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ABSTRACT 

  An ac to dc converter is an integral part of any power supply unit used in the all electronic 

equipments. These electronic equipments form a major part of load on the utility. Generally, to 

convert line frequency ac to dc, a line frequency diode bridge rectifier is used. To reduce the 

ripple in the dc output voltage, a large capacitor is used at the rectifier output. But due to this 

large capacitor, the current drawn by this converter is peaky in nature. This input current is rich 

in low order harmonics. Also, as power electronics equipments are increasingly being used in 

power conversion, they inject low order harmonics into the utility. Due to the presence of these 

harmonics, the total harmonic distortion is high and the input power factor is poor. Because of 

the problems associated with low power factor and harmonics, utilities will enforce harmonic 

standards and guidelines, which will limit the amount of current distortion allowed into the 

utility, and thus the simple diode rectifier may not be in use. So, there is a need to achieve 

rectification at close to unity power factor and low input current distortion. Initially, power 

factor correction schemes have been implemented mainly for heavy industrial loads like 

induction motors, induction heating furnaces etc., which forms a major part of lagging power 

factor load. Hence, PFC is becoming an important aspect even for low power application 

electronic equipments. 

    There are two types of PFC‟s. 1) Passive PFC, 2) Active PFC. The active PFC is further 

classified into low-frequency and high-frequency active PFC depending on the switching 

frequency. Different techniques in passive PFC and active PFC are presented here. Among these 

PFC‟s, we will get better power factor by using high-frequency active PFC circuit. Any DC-DC 

converters can be used for this purpose, if a suitable control method is used to shape its input 

current or if it has inherent PFC properties. The DC-DC converters can operate in Continuous 

Inductor Current Mode – CICM, where the inductor current never reaches zero during one 

switching cycle or Discontinuous Inductor Current Mode - DICM, where the inductor current is 

zero during intervals of the switching cycle. 

  In DICM, the input inductor is no longer a state variable since its state in a given switching 

cycle is independent on the value in the previous switching cycle. The peak of the inductor 

current is sampling the line voltage automatically. This property of DICM input circuit can be 

called “self power factor correction” because no control loop is required from its input side. In 
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CICM, different control techniques are used to control the inductor current. Some of them are (1) 

peak current control (2) average current control (3) Hysteresis control (4) borderline control. 

These control techniques specifically developed for PFC boost converters are analyzed. For each 

control strategy advantages and drawbacks are highlighted. 

             This high frequency switching PFC stage also has drawbacks, such as: it introduces 

additional losses, thus reducing the overall efficiency; it increases the EMI, due to the high 

frequency content of the input current. The efficiency will be improved by reducing the losses 

using soft switching techniques such as „Zero Voltage Switching‟- (ZVS), „Zero Voltage 

Transition‟ (ZVT), and „Zero Current Switching‟- (ZCS). 

      We study circuit techniques to improve the efficiency of the PFC stage by lowering the 

conduction losses and/or the switching losses. Operation of a ZVT converter has been discussed, 

in which the switching losses are minimized by using an additional auxiliary circuit incorporated 

in the conventional PWM boost converter. The proposed converter achieves zero voltage or zero 

current turn-on and turn-off for the main switch and soft switching for the auxiliary switch. Thus, 

the switching losses are reduced and the higher efficiency of the system is achieved.  

   Finally, ZVT technique has been implemented in a single-phase active power factor correction 

circuit   based on an ac-dc boost converter topology and operating in a continuous inductor 

current mode with peak current control method. A 500 W, 40 kHz ZVT PWM boost PFC 

converter has been simulated and simulation results are validated with experimental results. 
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INTRODUCTION: 

     Most applications requiring ac-dc power converters need the output dc voltage to be well 

regulated with good steady-state and transient performance. The circuit typically favored until 

recently (diode rectifier-capacitor filter) for the utility interface is cost effective, but it severely 

deteriorates the quality of the utility supply thereby affecting the performance of other loads 

connected to it besides causing other well-known problems. In order to maintain the quality of 

the utility supply, several national and international agencies have started imposing standards 

and recommendations for electronic instrument connected to the utility. Since the mid-1980's 

power electronics engineers have been developing new approaches for better utility interface, to 

meet these standards. These new circuits have been collectively called Power factor correction 

(PFC) circuits. 

 With the increase of consumer electronics the power quality becomes poor. The reactive 

power drawn from the supply is increasing [3]. This is because of the use of rectification of the 

AC input and the use of a bulk capacitor directly after the diode bridge rectifier. Reducing the 

input current harmonics to meet the agency standards implies improvement of power factor as 

well. For this reason the publications reported in this area have used "Power factor correction 

methods" and "Harmonic elimination/reduction methods" almost inter changeably. Several 

techniques for PFC and harmonic reduction have been reported and a few of them have gained 

greater acceptance over the others.  

 This chapter discusses the i) Nonlinear loads and their effect on the electricity 

distribution network, ii) Standard IEC and IEEE regulation for harmonics, iii) Power factor 

correction and its benefits, iv) application of PFC both for linear and non-linear loads, v) 

research background, vi) problem formulation , and vii) aim of the dissertation  

    

1.1 NONLINEAR LOADS AND THEIR EFFECT ON THE ELECTRICITY 

DISTRIBUTION NETWORK: 

      The instrument connected to an electricity distribution network usually needs some kind of 

power conditioning, typically rectification, which produces a non-sinusoidal line current due to 

the non-linear input characteristic. 
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      Line-frequency diode rectifiers convert AC input voltage into DC output voltage in an 

uncontrolled manner. Single-phase diode rectifiers are needed in relatively low power instrument 

that needs some kind of power conditioning, such as electronic instrument and household 

appliances. For higher power, three-phase diode rectifiers are used. In both single and three-

phase rectifiers, a large filtering capacitor is connected across the rectifier output to obtain DC 

output voltage with low ripple. As a consequence, the line current is non sinusoidal.  

      In most of these cases, the amplitude of odd harmonics of the line current is considerable 

with respect to the fundamental. While the effect of a single low power nonlinear load on the 

network can be considered negligible, the cumulative effect of several nonlinear loads is 

important. Line current harmonics have a number of undesirable effects on both the distribution 

network and consumers. 

These effects include: 

1. Losses and overheating in transformers, shunt capacitors, power cables, AC machines and          

    Switchgear, leading to premature aging and failure. 

2. Excessive current in the neutral conductor of three-phase four-wire systems, caused by odd        

    Triple current harmonics (triple-n: 3rd, 9th, 15th, etc.).  

3. Reduced power factor, hence less active power available from a wall outlet having a certain    

    apparent power rating. 

4. Electrical resonances in the power system, leading to excessive peak voltages and RMS      

    currents, and causing premature aging and failure of capacitors and insulation. 

5. The distorted line voltage may affect other consumers connected to the electricity distribution  

     network. 

6. Telephone interference. 

7. Errors in metering instrument. 

8. Increased audio noise. 

9. Cogging or crawling in induction motors, mechanical oscillation in a turbine-generator  

     combination or in a motor-load system. 

10. Distortion of the line voltage via the line impedance shown in Fig.1.1 where the typical worst 

case values: R-Line=0.5 ohm, and L-Line=1mH have been considered. The effect is stronger in 

weaker grids. For example, some electronic instrument is dependent on accurate determination of 

aspects of the voltage wave shape, such as amplitude, RMS and zero-crossings 
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Fig. 1.1: Single-phase diode bridge rectifier: (a) Schematic; (b) Typical line voltage and line 

current waveforms (upper plot) and odd line current harmonics (lower plot). And the line current 

has THDi=1.5079 and power factor of 0.5475.  

1.2. Standards regulating line current harmonics:  

1.2.1 Standard IEC 1000-3-2: 

1. It applies to instrument with a rated current up to and including 16Arms per phase which 

is to be connected to 50Hzor 60 Hz, 220-240Vrms single-phase or 380-415Vrms three-

phase mains [1],[2]. 

2. Items of electrical instrument are categorized into four classes (A, B, C, and D), for 

which specific limits are set for the harmonic content of the line current. 

3. These limits do not apply for the instrument with rated power less than 75w, other than 

lighting instrument. 

CLASS-A: 

 Instrument not specified in one of the other three classes should be considered as class-A 

instrument. The classification can also be represented using the flowchart: 

 

 

(b) (a) 

Line impedance 

Rline Lline 
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Fig: 1.2. Classification of instrument under Standard IEC 1000-3-2 

CLASS-B: 

         It includes portable tools, and nonprofessional arc welding instrument. 

CLASS-C: 

 It includes lighting instrument (except for dimmers for incandescent lamps, which belong 

to class-A). 

CLASS-D: 

  Instrument with special line current shape i.e. includes instrument having an active input power 

less than or equal to 600w, of the following types: 

i. Personal computers. 

ii. Personal computer monitors. 

iii. Television receivers. 
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Limits in standard IEC 1000-3-2: 

Table 1.1(a): Limits for Class-A and Class-D                    Table 1.1(b): Limits for Class-B and C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Harmonic 

order 

Class-

A 

Class-D 

 Arms Arms mA/W 

3 
2.30 2.30 3.40 

5 1.14 1.14 1.90 

7 0.77 0.77 1.00 

9 0.40 0.40 0.50 

11 0.33 0.33 0.35 

13 0.21 0.21 0.29 

15 to 39 2.25/n 2.25

/n 

3.85/n 

2 1.08 

4 0.43 

6 0.30 

8 to 40 1.84/n 

Harmonic 

order 

Class-B Class-C 

 Arms % 

3 3.45 30*PF 

5 1.71 10 

7 1.15 7 

9 0.60 5 

11 0.49 3 

13 0.31 3 

15 to 39 3.375/n 3 

2 1.62 2 

4 0.64 

6 0.45 

8 to 40 2.76/n 
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1.2.2 STANDARD IEEE 519-1992: 

    Gives recommended practices and requirements for harmonic control in electrical power 

systems for both individual consumers and utilities. The limits for line current harmonics are 

given as a percentage of the maximum demand load current IL at the point of common coupling-

PCC at the utility. They decrease as the ratio ISC/IL decreases where ISC is the maximum short 

circuit current at PCC, meaning that the limits are lower in weaker grids. This standard covers 

also high voltage loads of much higher power. 

Limits in standard IEEE 519-1992: 

Table 1.2: Odd harmonic limits: 

ISC/IL(%) h<11 11≤h<17 17≤h<23 23≤h<35 35≤h TDD
* 

<20 4.0 2.0 1.5 0.6 0.3 5 

20 to 50 7.0 3.5 2.5 1.0 0.5 8 

50 to 100 10.0 4.5 4.0 1.5 0.7 12 

100 to 1000 12.0 5.5 5.0 2.0 1.0 15 

>1000 15.0 7.0 6.0 2.5 1.4 20 

*TDD=Total Demand Distortion. 

1.3 POWER FACTOR CORRECTION: 

 Reduction of line current harmonics is needed in order to comply with the standard. This is 

commonly referred to as the Power Factor Correction – PFC, which may be misleading. When 

an electric load has a PF lower than 1, the apparent power delivered to the load is greater than the 

real power that the load consumes. Only the real power is capable of doing work, but the 

apparent power determines the amount of current that flows into the load, for a given load 

voltage. 

  Power factor correction (PFC) is a technique of counteracting the undesirable effects of electric 

loads that create a power factor PF that is less than 1. 

  The power factor is defined as the ratio of the active power P to the apparent power S:   
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PF = P/S                                                                                                                                                                 (1.1) 

For purely sinusoidal voltage and current, the classical definition is obtained:   

 PF=                                                                                                                                   (1.2)    

  Where cosΦ is the displacement factor of the voltage and current. In classical sense, PFC means 

compensation of the “displacement factor”. 

The line current is non-sinusoidal when the load is nonlinear. For sinusoidal voltage and non-

sinusoidal current the PF can be expressed as. 

 

                                                            (1.3)  

                                                                                                        (1.4) 

 

Kp describes the harmonic content of the current with respect to the fundamental. Hence, the 

power factor depends on both harmonic content and displacement factor. Kp is referred to as 

purity factor or distortion factor. 

The total harmonic distortion factor THDi is defined as 

                                                                                                               (1.5)                                                

Hence the relation between Kp and THDi is 

                                                                                                                      (1.6)     

Standard IEC 1000-3-2 sets limits on the harmonic content of the current but does not 

specifically regulate the purity factor Kp or the total harmonic distortion of the line current 

THDi. The values of Kp and THDi for which compliance with IEC 1000-3-2 is achieved depend 

on the power level. For low power level, even a relatively distorted line current may comply with 

the standard. In addition to this, it can be seen from (1.6) that the distortion factor Kp of a 

waveform with a moderate THDi is close to unity (e.g. Kp=0.989 for THDi=15%). Considering 

(1.3) as well, the following statements can be made: 
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1. Power factor PF is not significantly degraded by harmonics, unless their amplitude is 

quite large (low Kp, very large THDi). 

2. Low harmonic content does not guarantee high power factor (Kp close to unity, but low   

cosΦ). 

1.3.1 Benefits Of Power Factor: 

1. Voltage distortion is reduced. 

2. All the power is active. 

3. Smaller RMS current. 

4. Higher number of loads can be fed. 

     Most of the research on PFC for nonlinear loads is actually related to the reduction of the 

harmonic content of the line current. There are several solutions to achieve PFC [3], [4]. The 

shape of the input current can be further improved by using a combination of low pass input and 

output filters [5],[6][7],[8].Depending on whether active switches (controllable by an external 

control input) are used or not, PFC solutions can be categorized as “Passive” or “Active”.  

     In passive PFC, only passive elements are used in addition to the diode bridge rectifier, to 

improve the shape of the line current. Obviously, the output voltage is not controllable. For 

active PFC, active switches are used in conjunction with reactive elements in order to increase 

the effectiveness of the line current shaping and to obtain controllable output voltage. The 

switching frequency further differentiates the active PFC solutions into two classes. In low-

frequency active PFC, switching takes place at low-order harmonics of the line-frequency and it 

is synchronized with the line voltage. In high-frequency active PFC, the switching frequency is 

much higher than the line frequency.   

 1.4 APPLICATIONS OF PFC: 

1.4.1 Electricity industry: Power factor correction of linear loads.  

     Power factor correction is achieved by complementing an inductive or a capacitive circuit 

with a (locally connected) reactance of opposite phase. For a typical phase lagging PF load, such 

as a large induction motor, this would consist of a capacitor bank in the form of several parallel 

capacitors at the power input to the device. Instead of using a capacitor, it is possible to use an 

unloaded synchronous motor. This is referred to as a synchronous condenser. It is started and 

connected to the electrical network. It operates at full leading power factor and puts VARs onto 
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the network as required to support a system’s voltage or to maintain the system power factor at a 

specified level. The condenser’s installation and operation are identical to large electric motors. 

   The reactive power drawn by the synchronous motor is a function of its field excitation. Its 

principal advantage is the ease with which the amount of correction can be adjusted; it behaves 

like an electrically variable capacitor. 

1.4.2 Switched mode power supply: Power factor correction of non-linear loads. 

     A typical switched-mode power supply first makes a DC bus, using a bridge rectifier or 

similar circuit. The output voltage is then derived from this DC bus. The problem with this is that 

the rectifier is a non-linear device, so the input current is highly non-linear. That means that the 

input current has energy at harmonics of the frequency of the voltage. This presents a particular 

problem for the power companies, because they cannot compensate for the harmonic current by 

adding capacitors or inductors, as they could for the reactive power drawn by a linear load. Many 

jurisdictions are beginning to legally require PFC for all power supplies above a certain power 

level. 

  The simplest way to control the harmonic current is to use a filter: it is possible to design a filter 

that passes current only at line frequency (e.g. 50 or 60 Hz). This filter kills the harmonic 

current, which means that the non-linear device now looks like a linear load. At this point the 

power factor can be brought to near unity, using capacitors or inductors as required. This filter 

requires large-value high-current inductors, however, which are bulky and expensive. 

   It is also possible to perform active PFC. In this case, a boost converter is inserted between the 

bridge rectifier and the main input capacitors. The boost converter attempts to maintain a 

constant DC bus voltage on its output while drawing a current that is always in phase with and at 

the same frequency as the line voltage. Another switch-mode converter inside the power supply 

produces the desired output voltage from the DC bus. This approach requires additional 

semiconductor switches and control electronics, but permits cheaper and smaller passive 

components. It is frequently used in practice. Due to their very wide input voltage range, many 

power supplies with active PFC can automatically adjust to operate on AC power from about 100 

V (Japan) to 240 V (UK). That feature is particularly welcome in power supplies for laptops and 

cell phones. 
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1.5 Research Background: 

    There is a significant interest on the part of society to reduce the amount of nonlinear loading on AC 

power systems. This loading reduces the distribution capacity of the public power system, and it can 

degrade the quality of the power by distorting the AC power waveform delivered to nearby customers. 

The negative effects of line current distortion have prompted a need for setting limits for the line current 

harmonics of instrument connected to the electricity distribution network. Standardization activities in 

this area have been carried out for many years. As early as 1982, the International Electro-technical 

Committee-IEC published its standard IEC 555-2, which was also adopted in 1987 as European standard 

EN 60555-2, by the European Committee for Electro-technical Standardization - CENELEC. Standard 

IEC 555-2 has been replaced in 1995 by standard IEC 1000-3-2 [1], [2], also adopted by CENELEC as 

European standard EN 61000-3-2. Most of the research on PFC for nonlinear loads is actually related to 

the reduction of the harmonic content of the line current. There are several solutions to achieve PFC, 

which were discussed in [3], [4]. Depending on whether active switches (controllable by an external 

control input) are used or not, PFC solutions can be categorized as “Passive” or “Active”. 

1.5.1 Passive PFC  

  In Passive PFC circuit only passive elements are used in addition to the diode bridge rectifier, to 

improve the shape of the line current. In order to improve the shape of the line current Passive 

Power Factor correction circuit simply uses an inductor in the input circuits. The shape of the 

input current can be further improved by using a combination of low pass input and output filters 

was given in [5-8]. To maintain the flow of input current, voltage doublers is inserted to feed the 

valley fill circuit [9], [10]. Even though line current harmonics are reduced, the fundamental 

component may show an excessive phase shift that reduces the power factor. Better 

characteristics can be obtained by using “Active PFC”. 

1.5.2 Active PFC 

  Active power factor correction can be accomplished by many ways. The Boost converter 

operated on the rectified output uses a constant switching frequency PWM and DCM operation 

reduces the total harmonic distortion of the input current [11], [12], [14], [15]. In a Boost circuit 

the switching device can handles only a portion of output power which increases the efficiency. 

The efficiency can be increased by keeping the ratio of output voltage to input voltage closer to 

unity. The effect of second harmonic in PWM in reducing third harmonic component in the input 

current is established. In this converter the output is varied by varying the duty cycle keeping the 



11 
 

frequency constant. In this control method, the duty cycle D is varied by injecting second 

harmonic to the reference signal. The variation of D is given by [1 .sin(2 )]D K m t   ,where 

k proportional coefficient which controls the input power, m modulation index, w input 

frequency, Ω initial phase angle that controls the THD value in the input current[16]. 

 

   The other converter topologies for a PFC based Sepic topology are reported in [17-19], which allow 

comparison of converter performance with different control techniques. The advantages of clamped 

current control include overall simplicity, relatively low inductive energy storage and component stresses, 

and fixed operating frequency discussed in[20],[22]. Another control method, which allows a better 

input current waveform, is the average current control represented in Fig.5.3 [21, 23-25]. 

   Hysteresis control technique has been reported in [26-27]. In this control technique, the switch is 

turned on when the inductor current goes below the lower reference Ivref, and is turned off when the 

inductor current goes above the upper reference, giving rise to a variable frequency control. But in 

Borderline Control approach [28] the switch on-time is held constant during the line cycle and the switch 

is turned on when the inductor current falls to zero, so that the converter operates at the boundary between 

Continuous and Discontinuous Inductor Current Mode (CICM-DICM). The paper [48] presents a new 

approach for generating reference currents for an active filter and a static compensator. The 

purpose of the compensating scheme is to balance the load, as well as make the supply side 

power factor a desired value. Here a suitable compensator structure is proposed which tracks the 

reference currents in a hysteresis band control scheme. 

1.5.3 EMI Problem 

  The converters operating in CICM reduces the line current harmonics, but it has some 

drawbacks, such as: 1) It increases the EMI, due to the high-frequency content of the input 

current. 2) It introduces additional losses, thus reducing the overall efficiency.  However the high 

frequency EMI can be eliminated by introducing an EMI filter between AC supply and diode 

bridge rectifier were found in various studies [29],[30],[31]. The second requirement for the EMI 

filter: the displacement angle Φ must be kept low. The third requirement is related to the overall 

stability of the system. It is known that unstable operation may occur due to the interaction 

between the EMI filter and the power stage. This phenomenon is given in [32], [33] and [34] . 

   However the losses are reduced by inserting an inductor in the series path of the boost rectifier 

to reduce the di/dt rate during its turn-off [35]. Better characteristics are obtained in Zero Voltage 
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Transition – ZVT topologies, at the expense of increased complexity. Several ZVT topologies 

was found in [36-41]. The converter proposed in [42] reduces the current stress on the main 

switch, and it will still keep the advantages of a PWM converter because after the switching 

transition is over, the circuit reverts back to PWM operation mode. Most attention is paid to the 

damping of voltage harmonics. However, this control strategy allows mitigating voltage dips in 

[43]. 

    The focus of the topology [44] is to reduce the DC bus voltage at light load without 

compromising with input power factor and voltage regulation. The boost inductor operation is 

maintained in the discontinuous current mode (DCM) [45], So that natural power factor 

correction is obtained. The research got a tremendous boost with the strides made in the 

miniaturization of the electrical industry [47]. According to this the harmonics and noise can be 

reduced by using EMI Filter connected at the input side of Boost PFC Converter. The purpose of 

the compensating scheme [48] is to balance the load, as well as make the supply side power 

factor a desired value. However Over the years, lot of research has been carried out for the 

supply of quality power to the consumers, by minimizing Electro Magnetic Interference is 

presented in [49]. 

1.5.4 Switching Loss: 

 In active PFC circuit, switching of semiconductor devices normally occurs at high current 

levels. Therefore, when switching at high frequencies these converters are associated with high 

power dissipation. Also, the higher input and lower output voltages bring about very low duty 

cycles. Hence, the high side MOSFET switch should turn on and off in a very short period of 

time, which also brings switching losses into picture [50], [51], [52]. The losses due to switching 

produce three considerable effects [53] on the converters in general, 

1. Achievable fS and efficiency limited 

2. EMI at high frequencies due to high di/dt, dv/dt and induces noise 

3. Switching losses may sometimes exceed safe operating area 

Switching loss of a MOSFET can be represented mathematically as, 

    

From above equation some important result can be deduced that switching losses can be 

reduced by two methods: 



13 
 

(i) By reducing the turn-on and turn-off delay times. This is done by using faster and more 

efficient switches in the converter. 

(ii) By making the current or voltage across the switch zero before turning it on or off.    Soft 

switching resonant converters are based on this concept. 

Also it is inferred from the equation that the switching loss in any semiconductor switch varies 

linearly with fS and the delay times [53], [54].  

Hard switching is the predominant loss mechanism in the high side MOSFET followed by the 

conduction losses of the low side MOSFET [55], [56]. Some 60% to 70% of the total losses are 

in the MOSFET for a 60W power converter (Step – Down). Thus, more efficient power 

MOSFETs is needed that offer both reduced conduction and switching losses at higher 

frequencies [57]. The switching losses at higher frequencies can be eliminated by the soft 

switching techniques available.  

1.5.4.1 Solution 

   There are mainly two techniques to eliminate the switching losses namely ZVS and ZCS. 

QRCs were introduced to overcome the disadvantages of conventional PWM converters 

operating at high switching frequency by achieving ZVS for the active switch and ZCS for the 

rectifier diode [58]-[61]. ZVS MRCs technique utilizes all major parasitic of the power stages 

and all semiconductor devices in MRC operate with ZVS, which substantially reduces the 

switching losses and noise [62].  

  In both techniques, the switching losses in the semiconductor devices are eliminated due to the 

fact that current through or voltage across the switching device at switching point is equal to or 

near zero. This reduction in the switching loss allows the designer to attain a higher operating 

frequency without sacrificing converter efficiency. By doing so, the resonant converters show 

promise of achieving what could not be achieved by the PWM converter that is the design of 

small size and weight converters. Currently, resonant power converters operating in the range of 

a few megahertz are available. Another advantage of resonant converters over PWM converters 

is the decrease of harmonic content in the converter voltage and current waveforms. Therefore, 

when the resonant and PWM converters are operated at the same power level and frequency, it is 

expected that the resonant converter will have lower harmonic emission [63]. 

   The Resonant converters operate with sinusoidal current through the power switches which 

results in high peak and RMS currents for the power transistors and high voltage stresses on the 
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rectifier diodes. Furthermore, when the line voltage or load current varies over a wide range, 

QRCs are modulated with a wide switching frequency range, making the circuit design difficult 

to optimize [64]. As a compromise between the PWM and resonant techniques, various soft 

switching PWM converter techniques has been proposed to aim at combining desirable features 

of both the conventional PWM and Quasi Resonant techniques without a significant increase in 

circulating energy.  

 

1.5.4.2 ZVT and ZCT 

   Such a solution has been achieved by ZVT and ZCT. The choice between the two depends on 

the semiconductor device technology that will be used. In the case of majority carrier 

semiconductors, the best choice would be ZVS, where the capacitive turn-on losses can be 

eliminated. On the other hand, in the case of minority carrier semiconductors, the ZCS technique 

can avoid the turn off losses caused by the current tail [65]. 

  The voltage-mode soft-switching method that has attracted most interest in recent years is the 

ZVT. This is because of its low additional conduction losses and because its operation is closest 

to the PWM converters. Instead of using a series resonant network across the power switch, an 

alternative way is to use a shunt resonant network across the power switch. The auxiliary circuit 

of the ZVT converters is activated just before the main switch is turned on and ceases after it is 

accomplished.  The auxiliary circuit components in this circuit have lower ratings than those in 

the main power circuit because the auxiliary circuit is active for only a fraction of the switching 

cycle. A partial resonance is created by the shunt resonant network to achieve ZCS or ZVS 

during the switching transition. And it will still keep the advantages of a PWM converter because 

after the switching transition is over, the circuit reverts back to PWM operation mode [66 -70].  

     Previously proposed ZVT-PWM converters have at least one of the following key drawbacks. 

1. The auxiliary switch is turned off while it is conducting current. This causes switching 

losses and EMI to appear that offsets the benefits of the using the auxiliary circuit. In 

converters such as the ones proposed in [71], [72] the turn off is very hard. 

2. The auxiliary circuit components have high voltage and/or current stresses. Such as 

converters proposed in [73], [74]. The converter proposed in [70] reduces the current 

stress on the main switch, but circuit is very complex.  
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3. The active clamp technique have been reported in [46], where zero-voltage switching 

has been achieved for main and auxiliary switch. 

Reducing switching loss for high side switch is of more importance. Hence this work presents 

the implementation of ZVT techniques in PFC circuit, where soft switching is achieved for both 

main and auxiliary switches.   

1.6 Problem Formulation: 

The investigation of PFC faces the following problems: 

1. High PF with low efficiency. 

2. High efficiency with low PF. 

 1.7 Aim of This Dissertation: 

  To better define the scope of the research reported in this dissertation, the PFC is performed by 

a high frequency switching DC/DC converter that shapes the input current as close as possible to 

a Sinusoidal waveform which is in phase with the line voltage. Thus, from the electrical point of 

view, the instrument connected to the line behaves like a resistive load. 

 

    While the high-frequency switching PFC stage reduces the line current harmonics, it also has 

drawbacks, such as: it introduces additional losses, thus reducing the overall efficiency; it 

increases the EMI, due to the high-frequency content of the input current; and it increases the 

complexity of the circuit, with negative effects on the reliability of the instrument, as well as on 

its size, weight and cost. The general aim of this dissertation is to investigate high-frequency 

switching circuit topologies and methods to be applied in the PFC stage, which would alleviate 

some of the aforementioned drawbacks. The research addresses several aspects which can be 

divided into seven topics. 
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1.8 Thesis Organization: 

Chapter 2: Provides the fundamental concepts and overview of passive PFC 

Chapter 3: Deals with in-depth study of low frequency and high frequency active PFC. 

Chapter 4: 
Discusses operations of converters In Discontinuous Inductor Current Mode                   

(DICM). 

Chapter 5: 
Presents detail control techniques during operation of converter in                    

Continuous Inductor Current Mode (CICM). 

Chapter 6: 
Presents the analysis, simulation, and experimental results of the proposed                   

converters.  

Chapter 7: 
Provides the concluding remarks and points to possible directions for                   

future work to be carried out in this field. 
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PASSIVE PFC: 

 

     Passive PFC methods use only passive elements in addition to the diode bridge rectifier, to 

improve the shape of the line current. As mentioned in the previous chapter, the diode bridge 

rectifier, shown again in Fig.2.1 (a), has non-sinusoidal line current. This is because most loads 

require a supply voltage  with low ripple, which is obtained by using a correspondingly large 

capacitance the output capacitor Cf. Consequently, the conduction intervals of the rectifier diodes 

are short and the line current consists of narrow pulses with an important harmonic content. 

+ 

- 
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A

D 
V1 

V2 
Cf 

i1 
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(c) 

(d) 
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Fig. 2.1 Diode bridge rectifier: (a) Schematic; (b) Voltage ripple as a function of the output filter 

capacitance; (c) Line voltage and output voltage (upper plot), and input current (lower plot), with 

V1=230Vrms 50Hz and constant power load P = 200W . With Cf = 470µF, the line current has 

Kp = 0.4349, cosΦ = 0.9695 and PF =0.4216, and the output voltage ripple is V2 =25V. With Cf 

= 64µF, the line current has Kp = 0.6842, cosΦ = 0.8805 and PF =0.6024, and the output voltage 

ripple is V2 =105V; (d) and (e) Line current harmonics with Cf=64µF and Cf =470µF 

respectively. 

    The simplest way to improve the shape of the line current, by adding additional components, is to use a 

lower capacitance of the output capacitor Cf . When this is done, the ripple of the output voltage increases 

and the conduction intervals of the rectifier diodes widen. The shape of the input current depends on the 

type of load that the rectifier is supplying. The shape of the input current is improved to a certain extent 

with the lower capacitance, at the expense of increased output voltage ripple, which can be seen from the 

results listed in the caption of Fig. 2.1. The concept is highlighted by the simulated waveforms 

shown in Fig. 2.1c), for two values of the output capacitor and assuming constant power load. 

 

2.1 Diode Bridge Rectifiers: 

 

       Before going to passive PFC, let us discuss the simplest way to improve the shape of the line 

current by adding an output capacitor Cf When this is done, the ripple of the output voltage 

increases (shown in fig. 2.1(b) ) and the conduction intervals of the rectifier diodes increases. 

The shape of the input current becomes also dependent on the type of load that the rectifier is 

supplying. The concept is highlighted by the simulated waveforms shown in Fig. 2.1, for two 

values of the output capacitor and assuming constant power load. The shape of the input current 

is improved to certain extent with the lower capacitance, at the expense of increased output 

voltage ripple, as can be seen also from the Fig. 2.1(b).The method presented above has severe 

limitations: it does not reduce substantially the harmonic currents and the output voltage ripple is 

large, which is not acceptable in most of the cases. Several other methods to reduce the harmonic 

content of the line current in single-phase systems exist, and an overview of the Passive PFC is 

presented next. 
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2.1.1 Rectifier with AC side inductor:  

    One of the simplest methods is to add an inductor at the AC-side of the diode bridge, in series 

with the line voltage as shown in Fig.2.2 (a), and to create circuit conditions such that the line 

current is zero during the zero crossings of the line voltage. The maximum power factor that can 

be obtained is PF= 0.78. Simulated results for the rectifier with AC-side inductor are presented in 

Fig.2.2. From the simulation results we can observe that increase in inductance La results in 

improved line current waveform with a lower THDi, a better distortion factor and a better power 

factor. 

 
                    

                                            

                    
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2 Rectifier with AC side inductor.(a) Schematic; Rectifier with AC-side inductor. (b)Line 

voltage, output voltage (upper plot) and line current (lower plot) with V1=230Vrms 50Hz, 

resistive load R=500Ώ: Cf =470µF, and La=130mH. The line current has Kp=0.8778, cosφ 

=0.8758 and PF =0.7688.The output voltage is V2 =257V; (c) Line current harmonics; (d) 

Variation of different parameters as a function of inductance. 
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      2.1.2 Rectifier with DC-side inductor: 

    The inductor can be also placed at the DC-side [5], as shown in Fig. 2.3(a) .The inductor 

current is continuous for a large value of inductance Ld. In the theoretical case of near infinite 

inductance, the inductor current is constant, so the input current of the rectifier has a square 

shape and the power factor is PF = 0.9, shown in Fig. 2.3(b). However, operation close to this 

condition would require a very large and impractical inductor, as illustrated by the simulated line 

current waveform for Ld =3H (without Ca), shown in Fig. 2.3(b). For lower inductance Ld, the 

inductor current becomes discontinuous. The maximum power factor that can be obtained in 

such a case is PF = 0.78, the operating mode being identical to the case of the AC-side inductor 

previously discussed. An improvement of the power factor can be obtained by adding the 

capacitor Ca between the bridge rectifier and AC power supply as shown in Fig. 2.3(a), which 

compensates for the displacement factor cosΦ. A design for maximum purity factor Kp and unity 

displacement factor cosΦ is possible, leading to a maximum obtainable power factor PF = 

0.9118. The simulation results for Ld = 275mH with and without Ca=4.8µF is shown in Fig. 

2.3(c). 
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Fig.2.3 Rectifier with DC-side inductor. (a) Schematic; (b) Power factor Vs inductance without 

Ca; (c)Line voltage, output voltage (upper plot) and line current (lower plot) with V1 = 230Vrms 

50Hz, resistive load R=500Ώ: and Cf =470µF. With La=275mH and without Ca, the line current 

has Kp = 0.8846, cosΦ = 0.9580 and PF = 0.8474, and the output voltage is V2= 210V. With 

La=275mH and with Ca=4.8µF,the line current has Kp=0.9128, cosΦ=0.9989 and PF=0.9118, 

and the output voltage is V2=231V. (d) Line current harmonics without Ca and (e) with Ca 

respectively. 

 

      2.1.3 Rectifier with series-resonant band-pass filter: 

A band-pass filter of the series-resonant type, tuned at the line-frequency, is introduced in-

between the AC source and the bridge rectifier as shown in Fig. 2.4 together with simulated 

waveforms [4, pp. 488-489]. By this method we can obtain almost unity power factor. For 50Hz 

networks, large values of the reactive elements are needed. Therefore, this solution is more 

practical for higher frequencies, such as for 400Hz and especially 20 kHz networks. 
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Fig.2.4 Rectifier with series-resonant band-pass filter. (a) Schematic; (b) Line current harmonics; 

(c) Line voltage, output voltage (upper plot) and line current  (lower plot)  with output voltage 

(red line) for V1=230Vrms 50Hz, resistive load  R=500Ώ: Cf =470µF, La=1.5H and Ca=6.75µF. 

The line current has Kp=0.9937, cosΦ=0.9997 and PF=0.9934. The output voltage is V2=254V.  

  2.1.4 Rectifier with parallel-resonant band-stop filter: 

The band-stop filter of the parallel-resonant type [6] is presented in Fig. 2.5 together with 

simulated waveforms. The filter is tuned at the third harmonic, hence it allows for lower values 

of the reactive elements when compared to the series-resonant band-pass filter. 
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Fig.2.5 Rectifier with parallel-resonant band-stop filter. (a) Schematic; (b) Line current 

harmonics; (c) Line voltage (upper plot) and line current (lower plot) with output voltage is the 

straight line for V1=230Vrms 50Hz, resistive load R=500Ώ: filter capacitance Cf=470µF, band-

stop filter components Lp=240mH, Cp=470µF tuned at third harmonic. Line current has 

Kp=0.9586,cosΦ=0.9987, and PF=0.9574. The output voltage is V2=266V. 

 

 

2.1.5 Capacitor-fed rectifier: 

The capacitor-fed rectifier [7], shown in Fig. 2.6 together with simulated waveforms, is a very 

simple circuit that ensures compliance with standard IEC 1000-3-2 for up to approximately 250W input 

power at a 230Vrms line voltage. The conversion ratio is a function of Xa/R, where Xa=1/(ωLCa). Therefore, 

it is possible to obtain a specific output voltage, which is nevertheless lower than the amplitude of the line 

voltage and strongly dependent on the load. Despite the harmonic current reduction, the power factor is 

extremely low. This is not due to current harmonics, but due to the series-connected capacitor that 

introduces a leading displacement factor cosΦ. An advantage could be that the leading displacement 

factor cosΦ can assist in compensating for lagging displacement factors elsewhere in the power system. 
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Fig.2.6 Capacitor-fed rectifier ( a) Schematic; (b) Line current harmonics; (c) Line voltage, 

output voltage and line current (lower plot) with V1=230Vrms 50Hz, resistive load R=500Ώ: Cf 

=470µF, and Ca=16µF. The line current has Kp=0.9824, cosΦ=0.076 and PF=0.0747. The 

output voltage is V2 =12V, efficiency=3.5387. 
 

 

2.1.6 Rectifier with an additional inductor, capacitor and diode (LCD): 

 

   The rectifier with an additional inductor, capacitor, and diode – LCD rectifier [8] – is shown in 

ig.2.7, together with simulated waveforms. The circuit can be used to about 300W. The added 

reactive elements have relatively low values. The idea behind the circuit is linked to the previous 

definition of Class-D of the Standard IEC 1000-3-2. The circuit changes the shape of the input 

current .Here the power-related to limits of Class-D were avoided and the absolute limits of 

Class-A could be met for low power, in spite of the line current being relatively-distorted. 
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Fig.2.7 Rectifier with an additional inductor, capacitor and diode (LCD). (a) Schematic; (b) Line 

current harmonics; (c) Line voltage, output voltage (upper plot) and line current (lower plot) with 

V1=230Vrms 50Hz, resistive load R=500Ώ,Cf =470µF, Ca=40µF, and La=10mH.The line 

current has Kp= 0.7261, cosΦ=0.9947 and PF=0.7223. The output voltage is V2 =304V. 

    

2.1.7 Valley-fill rectifier: 

 

Most of the input current distortion is caused by the discontinuous operation which crosses from 

positive to negative, and then from negative to positive, during each cycle. Due to these 

discontinuities substantial amount of harmonics were introduced into the input current 

waveform. If this cross-over distortion can be lessened or eliminated, then the likelihood of using 

this circuit to meet the IEC specifications would be very high. To maintain the flow of input 

current, a voltage doublers is inserted to feed the valley-fill circuit [10]. The current response can 

further be improved by the insertion of another resistor R1. Insertion of this resistor will remove 

the charging spike at the cross-over points, and further enhance the quality of the input current.  
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Fig.2.8 Valley-fill rectifier: (a) Schematic; (b) Line current harmonics; (c) Line voltage, output 

voltage, and line current with V1=230Vrms 50Hz, resistive load R=500Ώ:and C1=C2=470µF. 

The line current has Kp=0.8724, cosΦ=0.998 and PF=0.8707. The output voltage ripple is 

ΔV2=168V, efficiency=0.3791. 

2.2 Advantages Of Passive PFC: 

 Passive power factor correctors have certain advantages, such as: 

1. Simplicity. 

2. Reliability. 

3. Ruggedness. 

4. Insensitive to noises and surges. 

5. No generation of high-frequency EMI. 

6. No high-frequency switching losses. 

 

2.3 Disadvantages Of Passive PFC: 

 

On the other hand, they also have several drawbacks: 

1. They have poor dynamic response. 
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2. Solutions based on filters are heavy and bulky, because line-frequency reactive components 

are used. 

3. Lack voltage regulation and the shape of their input current depend on the load. Even though 

line current harmonics are reduced, the fundamental component may show an excessive phase 

shift that reduces the power factor. 

    Better characteristics are obtained with active PFC circuits, which are reviewed in the next 

chapter. 

 

Summary: 

  Some of the techniques to implement “Passive PFC” have been presented in this chapter. The 

passive PFC circuit uses low-frequency filter components to reduce harmonics. This approach 

typically meets EN standards for Class-A equipment up to 250W, at a much lower cost than a 

comparable switch mode power supply (SMPS) employing active PFC techniques. They 

typically yield less PFC’s compared to active topologies; they require a voltage doubler circuit 

for universal operation on most topologies above 150W.Better characteristics can be obtained by 

using “Active PFC”, which will be discussed in the next chapters. 
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ACTIVE PFC: 

  An active PFC in a power electronic system controls the amount of power drawn by a load in 

order to obtain a power factor as close as possible to unity. In most applications, the active PFC 

controls the input current of the load so that the current waveform is proportional to the mains 

voltage waveform (a sine wave). Active switches are used in conjunction with reactive elements 

in order to increase the effectiveness of the line current shaping and to obtain controllable output 

voltage. The switching frequency further differentiates the active PFC solutions into two classes. 

1. Low frequency active PFC: 

    Switching takes place at low-order harmonics of the line-frequency and it is synchronized with 

the line voltage. 

2. High frequency active PFC: 

     The switching frequency is much higher than the line frequency. 

3.1 Low-Frequency Active PFC: 

3.1.1. Phase controlled rectifier with dc-side inductor: 

The phase-controlled rectifier is shown in Fig. 3.1(a), and its simulation results are shown in 

Figs.3.1 (b) to 3.1 (e) represents the simulation results. It is derived from the rectifier with a DC-

side inductor from Fig. 2.3, where diodes are replaced with thyristors. In this solution, depending 

on the inductance La and the firing-angle α, near-unity purity factor Kp or displacement factor 

cosφ can be obtained [11]. The variation of power factor with respect to firing angle, for 

different values of inductance and vice versa are shown in Fig.3.1(c).However, the overall power 

factor PF is always less than 0.8. This implies a lagging displacement factor cosφ is compensated 

for by an additional input capacitance Ca, even though it increases line current harmonics. This 

approach is similar to that used for the diode bridge rectifier with a DC-side inductor, which is 

discussed in the previous chapter. 
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Fig. 3.1 Phase controlled rectifier. (a) 

Schematic; 
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Fig. 3.1 (b) Line voltage and output voltage (upper plot) and line current (lower plot); with AC 

input voltage V1=230Vrms 50Hz, resistive load R=500Ώ, inductance La=200mH, filter 

Capacitance Cf=470µF and firing angle = 36 degree. Line current has Kp=0.9161, cosΦ=0.8490 

and power factor=0.7778. (c) Line voltage and output voltage (upper plot) and line current 

(lower plot); with additional capacitance Ca. Line current has Kp=0.8892, cosΦ=0.9978 and 

power factor=0.8873. (d) Power factor Vs firing angle for different values of inductance (upper 

plot) and vice versa, (e) Line current harmonics without and with capacitance Ca. 

 

   This solution offers controllable output voltage, is simple, reliable, and uses low cost thyristors. 

On the negative side, the output voltage regulation is low and a relatively large inductance La is 

still required. The basic DC-DC converters can be used as active PFC. They are mainly used at 

high switching frequencies. However, it is also possible to use them at low switching frequencies 

as explained next.  

 

3.1.2 Low frequency switching buck converter: 

The low-frequency switching Buck converter is shown in Fig. 3.2(a). Fig.3.2 (b to c) represents 

the simulation results. Theoretically, the inductor current is constant for a near-infinite 

inductance La. The switch is turned on for the time duration Ton and the on-time intervals are 

symmetrical with respect to the zero crossings of the line voltage, as illustrated in Fig. 3.2(c). In 

this solution the power factor depends on the firing instance and duty cycle of the active switch 

S. For a lower harmonic content of the line current, multiple switching per line-cycle can be 

used. However the required inductance La is large and impractical. 

.  
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Fig.3.2 Low-frequency switching buck converter. a) Schematic; b) Line current harmonics; c) 

Line voltage and output voltage and line current and firing pulse (lower plot) for AC input 

voltage Vin=230Vrms 50Hz, filter Capacitance Cf=470µF, resistive load R=500Ώ,Inductance 

Ld=200mH. Firing instance 2msec (i.e. 36 degree) and duty cycle=50% and the line current has 

Kp=0.7468, cosΦ=0.9870 and power factor= 0.7371. 

 

3.1.3 Low-frequency switching boost converter:  

   The low-frequency switching Boost converter and its simulation results are shown in Fig. 3.3. 

The active switch S is turned on for the duration Ton, so as to enlarge the conduction interval of 

the rectifier diodes. It is also possible to have multiple switching per half line-cycle, at low 

switching frequency, in order to improve the shape of the line current. Nevertheless, the line 

current has a considerable ripple. 
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Fig.3.3 Low-frequency switching boost converter. (a) Schematic; (b) Line current harmonics; (c) 

Line voltage, output voltage (upper plot), line current and firing pulse (lower plot); for AC line 

voltage V1=230Vrms 50Hz, resistive load R=500Ω, Cf=470µF, Ld=200mH and firing angle 36
0
 

and duty cycle=50%, the line current has Kp=0.9551, cosΦ=0.8896 and power factor=0.8497; (d) 

& (e) Power factor Vs firing angle for different values of duty cycles and vice versa respectively. 
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3.1.4 Low frequency switching buck-boost converter: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4 Low-frequency switching buck-boost converter.(a) Schematic;(b)Line current harmonics; 

(c) Line voltage, output voltage (upper plot), line current and firing pulse (lower plot); for AC 

line voltage V1=230Vrms 50Hz, resistive load R=500Ω, Cf=470µF, L=200mH and firing angle 

36
0
 and duty cycle=50%, the line current has Kp= 0.7938, cosΦ= 0.9924 and power factor= 

0.7878; (d) & (e) Power factor Vs firing angle for different values of duty cycles and vice versa 

respectively. 
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The low-frequency switching Buck-Boost converter is shown in Fig. 3.4. The active 

switch S is turned on for the duration Ton, so as to enlarge the conduction interval of the rectifier 

diodes. It is also possible to have multiple switching per half line-cycle, at low switching 

frequency, in order to improve the shape of the line current. Nevertheless, the line current has a 

considerable ripple. 

Low-frequency switching PFC offers the possibility to control the output voltage in 

certain limits. In such circuits, switching losses and high-frequency EMI are negligible. 

However, the reactive elements are large and the regulation of the output voltage is slow. 

 

3.2 HIGH-FREQUENCY ACTIVE PFC: 

Active high frequency power factor correction makes the load behave like a resistor 

leading to near unity load power factor and the load generating negligible harmonics. The input 

current is similar to the input voltage waveform’s wave shape.  

The PFC stage can be realized by using a diode bridge and a DC/DC converter with a 

switching frequency much higher than the line-frequency. In principle, any DC/DC converter can 

be used for this purpose, if a suitable control method is used to shape its input current or if it has 

inherent PFC properties. Regardless of the particular converter topology that is used, the output 

voltage carries a ripple on twice the line-frequency. This is because, on the one hand, in a single-

phase system the available instantaneous power varies from zero to a maximum, due to the 

sinusoidal variation of the line voltage. On the other hand, the load power is assumed to be 

constant. The output capacitor of the PFC stage buffers the difference between the instantaneous 

available and consumed power, hence the low-frequency ripple. In this thesis, the application of 

only “second-order switching converter” for PFC will be presented. 

3.2.1 Second-order switching converters applied to PFC: 
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Fig. 3.5 First-order switching cell 
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The first-order switching cell is shown in Fig.3.5. The active switch S is controlled by an 

external control input. In a practical realization, this switch would be implemented, for example, 

by a MOSFET or an IGBT. The state of the second switch, which is diode D, is indirectly 

controlled by the state of the active switch and other circuit conditions. The switching cell also 

contains a storage element, which is the inductor L. 

The basic Buck, Boost and Buck-Boost converters are generated from this switching cell. 

Considering also the output filtering capacitor, they are second-order circuits. The output 

filtering capacitor can be assimilated to a voltage source. Hence, the ports of the switching cell 

are connected to voltage sources, a fact which explains why the storage element of the switching 

cell is an inductor and not a capacitor. 

First let us describe three characteristics that are important for a PFC application, which 

are dependent mainly on the specific topology. In a PFC application, the input voltage is the 

rectified line voltage,  , and the output voltage V2 is assumed to be constant.  

The first characteristic, which is determined by the conversion ratio of the converter, is 

the relation between the obtainable output voltage V2 and the amplitude V1 of the sinusoidal input 

voltage. 

The second characteristic refers to the shape of the filtered (line-frequency) input current. 

If the converter is able to operate throughout the entire line-cycle, a sinusoidal line current can be 

obtained. Otherwise the line current is distorted, being zero in a region around the zero-crossings 

of the line voltage where the converter cannot operate. 

The third characteristic is related to the high-frequency content of the input current. We 

consider that the input current is continuous if it is not interrupted by a switching action. This 

means that if the inductor is placed in series at the input, then only the inductor current ripple 

determines the high-frequency content of the input current. Conversely, the input current is 

discontinuous if it is periodically interrupted by the switching action of a switch placed in series 

at the input. In such a case, the high-frequency content of the input current is large. Now second-

order converters will be briefly characterized in the light of these topology-specific 

characteristics without any feedback controller. 
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3.2.1.1 Buck converter: 

The Buck converter, shown in Fig. 3.6, together with the simulation results has step-

down conversion ratio. Therefore, it is possible 

to obtain an output voltage V2 lower than the 

amplitude V1 of the input voltage. However, the 

converter can operate only when the 

instantaneous input voltage v1 is higher than the 

output voltage V2, i.e. only during the interval 

ωLt (α,π- α), where α =sin
-1

(V2/V1) Hence, the 

line current of a power factor corrector based on 

a Buck converter has crossover distortions. Moreover, the input current of the converter is 

discontinuous.  

 

 

 

 

 

 

 

 

Fig.3.6 High-frequency switching buck converter. (a) Schematic; (b) Line voltage, output 

voltage (upper plot), Line current (lower plot); for AC input voltage Vin=230Vrms, inductance 

L=200mH, filter Capacitance Cf=470µF, resistive load R=500Ω, and triggering pulse: switching 

frequency fs=10 kHz. And line current has Kp=0.9591, cosΦ=0.9975 and PF=0.9367. (c) Line 

current harmonics (upper plot) and Variation of different parameters as a function of duty cycle 

of active switch (lower plot). 
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3.2.1.2 Boost converter: 

The Boost converter is shown in Fig. 3.7. It 

has a step-up conversion ratio; hence the output 

voltage V2 is always higher than the amplitude V1 of 

the input voltage. Operation is possible throughout 

the line-cycle so the input current does not have 

crossover distortions. As illustrated in Fig. 3.7(b), 

the input current is continuous, because the inductor 

is placed in series at the input. Hence, an input 

current with reduced high-frequency content can be obtained when operating in continuous 

conduction mode. For these reasons, the Boost converter is widely used for PFC. 

 

 

 

 

 

 

 

 

 

Fig. 3.7 (continued...) High-frequency switching boost converter. (b) Line voltage, output 

voltage (upper plot) and Line current (lower plot); for AC input voltage Vin=230Vrms, 

inductance L=200mH, filter capacitance Cf=470µF, resistive load R=500Ω and triggering pulse:  

switching frequency fs=10kHz and duty cycle=50%. Line current has Kp= 0.9857, cosΦ=0.9999 

and PF=0.9856. (c) Line current harmonics (upper plot) and variation of different parameters as a 

function of duty cycle of active switch (lower plot). 

Cf V2 V1 R 

D 

S 

L 

Boost converter 

Fig. 3.7 High-frequency switching boost 

converter. (a) Schematic; 

(b) (c) 



38 
 

3.2.1.3 Buck-boost converter: 

The Buck-Boost converter, shown in 

Fig.3.8, can operate either as a step-down or 

a step-up converter. This means that the 

output voltage V2 can be higher or lower 

than the amplitude V1 of the input voltage, 

which gives freedom in specifying the 

output voltage. Operation is possible 

throughout the line-cycle and a sinusoidal 

line current can be obtained. However, the 

output voltage is inverted, which translates into higher voltage stress for the switch. Moreover, 

similar to the buck converter, the input current is discontinuous with significant high-frequency 

content, as illustrated in Fig. 3.8.  

 

 

 

 

  

 

 

 

Fig. 3.8 (continued…) High-frequency switching buck-boost converter. (b)  Line voltage, output 

voltage (upper plot) and line current (lower plot); for AC input voltage Vin=230Vrms, inductance 

L=200mH, filter capacitance Cf=470µF, resistive load R=500Ω and Triggering pulse: switching 

frequency fs=10kHz, duty cycle =50%.Line current has Kp=0.88, cosΦ=0.9989 and PF= 0.8790. 

c) Line current harmonics (upper plot) and variation of different parameters as a function of duty 

cycle of active switch (lower plot). 
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The topology-specific characteristics are summarized in Table 3.1. 

Table 3.1. Topology-specific characteristics. 

 Conversion characteristic Crossover distortion Input current 

Buck converter Step-down V2<V1 Yes, because operation is 

possible only for 

 ωLt (α, π-α)  where 

α=sin
-1

(V2/V1) 

Discontinuous 

Boost converter Step-up, V2>V1 No Continuous 

Buck-boost Step-down/up No Discontinuous 

 

The converters can operate in Continuous Inductor Current Mode – CICM, where the 

inductor current never reaches zero during one switching cycle, or Discontinuous Inductor 

Current Mode - DICM, where the inductor current is zero during intervals of the switching cycle, 

which will be discussed in the next chapters. 

Summary: 

The preferable type of PFC is Active Power Factor Correction (Active PFC) since it 

provides more efficient power frequency. Because Active PFC uses a circuit to correct power 

factor, Active PFC is able to generate a theoretical power factor of over 95%. Active Power 

Factor Correction also markedly diminishes total harmonics, automatically corrects for AC input 

voltage, and is capable of a full range of input voltage. Since Active PFC is the more complex 

method of Power Factor Correction, it is more expensive to produce an Active PFC power 

supply. 

Some of the techniques to implement “Low-frequency switching active PFC” have been 

presented in this chapter. An active low frequency approach can be implemented up to about 
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1000 watts. Power factors as high as 0.95 can be achieved with an active low frequency design. 

To conclude, low-frequency switching PFC offers the possibility to control the output voltage in 

certain limits. In such circuits, switching losses and high-frequency EMI are negligible. 

However, the reactive elements are large and the regulation of the output voltage is slow. 

Nearly unity power factor can be obtained by “high-frequency switching active PFC”, if a 

suitable control method is used to shape its input current or if it has inherent PFC properties. The 

converters can operate in Continuous Inductor Current Mode – CICM, where the inductor 

current never reaches zero during one switching cycle, or Discontinuous Inductor Current Mode 

- DICM, where the inductor current is zero during intervals of the switching cycle, which will be 

discussed in the next chapters. 
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OPERATION IN DISCONTINUOUS INDUCTOR CURRENT MODE – DICM:  

In this chapter, basic types of dc-dc converter topologies are studied to investigate their 

self-PFC capabilities [12]. Basic types of dc-dc converters, when operating in discontinuous 

inductor current mode, have self power factor correction (PFC) property, that is, if these 

converters are connected to the rectified ac line, they have the capability to give higher power 

factor by the nature of their topologies. Input current feedback is unnecessary when these 

converters are employed to improve power factor. 

  This property of DICM input circuit can be called “self power factor correction” because 

no control loop is required from its input side. This is also the main advantage over a CICM 

power factor correction circuit, in which multi-loop control strategy is essential. The peak of the 

inductor current is sampling the line voltage automatically. However, the input inductor 

operating in DICM cannot hold the excessive input energy because it must release all its stored 

energy before the end of each switching cycle. As a result, a bulky capacitor is used to balance 

the instantaneous power between the input and output. In addition, if discontinuous inductor 

current mode is applied, the input current is normally a train of triangle pulse with nearly 

constant duty ratio. In this case, an input filter is necessary for smoothing the pulsating input 

current into a continuous one. Obviously, to ensure high power factor, the average current of the 

pulsating current should follow the input voltage in both shape and phase. 

     In this operating mode, the inductor current ݅௅ varies from zero to a maximum and returns 

back to zero before the beginning of the next switching cycle. 

4.1 Input Voltage-Current Characteristics of Basic Converter Topologies: 

   In order to examine the self-PFC capabilities of the basic converters, we first investigate their 

input characteristics. Because the input currents of these converters are discrete when they are 

operating in DICM, only averaged input currents are considered. Since switching frequency is 

much higher than the line frequency, let’s assume the line voltage is constant in a switching 

cycle. In steady state operation, the output voltage is nearly constant and the variation in duty 

ratio is slight. Therefore, constant duty ratio is considered in deriving the input characteristics. 
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4.1.1 Buck converter: 

The basic buck converter topology and its input current waveform when operating in DICM are 

shown in Fig. 4.2(a) and (b), respectively. It can be shown that the average input current in one 

switching cycle is given by the equation: 

݅ଵ,௔௩௚ሺݐሻ ൌ
ଵ

ೞ்
ቂଵ
ଶ
ܦ ௦ܶ

௩భሺ௧ሻି௏బ
௅

ܦ ௦ܶቃ ൌ ೞ்஽మ

ଶ௅
ሻݐଵሺݒ െ ೞ்஽మ

ଶ௅ ଴ܸ                                                         (4.1) 

 

 
                                              (c) 

         

Fig.4.2 (a) Buck converter Schematic; (b) Input current, (c) Input VI Characteristic of basic buck 

converter operating in DICM for AC input voltage Vin=230Vrms, inductance L=200mH, filter 

Capacitance Cf=470ߤF, resistive load R=500 ohms. 

   Figure 4.2(c) shows that the input voltage-input current V-I characteristics is a straight line. It 

should be note that this straight line does not go through the origin. When the rectified line 

voltage v1(t) is less than the output voltage Vo, negative input current would occur. This is not 

allowed because the bridge rectifier will block the negative current. As a result, the input current 

is zero near the zero cross point of the line voltage, as shown in Fig.4.1(c). Actually, the input 

current is distorted simply because the buck converter can work only under the condition that the 

input voltage is larger than the output voltage. The input resistance of the Buck converter is not 

constant throughout the line-cycle. However, its variation decreases and “inherent” PFC property 
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improves, when the ratio V2/V1 is decreased. As explained previously, the line current has 

crossover distortions too, which are however less disturbing when the ratio V2/V1 is decreased. 

However, compliance with standard IEC 1000-3-2 can be obtained up to a relatively high power, 

when the output voltage V2 is low enough when compared to the amplitude V1 of the sinusoidal 

input voltage Therefore the basic buck converter is not a good candidate for DICM input power 

factor correction. 

4.1.2 Boost converter:  

  The basic boost converter and its input current waveform are shown in Fig. 4.3(a) and (b) 

respectively. 
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Fig.4.3 Boost converter (a) Schematic; (b) Input current; (c) Input V-I Characteristic of  basic 

boost converter operating in DICM for AC input voltage Vin=230Vrms, inductance L=200mH, 

filter Capacitance Cf=470ߤF, resistive load R=500 ohms. 

         
The input V-I characteristic of Boost converter can be found as follows: 
 
          ݅ଵ,௔௩௚ሺݐሻ ൌ

ଵ

ೞ்
ቂଵ
ଶ
ሺܦ ൅ ଵሻܦ ௦ܶ

௩భሺ௧ሻ
௅
ܦ ௦ܶቃ  ൌ ೞ்஽మ

ଶ௅
ሻݐଵሺݒ

ଵ
௏బି௩భሺ௧ሻ ଴ܸ                                     (4.2)                     

  
    By plotting Eq. (4.2), we obtain the input V-I characteristic curve as given in Fig.4.3(c). As we 

can see that as long as the output voltage is larger than the peak value of the line voltage in 

certain extent (depending on D1), the relationship between v1(t) and i1,avg(t) is nearly linear. 

When the boost converter connected to the line, it will draw almost sinusoidal average input 

current from the line, shown as in Fig. 4.3(c). 

      As one might notice from Eq. (4.2) that the main reason to cause the non-linearity is the 

existence of D1. Ideally, if D1 = 0, the input V-I characteristic will be a linear one. In practice, to 

reduce the discharge period D1, by properly configuring the circuit topology, a higher voltage, 

instead of Vo, can be created to be applied to the inductor during D1 to discharge the inductor. 

    The Boost converter has an imperfect “inherent” PFC property, as well. Its input resistance 

changes throughout the line-cycle, but the variation decreases and inherent PFC property 

improves when the ratio V2/V1 is increased. Taking into account the fact that the line current 

does not have crossover distortions, compliance with the standard is achieved comfortably. 

Because of the above reasons, boost converter is comparably superior to most of the other 

converters when applied to do PFC [13-15]. However, it should be noted that boost converter can 

operate properly only when the output voltage is higher than its input voltage.  

 
4.1.3 Buck-boost converter:  

Figure 4.4(a) shows a basic buck-boost converter. The averaged input current of this 

converter can be found according to its input current waveform, shown in Fig. 4.4(b). 

 

 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 4.4 Buck-boost converter. (a) Schematic; (b) Input current; (c) Input V-I Characteristic of 

basic boost converter operating in DICM for AC input voltage Vin=230Vrms,inductance 

L=200mH, filter Capacitance Cf=470ߤF, resistive load R=1000 ohms. 

For this converter the average current is : 

   ݅ଵ,௔௩௚ሺݐሻ ൌ ೞ்஽మ

ଶ௅
 ሻ                                                                                                             (4.3)ݐଵሺݒ

Equation (4.3) gives a perfect linear relationship between i1avg(t) and v1(t) which proves that a 

buck-boost has excellent self-PFC property. This is because the input current of buck-boost 

converter does not related to the discharging period D1. Its input V-I characteristics and input

Voltage and current waveforms are shown in Fig.4.4(c).
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   The input resistance of the Buck-Boost converter depends only on inductance L, switching 

period Ts and duty-cycle d. If operation in DICM is ensured throughout the line-cycle and if d is 

kept constant, then the input resistance r1 is constant. As a consequence, the average input 

current (݅ଵ ሺݐሻ ೞ் ) tracks the shape of the input voltage and the converter has an “inherent” PFC 

property. In contrast to CICM operation, in DICM there is no need for the controller to adjust the 

duty-cycle over the line-cycle to perform PFC. Furthermore, because the output voltage of buck-

boost converter can be either larger or smaller than the input voltage, it demonstrates strong 

availability for DICM input technique to achieve power factor correction. So, theoretically buck-

boost converter is a perfect candidate. Unfortunately, this topology has two limitations: 

1) The polarity of its output voltage is reversed, i.e., the input voltage and the output voltage 

don’t have a common ground; and 

2) It needs floating drive for the power switch. The first limitation circumscribes this circuit into 

a very narrow scope of applications. 

    As a result, it is not widely used. 

4.2 Design Procedure: 

4.2.1 Summary: Mode boundary    

ܭ ൐ ܴ ݎ݋ ሻܦ௖௥௜௧ሺܭ ൏ ܴ௖௥௜௧ሺܦሻ  for CICM 
 
ܭ ൏ ܴ ݎ݋ ሻܦ௖௥௜௧ሺܭ ൐ ܴ௖௥௜௧ሺܦሻ  for DICM 
        
Table 4.2 CICM-DICM mode boundaries for the buck, boost, and buck-boost converters. 
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The main advantage of using switching converters operating in DICM for PFC 

applications is the simplicity of the control method. Since there is no need to continuously adjust 

the duty-cycle D to perform PFC, only a voltage loop is needed to regulate the voltage across the 

storage capacitor. The bandwidth of the voltage loop has to be low (e.g. 10-15Hz),in order to 

filter out the output voltage ripple at twice the line-frequency. The simple control of converters 

with inherent PFC makes them attractive for low-cost applications. 

    But the main disadvantage of using switching converters operating in DICM for PFC 

application is the input current is normally a train of triangle pulse with nearly constant duty 

ratio. As a result the high-frequency EMI is very high. In this case, an input filter is necessary for 

smoothing the pulsating input current into a continuous one. 

 
Summary: 
      According to the above discussion, we may conclude that the basic boost converter and buck-

boost converter have excellent self-PFC capability naturally. Among them, boost converter is 

especially suitable for DICM PFC usage. Hence, this converter is the most preferable by the 

designers for power factor correction purpose. Other converters may be used only if their input 

V-I characteristics have been modified (linearized), or when they operate in continuous inductor 

conduction mode, which will be discussed in the next chapter. 

       In addition, if discontinuous inductor current mode is applied, the input current is normally a 

train of triangle pulse with nearly constant duty ratio. In this case, an input filter is necessary for 

smoothing the pulsating input current into a continuous one. 
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OPERATION IN CONTINUOUS INDUCTOR CURRENT MODE – CICM: 

 

The DC-DC converters can operate in Continuous Inductor Current Mode – CICM, where the 

inductor current never reaches zero during one switching cycle. In CICM, different control 

techniques are used to control the inductor current. Some of them are (1) peak current control (2) 

average current control (3) Hysteresis control (4) borderline control. These control techniques 

specifically developed for PFC boost converters are analyzed. 

 

5.1 CONTROL SCHEME FOR CICM OPERATION: 

 

      In this operating mode, the inductor current never reaches zero during one switching cycle 

and there is always energy stored in the inductor. The volt-seconds applied to the inductor must 

be balanced throughout the line-cycle by continuously changing the duty-cycle of the converter 

using an appropriate control method. 

      An example of a control scheme is shown in Fig. 5.1. The low-bandwidth outer loop with 

characteristic (s) is used to keep the output voltage of the PFC stage constant and to provide 

the error signal . The high-bandwidth inner loop with characteristic (s) is used to control the 

input current. A multiplier is used to provide a reference , which is proportional to the error 

signal vε and which has a modulating signal with the desired shape for the input current.   

    Fig. 5.1 shows the most common situation, where the modulating signal is the rectified-

sinusoid input voltage v1. Depending on the topology of the PFC stage, it may be beneficial to 

use as a modulating signal the difference between the input voltage and the output voltage. The 

control circuit can be simplified by eliminating the multiplier and the sensing of the line voltage. 

In this case the modulating signal is  = , and it is essentially constant over the line cycle, 

because vε is the control signal from the low-bandwidth output voltage controller. Therefore, the 

input current is clamped to a value proportional with  and its shape approaches a square 

waveform. The simplification of the control circuit leads to a more 48 distorted line current, but 

compliance with the standard can be obtained up to approximately 500W for a 230Vrms input 

voltage. Furthermore, if the edges of the line current waveform are softened, thus obtaining a 

nearly trapezoidal waveform, compliance up to several kW can be obtained. 
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Fig. 5.1 Control scheme for PFC using a switching converter operating in CICM. 

 

   There are several ways to implement the high-bandwidth inner loop [16] [5], [17]. Some of 

them are: 

 

1. Peak current control. 

2. Average current control. 

3. Hysteresis control. 

4. Borderline control. 

    Even though these control techniques can be used for all DC-DC converters, only boost 

converter has been taken for the study because of the continuous input current. The boost 

converter is designed for an input voltage, V=230Vrms, output voltage Vo=500V dc, resistive 

load R=500 ohm, at switching frequency 10kHz. The design values of filter capacitor CL and 

filter inductor L are: 

194.5  
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5.2 PEAK CURRENT CONTROL [A1]: 

 

     The basic scheme of the peak current controller is shown in Fig. 5.2, together with a typical 

input current wave form. As we can see, the switch is turned on at constant frequency by a clock 

signal, and is turned off when the sum of the positive ramp of the inductor current (i.e. the switch 

current) and an external ramp (compensating ramp) reaches the sinusoidal current reference. This 

reference is usually obtained by multiplying a scaled replica of the rectified line voltage vg times 

the output of the voltage error amplifier, which sets the current reference amplitude. 

    The power switch is closed at every positive edge of the clock signal. The inductor current 

increases practically linearly until it reaches the reference value Iref. Then the output of the flip-

flop is cleared and the switch opens. During the off-state the current iL decreases until the next 

clock pulse sets the flip-flop again. Output voltage regulation is obtained by an additional 

feedback loop, which adjusts the current reference Iref depending on the voltage deviation from 

the set point.  

      In this way, the reference signal is naturally synchronized and always proportional to the line 

voltage, which is the condition to obtain unity power factor. As Fig. 5.2 reveals, the converter 

operates in Continuous Inductor Current Mode (CICM); this means that devices current stress as 

well as input filter requirements are reduced.  

     Moreover, with continuous input current, the diodes of the bridge can be slow devices (they 

operate at line frequency). On the other hand, the hard turn-off of the freewheeling diode 

increases losses and switching noise, calling for a fast device. However, if the simplicity of the 

control circuit is of primary interest, rather than the quality of the line current waveform, then 

peak current mode control with input current clamping is attractive [19], [20]. 

   The input current distortion can be reduced by changing the current reference wave shape, for 

example introducing a dc offset, and/or by introducing a soft clamp. These provisions are 

discussed in [21] and [18]. In [22] it is shown that even with constant current reference, good 

input current waveforms can be achieved. Moreover, if the PFC is not intended for universal 

input operation, the duty-cycle can be kept below 50% so avoiding also the compensation ramp. 
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Fig. 5.2 Peak current control scheme. 

                           

5.2.1 Advantages: 

 

1. Constant switching frequency. 

2. Only the switch current must be sensed and this can be accomplished by a current transformer,         

(b) 

(a) 

K

1  
+

+

- 

- 

+ 

D L 

Q 

R S 

Clock 

Voltage error 

amplifier 

VREF 

Multiplier 

Sinusoidal 

reference 

External ramp 

Vg Vi 

Ii Ig 

S 

IL 

CL VL RL 



52 
 

     thus avoiding the losses due to the sensing resistor. 

3. No need of current error amplifier and its compensation network. 

4. Possibility of a true switch current limiting. 

5. As there is an instantaneous pulse-by-pulse current limit, the reliability is 

   improved and the response speed is increased. 

 

5.2.2 Disadvantages: 

 

1. Presence of sub-harmonic oscillations at duty cycles greater than 50%, so a compensation 

ramp is needed. 

2. Input current distortion which increases at high line voltages and light load and is worsened 

by    the presence of the compensation ramp [21], [18]. 

 

5.3 AVERAGE CURRENT MODE CONTROL: 

 

    Another control method, which allows a better input current waveform, is the average current 

control represented in Fig.5.3 [21, 23-25]. Here the inductor current is sensed and filtered by a 

current error amplifier whose output drives a PWM modulator. In this way the inner current loop 

tends to minimize the error between the average input current ig and its reference. This latter is 

obtained in the same way as in the peak current control. 

    The converter works in CICM, so the same considerations done with regard to the peak 

current control can be applied. The technique of average current mode control overcomes the 

problems of peak current mode control by introducing a high gain integrating current error 

amplifier (CA) into the current loop. The gain-bandwidth characteristic of the current loop can 

be tailored for optimum performance by the compensation network around the CA. Compared 

with peak current mode control, the current loop gain crossover frequency fc, can be made 

approximately the same, but the gain will be much greater at lower frequencies. 
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Fig.5.3 Average current control scheme. 

 

           . 

The results are: 

 

1. Average current tracks the current program with a high degree of accuracy. This is especially 

important in high power factor pre-regulators, enabling less than 3% harmonic distortion to be 

achieved with a relatively small inductor. In fact, average current mode control functions well 
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even when the mode boundary is crossed into the discontinuous mode at low current levels. The 

outer voltage control loop is oblivious to this mode change. 

2. Slope compensation is not required, but there is a limit to loop gain at the switching frequency 

in order to achieve stability. 

3. Noise immunity is excellent. When the clock pulse turns the power switch on, the oscillator 

ramp immediately dives to its lowest level, volts away from the corresponding current error level 

at the input of the PWM comparator. 

4. The average current mode method can be used to sense and control the current in any circuit 

branch. Thus it can control input current accurately with buck and flyback topologies, and can 

control output current with boost and flyback topology. 

5.3.1 Advantages: 

1. Constant switching frequency; 

2. No need of compensation ramp; 

3. Control is less sensitive to commutation noises, due to current filtering; 

4. Better input current waveforms than for the peak current control since, near the zero crossing 

of the line voltage, the duty cycle is close to one. 

5.3.2 Disadvantages: 

 

 1. Inductor current must be sensed. 

 2. A current error amplifier is needed and its compensation network design must take into 

account the different converter operating points during the line cycle. 

 

5.4 HYSTERESIS CONTROL [A3]: 

 

      Fig. 5.4 shows this type of control in which two sinusoidal current references IP,ref, IV,ref are 

generated, one for the peak and the other for the valley of the inductor current. According to this 

control technique, the switch is turned on when the inductor current goes below the lower 

reference IV ref and is turned off when the inductor current goes above the upper reference IPref, 

giving rise to a variable frequency control [26-27].In order to avoid too high switching 

frequency, the switch can be kept open near the zero crossing of the line voltage so introducing 

dead times in the line current. An analysis of the power factor as a function of these dead times 

can be found in [26]. 
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5.4.1 Advantages: 

1. No need of compensation ramp; 

2. Low distorted input current waveforms. 

 

5.4.2 Disadvantages: 

1. Variable switching frequency; 

2. Inductor current must be sensed; 

3. Control sensitive to commutation noises. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Hysteresis control scheme. 
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5.5 BORDERLINE CONTROL: 

 
    In this control approach the switch on-time is held constant during the line cycle and the 

switch is turned on when the inductor current falls to zero, so that the converter operates at the 

boundary between Continuous and Discontinuous Inductor Current Mode (CICM,DICM ) [28]. 

In this way, the freewheeling diode is turned off softly (no recovery losses) and the switch is 

turned on at zero current, so the commutation losses are reduced. On the other hand the higher 

current peaks increase device stresses and conduction losses and may call for heavier input filters 

(for some topologies).          

    This type of control is a particular case of hysteresis control in which the lower reference 

IV,ref is zero anywhere. The principle scheme is shown in Fig.5.5. The instantaneous input 

current is constituted by a sequence of triangles whose peaks are proportional to the line voltage. 

Thus, the average input current becomes proportional to the line voltage without duty-cycle 

modulation during the line cycle. This characterizes this control as an "automatic current shaper" 

technique. Note that the same control strategy can be generated, without using a multiplier, by 

modulating the switch on-time duration according to the output signal of the voltage error 

amplifier. In this case switch current sensing can be eliminated. 

5.5.1 Advantages: 

 

1. No need of a compensation ramp; 

2. No need of a current error amplifier; 

3. For controllers using switch current sensing, switch current limitation can be introduced. 

5.5.2 Disadvantages: 

1. Variable switching frequency; 

2. Inductor voltage must be sensed in order to detect the zeroing of the inductor current; 

3. For controllers in which the switch current is sensed, control is sensitive to commutation   

noises. 
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Fig. 5.5 Borderline control scheme. 
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5.6 SIMULATION RESULTS: 

5.6.1 Peak current control: 

 

 

 

 

 

 

 

 

 

 

 

                                                        

                                                  

                                 

 

 

             

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 peak current controlled boost converter. (a)Input voltage and output voltage; (b) Input 

current; (c) Inductor current and reference current; (d) Line current harmonics for AC line 

voltage V=230Vrms, output voltage Vo=500V, resistive load R=500 ohm, CL=200 F,L=200mH 

operating at switching frequency 10kHz, the line current has THD=7.10%,Kp=0.9975, 

cosΦ=0.9999 and power factor=0.9975.  
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5.6.2 Average current control: 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Average current mode controlled boost converter. (a) Input voltage and output voltage; 

(b) Input current; (c) Inductor current and reference current; (d) Line current harmonics for AC 

line voltage V=230Vrms, output voltage V0=500V, resistive load R=500 ohm, CL=200 F, 

L=200mH operating at switching frequency 10kHz, the line current has THD= 6.8175%, Kp= 

0.99768, cosΦ=0.9999 and power factor= 0.99768. 
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5.6.3 Hysteresis control: 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.8 Hysteresis control boost converter. (a) Input voltage and output voltage; (b)Input 

current; (c) Inductor current and reference current; (d) Line current harmonics for AC line 

voltage =230Vrms, output voltage V0=500V, resistive load R=500 ohm, CL=200 F,L=200mH, 

dead angle θ=5°, current ripple 10% and the line current has THD= 6.4967%,Kp= 0.9979, 

cosΦ=0.99999 and power factor= 0.9978  
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5.6.4 Borderline control: 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Borderline controlled boost converter. (a) Input voltage and output voltage; (b)Input 

current; (c) Inductor current and reference current; (d) Line current harmonics for AC line 

voltage =230Vrms, output voltage V0=500V, resistive load R=500Ώ ohm, CL=200 F, L=200mH 

and the line current has THD=0.5892, Kp=0.8615, cosΦ=0.9999 and power factor=0.8615. 
Summary: 
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In this chapter, several control techniques specifically developed for PFC boost 

converters are analyzed. For each control strategy advantages and drawbacks are highlighted and 

information on available commercial IC's is given. 

 Even though peak current control gives better characteristics, it has several drawbacks, 

such as: poor noise immunity, need of slope compensation, peak to average current error. These 

problems can be eliminated by average current control at the cost of increased circuit 

complexity. 

Hysteresis control and borderline control leads to variable frequency operation which 

may create sub-harmonic components. In borderline control, due to the presence of high current 

ripple it has high harmonic distortion. Hence the maximum power factor obtained will be limited 

to 0.87.Hence, peak and average current control techniques are the most preferable control 

techniques. 

   These converters operating in CICM reduces the line current harmonics, it also has 

Drawbacks, such as: 

1) It increases the EMI, due to the high-frequency content of the input current. 

2) It introduces additional losses, thus reducing the overall efficiency and 

3) It increases the complexity of the circuit, with negative effects on the reliability of the   

instrument, as well as on its size, weight and cost. 

  The high frequency EMI can be eliminated by introducing an EMI filter between AC 

supply and diode bridge rectifier. The additional losses will be reduced by using soft switching 

techniques such as ‘ZVS’, ‘ZCS’ and ‘ZVT’. Some of the basic EMI filter requirements and a 

novel Zero Voltage Transition – ZVT technique, which can be applied to boost converter used in 

the PFC. 
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   During one switching cycle, the following assumptions are made in order to simplify the steady 

state analysis of the circuits. 

1. Input ac voltage is kept constant. 

2. Output voltage is constant or output capacitor is large enough. 

3. Output current is constant or inductor is large enough. 

4. Reverse recovery time of diodes is ignored. 

6.1.1 Modes of Operation:     

The proposed converter has eight operating modes. The equivalent circuit of each mode are 

shown in fig 6.2. The key waveforms of these stages are given in fig.6.3.The detailed analysis of 

every stage is presented below:  

Mode 1 [t0-t1ሿ: 

Prior to t = t0, the main switch S1 and the auxiliary switch S2 are turned-off, and main diode D was 

conducting. At  t = t0, S2  is turned-on, resonant occurs between Lr and Cr,  the resonant inductor current  

iLr  ramp up until it reaches Iin at t1 ,where main diode D is turned-off with soft-switching. This mode ends 

when VCr becomes Vo.  The voltage and current expressions which govern this circuit mode are given by: 

ைܸ ൌ ௥ܮ
ௗ௜ಽೝ

ௗ௧
                                                                                                                                             (6.1) 

׬ ைܸ ݐ݀ ൌ ׬ ௥ܮ ݀݅௅ೝ                                                                                                                                  (6.2) 

ைܸݐ ൌ  ௥݅௅ೝ                                                                                                                                              (6.3)ܮ

݅௅ೝ ൌ ௏ೀ
௅ೝ

 (6.4)                                                                                                                                                 ݐ

௖ܸ௥ ൌ ௅ܸ௥= ଴ܸ                                                                                                                              (6.5) 
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Mode 2 [t1- t2]: 

At t1, the resonant inductor current reaches Iin. Lr and Cr continue to resonate. The resonant 

capacitor voltage VCr becomes equal to Vc .The voltage and current expressions are given by:  

L୰
ୢ୧L౨

ୢ୲
൅ ଵ

C౨
׬ iL౨ dt ൌ 0                                                                                                             (6.6) 

IL౨(S)SL୰+ ଵ
C౨

ቂIL౨ሺୱሻ
S

െ C౨
S

VOቃ ൌ 0                                                                                               (6.7) 

IL౨(S){ SL୰ ൅ ଵ
C౨S

}=VO
S

                                                                                                                (6.8) 

IL౨(S)= Vబ

ሺL౨ା భ
C౨SሻS

ൌ ܸܱ

ටL౨
C౨

݊݅ݏ ߱௡ ሺݐ െ  ଵሻ                                                                                       (6.9)ݐ

ܱܸ=L౨(S)ܫ

௓೙
݊݅ݏ ߱௡ ሺݐ െ  ଵሻ                                                                                                          (6.10)ݐ

Where ܼ௡ ൌ ට௅ೝ
஼ೝ

  and   ,߱௡ ൌ ଵ
ඥሺ௅ೝ஼ೝሻ

 

Now ܫ௅௥  ൌ ௜௡ ൅ܫ   ௏బ
௓೙

݊݅ݏ ߱௡ ሺݐ െ                    ଵሻ                                                                                      (6.11)ݐ

௖ܸ௥ ൌ ܸܱ െ ܸܿ                                                                                                                                       (6.12) 

The negative sign of voltage across capacitor is due to its opposite polarity. 

௖ܸ௥ ൌ ܸܱ െ ଵ
C౨

׬ ݎܮ݅

୲
଴ dt ൌ ଴ܸ ݏ݋ܿ ߱௡ ሺݐ െ   ଵሻ                                                                            (6.13)ݐ

௖ܸ௥ ൌ ଴ܸ ݏ݋ܿ ߱௡ ሺݐ െ  ଵሻ                                                                                                            (6.14)ݐ

Where ܼ௡ ൌ ට௅ೝ
஼ೝ

  and   ,߱௡ ൌ ଵ
ඥሺ௅ೝ஼ೝሻ
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Fig.6.2 Equivalent circuit of each operating mode. 
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Mode 3 [t2- t3]:  

  When Vcr reaches zero at t3 the body diode DS1 of the main switch conducts providing a 

freewheeling path for iLr. At this instant, main switch S1 can be turned on at zero voltage. The 

current IDS1 is given by 

஽ௌଵܫ ൌ ቔܫ௜௡ ൅ ௏బ
௓೙

ቕ െ ௜௡ܫ ൌ ௏బ
௓೙

                                                                                                     (6.15) 

Mode 4 [t3- t4]: 

 Auxiliary switch S2, is turned off with near ZVS at t = t3. The energy stored in the resonant 

inductor Lr is transferred to the capacitors C1 and C2.  Then the voltage polarity of the capacitor  

C1 is reversed. The energy stored in the capacitor C2 will be recycled and used to suppress the 

turn-off voltage spike of the main switch S1. The voltage and the current expressions of this mode 

are given by:  

ଵ
ଶ

IL౨ݎܮ
2 ൌ ଵ

ଶ
VC౨ݎܥ

2                                                                                                                                (6.16) 

௅௥ܫ ൌ ට௅ೝ
஼ೝ

ܸܱ cos ߱௡ሺt െ tଷሻ                                                                                                     (6.17) 

௅௥ ൌܫ ଶሻcos ߱௡ሺtݐ௅௥ ሺܫ െ tଷሻ                                                                                                   (6.18)                  

Where  Z୬ ൌ ට L౨
CభାCమ

   ,ω୬ ൌ ଵ

ට൫L౨ሺୡభାୡమሻ൯
 

௖ܸଵ ൌ ଵ
C౨

׬ ݎܮܫ

୲
଴ dt ൌ ܼ௡ܫ௅௥ ሺݐଶሻsin߱௡ሺt െ tଷሻ                                                                           (6.19) 

௖ܸଵ ൌ ܼ௡ܫ௅௥ ሺݐଶሻsin߱௡ሺt െ tଷሻ                                                                                                (6.20) 

Where  

ܼ௡ ൌ ට ௅ೝ
஼భା஼మ

 ,߱௡ ൌ ଵ

ට൫௅ೝሺ௖భା௖మሻ൯
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Mode 5 [t4- t5]: 

 During this period the inductor Lin is charged from input dc voltage source while the main 

switch ଵܵ continues to conduct and the auxiliary switch S2 is turned off with ZVS. 

Mode 6 [t5- t6]: 

  At t5, the main switch S1 turns-off with ZCS, the resonant capacitor Cr charges through Lin and 

the voltage across the capacitor increases. The current in Lr falls zero and the voltage across Cr is 

given by 

  ஼ܸ௥ ൌ L೔೙
஼ೝ

ݐ ൌ ூ೗
஼ೝ

                   (6.21)                                                                                                                    ݐ

 Mode 7 [t6- t7]: 

When the voltage across Cr is greater than (V0+VC1), the capacitor C1 begins to discharge 

through the diode D2 .This discharge of C1, can slow down the rising voltage slope of the voltage 

across Cr, i.e. the voltage across the main switch S1.  

The voltage across Cr is given by: 

஼ܸ௥ ൌ( ଴ܸ ൅ ௖ܸଵ )                                                                                                                   (6.22) 

Mode 8 [t7െ t8]: 

   This stage begins when the diode D is turned-on under ZVS. The operation of the circuit at this 

stage is identical to the normal turned off operation of a PWM boost converter. This mode ends 

when ܵଶ  is turned on to begin a new switching cycle. 
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                            Fig.6.3 Theoretical waveforms. 
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6.2 Design Considerations: 

6.2. 1 Switching Frequency (࢙ࢌ) 

         Determination of switching frequency plays a most important role in the design of the 

power converter. There are many factors influence its proper selection. However, the 

determination of switching frequency is still a compromise between theoretical analysis and 

practical implementation. 

6.2.2 Minimum Duty Ratio (Dmin) 

    The minimum duty ratio occurs when the input voltage gets the maximum and this is equal to : 

௠௜௡ܦ ൌ ௏బି௏೔೙ሺ೘ೌೣሻ

௏బ
                                                                                                                    (6.23)  

 6.2.3 Primary Input Inductor (Lin) 

 The primary input inductor must satisfy a constraint governing to meet the requirement on 

maximum allowable ripple current. The input inductor (Lin) is given by 

Linൌ
௏೔೙ሺ೘೔೙ሻ஽೘೔೙ ೞ்

∆ூ೔೙
                                                                                                                 (6.24)    

Where ∆ܫ௜௡is the input ripple current and  

     ܶ ൌ ଵ
௙ೞ

 

6.2.4 Output Capacitor (Co) 

  The selection of the output capacitor depends on the output ripple voltage ( ∆ ૙ܸ) as follows: 

଴ܥ ൒ ௉బ
ଶఠೞ௏బ∆ ௏బ

                                                                                                        (6.25) 

 Where        ߱௦ ൌ ߨ2 ௟݂௜௡௘ 
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6.2.5 Delay Time (ࡰࢀ): 

The on-time of auxiliary switch (ܵଶ) must be shorter than one tenth of the switching period. 

஽ݐ ൒ ூ೔೙௅ೝ
௏బ

൅ గ
ଶ ඥܮ௥ܥ௥                                                                                                               (6.26) 

6.2.6 Resonant Capacitor (࢘࡯) 

The resonant capacitor (ܥ௥) can be expressed as: 

௥ܥ ൌ ሺ௔ିଵሻమூ೔೙ሺ೘ೌೣሻ்ವ

௏బሾଵାഏ
మሺ௔ିଵሻሿ

                                                                                                               (6.27) 

6.2.7 Resonant Inductor (࢘ࡸሻ 

The resonant inductor is given by 

௥ܮ ൌ ௏బ்ವ
ூ೔೙ሺ೘ೌೣሻቂభశഏ

మሺೌషభሻቃ
                                                                                                               (6.28) 

Where a is greater than one (1‹a‹1.5) and is desired to be as small as possible. This factor can be 

used for the selection of the auxiliary switch 

                                                                                                                                                 (6.29) 

6.2.8. Additional Capacitor (C1, C2)  

To guarantee a soft-switching of the auxiliary switch the required capacitance  ܥଵ should be 

selected according to the expression: 

ଵܥ ൏
௅ೝሾூ೔೙ሺ೘೔೙ሻା௏బටಽೝ

಴ೝ
ሿమ

௏బ
మ െ ଶ      , Where   C1ܥ ൐ C2                                                               (6.30)                     
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 6.2.9 Design specifications of Boost ZVT Converter: 

The converter is designed for the following specifications: 

 Input ac voltage ௜ܸ௡=230 volt (rms) 

Output dc voltage ଴ܸ=400 volt 

Output power ଴ܲ ൌ  ݐݐܽݓ 500

Switching frequencyሺ 40= (݂࢙ kHz 

Output voltage ripple=5% 

Input current ripple=20% 

 The detailed design values of the circuit parameters are as follows: 

௠௜௡ܦ ൌ ௏బି௏೔೙ሺ೘ೌೣሻ

௏బ
ൌ ሺ ସ଴଴ିଵଵ଻ሻ

ସ଴଴
ൈ 100 ൌ 70%            

  Linൌ
௏೔೙ሺ೘೔೙ሻ஽೘೔೙ ೞ்

∆ூ೔೙
ൌ ሺ106ൈ0.7ൈ25μSሻ

଴.ଶ
ൌ 0.0093H 

௢ܥ ൌ
ᇞ ݅௜௡ ൈ ܶ
8 ൈᇞ ܸ ൌ

0.2 ൈ 0.1 ൈ 10ିଷ

8 ൈ .05 ൌ 250 ൈ 10ି଺ܨ 

଴ܥ ൒ ௉బ
ଶఠೞ௏బ∆ ௏బ

                                                                                                         

஽ݐ ൒ ூ೔೙௅ೝ
௏బ

൅ గ
ଶ ඥܮ௥ܥ௥ ൌ ሺଶൈଶൈଵ଴షయሻ

ସ଴଴
൅(1.8ൈ 10ିଽ ൈ80ൈ 10ି଺)= 1.1025 ൈ 10ି଻ܵ݁ܿ 

C୰ ൌ
ሺa െ 1ሻଶI୧୬ሺ୫ୟ୶ሻTD

V଴ሾ1 ൅ π
2 ሺa െ 1ሻሿ

ൌ
ሺ1.5 െ 1ሻଶ ൈ 2.04 ൈ 1.1025 ൈ 10ି଻

400 ൈ ሼ1 ൅ 1.57 ൈ ሺ1.5 െ 1ሻሽ ൌ 10ିଽF 

L୰ ൌ VబTD
I౟౤ሺౣ౗౮ሻቂభశಘ

మሺ౗షభሻቃ
ൌ ସ଴଴ൈଵ.ଵ଴ଶହൈଵ଴షళ

ሼଵାଵ.ହ଻ൈሺଵ.ହିଵሻሽ ൌ 80 ൈ 10ି଺H 

ଵܥ ൏
௅ೝሾூ೔೙ሺ೘೔೙ሻା௏బටಽೝ

಴ೝ
ሿమ

௏బ
మ െ ଶ      , Where   C1ܥ ൐ C2      

C1=4.7ൈ 10ିଽF 

C2=1.5ൈ 10ିଽF 

 



73 
 

6.3 Selection of Devices 

6.3.1 MOSFET Selection 

     When selecting the MOSFETs, there is a fundamental choice of whether to use an N-channel 

or P channel device for the upper switch. N channel MOSFETs have the advantage of lower on 

resistance for a given die size and often have lower gate charge. They also tend to be relatively 

inexpensive. Their chief drawback is that they need a bootstrapped drive circuit or a special bias 

supply for the driver to work, since the gate drive must be several volts above the input voltage 

to the converter to enhance the MOSFET fully. Conversely, P channel MOSFETs has simpler 

gate drive requirements. They require that their gate be pulled a few volts below the input 

voltage for them to be turned on. Their disadvantage is that their cost is higher as compared to 

their N channel counterpart for an equivalent Rds (on), and they generally have slower switching 

times. For soft switching applications, Coss is important because it can affect the resonance of the 

circuit. 

6.3.2 Inductor and Capacitor Selection 

   The optimum inductor value for a particular supply is dependent on the switching frequency, 

transient performance, and the conduction losses in the inductor and other components. Some of 

the merits for selecting a low vs. high inductor value for a given core size and geometry are 

summarized below: 

A. Benefits of Lower Inductor Values 

1. Low DCR: lower DC inductor losses in windings 

2. Fewer turns: higher DC saturation current 

3. High di/dt: faster response to load step / dump 

4. High di/dt: fewer output capacitors required for good load transient recovery 

B. Benefits of Higher Inductor Values 

1. Low ripple: lower AC inductor losses in core (flux) and windings (skin effect) 

2. Low ripple: lower conduction losses in MOSFETs 

3. Low ripple: lower RMS ripple current for capacitors 

4. Low ripple: continuous inductor current flow over wider load range 

  In general, lower inductor values are best for higher frequency converters, since the peak-to 

peak ripple current decreases linearly with switching frequency. A good rule of thumb is to select 
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an inductor that produces a ripple current of 10% to 30% of full load DC current. Too large an 

inductance value leads to poor loop response, and too small an inductance value leads to high 

AC losses. The capacitor value is chosen based on L. A high value of output capacitance gives 

fewer ripples and vice-versa. 

6.3.3 Diode selection 

  While selecting the diodes, the reverse recovery characteristic is taken into account. Due to low 

stored charge and ultrafast recovery with soft recovery characteristics, ringing and electrical 

noise can be minimized, Thus power loss in the switching transistor can be reduced. The 

MURP8100 is an ultrafast diode (trr < 75ns) with soft recovery characteristics. It has a low 

forward voltage drop. 

The designed values are summarizes below: 

Table.6.1.Designed Values for the converter 

Parameter Value 

       Lin     1mH 

       R     500Ω  

 ܪ௥ 80µܮ

ଵܥ            4.7nF 

ଶܥ             1.5nF 

଴       250ܥ        µܨ 

The simulation results of the proposed converter have been presented from Fig. 6.4 to 

Fig.6.9.The simulation is carried out in MATLAB7.0/SIMULINK. 

6.4 Simulation results: 

 The proposed circuit is simulated with Matlab-Simulink and simulation results are 

presented in Fig.6.4 to Fig.6.9 and in table 6.2.  
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Fig.6.4 Triggering pulse of auxiliary switch and the voltage across it  

and the current through the auxiliary switch for the proposed ZVT converter. 

 
Fig 6.5 Triggering pulse of the main switch, the voltage across it 

and the current through the main switch  for the proposed ZVT converter. 
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Fig.6.6 Input voltage and input current ( input current multiplying factor is 100 ) 
 

 

 

Fig. 6.7 Voltage across the diode and Current through the diode  
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Fig 6.8 Harmonic distortion Without ZVT 

 

 

Fig 6.9 Harmonic distortion With ZVT 

Table.6.2. Comparison of different parameters without and with soft-switching: 

Parameters Without ZVT With ZVT 

THD 0.072 0.066 

KP 0.997 0.997 

CosΦ 1.000 1.000 

Power factor 0.9974 0.9977 

Pac 575.48W 510.22W 

Pdc 499.78W 499.887W 

Efficiency 86.86% 98 % 
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Fig.6.10. Simulation model of the proposed ZVT converter 
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Fig.6.11. Current sub system of the proposed ZVT converter 
 

6.5 Experimental Verifications: 

A Prototype of the circuit is developed in the laboratory. MOSFET (APT5025) for main and 

auxiliary switch, diodes (MURP8100) and controller chip (UC3854),Electronic load ELHC300 

are used. The experimental circuit is shown in fig.6.12. The experimental results are presented in 

Fig.6.13 to Fig.6.16. 
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CONCLUSION 

Reduction of line current harmonics is needed in order to comply with the standard. This 

is commonly referred to as the Power Factor Correction – PFC. Power factor correction (PFC) is 

a technique of counteracting the undesirable effects of electric loads that create a power factor 

less than one. There are several solutions to achieve PFC. Depending on whether active switches 

(controllable by an external control input) are used or not, PFC solutions can be categorized as 

“Passive” or “Active”. 

 

Passive PFC: 

The passive PFC circuit uses low-frequency filter components to reduce harmonics. This 

approach typically meets EN standards for Class-A equipment up to 250W, at a much lower cost 

than a comparable switch mode power supply (SMPS) employing active PFC techniques. They 

typically yield less PF’s compared to active topologies; they require a voltage doubler circuit for 

universal operation on most topologies above 150W. Different techniques to implement “Passive 

PFC” have been discussed. 

 

Active PFC: 

The preferable type of PFC is Active Power Factor Correction (Active PFC). Active PFC 

able to generate a theoretical power factor of over 95%. Active Power Factor Correction also 

markedly diminishes total harmonics, automatically corrects for AC input current, and is capable 

of a full range of input voltage. Since Active PFC is the more complex method of Power Factor 

Correction, it is more expensive to produce an Active PFC power supply. 

 

Low-frequency active PFC: 

Some of the techniques to implement “Low-frequency switching active PFC” have been 

presented. An active low frequency approach can be implemented up to about 1000 watts. Power 

factors as high as 0.95 can be achieved with an active low frequency design. To conclude, low-

frequency switching PFC offers the possibility to control the output voltage in certain limits. In 

such circuits, switching losses and high-frequency EMI are negligible. However, the reactive 

elements are large and the regulation of the output voltage is slow. 
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High-frequency active PFC: 

Nearly unity power factor can be obtained by “high-frequency switching active PFC”, if a 

suitable control method is used to shape its input current or if it has inherent PFC properties. The 

converters can operate in Continuous Inductor Current Mode – CICM, where the inductor 

current never reaches zero during one switching cycle, or Discontinuous Inductor Current Mode 

- DICM, where the inductor current is zero during intervals of the switching cycle. 

 

Operation in discontinuous inductor current mode – DICM: 

 In DICM, the input inductor is no longer a state variable since its state in a given 

switching cycle is independent on the value in the previous switching cycle. The peak of the 

inductor current is sampling the line voltage automatically. This property of DICM input circuit 

can be called “self power factor correction” because no control loop is required from its input 

side. 

  We can conclude that the basic boost converter and buck-boost converter have excellent self-

PFC capability naturally. Among them, boost converter is especially suitable for DICM PFC 

usage and buck-boost is not widely used because of the drawbacks such as: the input voltage and 

the output voltage don’t have a common ground due to the reversed output voltage polarity, etc. 

Hence, this converter is the most preferable by the designers for power factor correction purpose. 

Other converters may be used only if their input V-I characteristics have been modified (linear 

zed), or when they operate in continuous inductor conduction mode. 

In addition, if discontinuous inductor current mode is applied, the input current is 

normally a train of triangle pulse with nearly constant duty ratio. In this case, an input filter is 

necessary for smoothing the pulsating input current into a continuous one. 

 

Operation in continuous inductor current mode – CICM: 

In CICM, different control techniques are used to convert the non-sinusoidal input 

current into sinusoidal. Some of them are (1) peak current control (2) average current control (3) 

Hysteresis control (4) borderline control. Even though these control techniques can be used for 

all DC-DC converters, only boost converter has been taken for the study because of the 

continuous input current. These control techniques specifically developed for PFC boost 

converters are analyzed. For each control strategy advantages and drawbacks are highlighted. 
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Even though peak current control gives better characteristics, it has several drawbacks, such as: 

poor noise immunity, need of slope compensation, peak to average current error. These problems 

can be eliminated by average current control at the cost of increased circuit complexity. 

Hysteresis control and borderline control leads to variable frequency operation which 

may create sub-harmonic components. In borderline control, due to the presence of high current 

ripple it has high harmonic distortion. Hence the maximum power factor obtained will be limited 

to 0.87.Hence, peak and average current control techniques are the most preferable control 

techniques. 

This high frequency switching PFC stage also has drawbacks, such as: it introduces 

additional losses, thus reducing the overall efficiency; it increases the EMI, due to the high 

frequency content of the input current. 

Some of the EMI requirements have discussed. But the level of high-frequency EMI is 

much higher with a considerable amount of conduction and switching losses. This high 

frequency EMI will be eliminated by introducing an EMI filter in between AC supply and the 

diode bridge rectifier. Finally, to improve the efficiency of the PFC stage, operation of ZVT 

converter has been discussed, in which the switching losses are minimized by using an additional 

auxiliary circuit. Besides the main switch ZVS turned-on and ZCS turned-off, the auxiliary 

switch also turned-on at ZCS and turned-off near ZVS. Since the main switch and auxiliary 

switch are turned-on and turned-off softly, the switching losses are reduced and the higher 

efficiency of the system is achieved. The results have been compared with the PFC stage with 

hard switching. 

To conclude, a 500 W, 40 kHz ZVT PWM boost PFC converter has been analyzed, 

simulated and results are validated with experimental results. The proposed converter gives 

around 0.9977 (almost unity) power factor with an efficiency of around 98%. 

 

7.2 FUTURE WORK: 

Throughout this thesis work, we have discussed only the second order converters applied 

for PFC. Better characteristics can be obtained by using fourth-order converters for PFC. 
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Appendix-I 
 

The following Simulink models have been used for simulating the circuits given in chapter-2. 
 

1. SImulink model for figure 2.1  
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2. SImulink model for figure 2.2 
 

 
3. Simulink model for fig 2.3 
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4. Simulink model for fig 2.4 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rectifier with series resonant band filter:

AC input voltage Vin=230 V rms
Resistive load R=500 ohms
Flter Capacitance Cf=470e-6 F
series inductance Ls=1.5H
series capacitance Cs=6.75e-6F

Output:
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5. Simulink model for fig 2.5 
 

 

 

6. Simulink model for fig 2.6 
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7. Simulink model for fig 2.7 

 
 
 
 

8. Simulink model for fig 2.8 
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Appendix-II 
 

The following Simulink models have been used for simulating the circuits given in chapter-3. 
 

1. SImulink model for figure 3.1  
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2. Simulink model for figure 3.2 

 
 
 
 

3. Simulink model for figure 3.3 
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4.  Simulink model for figure 3.5 
 

 
 
 

5. Simulink model for figure 3.6 
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Appendix-III 
 

 
The following Simulink models have been used for simulating the circuits given in chapter-4. 
 

1.SImulink model for figure 4.2 

 
2.SImulink model for figure 4.3 
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3.SImulink model for figure 4.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THD =1.2000
kp = 0.6402

cosine =1.0000
PF = 0.6402

voltage

In Mean

powergui

Continuous

current

In Mean

Vs

V2

v+
-

V1

v+
-

Total Harmonic
Distorsion

signalTHD

Scope 2
Scope 1

Scope

RL

Pulse

Mosfet

g m

D S

Ld

Is1

i
+

-Is

i
+ -

Fourier 1

signal
magnitude

angle

Fourier

signal
magnitude

angle

D4

D3

D2

D1

D

Cf



96 
 

Appendix-IV 
 

The following Simulink models have been used for simulating the circuits given in chapter-5. 
 

1.SImulink model for figure 5.2 
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2.SImulink model for figure 5.3 
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3.SImulink model for figure 5.4 
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4.SImulink model for figure 5.5 
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