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Abstract

Cryptography and Network Security in high speed networks demands for spe-

cialized hardware in order to match up with the network speed. These hard-

ware modules are being realized using reconfigurable FPGA technology to support

heavy computation. Our work is mainly based on designing an efficient architec-

ture for a cryptographic module and a network intrusion detection system for a

high speed network. All the designs are coded using VHDL and are synthesized

using Xilinx ISE for verifying their functionality. Virtex II pro FPGA is chosen

as the target device for realization of the proposed design. In the cryptographic

module, International Data Encryption Algorithm (IDEA), a symmetric key block

cipher is chosen as the algorithm for implementation. The design goal is to in-

crease the data conversion rate i.e the throughput to a substantial value so that

the design can be used as a cryptographic coprocessor in high speed network ap-

plications. We have proposed a new n bit multiplier in the design which generates

less number of partial products (≤ n
2
) and the operands are in diminished-one

representation. The multiplication is based on Radix-8 Booth’s recoding with

different combinations of outer round and inner round pipelining approach and

a substantial high throughput to area ratio is achieved. The Network Intrusion

Detection System (NIDS) module is designed for scanning suspicious patterns in

data packets incoming to the network. Scanning a data packet against multiple

patterns in quick time is a highly computational intensive task. A string matching

module is realized using a memory efficient multi hashing data structure called

Bloom Filter, in which multiple patterns can be matched in a single clock cy-

cle. A separate parallel hash module is also designed for eliminating the packets

which are treated as false positives. The string matching module is coded and

functionally verified using VHDL targeting Virtex II pro FPGA and performance

evaluation is made in terms of speed and resource utilization.
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Chapter 1

Introduction

In the field of networking, role of network security is immense. It is a very vital

tool which provides the security against various external and internal threats in

any network. To understand the theory of network security, the understanding

and knowledge of different threats in the network. To maintain network security

in a network involves the fulfilment of the security goals in the network which are

Data Confidentiality, Integrity , Authentication and Non-Repudiation.

Data confidentiality is achieved by means of Cryptography. The aim of cryptog-

raphy is to secure information so that only the intended parties can read the data.

Cryptosystems had been developed for centuries. As computer technologies are

getting advanced, more and more cryptographic applications are used. They are

mainly used to support other applications which are very much sensitive to data

security such as smart cards and commercial data exchange over a network. Not

only for personal use but cryptographic algorithms are also very important in ev-

ery aspect of professional activities. A cryptographic algorithm generally consists

of some specialized arithmetic computations which are complicated in terms of

time complexity. It is because of the fact that these algorithms work with large

amount of data either in blocks or simply in streams. Although a single traditional

CPU is enough for performing these computations, but for a machine which works

as a server in a huge network gets millions of client requests for performing cryp-

tographic operations for them individually. This makes the workload huge. The

computational resources may also be limited for example in smartcards, mobile

phones, handheld computers, etc. Moreover if the associated network is of high
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1.1 Motivation

speed, the speed of the necessary cryptographic computations also needs to be

taken into account. For example in transmitting audio and video data for cable

TV, video conferencing and sensitive financial and commercial data, the speed of

the cryptographic module to be embedded ,needs to be very high. Moreover for

security related issues in wireless and sensor networks, there is a need for separate

hardware device with very high processing rate because of limited battery of the

nodes and for optimizing the bandwidth efficiency. So from the viewpoint of high

speed and throughput, traditional software implementations of these complicated

cryptographic algorithms are not efficient in real time applications like ATM, VPN,

etc. This forces the system designers to go for hardware implementation of the

cryptosystems.

1.1 Motivation

The demand for new network security systems is increasing with the growth of

network services in our society. Several heuristics are associated for judging the

network performances. In today’s world, speed is considered as one of such heuris-

tics. Moreover various network applications are being installed for reducing the

network overhead, specially the data traffic in remote servers. Such types of appli-

cations are basically used for satisfying the security goals, namely confidentiality,

integrity, authentication and non repudiation. Majority of these applications are

very much computationally intensive and software approach for these applications

is rather inefficient to work in line speed of the network. So the current trend is

to replace such software applications with specialized hardware which are quite

compatible to work in such high speed. There are certain key points which can be

chosen as motivation for this work. These are as follows.

• For maintaining security over Internet and E-Commerce, cryptography and

security is of vital importance.

• For performing cryptographic and other network security management op-

erations, some heavy computations are necessary and performing them at a

line speed of the network is a challenging task. Software based applications
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1.2 Problem Statement

cannot guarantee such speed, so there is an increasing demand for hardware

based appliances.

• FPGA technology allow reconfigurability in any design and at the same time

any architecture can exploit parallelism and concurrency when implemented

in FPGA. So a lot of research work is now based on FPGA implementations

of cryptographic algorithms.

• Finally one algorithm can be implemented in a variety of architectures, each

having some speciality. By varying the architectures, different design objec-

tives can be achieved which increases the flexibility of the algorithm.

1.2 Problem Statement

The main objectives of our work is to design, synthesize and verify the function-

ality of certain modules that are highly computationally intensive and are highly

challenging to make them work as an independent module in a high speed network.

This can be said in detail as :

1. In the context of confidentiality, the motive is to design an efficient architec-

ture for a symmetric key block cipher and implement using FPGA technol-

ogy. The target is to reduce the modular complexity of the round operations

of the cipher so that the performance parameters can be optimized. This

is to support the argument that building a cryptosystem completely on an

FPGA platform is possible.

2. Exploit the concurrent characteristics of FPGA to include Outer Round and

Inner Round Pipelining in our design. Finally the goal is to visualize their

impact on system performance.

3. Design a novel architecture for a multiple pattern string matching algorithm

which can be used as a pattern matching module in a Network Based Intru-

sion Detection System(NIDS).

4



1.3 Our Contribution

1.3 Our Contribution

In this work, a set of computationally intensive modules are designed and and

their performances are evaluated so as to verify their functionality as a separate

application in a high speed network. For each and every design, the ultimate goal

is to optimize the performance parameters i.e. to maximize the system through-

put by maximizing the operating frequency of the design and to minimize the area

requirements so that it validates the area × time2 [3] complexity .The modules

include a symmetric key cryptographic co-processor where IDEA encryption al-

gorithm is used and a Network Intrusion Detection System (NIDS) with a novel

multiple pattern string matching technique. These modules are designed and im-

plemented using efficient pipelined architectures for better performance. The main

contributions of this thesis can be given as:

• In IDEA cipher, each round operation needs four modulo (216 + 1) multipli-

ers and efficient design of such multipliers is a challenging task. In our work,

we have deigned a new pipelined architecture using higher radix Booth’s

algorithm which reduces the number of partial products as well as the inter-

mediate operand sizes. For 16 bit operands, the proposed multiplier gives

the output with a considerable low latency and thereby reduces the round

complexity of the cipher.

• After reducing the round latency, the IDEA cipher is implemented and

verified functionally with different combinations of outer and inner round

pipelining so as to increase the system performance. The design achieves a

fairly high throughput and it supports the statement that FPGAs are good

choice for implementing cryptosystems on a single chip.

• A novel string matching architecture is designed using a memory efficient

multi hashing data structure called Bloom Filter. The architecture is found

to be suitable for a multiple pattern matching module in a NIDS. The special-

ity of this string matching module is that, there is no possibility of presence

of false negatives i.e. a malicious packet cannot escape as a genuine packet
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1.4 Thesis Organization

from the module.However, there may be possibility of false positives in the

system.

1.4 Thesis Organization

In this chapter, the motivation for hardware implementation of networks security

applications, the objectives of our work and our contribution is discussed in a nut-

shell. The organization of the rest of the thesis and a brief outline of the chapters

in this thesis are as given below.

In chapter 2, we have discussed the basic algorithm and theory of IDEA, the

symmetric key block cipher, which is chosen for implementation in FPGA. More-

over we have discussed the previous implementation details of IDEA in hardware.

In chapter 3, we have described our proposed modulo multiplier architecture

using Diminished-one number representation and Booth’s algorithm and analyzed

how it reduces the modular complexity in IDEA round operations.

In chapter 4, we have described the performance of IDEA on FPGA using

our proposed multiplier and a combination of outer and inner round pipelining.

We analyzed our architecture in terms of Alice counts and throughput.

In chapter 5, we have proposed and implemented a novel string matching al-

gorithm for a Network Based Intrusion Detection System using a memory efficient

multi hashing data structure called Bloom Filter.

Finally, in chapter 6, we draw our conclusion and proposed some additional

ideas for our future work.
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Chapter 2

Background

2.1 Introduction

In this chapter, we have discussed the basic theory and algorithm for International

data Encryption algorithm (IDEA), a symmetric block cipher, which is selected

as a cipher for implementation in FPGA technology. This chapter consists of two

parts. In the first part, the IDEA algorithm and basics have been discussed. In

the second part, a detailed literature study of the previous implementations of

IDEA in hardware is covered.

2.2 Symmetric key Cryptosystem

In symmetric key cryptography, the encryption and decryption process is done

by the same key which is the secret key. This secret key is shared prior to the

encryption process and remains constant during the process. In our work, we have

used International Data Encryption Algorithm as the symmetric key block cipher

module and we focussed mainly on reducing the round complexity and increasing

the throughput for the overall design.

2.2.1 IDEA Encryption Algorithm

The proposed Encryption Standard (PES) is a block cipher introduced by Lai and

Massey [4, 5]. It was then improved by the Lai, Massey and Murphy in 1991.

This version, with stronger security against differential analysis and truncated

differentials, was called the Improved PES (IPES). IPES was renamed to be the

8



2.2 Symmetric key Cryptosystem

International Data Encryption Algorithm (IDEA) [6] in 1992. Claims have been

made that the algorithm is the most secure block encryption algorithm in the

public domain.

Basic Structure

Figure 2.1: Data flow of IDEA Cipher

IDEA is a symmetric, secret-key block cipher. The keys for both encryption

and decryption must be kept secret from unauthorized persons. Since the two

keys are symmetric, one can divide the decryption key from the encryption one or

vice versa. The size of the key is fixed to be 128 bits and the size of the data block

which can be handled in one encryption/decryption process is fixed to 64 bits. All

data operations in the IDEA cipher are in 16-bit unsigned integers. When pro-

cessing data which is not an integer multiple of 64-bit block, padding is required.

The security of IDEA algorithm is based on the mixing of three different kinds

of algebraic operations: EX-OR, addition and modular multiplication. IDEA is

based upon a basic function, which is iterated eight times. The first iteration

operates on the input 64-bit plain text block and the successive iterations operate

on the 64-bit block from the previous iteration. After the last iteration, a final

9



2.3 Related Work

transform step produces the 64-bit cipher block.The data flow graph is shown in

Figure 2.1. The algorithm structure has been chosen such that, with the exception

that different key sub-blocks are used, the encryption process is identical to the

decryption process. IDEA uses both confusion and diffusion to encrypt the data.

Three algebraic groups, EX-OR, addition modulo 216, and multiplication modulo

(216 + 1), are mixed, and they are all easily implemented in both hardware and

software. All these operations operate on 16-bit sub-blocks.

Key Generation

The key generation phase of IDEA generates 52 sub-keys from the 128 bit input

key. The block diagram for key generation is shown in Figure 2.2. The basic steps

of generating the encryption keys are:

• All the sub-keys are named as Z
(1)
1 ,...,Z

(1)
6 ,Z

(2)
1 ,...,Z

(2)
6 ,....,Z

(8)
1 ,...,Z

(8)
6 , Z

(9)
1 ,...,Z

(9)
4 .

• From the input 128 bit key, eight sub-blocks of 16 bits are partitioned and

are assigned to Z
(1)
1 ,...,Z

(2)
2 directly.

• Now the original 128 bit key block is rotated by 25 bits and a new 128 bit

block is formed. Now another eight sub-blocks are generated from this new

block.

• The rotation procedure is repeated until and unless sub-blocks used in pre-

vious rounds are found.

Once the encryption keys are generated, the decryption keys can be generated

directly by taking their additive inverse modulo 216 and multiplicative inverse

modulo (216 + 1) as required.

2.3 Related Work

In high speed applications, where there is a need of protection of data, crypto-

graphic algorithms are necessary. Data rates in such applications are very high

and such computation cryptographic algorithms need to be run on real time so

10



2.3 Related Work

Figure 2.2: IDEA Encryption key Generation

as to provide the quality of service.In this scenario, a software implementations

of such algorithm using general purpose processors due to delay in instruction

processing.But such speed can be easily achieved when implemented in hard-

ware.Although the software implementation is less costly than hardware imple-

mentation, the speed up in hardware is very high.So for flexibility,availability and

high functionality, there is a need of incorporating a separate cryptographic mod-

ule in such applications.

Although IDEA involves only simple 16-bit operations, software implemen-

tations of this algorithm still cannot offer the encryption rate required for on-

line encryption in high-speed networks.IDEA has been previously implemented in

hardware using various FPGA devices and even ASIC. Like other renowned sym-

metric key block ciphers, IDEA contains no S-Boxes or P- Boxes. So there is a less

memory overhead.Instead it has some basic building blocks like EX-OR, addition

modulo 2n and multiplication modulo 2n + 1. Among these basic operations, the

EX-OR and the addition modulo 2n implementations are very straightforward.The

multiplication module is the most computational intensive module and it needs

a lot of effort to design it efficiently. In each round of IDEA, four such modulo

multipliers are needed.So the performance of IDEA in hardware i.e. the through-

11



2.3 Related Work

put rate and the area and cost efficiency depends a lot on efficient design of the

multiplier.

IDEA was first implemented and verified in VLSI by Bonnenberg [7] where the

data encryption and decryption was performed on a single hardware unit which

was a 1.5 �m double metal n-well CMOS with a maximum clock frequency of

33 MHz and data throughput rate of 44 Mb/s.In this implementation, the key

management module and the inversion module was not performed on chip.The

main goal was to achieve the highest possible throughput along with a hardware

support to verify whether the design was cryptographically correct in terms of

functionality and availability. By that time , some effective architectures for mod-

ulo (2n+1) multipliers were proposed by Bonnenberg and Curiger [8].Among those

architectures, Bonnenberg’s scheme [7] used the (n + 1) × (n + 1) multiplication

scheme with a pipeline of two stage. With a computation speed of 60 ns per multi-

plication, a two multiplier round architecture using pipelining for IDEA was used.

The speciality of this approach is that, the architecture is made of one encryp-

tion/decryption unit and an input/output interface unit with each unit containing

a RAM. Proper clock was used to match their speeds.The drawback of this design

is that extra overhead is associated due to huge data transfer from on chip RAMs

as well as regulating off chip traffic.Moreover, the design was not supportive for

all standardized modes of the cipher.Although it is the first VLSI implementation

of IDEA, the data throughput rate was found to be twice than that of a DES chip

at that time.

Bonnenberg’s design [7] was found to be a prototype for a VLSI circuit , which

was made essentially to speed up the cryptographical tests.But there was still a

demand for a real time application hardware that can handle data traffic in high

speed networks.The goal was to design an efficient basic building block with a

high throughput datapath architecture with an efficient interface that can handle

off-chip data traffic.

Curiger’s implementation [9] [10] of IDEA was done on double-metal CMOS

1.2 �m which was suitable for all standardized modes.One of the speciality of this

12



2.3 Related Work

implementation is that, the data encryption and decryption was implemented on a

single hardware unit.With a system clock frequency of 25 MHz the data through-

put rate was found to be 177 Mb/s.This was the first silicon block which was

found compatible for online encryption in high speed networks.The design was

made using eight pipelining stages, containing a single round to achieve temporal

parallelism.

As usual, the design of modulo (2n + 1) multiplier was crucial for the perfor-

mance of the cipher. Various multiplication schemes were defined in [8].Curiger’s

design used the multiplication scheme with modulo (2n + 1) adders in which one

of the operands (say X) was in diminished-1 representation proposed in [11] and

another operand was in normal weighted form which can be given as:

Z = �Y mod(2n + 1) = (
n−1∑
i=0

2i�i .
n∑

i=0

2iyi) mod(2n + 1) (2.1)

= (
n∑

i=0

yi(2
i� mod 2n + 2i� div 2n + 1) mod(2n + 1)) mod(2n + 1)

where

� =
n−1∑
i=0

2i�i

and � is a diminished-1 representation of X =
∑n

i=0 2ixi , i.e. � = X − 1.

Later, in [10] a new approach was taken to avoid high computation time and

area.A modified Booth recoding multiplication and a fast carry select additions for

the final modulo correction were used as two stages of the multiplier in a pipeline

structure. Four such modulo multipliers were used in each round for optimizing

the performance of computational units.Each of the multiplication units used two

stages of the eight stage pipeline. The design was made on a single hardware chip

where the sub-keys were generated internally along with necessary computation

of additive and multiplicative inverses.The multiplicative inverses were calculated

using square and multiply method.Only the master key was loaded onto the chip

at the beginning. So the speciality of this design was that, no off chip data traffic

13



2.3 Related Work

was needed to manage through buffers.The overall architecture of Curiger’s de-

sign [10] contains two on chip buffer memory for implementing the different modes

of operation of the cipher.In each buffer, a 8× 64 bit shift register is used for im-

plementing eight stage pipeline.

In VLSI circuits, arrival of temporary or permanent faults are very common

which creates error in encryption. To get rid of these faults, necessary fault detec-

tion tests are required. These tests can be off-line or online. But if these tests are

periodic, it consumes unnecessary clock cycles and degrades the speed. For test-

ing the overall functionality during encryption,an online built in self test scheme

was added which was done by incorporating a fifth multiplier in the pipeline cir-

cuitry.The drawback in this approach was that, this hardware redundancy resulted

in a large extra hardware. Moreover if the time between two tests was long, there

was a probability of some short-lived error to creep in. Although, the proposed

design was not the fastest single chip implementation but it was the first design

which was found compatible for use in high speed networks.

Although the design proposed in [10] was compatible for real time encryption

in high speed networks, there was still a demand for hardware with faster en-

cryption ability. Moreover Curiger’s design [10] was not capable of detecting all

possible errors during its normal operation.Wolter’s design [12] of a new hardware

for IDEA was motivated by the requirement of higher data rate and online testing

of circuit.The design was done by implementing one round of IDEA in a 0.8 �m

CMOS and a data throughput of 355 Mb/s was obtained.The characteristics of

the architecture was that, all the standardized modes of the cipher were capable

to processing data with equal speed. The design of modulo (216+1) multiplier was

based on low high theorem of Lai and Massey [4] where modified Booth encoded

multiplication algorithm and wallace tree were used. Here a 10 stage pipelining

was used where two stages were reserved for performing online test.

For detecting faults, both off-line and online built in self test schemes were

used in this scheme.The off-line test was performed using pseudo-random data en-

cryption.Two online tests were performed, one based on information redundancy
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i.e mod 3 residue code and the second test was based on redundant test words.

Although this scheme has a data throughput rate of 355 Mb/s by implementing

a single round, due to overhead of online tests on chip, some additional area re-

quirements was required in this design.

The next implementation of IDEA was made by Salomao [13] on an Applica-

tion Specific IC named HiPCrypto using a 0.7 �m two metal, which was oriented

towards computer network applications (like VPN) demanding high throughput.A

single chip was used and the operation frequency was 53 MHz clock.This design

was made to meet the requirement of applications in current and future high speed

data networks.For this, temporal and spatial parallelism was exploited on the main

design. No built in self test schemes were incorporated in this design for detect-

ing faults. The modulo (2n + 1) multiplication was designed using a two stage

pipelined multiply unit. Four small RAMs were used for storing the sub-keys.

By using a single HiPCrypto device, a data throughput rate of 424 MB/s was

achieved by the design. The disadvantage of this scheme was that, the HiPCrypto

chip was not able to handle sub-keys derived from multiple keys.

A paper design of IDEA processor using four xilinx XC4020XL devices was

proposed by Mencer [14] and that proposed design achieved a data throughput

rate of 528 Mb/s. The design was done for comparing the parameters like per-

formance, programmability and power for ASICs, FPGAs and normal processors.

During the FPGA implementation, 56 stage pipelining was exploited for perfor-

mance improvement and a custom designed Konstant coefficient multiplier was

used which was based on look-up tables.The limitations of this design was the

prior loading of keys before encryption.

Leong [15] implemented the IDEA cipher using a bit serial architecture [16].Due

to the bit serial architecture, the algorithm of the cipher was deeply pipelined. The

operation frequency of this design was 125 MHz and a Xilinx Virtex XCV300-6

device was used. The data throughput rate was found to be 500 Mb/s which was

as usual compatible for online encryption for high speed networks.The advantages

of this implementation were :
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• High degree of fine grain parallelism.

• Scalable and thus the trade-offs between data conversion rate and the area

can be addressed.

• High clock rate.

• Compact implementation.

The design for the modulo (216 + 1) was done using the approach proposed by

Meier and Zimmerman and described by Curiger [9] in which, modulo 2n adders

were used along with bit-pair recoding algorithm. To increase the throughput,

a 16 stage pipelined version of Lyon’s serial parallel multiplier was used. The

overall design of the cipher was done using four parallel to serial converters and

four four serial ro parallel converters. The key storage and subkey generations in

each round was done using shift registers. The proposed design was found to be

scalable using more resources.

For incorporating efficiency in reconfigurable computing, Goldstein [17] imple-

mented the IDEA cipher on Piperench architecture and achieved a data through-

put of 1013 Mb/s. Although, the design was more suitable for stream based

applications,the speciality of the Piperench architecture was the improvement of

compilation and reconfiguration time from normal FPGAs by means of an ad-

vanced computing technique called pipeline reconfiguration.This feature is one

type of a hardware virtualization in which, the compiler is free from hardware

constraints.The simulation of [17] was done by dataflow intermediate language.

Ascom, the patent holder of IDEA, implemented a commercial design of IDEA

cipher called IDEACrypt kernel on 0.25 �m CMOS technology and achieved a

throughput rate of 720 Mb/s.

Mosanya [18] implemented IDEACore, an encryption core for International

Data Encryption Algorithm as a modular and reconfigurable cryptographic co-

processor. The goal of that design was to accelerate cryptographic operations

on a host system.The system was implemented using VHDL and it exploited the

property of partial reconfiguration for a normal FPGA.In the multiplication mod-
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ule, bit parallel multiplier was used and for modulo (216 + 1) correction, low-high

algorithm [4] was used. For the overall design, a scalable pipeline was used where

the number of pipeline stages were decided during compilation time. The de-

sign achieved a throughput rate of 1500 Mb/s.The drawback of the scheme is

that, the area requirements is not fixed every time due to variation of pipelined

stages.Moreover, due to session initialization and key calculation, the overall per-

formance is slightly low in this scheme.

Cheung and Leong [19] further implemented IDEA on a bit parallel architec-

ture [16] on Xilinx Virtex XCV300-6 FPGA and achieved a data throughput of

1166 Mb/s at a system clock rate of 82 MHz.The implementation was runtime

reconfigurable and by direct modification of bitstream downloaded to the FPGA,

the key scheduling was done.Moreover, the implementation was scalable with in-

creased resource requirements.With a full hardware support, a throughput of 5.25

Gb/s was estimated using this design.

With a fully pipelined approach, IDEA was implemented by Hamalainen [20]

using Xilinx XCV1000E-6BG560 FPGA and the throughput of 8 Gb/s through-

put was achieved by the design.The modulo multiplier used diminished-1 number

representation [11] and the multiplication schemes used in [21] [22], [8], [23] were

implemented and compared.Finally, the multiplication scheme of [22] was chosen.

For cyclic left shifts, extra combinational logic was used and Carry save adders

were used for multi-operand addition.The entire design was made using loop un-

rolling architecture but it was slightly less efficient in terms of area requirements.

Till now, the fastest FPGA implementation was done by Gonzalez [24] where

a throughput of 8.3 Gb/s was achieved using Xilinx Virtex XCV600-6 device. The

speciality of this design was that, all the operational units were replaced by con-

stants and a partial reconfiguration was used along with superpipelining.The only

drawback for this scheme is that, not many devices support partial reconfigura-

tion.

Using embedded multipliers, IDEA was implemented by Pan and a throughput

of 6 Gb/s was achieved but the design was costly in terms of area efficiency.An
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efficient VLSI implementation of IDEA was done by Thaduri [25] using Altera

FPGA, where the modulo multiplier was optimized by using Wallace trees and

carry look ahead adders and a deep temporal parallelism was exploited.The spe-

ciality of the design is that, the sub-keys are generated internally once the original

key is fetched.Moreover, the design did not use any additional RAM for storing

the subkeys.Using a clock frequency of 10 MHz, a throughput greater than 700

Mb/s was achieved by the design. In terms of scalability, a throughput of 7.8 Gb/s

was achieved using scaling.

2.4 Conclusion

In this chapter, the architecture and algorithm for IDEA cipher is discussed in

details. Moreover a background study on the previous hardware implementations

of IDEA has been discussed in details and an analysis is drawn in terms of modular

complexity. In the next chapter, we will discuss our proposed multiplier and its

architecture as well as complexity.
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Chapter 3

Modulo (216 + 1) multiplier for
IDEA Cipher

3.1 Introduction

The basic design goals for hardware implementation of any algorithm is to reduce

the time complexity for fast execution, optimization of basic modules and reduc-

ing the response time of the algorithm. IDEA is based on three algebraic group

operations on 16 bit unsigned integers which are EX-OR, addition modulo 216 and

multiplication modulo (216 + 1) [26]. Among these, the multiplication module is

the most complex module because of 16 bit multiplication and modulo correction.

Thus efficient design of these multipliers is a major issue for optimizing the per-

formance of IDEA. In our design, we have proposed a new architecture for the

multiplication module which is based on diminished-one number representation

and radix 8 Booth’s recoding algorithm. This multiplier generates less number of

partial products as compared to previous implemented multipliers and there is no

extra overhead for modulo correction.

3.2 Diminished-one Number Representation

The diminished-one number representation proposed by Leibowitz [27], is a very

convenient and efficient form of representation of binary numbers in arithmetic

modulo (2n + 1).In IDEA, all intermediate operands are 16 bit unsigned integers

but for implementing modulo (216 + 1) arithmetic in hardware, the register size
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needs to be (16+1) bit. So unnecessarily an extra bit is used. To avoid this incon-

venience, normal binary operands are transformed to diminished-one operands by

subtracting one from normal binary representation of any number. So if A is an

n+1 bit binary number, then the diminished-one representation of A which is an

n bit number and denoted by d[A], is given by

d[A] = (A− 1) mod(2n + 1) (3.1)

Thus if A ∈ [1, 2n] and A ∕= 0, then d[A] ∈ [0, 2n − 1],which is an n bit num-

ber.However when A = 0, d[A] = d[0] = (0− 1) mod (2n + 1) = (−1) mod (2n + 1)

which is equal to 2n, an (n+ 1) bit number.

3.2.1 Basic Operations

The diminished-1 represented numbers follow some basic operations which are

defined below:

d[−A] = d[A] if d[A] ∈ [0, 2n − 1] (3.2)

d[A+B] = (d[A] + d[B] + 1) mod (2n + 1) (3.3)

d[A−B] = (d[A] + d[B] + 1) mod (2n + 1) (3.4)

d[AB] = (d[A]×d[B]+d[A]+d[B]) mod (2n+1) = (d[A]×B+B−1) mod (2n+1)

(3.5)

d[2kA] = iCLS(d[A], k) if d[A] ∈ [0, 2n − 1] (3.6)

d[−2kA] = iCLS(d[A], k) if d[A] ∈ [0, 2n − 1] (3.7)

where d[A] is one’s complement of d[A] and iCLS(x,k) is the k bit circular

shift of x in which the circulated k bits are complemented.For example if A is

(an−1an−2an−3...a2a1a0) then d[23A] is (an−4an−5...a2a1a0 an−1 an−2 an−3)

3.3 Algorithm for the proposed multiplier

Previously, many modulo multipliers were proposed which used diminished-one

operands. But those approaches did not consider the handling of zero inputs and

giving the results.Although some of them used array multipliers,but the hardware
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complexities was more. Chen and Yao [28] proposed modulo (2n + 1) multipliers

for the diminished-1 representations where radix-4 booth’s recoding was used as

the multiplication algorithm. The number os partial products was reduced to n/2

and the zero correction module was also simple. Our proposed multiplier follows

Chen and Yao [28] scheme and based on radix-8 Booth recoding and the num-

ber of partial products generated in less than n/2 for n bit multiplication, thereby

reducing the number of intermediate addition operations.The correction term gen-

erator module is also modified in this scheme. For adding the partial products,

an inverted End Around Carry (EAC) adder tree is used. Finally,one diminished-

1 adder is used for generating the product. Let A and B be two n+1 bit binary

numbers and let d[A] and d[B] be their respective n bit diminished-one representa-

tions,such that d[A]= (an−1an−2an−3...a2a1a0) and d[B] = (bn−1bn−2bn−3...b2b1b0).

So we have,

d[B] = (
n−1∑
i=0

bi2
i) mod(2n + 1) (3.8)

Taking radix value as 8, the above equation can be written as,

d[B] =

∣∣∣∣(b0 + 2b1− 4b2) +

⌊n/3⌋∑
i=1

(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i

∣∣∣∣
(2n+1)

(3.9)

So,we can write,

B =

∣∣∣∣(1 + b0 + 2b1− 4b2) +

⌊n/3⌋∑
i=1

(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i

∣∣∣∣
(2n+1)

(3.10)

Substituting the value of B in equation 5 we have,

d[AB] =

∣∣∣∣d[A]× (1 + b0 + 2b1 − 4b2) + d[A]×
⌊n/3⌋∑
i=1

(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i

+

⌊n/3⌋∑
i=1

(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i + (1 + b0 + 2b1 − 4b2)− 1

∣∣∣∣
(2n+1)

(3.11)

or,

d[AB] =

∣∣∣∣ ⌊n/3⌋∑
i=1

(d[A]×(b3i−1+b3i+2b3i+1−4b3i+2)2
3i+(b3i−1+b3i+2b3i+1−4b3i+2)2

3i)
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+d[A(1 + b0 + 2b1 − 4b2)]

∣∣∣∣
(2n+1)

or,

d[AB] =

∣∣∣∣d[A(1+b0+2b1−4b2)]+

⌊n/3⌋∑
i=1

(d[A(b3i−1+b3i+2b3i+1−4b3i+2)2
3i]+1)

∣∣∣∣
(2n+1)

or,

d[AB] =

∣∣∣∣d[A(1+b0+2b1−4b2)]+

⌊n/3⌋∑
i=1

d[A(b3i−1+b3i+2b3i+1−4b3i+2)2
3i]+⌊n/3⌋

∣∣∣∣
(2n+1)

(3.12)

Now if the value of n is divisible by 3, then equation (11) can be expressed as,

d[AB] =

∣∣∣∣d[A(bn−1 + bn + 2bn+1 − 4bn+2)2
n] + d[A(1 + b0 + 2b1 − 4b2)] +

n

3

+

n
3
−1∑

i=1

d[A(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i]

∣∣∣∣
(2n+1)

or,

d[AB] =

∣∣∣∣d[−A(bn−1 + bn + 2bn+1 − 4bn+2)] + d[A(1 + b0 + 2b1 − 4b2)] + 1 +
n

3
− 1

+

n
3
−1∑

i=1

d[A(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i]

∣∣∣∣
(2n+1)

or,

d[AB] =

∣∣∣∣d[−A(bn−1 + bn + 2bn+1 − 4bn+2) + A(1 + b0 + 2b1 − 4b2)] +
n

3
− 1

+

n
3
−1∑

i=1

d[A(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i]

∣∣∣∣
(2n+1)

Considering bi = 0, for i ≥ n, we have,

d[AB] =

∣∣∣∣d[A(1+b0+2b1−4b2−bn−1)]+
n

3
−1+

n
3
−1∑

i=1

d[A(b3i−1+b3i+2b3i+1−4b3i+2)2
3i]

∣∣∣∣
(2n+1)

or,

d[AB] =

∣∣∣∣d[A(b̄n−1+b0+2b1−4b2)]+

n
3
−1∑

i=1

d[A(b3i−1+b3i+2b3i+1−4b3i+2)2
3i]+

n

3
−1

∣∣∣∣
(2n+1)

(3.13)
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Here b̄n−1 denotes the one’s complement of bn−1.The terms (b̄n−1+b0+2b1−4b2)

and (b3i−1 + b3i + 2b3i+1 − 4b3i+2) used in equation (12) are based on Radix 8

Booth’s recoding algorithm and can have the any one of the following values

{−4,−3,−2,−1, 0,+1,+2,+3,+4}. So the possible values of the terms d[A(b̄n−1+

b0+2b1−4b2)] and d[A(b3i−1+b3i+2b3i+1−4b3i+2)2
3i] can be d[±A.23i],d[±A.23i+1],

d[±A.3.23i], d[±A23i+2] and d[0].The values for d[±A.23i],d[±A.23i+1] and d[±A23i+2]

can be obtained easily from equation (6) and (7). The value for d[±A.3.23i] is ob-

tained as follows :

d[±A.3.23i] = d[±(A.2.23i + A.1.23i)] =

∣∣∣∣d[±A.23i+1] + d[±A.23i] + 1

∣∣∣∣
(2n+1)

For this reason, an additional diminished-one adder is used as a separate mod-

ule which generates the final partial product in this case.

To avoid the d[0] value,a correction term module has been proposed in the

scheme which is a modification correction term module used in Chen and Yao’s

scheme [28].Corresponding to each partial product generated, a correction bit is

generated. When n is divisible by 3, n/3 partial products(PPD) and correction

bits(c) are generated which are based on the following condition:

• When i=0, if (b̄n−1 + b0 + 2b1−4b2) ∕= 0, then PPD0 = d[A(b̄n−1 + b0 + 2b1−

4b2)] and c0 = 0 else PPD0 = 0 and c0 = 1.

• When 0 < i < n
3
, if (b3i−1 + b3i + 2b3i+1 − 4b3i+2)2

3i ∕= 0, then PPDi =

d[A(b3i−1 + b3i + 2b3i+1 − 4b3i+2)2
3i] and ci = 0, else, PPDi = 23i − 1 and

ci = 23i.

Following the same approach as used in Chen and Yao scheme [28], we can

write in the context of our scheme as,

• When n is divisible by 3,

d[AB] =

∣∣∣∣
n
3
−1∑

i=0

PPDi −
n
3
−1∑

i=0

ci +
n

3
− 1

∣∣∣∣
(2n+1)

(3.14)
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• When n is not divisible by 3, there are two possible solutions

d[AB] =

∣∣∣∣ (
n+1
3

)−1∑
i=0

PPDi −
(n+1

3
)−1∑

i=0

ci +
n+ 1

3
− 1

∣∣∣∣
(2n+1)

(3.15)

or,

d[AB] =

∣∣∣∣ (
n+2
3

)−1∑
i=0

PPDi −
(n+2

3
)−1∑

i=0

ci +
n+ 2

3
− 1

∣∣∣∣
(2n+1)

(3.16)

In IDEA, all operands are 16 bit binary numbers.So the value of n is fixed( i.e

16). In that case, equation(17) satisfies the condition for multiplication.Equation(17)

can be further written as,

d[AB] =

∣∣∣∣ Z−1∑
i=0

PPDi − C + Z − 1

∣∣∣∣
(2n+1)

(3.17)

where

Z =

(
n+ 2

3

)

C =

(n+2
3

)−1∑
i=0

ci

ci ∈ {0, 23i}

which can be finally extended as,

d[AB] =

∣∣∣∣ Z−1∑
i=0

PPDi + C̄ + 2 + Z − 1

∣∣∣∣
(2n+1)

d[AB] =

∣∣∣∣ Z−1∑
i=0

PPDi + C̄ + d[1] + Z + 1

∣∣∣∣
(2n+1)

(3.18)

Thus this newly proposed multiplier reduces the number of partial products

by less than n/2.Moreover it has all the functionality to handle zero inputs and

outputs as well as it avoids (n+1) bit arithmetic circuits during computation.

The only overhead is the extra diminished-one adder for calculating the partial

products for the terms d[±A.3.23i]. But efficiency of this design outweigh this

extra logic overhead.

In IDEA, all the operands are of 16 bit size and no operand is treated as 0.

All zero operands are taken as 216. So in that case, diminished-one form of that 0

25



3.4 Proposed multiplier architecture

operand is the diminished-one form of 216. For example, if A is a 16 bit operand

in IDEA cipher, then A = 0 implies that A = 216. So d[A] = ∣A−1∣216+1 = 216−1,

not 216.

3.4 Proposed multiplier architecture

The newly proposed modulo (216 + 1) multiplier consists of a Partial Product

Generator (PPDG),a correction term generator, an Inverted End Around Carry

CSA tree and two diminished-one modulo (216 + 1) adder for generating partial

product and final addition. The Partial Product Generator (PPDG) consists of

a Booth’s Encoder(BE), a Booth’s Selector (BS) and one diminished-one modulo

(216 + 1) adder. The BE and BS follows a 4 bus approach. The BE module

checks the overlapping quadruplet and generates the corresponding code. BS

module takes the code as input along with the multiplicand and produce the

partial product. The diminished-one modulo (216+1) adder is used in this module

for handling the value of d[±A.3.23i]. The Inverted End Around Carry CSA tree

takes Z+2 operands and reduces it to two vectors, the sum vector and the carry

vector. The individual adders are made of Full adders (FA). The correction term

generator checks each code generated and generates the corresponding correction

term. The final diminished-one modulo (216 + 1) adder is used for adding the final

two sum and carry vector. The major goal of this implementation is to achieve high

throughput, which motivates to minimize the delay of the computation intensive

modules of the design. As the multiplication module is the most time consuming in

IDEA data path, pipelining mechanism is incorporated inside the multiplier. The

design is mainly based on systolic approach in which pipelined registers forward

data to the next stage in every clock cycle. For obtaining high performance, a

seven stage pipelining is used in the design. The pipelined architecture of the

multiplier is shown in Figure 3.1.
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Figure 3.1: Architecture of six-stage pipelined new modulo (216 + 1) multiplier for
IDEA

3.5 Complexity of the proposed multiplier :

The qualitative comparison of the proposed multiplier is made using unit gate

model as proposed by Tyagi [29]. According to this model, an Ex-OR/ Ex-NOR

gate is charged 2 gate delay units and a delay through an elementary gate is taken

as 1 gate delay units. The latency for the proposed multiplier consists of the

delay of the PPDG module, the delay of the CSA tree and the delay of the final

diminished-one adder. The PPDG module consists of BE, BS and one diminished-

one adder. The delay in diminished-one adder as given in [28] is 2⌈log2 n⌉ + 3.

So the final delay for the PPDG can be given as TBE + TBS + TDim−Adder. As

TBE + TBS has a constant delay (K) as per unit gate model, we have,
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TPPG = TBE + TBS + TDim−Adder

or

TPPG = K + 2⌈log2 n⌉+ 3

The CSA tree used in the design accepts n+2
3

+ 2 operands so the delay can be

written as

TCSA = TFA ×H
(
n+ 2

3
+ 2

)
Here H(x) is the height of the CSA tree using x number of inputs. The critical

path delay for a full adder as per unit gate model is 4 units of time. From this,

the overall delay of the multiplier can be written as

TMultiplier = TPPG + TCSA + TDim−Adder

or, TMultiplier = K + 2⌈log2 n⌉+ 3 + 4×H
(
n+ 2

3
+ 2

)
+ 2⌈log2 n⌉+ 3

3.6 Results and Analysis

In this section, the waveform, device utilization report and the timing summary

is discussed in brief.

Figure 3.2: Multiplier giving output in the 7th clock cycle

In IDEA, all the operands inside a round are 16 bit unsigned integers. So

for the multiplication module, both the multiplier and the multiplicand are 16

bit numbers. As shown in the multiplier architecture, for 16 bits, seven pipelined

registers are used for getting the final product. So for getting the first output from

the multiplier module, 7 clock cycles are consumed, each triggering a pipelined

register sequentially. After getting the first output, in 7th clock cycle, the next
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outputs are generated in the subsequent clock cycles i.e. eighth,ninth, etc. The

waveform generated in the synthesis report for the multiplier module is shown in

Figure 3.2. The device utilization summary and the timing analysis is given in

Table 3.1.

Table 3.1: Device utilization and timing analysis for the proposed multiplier

Parameters Values

Maximum Frequency 723.668 MHz
Device Virtex 2 pro - XC2VP30
Number of Slices 496
Slices available 13696
Percentage of utilization 3

3.7 Conclusion

In this chapter, we have proposed and discussed a novel architecture for a modulo

multiplier for the IDEA cipher. The multiplication approach is quite efficient in

terms of number of partial products (which is less than n
2

) and it uses Radix 8

Booth’s multiplication algorithm. The design is made pipelined using 7 pipelined

registers and the addition process is enhanced using inverted end around carry

save adder tree. The synthesis report generated for the design shows that the

design is quite efficient in terms of throughput and latency and can replace the

internal multipliers of the target FPGA.
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Chapter 4

Design and Implementation of
IDEA cipher

4.1 Introduction

There are various goals for implementing any design in hardware as mentioned

in [30]. For some designs, optimizing area requirements is a primary goals. For

other designs where speed is an essential criteria, the objective is to increase the

throughput and reduce the latency. The main parameters which are taken into

account for implementing a block cipher in hardware are Encryption(Decryption)

throughput and the circuit area. When large amounts of data are associated in

any application, throughput is the best measure for the cipher speed. For ap-

plications with small data usage, latency is taken as an additional performance

parameter, along with throughput. Circuit area usually determines the cost of

implementation which helps to estimate the required area× time2 [3] balance for

the design.

4.2 Design and Architecture using pipelining

For implementing any block cipher in hardware, the first step is to implement the

basic iterative architecture first. Then new design strategies are added to the basic

design like loop unrolling, outer round pipelining and inner round pipelining, as

described in [30] so as to achieve the maximum required throughput.
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Various new design methodologies of secret key clock ciphers have been dis-

cussed in [31].Our implementation follows three of these new design methodologies.

All these designs are first synthesized in VHDL for functionality verification. Then

they are implemented in Xilinx Virtex II Pro - XCVP30 FPGA. Primarily a single

round is designed with optimum number of pipelined registers inserted inside the

round. A similar type of design with inner round pipelining is followed in [32]. In

Figure 4.1: A single inner round pipelined architecture for IDEA with 24 pipeline
stages

this design, a 24 stage pipelining is used which guarantees optimum throughput.

However, as mentioned before, each multiplication module inside the round has 6

pipelined stages whereas for addition and XOR module, a single stage is used. The

pipelined data flow in one round is shown in Figure.4.1. For this single round, the

minimum clock period is found to be 9.749 ns in Virtex II Pro i.e the maximum

clock frequency is 102.63 MHz. This design uses a slice count of 2340.

The first design implemented is the iterative design of this inner round pipelined

single round. This is same like implementing a single round of IDEA and repeat-

ing it a number of times. The iteration is made for 8 rounds and a final output

transformation round is implemented at last. The architecture of this design is

given in Figure.4.2. The design is found to have a maximum clock frequency of

102.637 MHz with slice counts of 2340 in Virtex II pro . No outer round pipelined
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4.2 Design and Architecture using pipelining

Figure 4.2: Basic Iterative architecture with inner round pipelining for IDEA

stages is used in this design. In each iteration, data flow through a single round

with 24 stages of pipeline. The constraint of this design is that, new data for

encryption can be fed into the system only after the completion of all the rounds.

Figure 4.3: Partial mixed inner and outer round pipelined architecture for IDEA

In the second modified design, the design is based on partial mixed inner

and outer round pipelining. This design has a much higher throughput with a

marginal increase in circuit area. So in this case the throughput to area ratio
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increases. In this design, 4 complete rounds are unrolled , each with 24 stages

on inner pipelined stages. This 4 unrolled round design is iterated twice and the

output transformation stage is added in the end. With this design, the maximum

clock frequency is found to be 105.91 MHz with a consumption of 9471 slices in

Virtex II pro. The architecture of this design is given in Figure.4.3 The number

of pipelined stages used in this design is [(24× 4) + 3] = 99.

The third design is based on full mixed inner and outer round pipelining. This

design is made so as to achieve the optimum throughput by increasing the clock

frequency. Virtex II Pro doesn’t have the required slices for all the IDEA rounds in

unrolled basis. So only 6 rounds are unrolled along with the output transformation

round. The design gives the throughput with a clock frequency of 117.61 MHz in

Virtex II Pro. A total of [(24×6)+5) = 149 pipelined stages is used in this design.

For placing all the rounds, a total of [(24 × 8) + 8) = 199 pipelined stages As a

result, it has more area requirement in terms of registers usage. The speciality

of this design over the previous design is that, new data can be taken as input

for encryption in every clock cycle, after that initial latency of the design. The

architecture of the design is shown in Figure.4.4

4.3 Result and comparison with other schemes

In this section, needful results are analyzed and compared based on certain criteria.

At first, the complexity of the proposed multiplier is defined. Next a detailed

comparison is drawn for three different architectures implemented based on the

performance parameters like throughput, slice counts and throughput to area ratio.

Finally, the overall result is compared with some of the previous implemented

schemes.

4.3.1 Analysis and Comparison

The comparison of the three architectures implemented are given in Table 4.1 for

Virtex II pro FPGA device, which is made based on the performance parameters

like slice counts, throughput and throughput to area ratio. The target device is
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Figure 4.4: Full mixed inner and outer round pipelined architecture for IDEA

chosen as Virtex II pro . The design is synthesized using VHDL and the func-

tionality verification is made using Chipscope pro. The comparison shows that

as the number of pipelined stages increases, the throughput increases but the

slice counts also increases to a certain amount. Due to this, the throughput to

area ratio decreases slightly. However, this trade-off can be accepted as long as

throughput is getting optimized. It is to be noted that in this design, no embed-

ded multipliers are used and so there is no restriction in number of multipliers to

be used. While implementing IDEA on Virtex II pro, using full mixed outer and

inner round pipelining approach , it is found that all the rounds of IDEA cannot

be accommodated in the device. So only 6 rounds are unrolled and implemented

for verification.

A brief comparison of performance is made in Table 4.2 between our design

and some existing designs of [33], [32] and [24]. The comparison is made based on

the parameters like Throughput, Slice counts, Latency etc.
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Table 4.1: Comparison of the three different architectures implemented in FPGA.
S is the number of total number of pipelined stages in the architecture, F is the
clock frequency achieved by the design, T is the throughput of the design, N is
the number of slices consumed by the design, R is the Throughput to Area ratio.’.

Iterative Partial Mixed Full Mixed

Virtex II pro

S 24
F 102.637
T 821
N 2339
R 0.351

Virtex II pro

S 99
F 125.91
T 3021.8
N 8117
R 0.372

Virtex II pro

S 199
F 153.8
T 9843.2
N 11202
R 0.878

Table 4.2: Comparison of our proposed design with some existing designs

Design Device Throughput Slices Latency

Our design (V2)XC2VP30 9.61 Gbps 11202 199-795 cycles
Granado’s design (V2)XC2V6000 27.948 Gbps 15016 182-833 cycles
Gonzalez’s design (V2)XCV600 8.3 Gbps 6078 158-1205 cycles
Hamalainen’s design (V2)XCV2000E 6.8 Gbps 8640 132-1250 cycles

4.4 Conclusion

In this chapter, we have proposed a new design for implementing IDEA cipher in

hardware. We have incorporated a new design for modulo multiplication module

which generates less than n
2

partial products and at the same time the partial

products are generated by only circular lest shift of the multiplicand. Radix

8 Booth’s recoding algorithm is chosen as the recoding algorithm for reducing

the number of partial products and the operands are taken as diminished-one

representation which helps to perform the modular correction implicitly. This

multiplier is used in the IDEA algorithm and to increase the throughput, outer

round and inner pipelining approach is used. The performance of the cipher

using this design reveals that this design can be used for implementing IDEA on

FPGA for High performance cryptosystem. As super-pipelined approach is used,

this design can fully support Cipher Feedback(CFB) mode of operation with a

high performance for the cipher. Moreover, by replicating the number of such

FPGA devices, an overall design with a high throughput can be achieved. The
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consumption of power has not been considered in this design at present. In future,

the design may be extended to that with low power and high throughput.
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Chapter 5

FPGA based string matching for
Network Intrusion Detection
System

5.1 Introduction

The field of network security guarantees the prevention and monitoring of unautho-

rized access, misuse, modification as well as denial of network accessible resources.

The major goals of network security includes confidentiality, data integrity, au-

thentication and non repudiation. In the same context, intrusion detection is a

security management tool which monitors network traffic for detecting possible

security breaches. These security breaches attempt to compromise the confiden-

tiality, integrity or availability of network resources and can be either from out-

side or inside the network concerned. In traditional networks, firewalls are used

to monitor and filter incoming and outgoing packets but they cannot eliminate

all security threats, nor they can detect attacks when they happen. It is like a

locked gate to a treasure house that prevent the entry of thieves. Network Intru-

sion Detection System (NIDS) is another network processing application, which is

either a software application (example Snort) or a hardware device that monitors

network for malicious activities such as denial of service attacks, port scans etc.

This NIDS along with Network Intrusion Prevention System (NIPS) are essen-

tial network security appliances that helps in maintaining the security goals in a

network to a great extent. Intrusion Detection and Prevention Systems (IDPS)
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5.1 Introduction

are primarily focused on identifying possible incidents, logging information about

them, attempting to stop them, and reporting them to security administrators.

As the main work of such systems is to monitor network traffics for suspicious

activities or patterns, they can be regarded as a multiple pattern matching or

string matching module. String matching algorithm is thus one of the most criti-

cal module in such systems and the detection of intruders are performed based on

this module. At the higher level, there are management softwares which configure,

log and display alarms. A database for a number of malicious patterns is main-

tained at the back end.Whenever any packet containing such malicious patterns

is found during packet monitoring, the detector engine of NIDS raises an alert call

to the administrator for taking necessary action against the target packet.

Although the decisive factor for a NIDS is a multi pattern string matching algo-

rithm, it is a highly challenging task to implement. It is because the operation

of a typical NIDS involves deep packet inspection [34].Checking every byte of an

incoming packet in a network to see if it is matching with one of a set of thou-

sands of patterns becomes a computationally intensive task. Moreover if it is a

high speed network, packet inspection needs to be performed in line speed which is

more challenging. Software based approach is not efficient in terms of speed and

moreover parallelism cannot be exploited in case of multiple pattern matching.

So specialized hardware approaches are required to maintain match up with the

network speed and to maintain a tight bound on worst case performance.

In this chapter, a new architecture for a multiple string matching based NIDS, is

presented. The string matching module consists of a memory efficient multi hash-

ing data structure called Bloom filters, which can detect strings in streaming data

without degrading network throughput. Moreover new rules or patterns can be

added without interrupting the normal operations. The speciality of our design

is that, multiple patterns can be matched in a single clock cycles unlike tradi-

tional software based string matching algorithms. Furthermore the computation

time involved in performing the query is independent of the number of patterns

in the database. The following sections in this chapter describes the background
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and the basic ideas of NIDS which is followed by our proposed string matching

algorithm using Bloom filters. Two scenarios are further discussed on the con-

text of the length of the input packet and the multiple length patterns. Finally

the implementation details and analysis are discussed which is followed by the

conclusion.

5.2 Basic Idea and Related work

In this section, the basic idea and architecture for a typical Network Intrusion

Detection System is discussed followed by the previous implementations.

5.2.1 NIDS and Multiple pattern matching

As discussed before, a NIDS is simply a software application or a specialized

hardware which monitors the network packets for malicious activities. It maintains

a database of fixed or variable sized patterns which are searched against an input

data packet. A basic architecture for a NIDS is given in Figure 5.1. At the top

level, it works as an alarm in the network but at the core , it is computationally

challenging as it requires deep packet inspection and that too in network speed.

For a high speed network, deep packet inspection signifies that every byte of every

packet must be searched for multiple patterns. So in a nutshell, the operation is

nothing but a multiple pattern matching algorithm.

Figure 5.1: Basic Architecture for Signature based NIDS

Scanning or monitoring a packet in a network involves both header as well as

payload analysis of the packet. The overhead for the header analysis is much less
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than the payload analysis and the header size is fixed unlike the packet payload.

String Matching Engine: The Multi-Pattern matching problem:

One of the vital module for a Network based Intrusion detection System is a

marching engine whose task is to find the presence of multiple strings or patterns

in a given packet payload. In a multi-pattern matching problem, we are given

a set of strings S = { s1, s2, s3, ...., sn } and streaming data T (which is alter-

natively called text). The objective is to find out all the occurrences of any of

the strings in S in T. The strings in S are preprocessed to build a machine. The

preprocessing time is not taken into account while designing the engine. Basically,

string matching can be considered as a longest prefix matching (LPM) problem.

The problem states that is T[i,j] denotes the substring of T starting at location

i and ending at location j. If Sl be those set of strings in which each string is of

length l bytes, then any l byte string in T staring at location i, i.e. T[i..(i + l +

1)] can match with any of the strings in Sl. So for a given length l, we simply need

to look up all the strings in Sl. Now the matching policy is based on decreasing

order of the pattern length which means that if a pattern of length l is found in

the text, there is no need to search for patterns with length < l.

Related Software and Hardware approaches

Multi-pattern matching is one of the important classical problems in computer sci-

ence and it is mainly used in NIDS or any network processing applications. There

are many varieties of implementations of Network Intrusion detection Systems and

these implementations are either software based or hardware based. For every im-

plementation, the basic objective is to reduce the overhead of the string matching

module. Software based NIDS use software based string matching algorithms like

Rabin-Karp algorithm [35], Knuth-Morris-Pratt(KMP) [36] and Boyer-Moore al-

gorithm [37] which are basically single pattern matching algorithms. Rabin-Karp

algorithm uses hashing functions to find a string match whereas Knuth-Morris-

Pratt matches the string by comparing character by character. Boyer-Moore which

scans the characters form right to left, is usually faster than KMP. Besides these

algorithm, another efficient algorithm is Aho-Corasick algorithm [38] which is used
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by current version of SNORT. But for high speed network processing applications,

some hardware based designs are proposed and they are highly preferred over soft-

ware based applications. One such approach is use of Finite Automata methods

as used in [39]. In such approaches, the signatures or matching patterns are repre-

sented using regular expressions and finally they are converted into efficient FPGA

based circuit. the main disadvantage in these approaches is that, for a change in

the pattern set, the regular expression needs to be recalculated again which is

highly complicated. Sourdis [40] proposed a string matching module which was

based on pre-coded CAM.. Later Singaraju [41] extended Sourdis’s design [40] for

fast character matching and achieved a fairly high throughput and resource uti-

lization. Later Dharmapurikar [1] proposed a fast and scalable pattern matching

scheme which we have used as the basics of our overall design.

5.3 Proposed Design

In general, an efficient string matching algorithm can be abstracted as a Longest

String matching problem [42], which states that in any packet, the strings must

be searched in the decreasing order of their length. That means if a pattern of

size L is found in a packet at some time instant, then there is no need to search

for any other string of size less than L (provided that there is no match found

for strings greater than L). Previously, intrusion detections systems were imple-

mented in hardware with various architectures but not all of them were memory

efficient. In this section, our proposed architecture for the multi-pattern string

matching module is described in details. The algorithm is based on a memory

efficient multi hash data structure named Bloom Filter [43] [44] [45]. The spe-

ciality of this data structure is that, the computation time involved in performing

the query is independent of the number of strings in the database. Moreover a

malicious packet cannot escape a bloom filter in any way but sometimes a normal

packet can be treated as a malicious packet. Such false positives can be removed

by introducing some extra modules. In our work, we have designed a parallel hash

module for removing such false positives. The basic idea and design of a bloom
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filter is described in subsequent section.

5.3.1 Bloom Filter basics and overview

A bloom filter is a randomized data structure that can represent a set of strings for

efficient membership querying. It generally works in two phases. The basic idea is

that, given a string S, k hash functions are computed on it, producing k different

hash values within range 1 to m. The filter now sets k bits in a m bit long vector at

the addresses corresponding to the k hash values. This vector is called as Bloom

vector. After this operation, S is made the member of the filter. This procedure

is repeated for all the members and this phase is called programming phase of the

filter. The next phase for verifying the membership of a string is called the query

phase. In this phase, the string under verification is taken as input, and k hash

values are generated using the same hash functions of the programming phase.

These k values are looked up in the same m bit vector and if any one of these

locations is not found set, then that packet is declared as the non member of the

set. If all the corresponding bit in those locations are found to be set then the

string is said to belong to the set with some probability. Thus there is no chance

for presence of false negatives in the output but sometimes false positives may be

present. So for these reason, there is a need for a separate analyzer to eliminate

those false positives. Figure 5.2 shows a basic architecture of a bloom filter with

an analyzer. Thus we can write like this:

• Programming Phase:

Xi = Hi(S) where 0 ≤ Hi(a) ≤ (m − 1) , X is a set where the hash values

are calculated and stored, S is the string to be programmed as a member,

m is the size of the Bloom Vector, 0 ≤ i < k , the value of k depends on the

programmer.

• Querying Phase:

Yi = Hi(S) where 0 ≤ Hi(a) ≤ (m − 1) ,Y is the set where the calculated

hash values of the string under verification is stored, S is the string under
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verification, m is the size of the Bloom Vector, 0 ≤ i < k , the value of k

depends on the programmer. If set Y is found to be equal to X then the

string S is said to belong to the set with some probability otherwise S is

declared as a non member of the set of strings in the filter.

The performance of a bloom filter is given by the following parameters:

• The number of strings to be stored (n).

• The number of associated hash functions for each pattern, denoted by k.

• The size of the Bloom Vector (m).

The probability that a string under test is selected as false positive is given as (1
2
)k

and the value of m is taken much greater than k.

Now as inputs to a bloom filter are nothing but packet payloads, their size may

Figure 5.2: A Typical Bloom Filter with an Analyzer

be fixed or variable. Moreover, there may be presence of variable sized multiple

patterns on a packet. Now based on the size of the matching patterns, two types

of situations may arise. These are discussed below.

5.3.2 Scenario 1: With fixed sized matching patterns:

This situation arises when we know the size and nature of the intrusions be-

forehand. The string matching module works like a fixed size multiple pattern
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matching module. Whenever any packet arises as input, it is scanned for finding

any fixed sized patterns within it. The overhead of the matcher is much low as

the there is no need to search for patterns with larger or smaller size than the

given one. The throughput of the matcher can be increased by replicating the

bloom filters, each accepting a fixed sized string as input. The equivalent archi-

tecture foe the string matching module is given in Figure 5.3. In the figure, B1,

B2 etc are Bloom engines which takes equal sized strings as inputs and work in

parallel. Using this architecture, more than one string can be matched in a single

clock cycle. For an input packet with a very large payload, a sliding window can

be maintained which slides over each and every byte of the string in every clock

cycle. For this case, scanning the entire packet may takes more than one clock

cycle.

Figure 5.3: Parallel Bloom Filter Matching a fixed sized pattern [1].

5.3.3 Scenario 2: With variable sized matching patterns:

This situation is much more practical because in this case the size of the match-

ing patterns within the packet is not known beforehand. When a packet arrives

as an input to the filter, it searches for the patterns of all sizes for which it is

programmed. For example, a filter may be programmed with 100 patterns out

of which 30 patterns are of size 12 bits, 20 patterns of size 18 bits and the rest

of sizes within 10 bits to 6 bits. So in this case, the filter needs to search for all
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6,7,8,9,10,12 and 18 bit length patterns in any input string. In this case, it is

more efficient to use multiple bloom filters each of which detects a string of unique

length, as shown in Figure 5.4. In this case also, more than one string can be

matched in a single clock cycle, but here the overhead for the matcher is more as

it need for consider all possible lengths of presence of patterns.

Figure 5.4: A series of Bloom Filters matching variable sized patterns at a time [1].

5.4 Implementation

In this section, we have described our proposed architecture for the multi pattern

string matching module for a network based intrusion detection system. Pattern

matching for detecting malicious packets involves pattern matching in header as

well as the payload of the packet.As the operation is based on deep packet inspec-

tion and as the payload scanning is more critical than the header scanning, we only

stick to the operation of payload checking. Our assumption is made beforehand

that the header has already been scanned for suspicious patterns and the result

is negative. We have used Bloom Filter for efficient pattern matching and used a

set of rules as sample patterns to match in an input string.
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5.4.1 Implementation Constraints

In this work , at first, we have implemented a single bloom filter design for string

matching. The design is coded with VHDL and is synthesized using Xilinx-ISE

simulator and ChipScope Pro targeting Virtex II pro device. The proposed archi-

tecture consists of three modules(shown in Figure 5.6), a partial bloom filter, a

hash generator and a module decoder. The algorithm is based on certain assump-

tions which are:

• The length of the input string is assumed to be fixed(taken as 100 bits in

our design).

• The length of the matching patterns is assumed to be fixed(taken as 80 bits

in out design).

• The design of the bloom filter is replicated so as to increase the throughput

by comparing multiple strings in a single clock cycle. This means a sliding

window is chosen and a series of multiple Bloom Filter engines are taken in

a cascading orientation, which are capable of matching a fixed size string.

As the size of input string is greater than that of the sliding window, a single

byte of the string leaves the window from one side and another new byte enters the

window from the other side in every clock cycle. So if the size of the sliding window

is increased, the latency of the module reduces gradually. In our implementation,

10 matching patterns of a fixed length(80) are used to program the filter.

5.4.2 Partial and Large Bloom Filter

We have followed the design of [2], which is nothing but the model of a machine

problem. To exploit parallelism and flexibility inside the architecture of Bloom

Filter as in [46], our main bloom filter architecture is made of small sized modules

called Partial Bloom Filter as shown in Figure 5.5. Each of such PBF is capable

of comparing 2 hash values generated by the hash functions. The speciality of a

partial bloom filter is that apart from the comparison operation, it can modify the

bits of the Bloom Vector by means of bit data and bit addr , with set bit as
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the control signal. H1 and H2 are the two hash addresses to look up. The control

signal set bit is used to check whether the value on bit addr and bit data is

valid or not. The whole design is driven by clock and reset control signals as shown

in Figure 5.6. Based on the comparison, the output line partial bloom match

gives ’1’ or ’0’. The operation of the PBF is given below.

Figure 5.5: Partial Bloom Filter accepting 2 Hash Functions [2]

• Reset Operation: When the reset line is high, the Bloom vector is cleared

to all ’0’. This makes Bloom ready output as ’1’.

• Configuration: When the bit data and bit addr values are found valid,

set bit becomes ’1’ and user can update the bits on the Bloom Vector.

• Querying/Matching: On each clock cycle, two hash values arrive through

H1 and H2 inputs. If the bits located at those values are found ’1’, then

Partial Bloom Match outputs ’1’.

The large bloom filter is just a collection of partial bloom filter , with a hash

generator and a decoder. It has two extra signals along with the common inputs

of a PBF which are, valid request and BRAM number. When the values of BRAM
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Figure 5.6: Large Bloom Filter using a series of PBFs [2]

number,bit data and bit addr are valid, it makes valid request as ’1’. The BRAM

number is decoded by the decoder to select one of the PBFs for the operation.

In our design, the Hash Function generator computes 10 hash values for an input

string and two hash values are fed to each PBF. So a total of 5 PBFs are used as

shown in Figure 5.6.

5.4.3 Hash Function

For hardware implementations, there are a separate class of universal hash func-

tions which is proposed in Ramakrishna et.al. [47]. We have used these class of

hash functions which are based on random values and Ex-OR operations. In our

implementation, we have used 10 different hash functions for each string. By using

10 hash functions, the false positive probability becomes f = (1
2
)10 = 0.001. The

itℎ is defined as:

Hi(S) = di1.s1 ⊕ di2.s2 ⊕ di3.s3 ⊕ ....⊕ dib.sb

where

S = {s1, s2, ...., sb}
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and the set {di1, di2, di3, ..., dib} is a set of random numbers. In our implementation,

this set is taken as a set of random 12 bit values. A table of 1D×1D×1D where the

corresponding dimensions are blocks, rows and columns respectively. Each block

calculates a separate hash value from the input string. Each row corresponds to

one byte of the input string and each column corresponds to a single bit of the

input string. The input string is of 80 bit length (10 bytes) and so the dimension

of the table is chosen as 10× 10× 8. For every byte of the string, the values are

calculated in same way as given in [47] ( AND and Ex-OR).

5.4.4 Results and Comparison

As mentioned earlier, we have designed the bloom filter using a hash function

generator and a series of Partial Bloom Filters (PBF) working in parallel. The

input string length is kept fixed for the simulation (80 bits) and it is sub grouped

into 10 bytes. Using the 1D × 1D × 1D table of random numbers, 10 different

hash values are generated. The target device is chosen as Virtex II pro XC2VP30

FPGA. The design is coded using VHDL and synthesized using Xilinx ISE. Finally

the design is realized in the target FPGA. The synthesis report and the timing

summary for the Hash Generator module is shown in Figure 5.7 and Figure 5.8.

Figure 5.7: Test-bench for the Hash Function Generator

After designing the Hash generator and the equivalent circuit for the Partial Bloom

Filter, the Large Bloom Filter (LBF) is designed. From the input string, the Hash

Generator generates 10 different Hash Values within the range 0 to 212 − 1. Each

PBF takes 2 of these hash values as input and checks the main Bloom Vector if

those positions are set or not. If they are found to be set, the partial bloom match

signal goes high. Finally, if all the partial bloom match signals for the partial
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Figure 5.8: Timing Summary for Hash Generator Module

bloom filters are found to be set, then the bllom match signal goes high. If any

one of the partial bloom filter generates a low value for partial bloom match, the

bloom match goes low. The matching waveform for the large bloom filter and its

timing summary is given shown in Figure 5.9 and 5.10.

Figure 5.9: Waveform for the overall design for Bloom Filter. Diagram shows the
waveform when the supplied Hash values exactly matches with the hash values of
the member string, the match signal becomes high

After designing the bloom filter, a scenario is designed where the window size is

taken as 80 bit and it is assumed that the size of matching patterns are fixed. The

filter is programmed with 10 different patterns and for this design, the throughput
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Figure 5.10: Timing Summary for the Bloom Filter

if found to be fairly high. From the timing summary of the main filter, the

maximum clock frequency is found to be 103.82 MHz and for an input stream of

size 80 bits, the throughput is calculated as

T = 80× 103.82

which is equal to 8.11 Gbps. We have compared the performance of our design

with two efficient and existing schemes, Singaraju [41] and Sourdis [40], given in

Table 5.1.

Table 5.1: Comparison of our proposed design with some existing designs

Design Device Throughput Slices Input size

Our design Virtex 2 pro XC2VP30 8.11 Gbps 13125 80 bits
Singaraju’s design Virtex 2 pro XC2V6000 6.41 Gbps 15016 1021 bits
Sourdis’s design Virtex2 1000 12.672 Gbps 18728 32 bits

5.5 Conclusion

In this chapter, we have described a novel technique for multiple pattern string

matching algorithm which can be used in a Network Intrusion Detection System.

The design is made using a memory efficient multi hashing data structure named

Bloom Filter. The speciality of this filter is that, it only allows false positives along

with correct matches bit it never allows false negatives. The design is coded using

VHDL and synthesized using Xilinx ISE and targeted for Virtex II pro - XC2VP30

FPGA. The maximum operating frequency and the estimated throughput of the

design verifies that it can be used as an effective module in a high speed network
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to in line speed. In our work, we have not used the internal Block RAMs of the

targeting FPGA. In future, we can extend our design considering this fact.
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Chapter 6

Conclusion and Future Work

In this thesis work, we have discussed about the functionality of network com-

ponents when implemented in hardware. It is a traditional practice to build any

hardware using application specific integrated circuit (ASIC) technology but an-

other issue for such implementation is reconfigurability. So FPGA is the ultimate

choice for such practice and out work is just gives the support to this argument. In

this thesis, we have proposed some novel pipelined architectures for those compu-

tationally intensive modules for network processing applications and they achieved

a substantial high throughput. We have chosen a symmetric key block cipher algo-

rithm (IDEA) and a Network Intrusion Detection System architecture for verifying

their functionality in FPGA.

However, there has been few constraints associated with our work which we want

to sort out in future. Firstly, our work has been realized in Virtex II pro FPGA.

In future, we want to verify our design in other High Speed FPGAs. Moreover, we

have not used the internal Block RAMs of the FPGA. In future, we may extend

our work by using Xilinx Core generator which may reduce the synthesis time.

Finally, while designing the Network Intrusion Detection System architecture, we

have used certain hash functions for hashing but we have not included a random

number generator module for generating the random bits during hashing. In fu-

ture we will include a new random number generator module in our design. This

thesis gives a clear statement that FPGAs are a good candidate for efficient im-

plementation of network processing applications. We hope that there will be some

more proposals and implementations of some other algorithms in the near future.
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Using partial reconfiguration in cryptographic applications: An implementa-

tion of the idea algorithm. In FPL, pages 194–203, 2003.

59



Bibliography

[25] M. Thaduri, S.-M. Yoo, and R. Gaede. An efficient vlsi implementation of

idea encryption algorithm using vhdl. Microprocessors and Microsystems,

29(1):1–7, 2005.

[26] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and

source code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[27] L. Leibowitz. A simplified binary arithmetic for the fermat number transform.

Acoustics, Speech and Signal Processing, IEEE Transactions on, 24(5):356–

359, oct. 1976.

[28] J.W. Chen and R.H. Yao. Efficient modulo (2n+1) multipliers for diminished-

1 representation. Circuits, Devices Systems, IET, 4(4):291–300, jul. 2010.

[29] A. Tyagi. A reduced area scheme for carry-select adders. In Computer De-

sign: VLSI in Computers and Processors, 1990. ICCD ’90. Proceedings., 1990

IEEE International Conference on, pages 255–258, sep 1990.
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