentric circles of
different radii (c) Iris localised image

from Cartesian coordinate (x, y) to polar coordinate system (ρ, θ) is given by

I(ρ, θ) = I(x(ρ, θ), y(ρ, θ)) (2.3)

where x(ρ, θ) and y(ρ, θ) are defined as linear combination of points lying on pupillary

boundary (xp(θ), yp(θ)) and points lying on iris boundary (xi(θ), yi(θ)). The linear

combination is modelled as

x(ρ, θ) = (1 − ρ)xp(θ) + ρxi(θ)

y(ρ, θ) = (1 − ρ)yp(θ) + ρyi(θ)
(2.4)

During normalisation the segmented iris image is transformed into polar coordinate

which can be regarded as sampling of original data with inherent possibility of alias-

ing [21]. As pupil dilates and contracts due to illumination, variable size of pupil

causes linear deformation of texture features and creates aliasing effect. Figure 2.5

shows samples of same eye from CASIA database taken under varying illumination

conditions. The normalized images generated using Daugman’s approach are of fixed

size (80×360 pixels) as given in Figure 2.5 (a.1) and (b.1) respectively.

From the images it is visually evident that though the region lying between pupil

and iris boundary is not uniform in both the images, the texture features are scaled

to constant size to render scale invariant image. To overcome sampling artifact,

the proposed scale based approach normalises the iris image by transforming from

Cartesian space to singly dimensionless polar space. Here the angular values are kept

constant between [0, 2π] whereas ρ ranges between [0 : ρinc : 1] where ρinc is defined
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Algorithm 3 Iris Detect

Require: I: Input image, rp: Radius of pupil, xc: xcenter of pupil, yc: ycenter of
pupil

Ensure: ri: Radius of iris
F ⇐ medianFilt(I){Median Filtering on input image}
H ⇐ Histeq(F) {Histogram equalisation}
[r c] ⇐ size(I) {Finding image dimensions}
{Finding the intensity over circumference}
for ri = rp × 1.5 to r

2
do

sumri
⇐ 0

for θ = 0 to 360 do
x = xc + ri × cos(θ)
y = yc + ri × sin(θ)
sumri

= sumri
+ Hx,y

end for
ri = ri + 2

end for
{Change in intensity over circumference}
for i = 1 to ri do

Di = |sumi − sumi+1|
end for
[d ri] = max(D) {Maximum change in intensity}

by

ρinc =
1

ri − rp
(2.5)

Thus, the radial variable is made to vary depending upon actual distance between

pupil and iris boundary as shown in Figure 2.5 (a.2) and (b.2). Hugo et. al. [21]

have raised the problem of aliasing that occurs during polar transformation. The

relationship between size of captured iris image and its recognition accuracy has been

studied. It has been observed that due to change in area, the recognition accuracy

reduces considerably. In the proposed method the problem of aliasing is removed by

directly considering the annular region of iris without normalisation.

Further, the annular region contains noise due to eyelids and eyelashes that should

be detected and removed. In a normal gaze, the edge of the upper eyelid intersects the

sclera and approximately half of the upper iris circle whereas lower eyelid covers one-

fourth of the lower iris circle. However, the left and the right regions are independent

of such occlusions. Depending upon their degree of motion, upper eyelid adds more
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(a) CASIA/115/L/S1115L05 (a.1) (a.2)

(b) CASIA/115/L/S1115L10 (b.1) (b.2)

Figure 2.5: Effect of aliasing on iris normalisation using doubly dimensionless polar
coordinate and singly dimensionless polar coordinate

noise to the transformed strip as compared to lower eyelid. The proposed method

considers sector based approach which considers these regions free from occlusions. It

has been observed that the ranges of angular values (θ) for the regions that are not

occluded due to eyelids are given by [35◦, 145◦] and [215◦, 325◦] and for the upper and

lower region, only partial values are taken from a sector. Given the center (xc, yc),

pupil radius (rp) and iris radius (ri) the value of ri changes depending upon the range

of θ as defined by

ri =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
4
ri if 0◦ < θ < 35◦

ri if 35◦ ≤ θ ≤ 145◦

1
2
ri if 145◦ < θ ≤ 215◦

ri if 215◦ < θ ≤ 325◦

3
4
ri otherwise

(2.6)

The quantisation scheme given in (2.6) is used to obtain sector based annular iris

image. Figure 2.6 (b) shows the geometrical representation of sectors on annular iris

circle where region underlying solid arcs are taken into consideration. The ratios ri/2

and 3ri/4 are chosen depending upon the degree of movement and occlusion of two

eyelids. The noise independent annular iris image is complimentary to aliasing that

occurs due to dimensionless polar coordinate conversion. The resultant preprocessed

image is shown in Figure 2.6 (c).
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Figure 2.6: Preprocessing of iris image: (a) Input iris image, (b) Geometrical rep-
resentation of sectors on iris circles, (c) Noise independent annular iris image after
preprocessing

2.4 Experimental Evaluation

In this section, the localisation performance of proposed approach is compared with

well known Masek’s [57] approach. Masek uses circular Hough transform for detection

of boundaries and linear Hough transform for masking eyelids. The proposed approach

performs well compared to approaches that use adaptive mask. Masek’s approach

performs better for CASIA database but fails to achieve desired segmentation accuracy

for non-cooperative images.

As localisation is the fundamental and significant step in iris identification, mask-

ing approach should not be erroneous as far as possible. For this purpose, eyelids are

removed using predefined mask. The system has been tested on cooperative [18, 1]

as well as non-cooperative [17, 19] iris databases. Table 2.1 shows the percentage

of mis-localisation occurred by the proposed approach and Masek’s approach [57].

It can be inferred from the table that the proposed approach performs better than

the automatic eyelid detection approach proposed by Masek [57]. Figure 2.7 shows

the localisation performance of Masek’s approach and the proposed approach on few

samples from IITK and UBIRIS database. The subject id along with image instance

number is given under each displayed result. For UBIRIS database, the nomenclature

is defined as ID session instance. The last result obtained on UBIRIS database shows

that the proposed system can even localise iris for images collected at some distance

from the camera. Though the outer iris circle is not localised correctly but annular

region contains sufficient information to extract features.

The proposed masking approach is not unique to each image and fails to extract
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Table 2.1: Mis-localisation percentage of Masek’s approach and proposed approach

Database Masek Proposed

BATH 37.62 0.98
CASIA 05.23 0.45
UBIRIS 10.53 3.41
IITK 31.30 1.36

noise independent annular iris if degree of occlusion by upper and lower eyelids is more

Masek Proposed
Localised Annular Localised Annular

IITK: 0001 69

IITK: 0083 2

UBIRIS: 64 1 4

UBIRIS: 227 1 5

Figure 2.7: Localisation performance using Masek’s approach and proposed approach
on IITK and UBIRIS databases
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Figure 2.8: Failure to generate noise independent annular iris due to greater degree
of occlusion by upper eyelid

030 S1030R07 092 S1092R08 157 S1157R09 188 S1188R09

Figure 2.9: Results generated using Masek’s approach on CASIA database that adap-
tively masks eyelids

than 1
2

and 1
4
. Few such failure cases are shown in Figure 2.8. In such cases texture

features are completely hidden due to eyelids so even the adaptive eyelid detection

approaches could not help to recover hidden features. However, there still exists a

need to develop an adaptive eyelid masking approach because the proposed approach

masks the iris even if no occlusion occurs by upper and lower eyelids. Few such sample

cases from CASIA database is shown in Figure 2.9 where an adaptive eyelid detection

approach performs better compared to proposed approach.

2.5 Summary

In this chapter an endeavour has been made to develop an efficient preprocessing

approach that generates Noise Independent Annular Iris. The proposed approach

performs significantly better compared to conventional normalisation approach of

transforming iris into doubly dimensionless polar coordinate [3]. In order to over-

come noise due to eyelids, sector based approach is used. The masked annular image

is directly used for feature extraction. From the experimental results it has been found

that the average mis-localisation percentage of proposed approach is 1.55% which is

significantly low compared to Masek’s with mis-localisation of 21.17%. The proposed

approach has capability to localise non-ideal iris images with severe transformations.
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Chapter 3

Keypoint Descriptors for Iris

Feature extraction involves simplifying the amount of information required to describe

an input image. The purpose is real time, high confidence recognition of a individual’s

identity by mathematical analysis of the random patterns that are visible within the

iris of an eye from some distance. There already exists several global feature extraction

techniques for iris [58, 57]. The main drawback of global techniques is that they fail to

extract relevant features if there exists significant variations in pose, illumination and

viewpoint of an individual. Local features are invariant to image scaling and rotation,

and partially invariant to change in illumination and viewpoint. These local features

have the capability to perform well under partial occlusions as well. In order to

extract local features from iris, special points known as keypoints are detected where

there can be a corner, an isolated point of local intensity maximum or minimum,

line endings, or a point on a curve where the curvature is locally maximal. Around

the neighborhood of every detected keypoint a descriptor is taken that represents the

feature vector. This descriptor has to be robust to noise, detection displacements and

geometric and photometric deformations [5].

In the proposed work an endeavour has been made to extract local features directly

from annular iris image. As discussed earlier the reason for taking annular iris into

consideration is to overcome aliasing errors due to polar transformation. To mark

an improvement in terms of time and accuracy well known keypoint descriptors have

been applied to iris. To begin with Harris corner points [54] were detected from the

normalised iris image. Further to extract keypoint descriptor, entropy information of

window around corner has been considered. But main drawback with Harris corner
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approach is that they are very much sensitive to scale changes. Iris features are

likely to undergo scale changes due to pupil expansion and contraction. Further a

novel keypoint descriptor called Scale Invariant Feature Transform (SIFT) has been

applied to iris [4]. SIFT has the capability to perform well for various transformations

as well as occlusions due to higher dimensional descriptor. The dimension of the

descriptor has a direct impact on the time it takes for recognition. Therefore less

dimensions are desirable for fast interest point matching. However, lower dimensional

feature vectors are in general less distinctive than their high-dimensional counterparts.

Speeded Up Robust Features (SURF) [6] uses faster keypoint detection scheme with

reduced dimensional descriptor. SURF has been used for machine vision applications

like camera calibration and object tracking [6]. Due to inherent advantages of SURF

it has been applied to iris biometrics for efficient recognition. This chapter discusses

in detail about various keypoint descriptors and its applicability to iris.

3.1 Harris Corner Detector

Corner detection could find its applicability to many machine vision tasks such as

tracking, localisation, matching and recognition. Such points often arise as the re-

sult of geometric discontinuities, such as the corners of real world objects, but they

may also arise from small patches of texture. Three cases need to be considered for

detecting corners:

1. if window is a patch (approximately constant in intensity) then all shifts results

in only small change

2. if window is an edge then shift along edge results in small change but shift

perpendicular to edge results in large change

3. if window is a corner point or isolated point then all shifts results in large change.

Harris corner detector provides an improvement over conventional approaches of

corner detection that takes shifted patches. This approach uses determinant and trace

of autocorrelation matrix for detecting corner points. The steps for finding the corner

points are explained as follows:
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3.1.1 Measure of Cornerness

The mathematical foundation of this can be explained as— given an intensity image

I, the change E produced by shift of (x, y)

E(x, y) =
∑
u,v

w(u, v)|I(x + u, y + v) − I(u, v)|2 (3.1)

where w specifies the window taken into consideration. The Moravec’s corner de-

tector looks for local maxima in the minimum of the shifted image (E) above some

threshold value. However, this approach suffers from various problems. The response

is anisotropic because only a discrete set of shifts at every 45 degrees is considered.

Further the response is noisy because the window is binary and rectangular. The

operator responds too readily to edges because only the minimum of E is taken into

account [54]. Harris corner detector is an improvement upon Moravec’s corner detec-

tor by considering the differential of the corner score with respect to direction directly,

instead of using shifted patches. This detector possess invariance to rotation, scale,

illumination variation and image noise [59]. The Harris corner detector is based on

the local auto-correlation function of an image which measures the local changes of

the image with patches shifted by a small amount in various directions. The main

objective is to find how similar the image function I(x, y) at point (x, y) similar to

itself when shifted by (Δx, Δy). This is given by autocorrelation matrix

c(x, y) =
∑
W

[I(xi, yi) − I(xi + Δx, yi + Δy)]2 (3.2)

where I denotes the image and (xi, yi) are the points in the window W . Here W is

the Gaussian window defined as e
−(x+y)2

2σ2 where σ defines the width of the window.

Instead of using a Gaussian window a square window can also be used. But a square

window results in variable distance for different directions from the center pixel of

the window to the edge of the window. A square window also puts equal emphasis

on all intensity variation measures regardless of their distance from the center of the

window. Instead more weight should be put on values made closer to the center of the

window. So, it is suggested in [54] to use circular window like Gaussian. The shifted
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image is approximated by Taylor expansion truncated on the first order terms

I(xi + Δx, yi + Δy) ≈ I(xi, yi) + [Ix(xi, yi)Iy(xi, yi)]

⎡
⎣ Δx

Δy

⎤
⎦ (3.3)

where Ix and Iy denote partial derivatives in x and y respectively. Substituting

equation (3.3) in equation (3.2) we get

c(x, y) = [Δx Δy]

⎡
⎣ ∑

W (Ix(xi, yi))
2

∑
W Ix(xi, yi)Iy(xi, yi)∑

W Ix(xi, yi)Iy(xi, yi)
∑

W (Iy(xi, yi))
2

⎤
⎦
⎡
⎣ Δx

Δy

⎤
⎦

= [Δx Δy]M(x, y)

⎡
⎣ Δx

Δy

⎤
⎦ (3.4)

where M captures the intensity structure of the local neighborhood which can be

further defined as

M(x, y) =

⎡
⎣ A C

C B

⎤
⎦ (3.5)

Thus, the autocorrelation function is approximated by

c(x, y) ≈ [Δx Δy]M(x, y)

⎡
⎣ Δx

Δy

⎤
⎦ = [Δx Δy]

⎡
⎣ A C

C B

⎤
⎦
⎡
⎣ Δx

Δy

⎤
⎦ (3.6)

From autocorrelation matrix, first the measure of corner is obtained by finding the

Determinant (Det) and Trace (Tr) of M as given by

Tr(M) = A + B (3.7)

Det(M) = AB − C2 (3.8)

The formulation of corner response is given by

R(x, y) = Det − kTr2 (3.9)

Here k is lying between 0.04 and 0.06. The intensity map, R, is compared against a

threshold λ and intensity values below λ are set to zero. Positive values of R occur

in corner regions, negative values in edge regions, and small values in flat regions.

From the thresholded image a pixel is selected as an interest/corner point if it is local
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3.1 Harris Corner Detector Keypoint Descriptors for Iris

maxima in the block. Order statistic filter is used for finding the local maxima.

3.1.2 Corner Points from Iris

Doubly dimensionless normalised iris image is used for extraction of corner points.

The input image contains low contrast and non-uniform illumination. In order to

highlight rich texture details, the normalised image is enhanced using block based

approach as given in [24]. The normalised iris image is divided into 16×16 blocks

and mean of each block is obtained. This gives the coarse estimate of background

illumination. The mean image is further rescaled to the size of original image using

bicubic interpolation. The background illumination image is subtracted from original

image to remove illumination effect. Further the contrast of this image is enhanced

using histogram equalisation. The lightening corrected image is shown in Figure

3.1(a).

The feature descriptor is formed using every detected corner points (x, y) in an

image. At each detected corner point i centered at location (xi, yi) a window (wi)

of size (k × k) is formed. Using wi the entropy information is obtained. Entropy is

defined in terms of its probability distribution and is a good measure of randomness

or uncertainty for evaluating structures and patterns. An important characteristic is

to find the minimum amount of data that is sufficient to describe completely an input

pattern without any loss of information. In accordance with this proposition entropy

can be defined as

Hi = −
(

N−1∑
j=0

pj log pj

)
(3.10)

For each detected corner point i the following information is recorded to form

feature vector

1. (x, y) are the coordinates of ith corner point

2. Hi is the entropy information of window wi

The value of i ranges from 1 to m, where m is the total number of corner points

detected in an image. Steps involved Harris corner detection is shown in Figure 3.1.

39



3.1 Harris Corner Detector Keypoint Descriptors for Iris

(a) Strip after enhancement

(b) First derivative of image along x

(c) First derivative of image along y

(d) First derivative of image along xy

(e) Input image with detetced corner points marked by rectangles

Figure 3.1: Steps involved in Harris corner detection
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3.1.3 Dual Stage Approach

For matching the corner points a traditional Euclidean distance approach has been

used. The coordinates centered on corresponding corners are paired using 2D trans-

lation. But the approach fails due to lack of image statistics for finding similarity.

In this thesis a novel method for matching is proposed that combines distance based

approach with information theoretic local similarity measure. Here matching is done

serially using dual stage approach. At first stage the matching between the two iris

images is done using Euclidean distance. To compute distance for each corner from

the first image, all second image corners are used. These distance values are compared

against a threshold and the points satisfying the criteria are taken into consideration

as candidate points for the second stage. In the next stage, the actual corner mate is

found by estimating Mutual Information (MI) [60].

Let A = {m1, m2, ...mm} and B = {m1, m2...mn} be the set of interest points

extracted from database and live query image respectively where each mi is a 3-tuple

comprising of {xi, yi, Hi}, xi and yi are the coordinates at particular interest point

and Hi is the entropy obtained as given in (3.10). At the first level of matching the

Euclidean distance between coordinates of one 3-tuple in A is obtained for all 3-tuples

in B using

sdl =
√

(xd − xq)2 + (yd − yq)2 (3.11)

where sdl refers to the spatial distance for two points and (xd, yd) are the coordinates

of the database tuple while (xq, yq) are the coordinates of the query tuple. The corner

points with distances below a specified threshold τ are taken as potential corners. To

find an optimal pair, Mutual Information (MI) between the entropies around potential

corners is computed. MI(J) corresponding to the two entropy values Hd and Hq is

defined as

J(d, q) = Hd + Hq − H(d, q) (3.12)

where Hd and Hq are the entropies derived from window at one corner point in

database image and another corner point in query image respectively. Moreover,
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3.1 Harris Corner Detector Keypoint Descriptors for Iris

Figure 3.2: Interest point pairing. Solid lines indicate true pairs whereas dotted line
indicates wrong pairing of points

H(d, q) is the joint entropy defined by

H(d, q) = −
∑

d

∑
q

p(d, q) log p(d, q) (3.13)

where p(d, q) is joint probability distribution of values around d and q. The value

of J is maximized to find an optimal pair between database and query image. A

true pair/mate contains the maximal amount of information about each other. The

maximum value of MI is compared against another threshold and if it passes the

criteria, the two interest points are paired and removed from the list. Similarly,

the steps are repeated for the remaining corner points to find an appropriate mate.

Finally the total number of mates are counted and compared against threshold. Paired

corner points between a gallery and probe iris image is shown in Figure 3.2. Solid

lines indicate the correct pairing of corners points. Dotted line indicates that the

corner points are wrongly paired.

3.1.4 Experimental Evaluation

The results are obtained on UBIRIS, BATH, CASIA and IITK iris databases. In order

to study the performance of global feature extractors results were obtained using Haar

wavelet [58] and Log-Gabor wavelets [57]. The accuracy of global feature extraction

approaches is 79.86% and 78.50% for Haar wavelet and Log-Gabor wavelet on CASIA

database. Similar results are obtained for other available databases. ROC curves for

Haar wavelet and Log-Gabor wavelet on all the available databases is given in Figure

3.3. The system performs poorly using global feature extraction techniques because
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the images are taken under non-ideal conditions. The features undergo transformation

which in turn degrades accuracy.

The system with achieved accuracy cannot be used for high security applications.

Thus, local features are detected using Harris Corner approach. For pairing these

corner points three different measures have been implemented. In first session, results

were obtained using Euclidean distance approach. But location of points does not

represent stable features that may undergo translation. In the second session, MI

based approach has been used independently to pair corner points. MI based approach

alone could not produce satisfactory performance. From the results given in Table

3.1 it has been observed that these individual classifiers results in higher FAR and

FRR. Subsequently, an attempt has been made to reduce the error rates using Dual

stage matching approach by combining Euclidean distance and MI based approach

in a hierarchical fashion. ROC curves for Euclidean distance, MI and proposed Dual

stage approach is given in Figure 3.4.

Table 3.1 presents the comparative analysis of results using global and local fea-

tures. For Harris corners, three approaches are used for matching corner points. From

the experiments it is evident that the Euclidean distance between the points in the

scale space does not promise satisfactory results. The system performs poorly for

UBIRIS database and gives an accuracy of approximately 75% for BATH, CASIA

and IITK database. A small change in viewpoint or orientation of individual’s head

may spatially translate the corner points. To overcome limitations of location based

approaches, texture information around the corner point is obtained using Mutual

Information. However, MI independently gives an accuracy of 78%, 73%, 87% and

90% (approx) for UBIRIS, BATH, CASIA and IITK databases respectively. These

values were still not satisfactory and hence a combined approach using spatial as well

texture details has been proposed.

The Dual stage system gives an accuracy of 85%, 94%, 97% and 94% for available

datasets which signifies an improvement over the other two approaches. The sys-

tem outperforms with an accuracy of 97% with significantly reduced FAR of 0.24%

on CASIA database. From the results it can be inferred that dual stage approach
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Table 3.2: Average time taken (in seconds) using Harris corner approach

Approaches ↓ UBIRIS BATH CASIA IITK

Euclidean 0.167 0.170 0.160 0.167
Mutual Information 0.203 0.207 0.205 0.200
Dual Stage 0.170 0.183 0.180 0.168

performs comparatively better than individual corner matching approaches. Figure

3.5 provides comparative ROC curves for global feature extraction approaches and

proposed Dual stage approach. Genuine and imposter score distributions using Dual

stage approach is given in Figure 3.6. Average time taken in seconds by different

corner detection and matching approaches is given in Table 3.2.
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3.2 Scale Invariant Feature Transform (SIFT)

The Harris corner detector is very sensitive to changes in image scale, so this ap-

proach could not find its applicability for matching iris images. Due to expansion

and contraction of pupil as a natural phenomenon, the texture pattern of iris undergo

linear deformation. Thus, enhanced keypoint descriptor is required that performs for

variation in scale along with other transformations. In this thesis, a local feature de-

scriptor coined Scale Invariant Feature Transform (SIFT) is used that provides stable

set of features while being less sensitive to local image distortions. Local features from

an image are computed using cascade filtering approach that minimises the feature

extraction cost by applying more expensive operations at locations that pass an initial

test. Keypoints are detected using difference of Gaussian (DOG) images. During fea-

ture extraction local image gradients are measured at selected scale in region around

each keypoint to form descriptor vector. Detailed description of steps outlined above

are gives in the following subsections.

3.2.1 Keypoint Detection

The first step is to find potential keypoints that are invariant to scale and orientation.

For each detected keypoint a detailed model is fit to determine location and scale.

The orientation is assigned to each location based on image gradients. The steps for

keypoint detection is explained in this section.

Detection of Scale Space Extrema

The first step of keypoint detection is to identify locations that can be assigned with

change in view and scale. Such locations, invariant to scale change, can be found by

searching stable features across all possible scales using a continuous function of scale

known as scale space [4]. The only possible scale space function is Gaussian function.

Therefore scale space of image is defined as,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.14)

where I(x, y) is the input image with ∗ is the convolution operation in x and y.
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Gaussian Difference of 
Gaussian

Scale 
1st Octave

Scale 
next Octave

Figure 3.7: Scale space extrema for different octaves. Adjacent Gaussian images are
subtracted to produce DOG images on right (taken from [4])

G(x, y, σ) is the variable scale Gaussian defined as

G(x, y, σ) =
1

2πσ2
e(−x2+y2)/2σ2

(3.15)

To detect stable keypoint locations in the scale space, Difference of Gaussian

(DOG) function is convolved with the image. The Difference of Gaussian (DOG) for

two nearby scales of an iris image I is computed as

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ) − L(x, y, σ)
(3.16)

where k is a constant multiplicative factor used for changing the scale and x, y are

the coordinates of a pixel in image I. The scale space for two different scales is

shown in Figure 3.7. This scale invariant technique is found to be suitable for annular

iris images because the size of iris changes due to expansion and contraction of pupil.

Figure 3.8 shows the Gaussian blurred iris images and computation of DOG for change

in octave, scale and σ. These images are generated using SIFT code [61].
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(a) Gaussian blurred annular iris images for different octave, scale and σ

(b) Difference of Gaussian (DOG) images for change in octave, scale and σ

Figure 3.8: Detection of scale space extrema
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Figure 3.9: Maxima and minima of DOG images are obtained by comparing a pixel
to 26 neighbors in 3 × 3 × 3 regions (taken from [4])

Keypoint Localisation

DOG images are used to detect interest points with the help of local maxima and

minima across different scales. Each pixel in DOG image is compared to 8 neighbours

in the same scale and 9 neighbours in the neighbouring scales. The pixel is selected

as a candidate keypoint if it is local maxima or minima in 3×3×3 region as shown in

Figure 3.9.

Once the keypoints are detected the next step is to perform the detailed fit to the

nearby data for location, scale and ratio of principal curvature. The basic idea is to

reject keypoints with low contrast. In [4] it is stated that keypoints with low contrast

are sensitive to noise or poorly localised, hence they should not be considered. To

determine the interpolated location of maximum, 3D quadratic function is fitted to

local keypoint [62]. The authors have used Taylor expansion of scale space function,

D(x, y, σ) shifted so that the origin is at the sample point

D(x) = D +
∂DT

∂x
x +

1

2
xT ∂2D

∂x2
x (3.17)

where D and its derivatives are evaluated at sample point and x=(x, y, σ)T is an offset

from this point. The location of extremum (x̂) is defined by taking the derivative of

this function with respect to x and setting it to zero, thus giving

x̂ = −∂2D−1

∂x2

∂D

∂x
(3.18)
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Figure 3.10: Interpolation of datapoints to estimate location of extremum

If the offset is larger than a predefined threshold then it means that x̂ is close to

different sample point. In this case sample point is changed and interpolation is per-

formed about the point. The final offset is added to sample point to get interpolated

location of extremum. Figure 3.10 shows interpolation of datapoints to get estimate

of extremum. A sample iris image after detection of keypoints is shown in Figure

3.11(a).

Orientation Assignment

Orientation is assigned to each keypoint location to achieve invariance to image rota-

tions as descriptor can be represented relative to orientation. To determine keypoint

orientation, a gradient orientation histogram is computed in the neighbourhood of

keypoint. The scale of keypoint is used to select Gaussian smoothed image L. For

each Gaussian smoothed image L(x, y), magnitude (m(x, y)) and orientation (θ(x, y))

are computed as

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2 (3.19)

θ(x, y) = tan−1

(
(L(x, y + 1) − L(x, y − 1))

(L(x + 1, y) − L(x − 1, y))

)
(3.20)

Orientation histogram is then formed for gradient orientation around each key-

point. The histogram has 36 bins for 360 orientations and each sample is weighted

by gradient magnitude and Gaussian weighted circular window with σ of 1.5 times of

scale of keypoint before adding it to histogram. Peaks in the histogram correspond
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(a) (b)

Figure 3.11: Keypoint detection on annular iris image using SIFT (a) Detected key-
points after removing noise and edge responses, (b) Scale and direction of orientation
is indicated by arrows

to orientation and any other local peak within 80% of largest peak is used to create

keypoint with the computed orientation. This is done to increase stability during

matching [4]. The scale and direction of orientation is indicated by arrows as shown

in Figure 3.11(b).

3.2.2 Keypoint Descriptor

Once orientation has been selected, the feature descriptor is computed as a set of

orientation histograms on 4×4 pixel neighborhoods. The orientation histograms are

relative to the keypoint orientation as shown in Figure 3.12. Histogram contains 8

bins each and each descriptor contains an array of 16 histograms around the keypoint.

This generates SIFT feature descriptor of 4 × 4 × 8 = 128 elements. The descriptor

vector is invariant to rotation, scaling and illumination.

3.2.3 Keypoint Pairing

Let p = {p1, p2, p3...pn} and q = {q1, q2, q3...qn} be n dimensional feature descriptor

for each point from database as well as query images respectively. The Euclidean

distance between p and q is defined as

D(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (3.21)
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Figure 3.12: Window is taken relative to direction of dominant orientation. This
window is weighted by a Gaussian and histogram is obtained for 4 × 4 regions

where n is 128 dimensional feature descriptor. The naive approach to nearest neighbor

matching is to simply iterate through all points in the database to determine the

nearest neighbor.

3.2.4 Experimental Evaluation

The accuracy of SIFT is obtained on various available databases. Results are obtained

for three different forms of iris i.e., doubly dimensionless polar coordinate, singly

dimensionless polar coordinate and annular iris. Table 3.3 shows the accuracy of

SIFT for doubly, singly and annular iris image on various available databases. From

the results it is evident that singly iris performs better compared to doubly iris for

UBIRIS, BATH and CASIA database but accuracy reduces by 3% for IITK database.

The reason behind is that singly iris transforms the annular region into polar form

which introduces aliasing artifact. Thus, for IITK images significant texture features

are lost due to such transformation.
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Table 3.4: Average time taken (in seconds) using SIFT

Iris Forms ↓ UBIRIS BATH CASIA IITK

Doubly 1.463 0.977 0.911 1.504
Singly 0.368 0.543 0.899 0.927
Annular 0.233 0.480 1.340 1.297

Finally, results are obtained directly on annular iris image which marks an improve-

ment in performance. The accuracy for UBIRIS increases considerably to 96.91% from

77% for doubly iris. Similarly there is improvement in accuracy for all other databases.

ROC curves for UBIRIS, BATH, CASIA and IITK is shown in Figure 3.13. From

the results it is evident that local features extracted directly from annular iris image

performs better compared to conventional approaches. Genuine and imposter score

distributions for SIFT is shown in Figure 3.14. Time required to claim recognition also

reduces for SIFT as shown in Table 3.4. This validates the applicability of keypoint

descriptors for annular iris recognition.
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3.3 Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) detector and descriptor are not only faster,

but far more repeatable and distinctive [6] compared to state-of-the-art approaches

[4, 63, 64]. The essential requirement is to apply feature descriptor that, in comparison

to existing keypoint approaches, are fast to compute while not sacrificing performance.

This can be achieved by simplifying the detection scheme while keeping it accurate,

and reducing the descriptor’s size while keeping it sufficiently distinctive [5]. SURF is

more robust compared to existing keypoint detectors because Hessian-based detectors

are more stable and repeatable than their Harris-based counterparts. Further, due to

descriptor’s low dimensionality, any matching algorithm is bound to perform faster.

SURF has two significant advantages over SIFT. Firstly, SURF uses sign of Lapla-

cian to have sharp distinction between background and foreground features. Secondly,

SURF uses only 64 dimensions compared to SIFT using 128 dimensional vector. This

reduces feature computation time and allows quick matching with increased robust-

ness simultaneously [65]. SURF has been applied to iris recognition for the first time

in literature. The operator extracts keypoints using Hessian matrix and describes a

distribution of Haar Wavelet responses from a window around the interest point as

descriptors. There are two steps involved to determine local descriptor vector and

they are (1) Detection of keypoints (2) Keypoint descriptor. The above mentioned

steps are explained as follows:

3.3.1 Detection of Keypoints

For interest point detection SURF uses Hessian Matrix approximation. For faster

computation of interest points integral images are used as proposed in [66]. Integral

images uses the concepts of boxlets as proposed by Simard et al. [67].

Integral Images

Integral images reduces the computation time drastically by allowing the faster com-

putation of box type convolution filters. The entry of an integral image I∑(x) at a

location x = (x, y)T represents the sum of all pixels in the input image I within a
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D

C

B

A

x

o

sum(I(x))

S=A−B−C+D

Figure 3.15: Integral images are used to calculate the sum of intensities inside a
rectangular region of any size.

rectangular region formed by the origin and x

IΣ(x) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (3.22)

After computing the integral images it takes three additions to calculate sum of

intensities over the integral area as shown in Figure 3.15. The calculation time is

independent of the filter size.

Hessian Matrix based Interest Points

Hessian matrix based detection is used because of its increased performance. For

detection of keypoints determinant of Hessian matrix is used for selecting location

and scale. Given a point P = (x, y) in an image I, the Hessian matrix H(P, σ) in P

at scale σ is defined as follows

H(P, σ) =

⎡
⎣ Lxx(P, σ) Lxy(P, σ)

Lxy(P, σ) Lyy(P, σ)

⎤
⎦ (3.23)

where Lxx(P, σ) is the convolution of the Gaussian second order derivative ( σ2

σx2 g(σ))

with the image I at the point P and similarly Lxy(P, σ) and Lyy(P, σ) are obtained.

Gaussian is discretised and cropped as shown in Figure 3.16. These approximate

Gaussian second order derivatives can be evaluated at a very low computational cost

using integral images. The calculation time therefore is independent of the filter size.

The 9×9 box filters as shown in Figure 3.16 are approximations of a Gaussian at σ

= 1.2. These are denoted by Dxx, Dxy and Dyy [68]. By choosing the weights for the

box filters adequately, the approximations for the Hessian’s determinant are computed
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using

Det(Happrox) = DxxDyy − (0.9Dxx)
2 (3.24)

Scale Space Representation

Due to the use of box filters and integral image it is not required to iteratively apply

the same filter to the output of previously filtered image. This can be made compu-

tationally efficient by applying box filter of any size on the original image as shown

in Figure 3.17. Therefore scale space is analysed by upscaling the filter size rather

than reducing the image size. The output of the 9 × 9 filter, introduced in previous

section, is considered as the initial scale layer. Subsequent layers are obtained by

filtering image with larger masks to localise keypoints invariant to scale. The advan-

tage of such scale space creation is that it is computationally efficient as image is not

downsampled so there is no effect of aliasing.

The scale space is divided into octaves. Each octave is represented by series of

filter responses obtained by convolving input image with filter of increasing size. Each

octave is subdivided into a constant number of scale levels. The length (l0) of positive

or negative lobe of partial second order derivative in direction of derivation (x or y)

is set to third of filter size length. For the 9 × 9 filter, this length l0 is 3. For two

successive levels, the size is increased by a minimum of 2 pixels (1 pixel on every side)

in order to keep the size uneven and thus ensure the presence of the central pixel.

This results in a total increase of the mask size by 6 pixels as shown in Figure 3.18.

Scale space construction starts with the initial 9 × 9 filter for which scale s=1.2

(approximating Gaussian derivatives with σ = 1.2). Then, filters with sizes 15×15,

21×21, and 27×27 are applied, by which even more than a scale change of two has

Figure 3.16: Left to right: discrete Gaussian second order derivative in y and xy
direction. Approximation for the second order Gaussian partial derivative in y−(Dyy)
and xy-direction (Dxy) (taken from [5]).
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been achieved. The filter size increase is doubled for every new octave (from 6-12 to

24-48). The filter size is increased for corresponding octaves until image size is larger

than the filter size.

Interest Point Localisation

Keypoints are localised in scale and image space by applying a non maximum sup-

pression in a 3×3×3 neighbourhood. The local maxima found on the determinant of

Hessian matrix are interpolated to image space as proposed in [62]. Figure 3.19 shows

the detected interest points on the annular iris image.

3.3.2 Keypoint Descriptor

For description of every interest point, Haar wavelet responses are obtained in x and y

direction. The descriptor is obtained using integral images with only 64 dimensions for

speed. The first step consists of finding orientation using circular window around the

interest point. Then, a square region aligned to the selected orientation is considered

to extract the SURF descriptor.

Orientation Assignment

To achieve invariance to image rotation the orientation is identified for each keypoint.

For this purpose, Haar wavelet responses are calculated in x and y direction within

a circular neighbourhood of radius 6s around the interest point, with s the scale at

which the interest point was detected. The size of wavelets are scale dependent and

set to side length of 4s. Once the wavelet responses are calculated and weighted

with a Gaussian (σ = 2s), the dominant orientation is obtained by calculating sum

Figure 3.17: Use of integral images for upscaling filter masks (taken from [6])
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Figure 3.18: Filters Dyy (top) and Dxy (bottom) for two successive filter sizes (9×9
and 15×15) [5].

of all responses within a sliding orientation window of size π
3

(see Figure 3.20). The

horizontal and vertical responses within the window are summed. The longest such

vector over all windows defines the orientation.

Keypoint Descriptor

The descriptor vector is obtained around every detected keypoint by taking a square

window of size 20s centered around the interest point and aligned relative to the

direction of orientation. The region is split into smaller 4×4 sub-regions to preserve

spatial information as shown in Figure 3.21. For each sub-region, Haar Wavelet

responses are obtained in horizontal (dx) and vertical direction (dy). To increase the

robustness towards geometric deformations and localisation errors, the responses dx

and dy are first weighted with a Gaussian (σ = 3.3s) centered at the interest point.

Figure 3.19: Detected interest points on annular iris image
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Figure 3.20: Orientation assignment by taking a sliding window of size π
3

indicated
by shaded region [5]

Finally the descriptor vector is summed up for each sub-region to form elements

of feature vector. To bring in information about the polarity of the intensity changes,

the sum of the absolute values of the responses are obtained (|dx| and |dy|). Thus,

each sub-region is a 4D feature vector comprising of

v =
{∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|
}

(3.25)

Concatenating this for all 4×4 sub-regions results in a descriptor vector of length

64. Figure 3.22 shows the property of a descriptor for three different image-intensity

patterns within a sub-region. For a homogeneous sub-region (left of Figure 3.22) all

values are relatively low. For the presence of frequencies in x direction, the value of∑ |dx| is high but all others are low (middle). If intensity is gradually decreasing in

Figure 3.21: An oriented window with 4 × 4 sub-regions is taken in direction of
orientation. For each sub-region wavelet responses are obtained [5].
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Figure 3.22: Descriptor entries of a sub-region represent the nature of the underlying
intensity pattern [5].

x direction, both the values of
∑

dx and
∑ |dx| are high.

3.3.3 Keypoint Pairing

After detection of keypoints in database image (A) and query image (B), matching

is done using interest point pairing approach. The best candidate match for each

keypoint in A is found by identifying the closest pair from the set of keypoints in B.

The nearest neighbor is defined as the keypoint with minimum Euclidean distance for

the invariant descriptor vector. Let L = {l1, l2, l3.....lm} and E = {e1, e2, e3.....en} be

vector arrays of keypoints of A and B respectively obtained through SURF.

The descriptor array li of keypoint i in L and descriptor array ej of keypoint j in

E are paired if the Euclidean distance ||li − ej|| between them is less than a specified

threshold α. Threshold based pairing results in several number of matching points.

To avoid multiple matches, the keypoints with minimum descriptor distance if less

than threshold are paired. This results in a single matching pair, and is called as

nearest neighbourhood matching method. In SURF, the matching method applied is

similar to the nearest neighbor matching, except that the thresholding is applied to

the descriptor distance ratio between keypoints. The method used in SURF is called

as nearest neighbor ratio method. Thus, the keypoints are matched if

||li − ej ||
||li − ek|| < α (3.26)

where, ej is the first nearest neighbor and ek is the second nearest neighbor of li.

The paired points (li, ej) are removed from L and E respectively. The matching

process is continued until there are no more key-points. Based on the number of pairs
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between query image A and enrolled image B, a decision is taken about candidate’s

identity. Figure 3.23 shows keypoint pairing between two annular iris images. Results

are shown for samples taken from IITK database. The number of keypoints paired for

each comparison along with image instance number is shown below the figure. This

is an illustrative example to prove the capability of keypoint descriptors to achieve

scale invariance.

3.3.4 Experimental Evaluation

This section discusses the performance of SURF for UBIRIS, BATH, CASIA and IITK

databases using various forms of iris. Table 3.5 shows the performance comparison for

all the databases. From the experimental evaluation, it has been found that SURF

performs well for doubly iris with an accuracy of 92.93% on IITK database but still

there is a scope for further improvement. To measure the robustness of the system,

ROC curve is obtained for doubly dimensionless iris as shown in Figure 3.24. In the

next stage of simulation the results are obtained for singly iris as shown in Figure

3.25. Accuracy improves for sinlgy iris for BATH, CASIA and IITK databases. The

system gives an accuracy of 95.77% for IITK database. But there is reduction in

value of accuracy for UBIRIS database. UBIRIS fails to perform due low resolution

and reduced quality of input image.

At the final stage, features are extracted using SURF directly from annular iris.

From the results it is evident that SURF performs with an accuracy of 98% on IITK

database. The accuracy values has improved significantly for all other databases.

ROC curve for annular iris recognition using SURF is shown in Figure 3.26. Distribu-

tion of genuine and imposter scores for all databases is given in Figure 3.27. Table 3.6

gives time required in milliseconds to perform recognition. The time to claim identifi-

cation has reduced considerably for SURF compared to existing keypoint descriptors.
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Figure 3.24: ROC curve for doubly dimensionless iris strip
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Figure 3.25: ROC curve for singly dimensionless iris strip
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Table 3.6: Average time taken (in milliseconds) using SURF

Iris Form ↓ UBIRIS BATH CASIA IITK

Doubly 282.67 156.94 267.97 304.22
Singly 43.18 53.17 154.23 201.45
Annular 50.06 100.13 387.48 305.98
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Figure 3.26: ROC curve for annular iris image

3.4 Summary

In this chapter, three well known keypoint descriptors are studied and applied to iris.

In order to prove the merits of keypoint descriptors, Harris corner detector is compared

to existing global feature extraction approaches like Haar and Log-Gabor wavelets.

From the results it has been found that Harris corner detector performs with an

average accuracy of 92.25% which is much better than global approaches. However,

Harris corner detector could not achieve invariance to scale changes. In order to

achieve scale invariance, SIFT is applied to annular iris that is robust to all possible

transformations as well as partial occlusions. The system using SIFT performs with

an average accuracy of 96.37%. The performance has improved compared to Harris

corner approach but the time required to recognise an individual is more due to higher

dimensionality of feature descriptor. Thus, one of the recently developed keypoint

descriptor coined SURF is applied to annular iris. SURF performs better compared

to existing keypoint descriptors in terms of reliability, accuracy and speed. SURF
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3.4 Summary Keypoint Descriptors for Iris

is giving an average accuracy of 97.7% on cooperative as well as non-cooperative

databases. Further, the time required to claim identification using SURF is reduced

considerably to 200 ms (approx). Based on the experimental study it has been inferred

that SURF can be used as one of the most reliable matching approach where iris

images are obtained under non-ideal conditions.
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Chapter 4

Iris Identification

During identification mode, the system recognises an individual by searching the tem-

plates of all the users in the database for a match. Therefore, the system conducts a

one-to-many comparison to establish an individual’s identity. For a system to operate

in identification mode there are two challenges that need to be addressed. Firstly,

any identification system suffers from an overhead of large number of comparisons

in the database. As the size of database increases the time required to declare an

individual’s identity increases significantly [8]. Secondly, it has been observed math-

ematically that the number of false positives (FAR) also increases geometrically with

increase in the database size [11, 27].

Thus, there are two ways to improve the performance of a biometric system: (i)

by reducing the number of false positives and (ii) by reducing the search space [27].

The FAR of a system is dependent upon the recognition algorithm and cannot be

reduced indefinitely. Thus, accuracy can be improved by reducing search space (N).

The search space can be reduced by using classification, clustering and indexing ap-

proaches on the database. Applying some traditional database binning approaches do

not yield satisfactory results. The reason behind is that biometrics does not possess

any natural or alphabetical order. As a result, any traditional indexing scheme can-

not be applied to reduce the search time. Thus, the query feature vector is compared

sequentially with the all templates in the database. The retrieval efficiency in sequen-

tial search depends upon the database size. This leaves behind a challenge to develop

a non-traditional indexing scheme that reduces the search space in the large biomet-

ric database. The general idea of indexing is to store closely related feature vectors
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Figure 4.1: Block diagram of DCT based indexing scheme

together in the database at the time of enrolment. During identification, the part of

the database that has close correspondence with query feature vector is searched to

find a probable match. In the proposed work a novel iris database indexing scheme

is developed using energy histogram of DCT coefficients. This scheme uses doubly

dimensionless normalized iris image for indexing. This approach works well for coop-

erative databases but fails to perform indexing for non-cooperative irises. The reason

behind is that DCT is a global feature extraction approach and fails to handle vari-

ations due to illumination and transformations. Thus, there is a need to develop an

indexing scheme using local features like keypoints. A robust indexing scheme known

as Geometric Hashing [69] is applied on detected keypoints to render an efficient iris

identification system. The two identification approaches are discussed in sequel:

4.1 Indexing using Energy Histogram of DCT

In this thesis, an efficient indexing scheme based on energy histogram of iris database

has been studied. The acquired iris image is preprocessed and transformed into fixed

size normalized image. Energy features are extracted from the rectangular block

using multiresolution subband coding of DCT coefficients. The energy histogram on

extracted features are used to form keys. This key is used to define the B Tree and

store the iris templates at the leaf node that shares similar texture information. The

block diagram of system modules is given in Figure 4.1.
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4.1 Indexing using Energy Histogram of DCT Iris Identification

4.1.1 Feature Extraction using DCT

Features are extracted from fixed size normalized strip using Discrete Cosine Transfor-

mation (DCT) [70]. DCT has strong energy compaction property and its coefficients

represent some dominant grey level variations of the image. Thus, it is the most

promising approach for texture classification. The input iris strip is divided into non-

overlapping 8×8 pixel blocks which are transformed to generate DCT coefficients.

The reason behind using block based DCT approach is that it extracts block based

details of an image. It has been observed that multiresolution decomposition provides

useful discrimination between texture. Each block of the computed DCT coefficients

has to be reordered to form subbands like 3 level wavelet decomposition. The block

of size 8×8 is reordered to transform coefficients into multiresolution form. For a

coefficient D(u, v) of the block, ordering is done and stored in Si where i is defined

by

i =

⎧⎨
⎩ 0 for m = 0

(m − 1) × 3 + (a/m) × 2 + (b/m) otherwise
(4.1)

Let m = max(a, b) for 2a−1 ≤ u ≤ 2a and 2b−1 ≤ v ≤ 2b, a and b are the integer values

and i ranges from 1 to 10. After reordering, the coefficients D(1, 1), D(1, 2), D(2, 1)

and D(2, 2) are stored in subband S1, S2, S3 and S4 respectively. The multiresolution

subband ordering for 8×8 block is shown in Figure 4.2. After reordering all the DCT

blocks, the coefficients from each block belonging to a particular subband are grouped

together. Energy value Ei of each subband Si is obtained by summing up the square

of coefficients as

Ei =
∑

Si(x, y)2 (4.2)

Note that the sum of square increases the contribution of significant coefficients

and suppresses insignificant coefficients. The feature vector consists of different energy

values obtained from 10 subbands.

4.1.2 Indexing Iris using B Tree

It is expected that the query response time should depend upon the templates sim-

ilar to the query template and not the total number of templates in the database.
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4.1 Indexing using Energy Histogram of DCT Iris Identification

Figure 4.2: Multiresolution reordering of 8 × 8 DCT coefficients

Figure 4.3: Energy histogram of S10 region

Thus, the database should be logically partitioned such that images having similar

texture patterns are indexed together. To search the large visual databases, content

based image indexing and retrieval mechanism based on energy histogram of wavelet

coefficients has been proposed in [71]. The scheme provides fast image retrievals.

Similar approach has been proposed by considering the energy histogram of reordered

DCT coefficients [72]. In the proposed approach, biometrics database is indexed us-

ing energy histogram of reordered coefficients as given by [72]. The steps involved in

indexing are given as follows:

Key Generation

The feature vector obtained from each image contains 10 different energy values one

from each subband. The energy histogram (Hi) is build for each subband (Si) using all

the images in the database. This presents the distribution of energy for each subband.

Figure 4.3 shows the histogram for region S10 using all images in the database.
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4.1 Indexing using Energy Histogram of DCT Iris Identification

The histogram generated from each subband (Hi) is divided into bins to form

logical groups. The texture details of iris strip that have similar energy values (Ei)

are placed together in the same bin to have more accurate matches. The size of the

bin can be fixed or variable. Here the size of the bin is fixed for experiments. The

bins are enumerated in numerical order starting from 1 as shown in Figure 4.5. The

images falling under each bin are represented on each bar of the histogram. Each

image falls under a particular bin of the histogram Hi. This bin number is used

to form a global key for indexing. Image key consists of bin number corresponding

to each subband. The bin numbers for each subband are combined together using

Morton order traversal which places low-frequency coefficients before high-frequency

coefficients. The schematic diagram for Morton order traversal is shown in Figure 4.6.

For example the image I using Morton order forms the key as (3-5-7-8-2-1-4-5-6-7).

Similarly all the images in the database obtains keys.

Database Creation and Searching

The key is used for inserting an image in the database during enrollment. To store

an iris template B tree data structure is used. The degree of the tree is total number

of bins that has been constructed for each subband. The height of tree is the number

of subbands i that has been taken into consideration. The root node of the tree

represents subband S0 with bins as children that are formed using energy histogram.

The leftmost branch represents the first bin and then the next branch represents the

second bin and so on. Each node in the second level of the tree corresponds to the

immediate following subband. To insert a template in the database, B tree is traversed

using the image key generated in Section 4.1.2. After reaching at the leaf node the

template is inserted in the database. Each leaf node in the tree is denoted as a class

that contains iris templates. The tree structure used for indexing is given in Figure

4.4. Thus, more the number of classes lesser will be the retrieval time. The algorithm

for inserting an image in the database is given in Algorithm 4.

The best match for query strip is obtained by searching the database using the key.

Each block of the image is divided into subbands using multiresolution reordering of

coefficients. The coefficients of each subband is used to compute the energy values.

79



4.1 Indexing using Energy Histogram of DCT Iris Identification

Figure 4.4: B-tree data structure for storing iris templates

Algorithm 4 btree indexing(n: total number of iris strips)

1. For each image I in the database
2. Find DCT for each 8 × 8 block
3. Reorder the coefficients using subband coding
4. Find total energy value of each subband (Si)
5. Construct energy histogram (Hi) for each subband using n images
6. Divide each histogram into bins and enumerate them
7. Obtain a key for I using bin numbers of each (Hi)
8. Traverse the tree using key
9. Store the image at the leaf node

The key for query image is calculated by finding bin number of each subband using

bin allocation scheme given in Section 4.1.2. This key is used for traversing the tree to

arrive at the leaf node and retrieve the images stored in a particular class. The query

image is compared with the retrieved images to find a suitable match. However, if

the complete key is used for traversing the tree then the probability of finding exact

match becomes less. Thus, partial key is used that is constructed from the first B

subbands where B is less than total number of subbands i. The images that fall in

the same bin for the first B subbands are retrieved and compared with the query

template. The step-wise process for finding a query is given in Algorithm 5.
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4.1 Indexing using Energy Histogram of DCT Iris Identification

Figure 4.5: Logical grouping of energy histogram

Figure 4.6: Global key formation using Morton order traversal

4.1.3 Experimental Evaluation

The proposed indexing algorithm has been tested on UBIRIS, BATH, CASIA and

IITK iris databases. A comparative study on performance rates is done by changing

the number of subbands. The number of subbands determines the length of the key.

To find an exact match the tree is traversed using all the subbands. However, to

obtain similar matches the tree traversal will stop before reaching the leaf and images

having the same partial key is retrieved to find a match. The large set of images will

be obtained using partial match which in turn increases the penetration rate. For

database construction, an input image is divided into 10 subbands using 8×8 block.

Further energy histogram of each subband is divided into 5 bins. Thus, every node

in B tree is of degree 5. For the sake of convenience fixed number of bins are taken

into consideration.

The bin miss rate and penetration rate is obtained by varying the number of
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4.1 Indexing using Energy Histogram of DCT Iris Identification

Algorithm 5 btree searching(q: query strip)

1. Find blockwise DCT coefficient of q
2. Reorder the coefficients using subband coding
3. Find energy value of each subband (Si)
4. Construct query image key using histogram bins
5. Traverse the tree using complete/partial key
6. Retrieve all K images stored in a class
7. Perform comparisons of q with K
8. Find the probable match

subbands. With the change in the number of subbands the number of classes formed

at leaf node also changes. Table 4.1 shows the number of classes, penetration rate and

bin miss rate by varying the number of subbands for UBIRIS, CASIA, BATH and

IITK databases. From the table it has been observed that with increase in the number

of subbands the number of classes (#) also increases. This is because with less number

of subbands the length of global key reduces. The tree is not traversed completely

till the leaf node and the images that have same partial key are used to find the

match. Hence probability of finding an image is higher in partial traversal compared

to complete traversal. The bin miss rate reduces for partial traversal. However, partial

traversal gives higher penetration rate due to increase in the number of templates

stored in each class. If number of subbands is 2, CASIA database shows bin miss

rate of 0.22 with penetration rate of 25.90%. However, if number of subbands is 10,

the penetration rate reduces significantly to 0.50% with increased bin miss. Similar

results are obtained for UBIRIS, BATH and IITK databases (Table 4.1). Thus, there

exists a trade off between the two evaluation rates. The number of subbands used

for traversal should be chosen carefully so that both bin miss rate and penetration

rate are optimal. Figure 4.7 shows change in bin miss rate for change in number of

classes. The graph is plotted for all the four databases. Similarly penetration rate is

plotted for different number classes as shown in Figure 4.8. Figure 4.9 represents the

relationship between the penetration rate and bin miss rate.

82



4.1 Indexing using Energy Histogram of DCT Iris Identification

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Classes

B
in

 M
is

s

UBIRIS
BATH
CASIA
IITK

Figure 4.7: Bin Miss rate for change in number of classes
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Figure 4.9: Graph showing relationship between Penetration rate versus Bin Miss rate

4.2 Indexing based on Geometric Hashing

Indexing iris database using DCT coefficients works well for cooperative images but

fail to perform identification for non-cooperative data. Thus, an efficient indexing

scheme is required that is invariant to possible transformations and occlusions. Geo-

metric hashing is an indexing technique for model based object recognition that uses

location of keypoints which are invariant to similarity transformation as an index

to the hash table [73, 69]. During image retrieval, keypoint locations are computed

for the query image and are used to index into the hash table to find the possible

matches [74]. The primary advantage of geometric hashing is that it speeds up the

search and recognises the object efficiently. Due to aforementioned advantages, geo-

metric hashing technique could find its applicability to biometrics. In [75], automated

fingerprint recognition system is proposed that uses geometric hashing to overcome

nonlinear distortions and noise obtained during image capture process. In addition

to this, geometric hashing along with flash algorithm addresses the requirement of

non-criminal fingerprint identification [76].

In the proposed work, geometric hashing approach is used to index large iris

biometric database. The block diagram of proposed approach is given in Figure

4.10. The keypoints are detected directly from noise independent annular iris image

using SIFT. Geometric invariants are obtained for detected keypoints and stored in
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4.2 Indexing based on Geometric Hashing Iris Identification

Figure 4.10: Block diagram for geometric hashing based indexing approach

the quantized hash table during indexing. During identification, the hash table is

accessed using the invariants and votes are casted. Entries that receive more than

certain number of votes are considered as candidate irises. The steps involved in

indexing are explained in the following sub-sections.

4.2.1 Indexing

The geometric hashing scheme allows for retrieval of model images that differ from

query image by some kind of similarity transformation [77]. It is used for model

based object recognition that forms indices from a subset of model points. One

of the advantages of geometric hashing is that it is inherently parallel. It has been

observed in [78] that with minimal communication and maintenance costs, the concept

of geometric hashing is parallel and can be shared among number of cooperating

processors. Further, the technique remains invariant to similarity transformations

and its representation performs well under partial occlusion.

Index Generation

The detected keypoints on annular iris image are used for indexing the database.

The basic idea is to extract local features from an image that remain invariant to

similarity transformations. The property of invariance can be explained with the help

of a model. The points detected from a sample iris image are plotted on a 2D plane

and represent a model (Mi) of ith image in the database. Figure 4.11(a) shows an

example. Let us take a pair of keypoints (k1 and k2) as an ordered basis to reference

model Mi (represented in Figure 4.11(a)). The keypoints are chosen for different

86



4.2 Indexing based on Geometric Hashing Iris Identification

combinations of basis pair with an assumption that k2 should lie in positive x axis.

Thus, for n keypoints the possible basis pairs are atmost
(

n
k

)
. The keypoints are scaled

such that the magnitude of
−−→
k1k2 is equal to 1. The midpoint between k1 and k2 is

placed at the origin such that k1 and k2 have positive x axis. The remaining points

of Mi are placed at different locations. For each choice of basis, the remaining points

P of model Mi are computed using

P = uP i
x + vP i

y + P i
0 (4.3)

where P = [x y] is the keypoint to be indexed, (u, v) is the location of P after similarity

transformation. P i
x and P i

y are defined by

P i
x =

k2 − k1

2
(4.4)

P i
y = Rot90(P

i
x) (4.5)

where Rot90 refers to rotation of coordinate locations by 90 degrees. The midpoint

P i
0 between k1 and k2 is defined by

P i
0 =

k1 + k2

2
(4.6)

The keypoints after transformation of model Mi for basis pair k1 and k2 are shown

in Figure 4.11(b). However, since iris is occluded by upper and lower eyelids thus there

is a possibility that the basis (k1, k2) may not occur in every instance of model Mi.

Thus, different combinations of possible basis pair are used to obtain the geometric

invariants as shown in Figure 4.11(c).

Hash Table Organisation

For the formation of hash table, the possible ordered basis pairs for all model images

are selected to obtain transformation invariant coordinates (u, v) of the remaining

points (x, y). The values of u and v computed from (4.3) remain invariant under

similarity transformation and their quantisation allows to have an index (uq, vq) into

the hash table. In the proposed method discrete intervals are assigned within the

range so that each coordinate is quantized to the nearest interval. Each interval is set

87



4.2 Indexing based on Geometric Hashing Iris Identification

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

X: 192.4
Y: 201.2

X: 83.87
Y: 147.8

X axis

Y
 a

xi
s

K1

K2

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

X: 0.5
Y: 0

X: −0.5
Y: 0

X axis

Y
 a

xi
s

K1 K2

(a) (b)

(c)

Figure 4.11: Similarity transformation: (a) 2D representation of detected keypoints
from annular iris image, (b) Keypoints after similarity transformation for basis pair
k1k2 and (c) Keypoints after similarity transformation of possible basis pairs

to 0.05 within the range from -25 to 25 in both x and y directions [79]. So there are

1000×1000 entries in the hash table. The hash table at (uq, vq) contains entry of the

form (Mi, k1, k2) for model Mi with basis pair
−−→
k1k2. The distribution of data over the

hash table is shown in Figure 4.12 for BATH, CASIA, UBIRIS and IITK databases.

The hash bin occupancy for quantized hash table is non-uniform and consists of peak

that accumulates large number of entries. A uniform distribution of entries over hash

table is required to reduce the data retrieval and execution time. Thus, Rigoutsos and

Hummel [78] have proposed an efficient technique for uniform distribution of entries in

the hash table. If the distribution of data over quantized hash table follows a Gaussian

distribution and keypoints detected from iris undergo similarity transformations then

probability density (f(u, v)) can be defined by

f(u, v) =
3

π

1

(u2 + v2 + 3)2
(4.7)
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where u and v are invariant coordinates after geometric transformation. After com-

puting the probability density a transformation is performed to map the distribution

of entries uniformly in a hash table using rehashing. The rehashing function is ap-

plied to transformed coordinates so that equally spaced bins have uniform occupancy.

Rehashing function for similarity transformation is given as [78]

h(u′, v′) = (1 − 3

u2 + v2 + 3
, atan2(v, u)) (4.8)

where u and v are transformed coordinates and atan2 is four quadrant inverse tangent.

The uniform distribution of hash bin occupancy after rehashing is given in Figure 4.13.

The entries are accumulated uniformly over hash table with several low peaks. The

height of peak reduces from 84 to 14 for BATH database with other entries in the

hash table being near to uniform distribution. Similarly, there is reduction in peak

size for CASIA (613 to 23), UBIRIS (17 to 11) and IITK (384 to 16) databases. This

has reduced the accumulation of data at a particular region in the hash table. At

h(u′, v′) an entry is stored in the hash table with (model,basis) pair. The keypoint

descriptor obtained using SIFT is stored in the feature database corresponding to a

particular iris image. The algorithm for indexing iris biometric database is given in

Algorithm 6.

4.2.2 Iris Retrieval

During identification, iris images that have close proximity with the query image

are retrieved from the database. The query image is preprocessed to detect annular

portion of iris. The keypoints are localised on the annular query iris image and

arbitrarily two keypoints are chosen as ordered basis pair and transformed such that

its midpoint coincides with the center of origin with direction in the positive x axis.

The magnitude of basis vector has unit length. The coordinates of remaining keypoints

are defined using (4.3) for chosen basis pair. Each transformed entry is quantized and

mapped to the hash table. For each entry found in the corresponding hash table bin,

a vote is casted.

The basic assumption is that in case the query image contains basis that corre-
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4.2 Indexing based on Geometric Hashing Iris Identification

sponds to that of model image from database, then it is expected to receive votes

from all other unoccluded points. The total number of votes for various basis pairs

corresponding to each model image is determined. If the number of votes received for

each model images are greater than a threshold (λ) then these images are considered

to be potential matches for query image. The algorithm for iris retrieval is given in

Algorithm 7. Further the keypoint descriptor for query and candidate model images

are compared to find top best matches.

Algorithm 6 Indexing Database

Require: P : Detected Keypoints, n: Number of keypoints, M : Model iris image
Ensure: h: Hash Table
{Hash Table creation}
for i = 1 to n do

for j = 1 to n do
if i �= j & Pj(x) − Pi(x) > 0 then

Px =
Pj−Pi

2

Py = Rot90(Px)

P0 =
Pi+Pj

2

P = uPx + vPy + P0

{Rehashing coordinates}
u′ = 1 − 3

u2+v2+3

v′ = atan2(v, u)
h(u′, v′) = (i, j, M)

end if
end for

end for

4.2.3 Experimental Evaluation

To measure the performance of the proposed iris indexing algorithm, extensive exper-

iments are carried out at two distinct levels. At first level of experiments the accuracy

of SIFT classifier is obtained prior to indexing. The performance of SIFT is also com-

pared with one of the known implementation provided by Masek [57]. At the second

level of experiment the database is indexed using geometric hashing and probabilities

of identification at various ranks are obtained. Detailed discussion of various levels of

experiments is given in the following sub-sections
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4.2 Indexing based on Geometric Hashing Iris Identification

Algorithm 7 Retrieval

Require: h: Hash Table, Q: Query keypoints, m: Number of query keypoints, λ:
Threshold

Ensure: K: Top K Matches
{Mapping and Voting}
for i = 1 to m do

for j = 1 to m do
if i �= j & Qj(x) − Qi(x) > 0 then

Obtain (u, v) using (4.3)
Obtain (u′, v′) using (4.8)
{Cast a vote in the hash table}
h(u′, v′) = h(u′, v′) + 1

end if
end for

end for
{Histogram and Thresholding}
H = hist(h)
K = H ≥ λ

Exhaustive Search

During exhaustive search, each point in the probe set is matched with all points in

the gallery set (union of gallery sets) without binning. For sequential search the

proposed approach uses SIFT for feature extraction without hashing. The results

of SIFT without hashing are compared with Masek’s approach [57] which uses 1D

Log-Gabor wavelets for feature encoding and Hamming distance for matching. The

CMC curves for Masek’s and SIFT are given in Figure 4.14(a) and 4.14(b) respec-

tively. Identification probabilities at various ranks are given in Table 4.2. Using SIFT

the identification probability for UBIRIS, BATH, CASIA and IITK databases is 0.36,

0.32, 0.66 and 0.91 for the top most match respectively. The probability increases to

0.71, 0.96, 0.94 and 0.96 for all databases at rank 100. There is significant improve-

ment in the results for higher ranks. However, the rate of improvement for UBIRIS

is low compared to other databases. The reason behind this is, UBIRIS database

contains low quality images with several noise factors. Thus, few good quality im-

ages taken under ideal illumination conditions fall under rank 1 identification. This

analysis shows that number of false acceptances is quite high for higher ranks. This

is the reason that the true identity falls at 100th rank. The number of false accep-
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4.2 Indexing based on Geometric Hashing Iris Identification

tance increases with the increase in the number of comparisons during identification

[27]. Similar results are obtained for Masek’s approach as given in Table 4.2. Masek’s

approach gives identification probabilities of 0.33, 0.24, 0.55 and 0.19 for top most

match. The identification probability is very low for IITK database due to presence

of non-ideal images that leads to errors due to mis-localisation. Masek’s approach

could not attain desired performance in terms of time as well as accuracy.

ROC curve for two approaches are given in Figure 4.15. Table 4.3 shows the

percentage accuracy at EER for SIFT and Masek. From the results it is evident that

the accuracy of SIFT is fairly high compared to Masek’s approach. This is mainly

due to localisation performance. In addition to this, SIFT is invariant to similarity

transformations and occlusion. However, the two approaches perform equally well

for CASIA as the percentage mis-localisation is less for Masek’s approach. Table 4.4

shows average time taken (in seconds) by different approaches. Masek’s approach

takes more time compared to SIFT due to masking and feature extraction. For IITK

database, both the approaches take more time because images are collected at varying

sizes to check scale invariance. The average penetration coefficient for exhaustive

search is 1 as whole database is scanned to find a match with bin miss rate of 0.

Index based search

To improve the performance in terms of time as well as accuracy, the databases are

indexed using geometric hashing of SIFT keypoints. Probability of identification at

various ranks is shown in Table 4.5. The rank 1 identification increases to 0.82,

0.45, 0.82 and 0.95 for UBIRIS, BATH, CASIA and IITK databases respectively.

Identification probability for databases is 1.00, 0.98, 0.99 and 1.00 at rank 100. The

performance improves considerably after indexing. BATH database gives reduced

identification probability due to low texture resolution that leads to reduction in the

number of keypoints. UBIRIS database performs better after indexing where the

probability of identification improves from 0.36 to 0.82 at rank 1. IITK database

gives identification probability of 1 at rank 3. The reason behind is that images from

IITK database consists of rich quality texture features with higher resolution. The

probability of identification becomes 1.00 for all the databases at 250 ranks. This is a
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Figure 4.14: CMC curve for exhaustive search
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Figure 4.15: ROC curve for exhaustive search

Table 4.3: Accuracy at EER (in %) using exhaustive search (Prior to indexing) for
SIFT and Masek’s approach

Database Masek’s Approach SIFT Without Hashing

UBIRIS 71.87 97.48
BATH 68.33 94.82
CASIA 97.61 97.06
IITK 85.62 96.03
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4.2 Indexing based on Geometric Hashing Iris Identification

Table 4.4: Average time (in seconds) by individual searching approaches

Approach ↓ Database → UBIRIS BATH CASIA IITK

Masek’s Approach 11.3290 11.4319 28.9373 263.7545
SIFT Without Hashing 05.6888 03.5450 19.4371 39.5302
SIFT with Geometric Hashing 03.5882 01.1375 09.2196 10.7490

significant reduction in comparison to exhaustive search using SIFT without hashing

and Masek’s approach where probability of identification becomes 1.00 at 1500 ranks.

The efficiency of identification system is further measured in terms of penetration

coefficient and bin miss rate. The penetration coefficient is obtained for change in

threshold (λ). Here the value of λ is chosen by keeping a bound on the number of

votes. Figure 4.16 shows relationship between penetration coefficient and threshold

while Figure 4.17 provides the relationship between bin miss rate and threshold. From

the graphs it can be seen that penetration coefficient decreases with increase in the

value of threshold while bin miss rate shares direct relationship with threshold. Thus,

there exists a trade off between two evaluation rates. The value of threshold should

be chosen depending upon the deployment of the identification system. If the demand

of application is highly secure than bin miss rate should be made as low as possible.

In case of low secure applications where time is a major constraint, the penetration

rate is reduced at acceptable bin miss rate. However, neither penetration rate nor

bin miss rate can be reduced to an insignificant small value. Figure 4.18 shows the

relationship between two performance rates. The threshold value is chosen where

two curves intersects i.e., PR=BM. The values given in Table 4.5 are obtained for

threshold with bin miss 0. However, if bin miss is reduced to 0 the penetration rate

becomes close to 1. The CMC curve is obtained after indexing as shown in Figure

4.19 for chosen threshold λ where BM=PR.

Average time required to claim identification also reduces due to binning as shown

in Table 4.4. The ROC curve for index based search is given in Figure 4.20. The

accuracy at EER after indexing, given in Table 4.6, shows that the proposed indexing

approach performs better than the exhaustive search. The proposed approach gives

an accuracy of 98.29% for BATH database in comparison to 94.82% obtained using

98
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Table 4.5: Identification probabilities at various ranks using indexing scheme for
threshold where BM=0

Ranks UBIRIS BATH CASIA IITK

1 0.82028 0.44681 0.82014 0.95652
2 0.86636 0.51064 0.84892 0.97826
3 0.88018 0.51064 0.86331 1.00
5 0.91705 0.61702 0.87050 1.00
10 0.94009 0.80851 0.87770 1.00
50 0.99078 0.91489 0.97122 1.00
100 1.00 0.97872 0.98561 1.00
200 1.00 0.97872 1.00 1.00
250 1.00 1.00 1.00 1.00

Table 4.6: Accuracy at EER (%) for proposed indexing approach

Database UBIRIS BATH CASIA IITK

Accuracy 97.57 98.29 98.55 99.61

exhaustive search. There is not substantial improvement for CASIA and UBIRIS

but for IITK database it outperforms with an accuracy of 99.61%. Experimentally

it has been observed that the accuracy of SIFT operator on IITK database is 96%

for exhaustive search. The value of accuracy increases to 99.61% after indexing. The

reason behind variation in the value of accuracy for the same database using same

classifier is that during exhaustive search the error rates are quiet high due to increased

number of comparisons while during indexing the size of database reduces which in

turn reduces the number of comparisons and false acceptances.

The experiments done on non-cooperative database include images with various

transformations, occlusions and variation in illumination. The system has been tested

for such cases with change in illumination (cases for UBIRIS), occlusion (CASIA) and

similarity transformations (IITK and CASIA). Few sample instances are shown in

Figure 4.21 that represents the rank of identification for the true match. An instance

which represents an element from the probe set is shown on the left with corresponding

match from the gallery set along with the rank on the right side.
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Figure 4.16: Relationship between Penetration coefficient and threshold
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Figure 4.19: CMC Curve for geometric hashed based indexing scheme for threshold
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Figure 4.20: ROC curve of geometric hashed based indexing approach
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Figure 4.21: Correct matches using geometric hashing technique. For each test case,
image on the left is an element from probe set whereas image on right is an element
from gallery set along with rank of identification. Row 1, 2 and 3 represents instances
from CASIA, IITK and UBIRIS databases respectively.
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4.3 Summary

In this chapter two novel approaches are proposed for indexing iris biometric database.

The first approach uses energy histogram of DCT coefficients from doubly dimen-

sionless polar iris image. The system prunes database to approximately 20% of the

original size with low bin miss rate. However, this approach uses polar transformed

image that introduces aliasing errors. Further, DCT is a global feature extraction

approach that fails for work for non-cooperative images. The second approach uses

geometric hashing for indexing. It is found to be robust to similarity transforma-

tions, occlusion as well as non-uniform illumination. Features are extracted directly

from annular iris image to overcome the effect of aliasing. Performance for exhaustive

search and indexing based search are critically analyzed. Exhaustive search using

SIFT classifier gives an identification probability of 0.91 at top most match for IITK

database. The probability of identification for Masek’s approach is considerably low

due to mis-localisations and inability of feature extractor to handle variations between

genuine and imposter templates. Further, the number of false acceptances grows ge-

ometrically with increase in the size of the database and this leads to the reduction

in the performance. Searching an indexed IITK database using geometric hashing

gives identification probability of 1.00 at rank 3. The time required for iris retrieval

also reduces significantly by 29 seconds (approx). The accuracy at EER is obtained

within each bin and system is performing with an average accuracy of 98.5%. After

indexing the total amount of database to be searched with acceptable bin miss rate

is obtained. The penetration rate and bin miss rate can be varied depending upon

the choice of threshold. In the proposed work, threshold is chosen where BM=PR

which gives an average penetration rate and bin miss rate of 0.24. The system can

handle several variations in the probe set as tested empirically. Results show that the

proposed iris identification system can be deployed for applications where both speed

and accuracy cannot be compromised.
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Chapter 5

Conclusions and Future Work

This thesis proposes novel preprocessing, feature extraction and identification ap-

proaches for cooperative as well as non-cooperative iris databases. The first contribu-

tion is made to develop an efficient preprocessing approach that segments non-ideal

iris imagery. The proposed approach removes specular highlights and localises pupil

boundary using spectrum image. In order to overcome the problem of aliasing due to

polar transformation, the annular region underlying pupil and iris boundary is con-

sidered directly for feature extraction. From the annular image, the occlusion due to

eyelids is removed using sector based approach to generate Noise Independent An-

nular Iris image. The experiments are done using proposed preprocessing approach

and known Masek’s approach on various available databases. From the results it is

found that the average mis-localisation percentage is 1.55% which is significantly low

compared to Masek’s approach.

The second contribution is made to develop local feature extraction approach

for iris. The main drawback of global approaches is that the they fail to work for

large variations in individual’s pose, illumination and occlusion. The accuracy is

obtained for well known global feature extraction approaches such as Haar wavelet and

Log-Gabor wavelet. The system is performing with an average accuracy of 79.67%.

Further, global approaches are not suitable for noise independent annular iris as the

size of iris varies due to illumination. In order to overcome these issues, an attempt

has been made to devise local keypoint descriptors for iris. Local features are less

sensitive to variations since the features are extracted from the subset regions around

interest points. At first level Harris Corner Detector is applied to iris and corner
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points are paired using Euclidean distance. However, distance based measure gives

an average accuracy of 75.46% which is relatively low. The position of corner point

features may change due change in head position or viewpoint of an individual. Thus,

entropy information is obtained for a block around every detected corner point. For

corner point pairing, a novel Dual Stage approach is developed that combines spatial

distance and mutual information of entropy hierarchically. This approach performs

with an average accuracy of 94% which still leaves behind a scope to further explore

techniques to improve performance. At second level, one of the well known keypoint

descriptor known as Scale Invariant Feature Transform (SIFT) has been applied to iris

for feature extraction and matching. The approach has been tested for various forms of

iris and performs with an enhanced accuracy of 96.43% for annular iris. But the main

drawback of SIFT is that it is computationally costly due to higher dimensionality

of feature descriptor. At last level, recently developed keypoint descriptor called

Speeded Up Robust Features (SURF) is applied to annular iris. SURF has already been

proposed for camera calibration and object recognition but its applicability is new to

iris. SURF based recognition system performs with an average accuracy of 97.72%

using noise independent annular iris. This marks an improvement in performance

for BATH, CASIA and IITK databases but accuracy reduces for UBIRIS database.

SURF approximates or even outperforms previously proposed keypoint descriptors

with respect to repeatability, distinctiveness, robustness and time.

The last and most valuable contribution is made to develop an identification ap-

proach for iris that performs better than the state-of-the-art system. We have investi-

gated two different techniques for iris database indexing. First approach indexes the

database using energy histogram of DCT coefficients. DCT based approach performs

with bin miss rate of 0.22 and penetration rate of 20%. However, the proposed DCT

based approach suffers from few limitations like considering the doubly dimensionless

iris image for indexing introduces aliasing artifacts and DCT is incapable to handle

large variations in the input data. The second approach addresses the aforementioned

issues by indexing the database using Geometric Hashing of SIFT keypoints. This ap-

proach performs significantly well with an average accuracy of 98.5% at the threshold
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where BM=PR which gives an average penetration rate and bin miss rate of 0.24.

To conclude with this thesis, the proposed approaches have been critically analysed

and few limitations have been observed. These limitations can be studied and refined

that promotes further research in the proposed area. The sector based preprocessing

approach uses fixed size mask for removing eyelids. This fails for images with no

occlusion or occlusion greater than the mask size. Thus, an adaptive mask is required

that can automatically detect eyelids by fitting curves on the lower and upper eyelid

edge segments. Performance of SURF can be further improved for UBIRIS and com-

putational cost can be reduced by applying box filters of varying sizes on the original

image in parallel. The accuracy of geometric hashing can be further improved by

extracting features using SURF. SURF extracts more number of keypoints which in

turn increases the number of basis pairs
(

n
2

)
for indexing. Thus, keypoints extracted

from SURF can be filtered by applying some dimensionality reduction approaches

while still preserving recognition time and accuracy. Finally, the concept of geometric

hashing can be inherently made parallel by using fully connected machines.
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