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ABSTRACT 

 

 

Forward Error Correction technique depending on the properties of the system or on 

the application in which the error correcting is to be introduced. Error control coding 

techniques are based on the addition of redundancy to the information message according to a 

prescribed rule thereby providing data a higher bit rate. This redundancy is exploited by 

decoder at the receiver end to decide which message bit actually transmitted.   Reed-Solomon 

codes are an important sub – class of non binary Bose-Chaudhuri-Hocquenghem (BCH) 

codes.  

In digital communication, Reed-Solomon (RS) codes refer to as a part of channel 

coding that had becoming very significant to better withstand the effects of various channel 

impairments such as noise, interference and fading. This signal processing technique is 

designed to improve communication performance and can be deliberate as medium for 

accomplishing desirable system trade-offs. 

Galois field arithmetic is used for encoding and decoding of Reed – Solomon codes. 

Galois field multipliers are used for encoding the information block. The encoder attaches 

parity symbols to the data using a predetermined algorithm before transmission. At the 

decoder, the syndrome of the received codeword is calculated. VHDL implementation creates 

a flexible, fast method and high degree of parallelism for implementing the Reed – Solomon 

codes.  

The purpose of this thesis is to evaluate the performance of RS coding system using 

M-ary modulation over Additive White Gaussian Noise AWGN channel and implementation 

of RS encoder in VHDL. Computer simulation tool and MATLAB will be used to create and 

run extensively the entire simulation model for performance evaluation and VHDL is used to 

implemented the design of RS encoder.  

. 

 

 



v 
 

TABLE OF CONTENTS 

  TITLE          PAGE NO.                                              

 
DECLARATION           i 

ACKNOWLEDGEMENT         ii 

ABSTRACT            iv 

LIST OF FIGURES          vii 

LIST OF TABLES          viii 

 

CHAPTER 1:  INTRODUCTION        1 

1.1 Error Detection & Correction Schemes    1 

1.1.1 Error Detection Scheme      3 

1.1.2 Error Correction       4 

1.2  Objective of the Thesis      5 

1.3 Organization of Thesis      6       

CHAPTER 2:  REED-SOLOMON CODE       7 

2.1 History          7 

2.2 Reed-Solomon Theory      7 

2.2.1 Properties of RS Code      9 

2.3 RS Code Performance       9 

2.4 Application        10 

2.5 Generator Polynomial for a RS Code     10 

2.6 RS Error Probability       11 

CHAPTER 3:  GALOIS FIELD        13 

3.1 Galois Field        13 

3.1.1 Properties of Galois Field     14 

3.2 Finite Fields        14 

3.3 Construction of Galois Fields      16 

 

 



vi 
 

CHAPTER 4:  RS ENCODER & DECODER      18 

4.1 RS Encoder        18 

4.1.1 Forming Codeword       18 

4.1.2 Operation       19 

4.2 RS Decoder        21 

4.2.1 Syndrome Calculation      22 

4.2.2 Determination of Error-Locator Polynomial   22 

4.2.3 Solving the Error Locator Polynomial- CHIEN Search  27 

4.2.4 Error value Computation-Forney Algorithm   27 

CHAPTER 5:  VHSIC HARDWARE DESCRIPTION LANGUAGE   29 

5.1 History of VHDL       30 

5.2 Capabilities        31 

5.3 Design Units        32 

5.4 Levels of Abstraction       32 

5.4.1 Behavior        32 

5.4.2 Dataflow        33 

5.4.3 Structure        33 

5.5 Objects         34 

5.5.1 Signals        34 

5.5.2 Variables       34 

 

CHAPTER 6:  SIMULATION RESULTS OF RS CODESIN MATLAB & VHDL 35 

6.1 Implementation of RS Code in MATLAB    35 

6.1.1 RS Codes with Noise      35  

6.1.2 Error Performance of RS Coding over AWGN Channel 38 

6.2 Implementation of RS Code in Simulink    40 

6.3 Implementation of RS Code in VHDL    41 

 

CHAPTER 7:  CONCLUSIONS AND FUTURE WORK    45 

REFERENCES:          46 

 



vii 
 

LIST OF FIGURES 

PAGE NO. 

 

Figure 1.1:   Forward Error Correction Concept      1 

Figure 1.2:   Overall Classification of Error Detection & Correction Scheme  2 

Figure 2.1:   Structure of a RS codeword       8 

Figure 2.2:   Reed-Solomon Data Transfer Channel      8 

Figure 2.3:   BER vs Eb/No performance of 32-ary FSK     12 

Figure 4.1:   Block diagram of RS Encoder       20 

Figure 4.2:   General Architecture of RS Decoder      21 

Figure 4.3:   Syndrome calculator Architecture      22 

Figure 4.4:   Berlekamp-Massey Algorithm       25 

Figure 4.5:   Euclid’s Algorithm        26 

Figure 6.1:   Block diagram of RS codes with noise      35 

Figure 6.2:   Input data points        36 

Figure 6.3:   Encoder data         37 

Figure 6.4:   Transmitted data        37 

Figure 6.5:   Decoded data         38 

Figure 6.6:   Block diagram of communication system using RS code   38 

Figure 6.7:   BER vs SNR for MFSK       39 

Figure 6.8:   BER vs SNR for MFSK with RS coding     39 

Figure 6.9:   BER vs SNR         39 

Figure 6.10: BER vs SNR         40 

Figure 6.11: Simulation model for RS coding system     40 

Figure 6.12: Simulation result of simulink model      41 

Figure 6.13: Architecture of Encoder        42 

Figure 6.14: RTL Schematic of RS Encoder       42 

Figure 6.15: Test bench snapshot of RS Encoder      43 

 

 

 

 

 



viii 
 

LIST OF TABLES 

PAGE NO. 

 

Table 3.1:  Galois Field GF(8)        13 

Table 3.2:  Representation of some elements in GF(2
8
)     17 

Table 6.1:  Represents the Device utilization in FPGA in RS encoder                                 43 

 

 

 

 

 



1 
 

CHAPTER- 1 

INTRODUCTION 

 

Digital communication system is used to transport an information bearing signal from 

the source to a user destination via a communication channel. A code is the set of all the 

encoded words, the code word that an encoder can produce. When actual set of data encoded 

it becomes a code. 

 Reed-Solomon error correcting codes (RS codes) are widely used in communication 

systems and data storages to recover data from possible errors that occur during transmission 

and from disc error respectively. One typical application of the RS codes is the Forward Error 

Correction (FEC), the scheme is presented  in Figure 1.1. 

 

Figure 1.1: Forward Error Correction concept 

Before data transmission, the encoder attaches parity symbols to the data using a 

predetermined algorithm before transmission. At the receiving side, the decoder detects and 

corrects a limited predetermined number of errors occurred during transmission. Transmitting 

the extra parity symbols requires extra bandwidth compared to transmitting the pure data. 

However, transmitting additional symbols introduced by FEC is better than retransmitting the 

whole package when at least an error has been detected by the receiver [1] [2]. 

1.1 Error Detection & Correction Schemes 

Error detection and correction or error controls are techniques that enable reliable 

delivery of digital data over unreliable communication channel [3]. Many communication 

channels are subject to channel noise, and thus errors may be introduced during transmission 

from the source to a receiver. Error detection techniques allow detecting such errors, while 

error correction enables reconstruction of the original data. The overall classification of error 

detection & correction schemes is shown in figure 1.2. 
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Figure 1.2: Overall classification of error detection & correction schemes [1] 

Different errors correcting codes can be used depending on the properties of the system 

and the application in which the error correcting is to be introduced. Generally error – 

correcting codes have been classified into block codes and convolutional codes. The 

distinguishing feature for the classification is the presence or absence of memory in the 

encoders for the two codes.  

To generate a block code, the incoming information stream is divided into blocks and 

each block is processed individually by adding redundancy in accordance with a prescribed 

algorithm. The decoder processes each block individually and corrects errors by exploiting 

redundancy. 

In a convolutional code, the encoding operation may be viewed as the discrete–time 

convolution of the input sequence with the impulse response of the encoder. The duration of 

the impulse response equals the memory of the encoder. Accordingly, the encoder for a 

convolutional code operates on the incoming message sequence, using a ―sliding window‖ 

equal in duration to its own memory. Hence in a convolutional code, unlike a block code 



3 
 

where code words are produced on a block─ by ─ block basis, the channel encoder accepts 

message bits as continuous sequence and thereby generates a continuous sequence of encoded 

bits at a higher rate [4].  

An error-correcting code (ECC) or forward error correction (FEC) code is a system of 

adding redundant data, or parity data, to a message, such that it can be recovered by a 

receiver even when a number of errors (up to the capability of the code being used) were 

introduced, either during the process of transmission, or on storage. Since the receiver does 

not have to ask the sender for retransmission of the data, a back-channel is not required in 

forward error correction, and it is therefore suitable for simplex communication such as 

broadcasting. Error-correcting codes are frequently used in lower-layer communication, as 

well as for reliable storage in media such as CDs, DVDs, hard disks, and RAM. 

1.1.1 Error Detection Scheme 

There are various error detection schemes used in communication system. Some of the 

schemes discuss below [3] [4]: 

 Parity scheme ─ In parity scheme all the data sets are assigned a particular parity i.e. 

either even or odd. In the receiver parity of received data is checked. If it does not 

satisfy the assigned parity, it is found to be in error. It is effective only for odd 

number of errors. It cannot detect even number of errors as even number of errors will 

leave the parity unchanged. 

 Checksum Scheme ─In this scheme a checksum is calculated in the transmitter and                     

sent with the actual data. In receiver checksum is calculated and compared with the 

received checksum. A mismatch is an indication of error. If data and checksum both 

are received with error then the detection may not be possible. 

 . Cyclic Redundancy Check scheme ─ In this scheme the message is interpreted as 

polynomial and is divided by a generator polynomial. Then the reminder of the 

division is added to the actual message polynomial to form a code polynomial. This 

code polynomial is always divisible by the generator polynomial. This property is 

checked by the receiver. If failed to satisfy this property the received codeword is in 

error. It is complex but efficient error detection scheme. 
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 Hamming distance Based Check scheme ─ This scheme is basically parity based 

scheme but here parity of different combination of bits are checked for parity. It can 

detect double errors and can correct single errors. 

 Polarity scheme ─ In this scheme the actual message along with its inversion format. 

In receiver it is checked whether two sets are inverse of each other. If not it is an 

indication of error. It is not as popular as the code occupies double the bandwidth for 

the actual message. Moreover if corresponding bits in the data and is inverse are in 

error then it will not be able to detect the error .  

 

1.1.2 Error Correction 

Error correction may generally be realized in two different ways [3] [4] [5]:  

Automatic repeat request (ARQ) (sometimes also referred to as backward error correction): 

This is an error control technique whereby an error detection scheme is combined with 

requests for retransmission of erroneous data. Every block of data received is checked using 

the error detection code used, and if the check fails, retransmission of the data is requested – 

this may be done repeatedly, until the data can be verified. Usually, when the transmitter does 

not receive the acknowledgment before the timeout occurs (i.e., within a reasonable amount 

of time after sending the data frame), it retransmits the frame until it is either correctly 

received or the error persists beyond a predetermined number of retransmissions. Three types 

of ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ, and Selective Repeat 

ARQ.ARQ is appropriate if the communication channel has varying or unknown capacity, 

such as is the case on the Internet. However, ARQ requires the availability of a back channel, 

results in possibly increased latency due to retransmissions, and requires the maintenance of 

buffers and timers for retransmissions, which in the case of network congestion can put a 

strain on the server and overall network capacity. 

Forward error correction (FEC): The sender encodes the data using an error-correcting 

code (ECC) prior to transmission. The additional information (redundancy) added by the 

code is used by the receiver to recover the original data. In general, the reconstructed data is 

what is deemed the "most likely" original data [3]. There are several ways of classifying the 

forward error correction codes as per different characteristics. 
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 Linear Vs Non linear─ linear codes are those in which the sum of any two valid code 

words is also a valid codeword. In case of non linear code the above statement is not 

always true. 

 Cyclic Vs Non-Cyclic ─ Cyclic codeword are those in which shifting of any valid 

code word is also a valid codeword. In case of non-circular codeword the above 

statement is not always true. 

 Systematic Vs Non systematic─ Systematic codes are those in which the actual 

information appears unaltered in the encoded data and redundant bits are added for 

detection and correction of error. In non systematic code the actual message does not 

appear in its original form in the code rather there exists one mapping method from 

the data word to code word and vice versa. 

 Block Vs convolutional ─The block codes are those in which one block of message is 

transformed into on block of code. In this case no memory is required. In case of 

convolutional code a sequence of message is converted into a sequence of code. 

Hence encoder requires memory as present code is combination of present and past 

message. 

 Binary Vs Non binary ─Binary codes are those in which error detection and 

correction is done on binary information i.e. on bits. Hence after the error is located, 

correction means only flipping the bit found in error. In Non binary code error 

detection and corrections are done on symbols, symbols may be binary though. 

Hence both the error location and magnitude is required to correct the symbol in 

error. 

1.2 Objective of the Thesis 

        The objectives of the thesis are: 

 To analyze the important characteristics of RS coding techniques that could be used 

for error control in a communication system for reliable transmission of digital 

information over the channel. 

 To study the Galois Field Arithmetic on which the most important and powerful ideas 

of coding theory are based. 

 To study the Reed – Solomon codes and the various methods used for encoding and 

decoding of the codes to achieve efficient detection and correction of the errors. 

 Implementation of the Reed – Solomon codes in MATLab & RS encoder in VHDL. 
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1.3 Organization of Thesis 

This thesis, conceptualized the basic fundamentals of Error Detection & Correction 

schemes and implementation of RS coding technique.  

 In chapter-1, different type of Error Detection & Correction schemes, and Classification 

of Forward Error Correction codes  has been discussed. 

 In chapter-2, history of Reed-Solomon code . What is the theory, its performance, its 

application; generator polynomial for this code, Reed-Solomon error probability has 

been discussed. 

 In chapter-3, Described about Galois field, its algebraic operation, properties, 

construction of Galois field. 

 In chapter-4, Described about RS encoder, its work and Formation of code word. What 

is decoder, steps and algorithm of decoding. 

 In chapter-5, here history of VHDL, capabilities, entity, level of abstraction in vhdl has 

been discussed. 

 In chapter-6, gives the simulation results in MATLab, Simulink and VHDL 

implementation of encoder and conclusion. 
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CHAPTER- 2 

REED-SOLOMON CODE 

 

Reed Solomon code is a linear cyclic systematic non-binary block code. In the 

encoder Redundant symbols are generated using a generator polynomial and appended to the 

message symbols. In decoder error location and magnitude are calculated using the same 

generator polynomial. Then the correction is applied on the received code. 

 

2.1  History 

On January 21, 1959, Irving Reed and Gus Solomon submitted a paper to the Journal 

of Society for Industrial and Applied Mathematics. In June of 1960 the paper was published:  

―Polynomial Code over Certain Finite Fields‖. This paper described a new class of error–

correcting codes that are now called Reed-Solomon codes. Reed-Solomon codes have 

enjoyed counterless applications, from compact disc players in living rooms all over the 

planet to spacecraft that are now well beyond the orbit of Pluto. Reed-Solomon codes have 

been an integral part of the telecommunications revolution in the last half of the twentieth 

century. The first application, in 1982, of RS codes in mass-produced products was the 

compact disc, where two interleaved RS codes are used. The key idea behind a Reed-

Solomon code is that the data encoded is first visualized as a polynomial. The code relies on a 

theorem from algebra that states that any k distinct points uniquely determine a polynomial of 

degree, at most, k - 1. The sender determines a degree k -1 polynomial, over a finite field that 

represents the k data points. The polynomial is then encoded by its evaluation at various 

points, and these values are what is actually sent. During transmission, some of these values 

may become corrupted. Therefore, more than k points are actually sent. As long as sufficient 

values are received correctly, the receiver can deduce what the original polynomial was, and 

hence decode the original data. In the same sense that one can correct a curve by interpolating 

past a gap, a Reed Solomon code can bridge a series of errors in a block of data to recover the 

coefficients of the polynomial that drew the original curve [6][7]. 

2.2   Reed-Solomon Theory 

A Reed-Solomon code is a block code and can be specified as RS (n,k) as shown in  

Figure 2.1. The variable ‗n‘ is the size of the codeword with the unit of symbols, ‗k‘ is the 
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number of data symbols and 2t is the number of parity symbols. Each symbol contains ‗m‘ 

number of bits.  

       

 

 

Figure 2.1: Structure of a RS codeword 

RS codes are generally represented as an RS (n, k), with m-bit symbols, where 

Block Length :                                        n 

No. of Original Message symbols:             k 

Number of Parity Digits:                          n - k = 2t 

Minimum Distance:                                 d = 2t + 1. 

 

The relationship between the symbol size, m, and the size of the codeword n, is given by  

       

 A Reed Solomon protected communication or data transfer channel is shown in Figure 2.2. 

 

 

 

Figure 2.2: Reed-Solomon data transfer channel 

 

DATA PARITY 

 n 

     k   2t 



9 
 

The RS encoder provided at the transmitter end encodes the input message into a 

codeword and transmits the same through the channel. Noise and other disturbances in the 

channel may disrupt and corrupt the codeword. This corrupted codeword arrives at the 

receiver end (decoder), where it gets checked and corrected message is passed on to the 

receiver. In case the channel induced error is greater than the error correcting capability of the 

decoder a decode failure can occur. Decoding failures are said to have occurred if a codeword 

is passed unchanged, a decoding failure, on the other hand will lead to a wrong message 

being given at the output [1].  

2.2.1 Properties of Reed-Solomon Code 

The topic of error correcting code is extensive and most texts treat all codes equally whether 

they are easily implemented or not. Reed-Solomon code  have certain properties which make 

them useful in the real world. 

 RS codes are systematic linear block code. It‘s a block code because the code is put 

together by splitting the original message in to a fixed length blocks. Each block is 

further sub divided into m-bit symbols. Each symbol is fixed width, usually 3 to 8 bits 

wide. 

 The linear nature of codes ensures that in practice every possible m-bit word is a valid 

symbol. For instant with an 8-bit code all possible 8-bit words are valid for encoding,  

 Systematic means that the encoded data consists of original data with the extra parity 

symbol appended to it. 

The power of Reed-Solomon codes lies in being able to just as easily correct a corrupted 

symbol with a single bit error as it can a symbol with all its bits in error. This makes RS 

codes particularly suitable for correcting burst errors [8]. 

2.3  RS Code Performance 

In error correction code for channel coding, the most common measure of performance is 

the estimated probability of its decoder or transmission error. Since RS codes is a block codes 

family that act on symbols level, its performance can be evaluated from different perspective 

or functionality. As a function of size, if the block size increase, the error correcting codes 

will be become more efficient or improve error performance. This is because, for a code to 
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successfully combat the effects or noise or channel impairments, the noise duration itself has 

to be relatively small percentage of the whole codeword. For this to happen most of the time, 

the received noise should be averaged out over a long period of time that will apparently 

reduce the effect of the noise.  

As a function of redundancy, as RS codes redundancy increases meaning at low code 

rate, their implementations will grows in complexity and the bandwidth expansion must also 

grow for any real time communication application. On the other hand, the profit of increased 

in redundancy is just as the same when the size increase. That is the improvement in bit error 

performance.  

Lastly, as the function of code rate, as low code rate, the system will experienced 

error performance degradation because the noise effect is very high. This is because the 

information or message carries in the transmission is relatively small when compared to the 

codeword that being transmitted even when only few error occurred. But on the other hand, at 

optimum code rate where it approaches unity (as if there is no coding at all) the system will 

suffer worse error performance since the error occurred couldn‘t be corrected or the corrected 

capability is very limited for it to overcome the noise [9]. 

2.4   Application 

      Reed Solomon codes are error correcting codes that have found wide ranging applications 

throughout the fields of digital communication and storage. Some of which include [10]:  

 Storage Devices (hard disks, compact disks, DVD, barcodes) 

 Wireless Communication (mobile phones, microwave links) 

 Digital Television 

 Broadband Modems (ADSL, xDSL, etc). 

 Deep Space and Satellite Communications Networks (CCSDS). 

 

2.5   Generator Polynomial for a Reed-Solomon Code 

A Reed Solomon code is a special case of a BCH code in which the length of the code is 

one less than the size of the field over which the symbols are defined. It consists of sequences 

of length (q – 1) whose roots include 2t consecutive powers of the primitive element of 

GF(q). Alternatively, the Fourier transform over GF(q) will contain 2t consecutive zeros. 
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Note that because both the roots and the symbols are specified in GF(q), the generator 

polynomial will have only the specified roots; there will be no Conjugates. Similarly the 

Fourier transform of the generator sequence will be zero in only the specified 2t consecutive 

positions. 

A consequence of there being only 2t roots of the generator polynomial is that there are 

only 2t parity checks. This is the lowest possible value for any t-error correcting code and is 

known as the Singleton bound. To construct the generator for a Reed Solomon code, we need 

only to construct the appropriate finite field and choose the roots. Suppose we decide that the 

roots will be from α
i 
to α

i+2t-1
, the generator polynomial will be, 

                                           

In contrast to the case with binary BCH codes, the choice of value of i will not affect the 

dimension or the minimum distance of the code because there are no conjugates to consider 

[11]. 

2.6  Reed-Solomon Error Probability 

The Reed-Solomon (R-S) codes are particularly useful for burst-error correction; that is, 

they are effective for channels that have memory. Also, they can be used efficiently on 

channels where the set of input symbols is large. An interesting feature of the R-S code is that 

as many as two information symbols can be added to an R-S code of length n without 

reducing its minimum distance. This extended R-S code has length n+2and the same number 

of parity check symbols as the original code. The R-S decoded symbol-error probability, PE, 

in terms of the channel symbol-error probability, p, can be written as follows [12] [13]: 

    
 

    
   

    
 

 

    

     

        
      

Where, t is the symbol-error correcting capability of the code, and the symbols are made up 

of m bits each [10]. The bit-error probability can be upper bounded by the symbol-error 

probability for specific modulation types. For MFSK modulation with M = 2m, the 

relationship between    and     is as follows: 
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For R-S codes, error probability is an exponentially decreasing function of block length, n, 

and decoding complexity is proportional to a small power of the block length. Figure 2.3 

shows probability of bit error versus Eb/No(dB) for RS coded system using 32-ary MFSK 

modulation and non-coherent demodulation over an AWGN channel. 

 

Figure 2.3: Bit-error probability versus Eb/N0 performance of several n = 31, t-error 

correcting Reed- Solomon coding systems with 32-ary MPSK modulation over an AWGN 

channel. 
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CHAPTER- 3 

GALOIS FIELD 

 

The Reed-Solomon code is defined in the Galois field .which contains a finite set of numbers 

where any arithmetic operations on elements of that set will result in an element belonging to 

the same set. 

3.1 Galois Field 

In Galois field, every element, except zero, can be expressed as a power of a primitive 

element,    of the field. The non-zero field elements form a cyclic group defined based on a 

binary primitive polynomial. An addition of two elements in the Galois field is simply the 

exclusive-OR (XOR) operation [2]. However, a multiplication in the Galois field is more 

complex than the standard arithmetic. It is the multiplication modulo the primitive 

polynomial used to define the Galois field. For example, a Galois field, GF(8), is constructed 

with the primitive polynomial p(z)=z3+z+1 based on the primitive element   = z as shown in 

table 3.1. 

Exponent Polynomial Binary 

   1 001 

   z 010 

      100 

       011 

        110 

          111 

        101 

  =   1 001 

  =   z 010 
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Table 3.1: Galois field GF(8) 

3.1.1  Properties of Galois Field 

A field is an algebraic structure in which the operations of addition, subtraction, 

multiplication, and division (except by zero) can be performed, and satisfy the usual rules 

[14]. More precisely, a field is a set (F) with two binary operations ‗+‘ (addition) and ‗.’ 

(multiplication) are defined, in which the following laws hold: 

 a+(b+c) = (a+b)+c    (associative law for addition) 

 a+b = b+a                 (commutative law for addition)  

 There is an element 0 (zero) such that a+0 = a for all a. 

 For any a, there is an element -a such that a+(-a) = 0. 

 a .(b . c) = (a .b) . c   (associative law for multiplication) 

 a .b = b . a                (commutative law for multiplication) 

 There is an element 1 (not equal to 0) such that a .1 = a for all a. 

 For any a 6= 0, there is an element a
-1

 such that a .a
-1

 = 1. 

 a . (b+c) = (a . b)+(a .c) (distributive law) 

Using the notion of a group, we can condense these nine axioms into just three: 

 The elements of F form an Abelian group with the operation + (called                              

the  additive group of F). 

 The non-zero elements of F form an Abelian group under the operation ‗.’             

(called the multiplicative group of F). 

 Multiplication by any non-zero element is an automorphism of the additive group. 

3.2  Finite Fields 

Existence [14]: Galois (in one of the few papers published in his lifetime) answered 

completely the question of which finite fields exist. First, the number of elements in a finite 

field must be a prime power, say q = pr, where p is prime. Then, for each prime power q = pr, 

there exists a field of order q, and it is unique (up to isomorphism). The construction is as 

follows. First, let F0 be the field of integers mod p. 

Now choose an irreducible polynomial f (X) of degree r over F0. (It can be shown that such 

polynomials always exist; indeed, it is possible to count them.) We can assume that the 

leading coefficient of f is equal to 1; say 
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We take the elements of F to be all expressions of the form, 

              
           

    

Where, ‗a‘ is required to satisfy f (a) = 0, and                         . (This is very similar 

to the construction of the complex numbers as of the form x+yi, where i
2
+1=0, and x and y 

are real numbers.) 

Now the number of expressions of the above form is ( p 
r
 ), since there are ‗p‘ choices for 

each of the ‗r‘ coefficients                     . Adding these expressions is straightforward. 

To multiply them, observe that  

          
               

So    (and similarly any higher power of a) can be reduced to the required form. 

It can be shown, using the irreducibility of the polynomial f, that this construction produces a 

field. Moreover, even though there are different choices for the irreducible polynomials, the 

fields constructed are all isomorphic. 

For an example, we construct a field of order 9 = 3
2
, using the polynomial (X

2
+1), which is 

irreducible over the field of integers mod 3. The elements of the field are all expressions of 

the form x+ya, where a
2
 = 2, and x,y = 0,1, 2. As examples of addition and multiplication, we 

have 

 (2+a)+(2+2a) = 4+3a = 1 

 (2+a)(2+2a) = 4+6a+2a
2 

= 4+0+4 = 8 = 2 

Properties [14]: The properties of the Galois field F = GF(q), where q = p
r 
with p prime. 

As noted in the last section, the elements 0,1,2,…..,p-1 of F form a subfield F0 which is 

isomorphic to the integers mod p; for obvious reasons, it is known as the prime subfield of F. 

 Additive group: The additive group of GF(q) is an elementary Abelian p-group. This 

is because x+…..+x = (1+….+1)x = 0x = 0, where there are p terms in the sum. Thus, 

it is the direct sum of r cyclic groups of order p. 
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Another way of saying this is that F is a vector space of dimension r over F1; that is, there is a 

basis (a1,……,ar) such that every element x of F can be written uniquely in the form, 

x = x1a1+…..+xrar 

 Multiplicative group: The most important result is that the multiplicative group of 

GF(q) is cyclic; that is, there exists an element g called a primitive root) such that 

every non-zero element of F can be written uniquely in the form g
i 
for some i with 0≤  

i ≤q-2. Moreover, we have g
q-1

 = g0 = 1. 

3.3  Construction of Galois Fields 

A Galois field GF (2 
m 

) with primitive element α is generally represented as (0, 1,α ,α
2
 

,………. α
2k-2

 ). The simplest example of a finite field is the binary field consisting of the 

elements (0, 1). Traditionally referred to as GF(2) 
2 

, the operations in this field are defined as 

integer addition and multiplication reduced modulo 2. Larger fields can be created by 

extending GF(2) into vector space leading to finite fields of size 2 
m

 . These are simple 

extensions of the base field GF(2) over m dimensions. The field GF(2 
m

 ) is thus defined as a 

field with 2 
m

 elements each of which is a binary m-tuple. Using this definition, m bits of 

binary data can be grouped and referred to it as an element of GF(2 
m

 ). This in turn allows 

applying the associated mathematical operations of the field to encode and decode data [1] 

[12][14]. 

Let the primitive polynomial be φ (x), of degree m over GF(2 
m

 ). Now any i
th

 element of the 

field is given by, 

                       
           

    

Hence all the elements of this field can be generated as powers of α . This is the polynomial 

representation of the field elements, and also assumes the leading coefficient of φ (x) to be 

equal to 1. Table 3.2 shows the Finite field generated by the primitive polynomial, 1 +α +α 
2
 

+α 
3
 +α 

4
 +α 

8 
represented as GF( 2

8
  ) or GF(256) [1]. 
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      0                 0                                                                        (0 0 0 0)                        0                   -1 

      1                 1                                                                        (1 0 0 0)                        1                    0 

                               α                                                                (0 1 0 0)                        2                    1 

                                                                                              (0 0 1 0)                        4                    2 

                                                                                              (0 0 0 1)                        8                    3 

                      1       α                                                                (1 1 0 0)                        3                   4 

                               α                                                             (0 1 1 0)                        6                    5 

                                                                                            (0 0 1 1)                       12                  6  

                      1       α                                                             (1 1 0 1)                       11                   7 

                      1                                                                      (1 0 1 0)                        5                    8 

                                α                                                             (0 1 0 1)                      10                   9   

                      1       α                                                             (1 1 1 0)                       7                   10 

                               α                                                          (0 1 1 1)                       14                  11 

                      1       α                                                          (1 1 1 1)                       15                  12 

                      1                                                                   (1 0 1 1)                       13                  13 

                      1                                                                      (1 0 0 1)                       9                    14 

 

Table 3.2: Representation of some elements in GF(2
8
) 

 

 

 

 

 

 

 

Power          Polynomial                                       Binary 4-tuple   Decimal      Index 
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CHAPTER- 4 

REED-SOLOMON ENCODER & DECODER 

 

4.1 RS Encoder 

The Reed-Solomon encoder reads in k data symbols, computes the n - k parity symbols, 

and appends the parity symbols to the k data symbols for a total of n symbols. The encoder is 

essentially a 2t tap shift register where each register is m bits wide. The multiplier 

coefficients are the coefficients of the RS generator polynomial. The general idea is the 

construction of a polynomial; the coefficients produced will be symbols such that the 

generator polynomial will exactly divide the data/parity polynomial [15]. 

The transmitted codeword is systematically encoded and defined in as a function of the 

transmitted message m(x), the generator polynomial g(x) and the number of parity symbols 2t 

as given below. 

c(x)=m(x) * 2t + m(x)modg(x) 

Where, g(x) is the generator polynomial of degree 2t and given by, 

                              

       

    

                                                                             

4.1.1 Forming Codeword 

Let a message or data unit is represented in the polynomial form as, 

           
          

                                                           

And the codeword be represented as, 

                         
          

                                                                     

This represents the result of multiplication of the data unit with the generator polynomial. 

One important property of G(x) is that it exactly divides c (x), assume Q(x) and P(x) 

to be the corresponding quotient and remainder, hence the codeword looks like, 

                                                                                                 

Here P(x) is the polynomial which represents the check symbols. 
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Dividing by the generator polynomial and rewriting gives, 

        

    
      

    

    
                                                                                           

Here, Q(x) can be identified as ratio and – P(x) as a remainder after division by G(x). The 

idea is that by concatenating these parity symbols to the end of data symbols, a codeword is 

created which is exactly divisible by g(x). So when the decoder receives the message block, it 

divides it with the RS generator polynomial. If the remainder is zero, then no errors are 

detected, else indicates the presence of errors [1]. 

4.1.2 Operation 

RS codes are systematic, so for encoding, the information symbols in the codeword 

are placed as the higher power coefficients. This requires that information symbols must be 

shifted from power level of (n-1) down to (n-k) and the remaining positions from power     

(n-k-1) to 0 be filled with zeros. Therefore any RS encoder design should effectively perform 

the following two operations, namely division and shifting. Both operations can be easily 

implemented using Linear-Feedback Shift Registers [1][15][16]. 

  Reed-Solomon codes may be shortened by (conceptually) making a number of data 

symbols zero at the encoder, not transmitting them, and then re-inserting them at the decoder. 

The encoder is essentially a 2t tap shift register where each register is m bits wide. The 

multiplier coefficients are the coefficients of the RS generator polynomial. The general idea 

is the construction of a polynomial; the coefficients produced will be symbols such that the 

generator polynomial will exactly divide the data/parity polynomial. Encoder block diagram 

is shown in figure 4.1. 
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Figure 4.1: Block diagram of RS Encoder[1] 

The encoder block diagram shows that one input to each multiplier is a constant field 

element, which is a coefficient of the polynomial g(x). For a particular block, the information 

polynomial M(x) is given into the encoder symbol by symbol. These symbols appear at the 

output of the encoder after a desired latency, where control logic feeds it back through an 

adder to produce the related parity. This process continues until all of the k symbols of M(x) 

are input to the encoder. During this time, the control logic at the output enables only the 

input data path, while keeping the parity path disabled. With an output latency of about one 

clock cycle, the encoder outputs the last information symbol at (k+1)th clock pulse. Also, 

during the first k clock cycles, the feedback control logic feeds the adder output to the bus. 

After the last symbol has been input into the encoder (at the kth clock pulse), a wait period of 

at least n-k clock cycles occurs. During this waiting time, the feedback control logic disables 

the adder output from being fed back and supplies a constant zero symbol to the bus. Also, 

the output control logic disables the input data path and allows the encoder to output the 

parity symbols (k+2th to n+1th clock pulse). Hence, a new block can be started at the n+1th 

clock pulse [1]. 
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4.2 RS Decoder 

The Reed-Solomon decoder tries to correct errors and/or erasures by calculating the 

syndromes for each codeword. Based upon the syndromes the decoder is able to determine 

the number of errors in the received block [1][15][17]. If there are errors present, the decoder 

tries to find the locations of the errors using the Berlekamp-Massey algorithm by creating an 

error locator polynomial. The roots of this polynomial are found using the Chien search 

algorithm. Using Forney's algorithm, the symbol error values are found and corrected. For an 

RS (n, k) code where n - k = 2T, the decoder can correct up to T symbol errors in the code 

word. Given that errors may only be corrected in units of single symbols (typically 8 data 

bits), Reed-Solomon coders work best for correcting burst errors [11]. After going through a 

noisy transmission channel, the encoded data can be represented as  r(x) = c(x) +  e(x), where 

e(x) represents the error polynomial with the same degree as c(x) and r(x). Once the decoder 

evaluates e(x), the transmitted message, c(x), is then recovered by adding the received 

message, r(x), to the error polynomial, e(x), as given below: 

c(x) = r(x) + e(x) = c(x) + e(x) + e(x) = c(x) 

Note that e(x) + e(x) = 0 because addition in Galois field is equivalent to an exclusive-OR i.e 

e(x) XOR e(x) = 0. A typical decoder follows the following stages as shown in figure 4.2 in 

the decoding cycle, namely 

1. Syndrome Calculation 

2. Determine error-location polynomial 

3. Solving the error locator polynomial - Chien search 

4. Calculating the error Magnitude  

5. Error Correction 

 

Figure 4.2: General Architecture of RS Decoder [9] 
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4.2.1 Syndrome Calculation 

The first step in decoding the received symbol is to determine the data syndrome. 

Here the input received symbols are divided by the generator polynomial. The result should 

be zero. The parity is placed in the codeword to ensure that code is exactly divisible by the 

generator polynomial. If there is a remainder, then there are errors. The remainder is called 

the syndrome. The syndromes can then be calculated by substituting the 2t roots of the 

generator polynomial g(x) into R(x). The syndrome polynomial is generally represented as, 

                     
          

   

   

   

                                           

Where, α is the primitive element. The basic syndrome calculation architecture is shown in 

figure 4.3. 

 

 

 

 

 

 

 

 

Figure 4.3: Syndrome calculator Architecture 

4.2.2 Determination of Error-Locator Polynomial 

The next step, after the computing the syndrome polynomial is to calculate the error 

values and their respective locations. This stage involves the solving of the 2t syndrome 

polynomials, formed in the previous stage. These polynomials have ‗v‘ unknowns, where v is 

the number of unknown errors prior to decoding. If the unknown locations are ( i1,i2,……iv, ) 

the error polynomial can be expressed as, 

D 

D 

D 

       

       

          

r(x) 
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Where Yl is the magnitude of the lth error at location il. If Xl is the field element associated 

with the error location il, then the syndrome coefficients are given by, 

                                        

 

   

   
                                                                                               

Where, j=1,2,….,2t. And Yl is the error value and Xl is the error location of the lth error 

symbol. The expansion of (4.8) gives the following set of 2t equations in the v unknown error 

locations X1, X2, ....... Xv and ‗v‘ unknown error magnitudes  Y1 ,Y2 ,......Yv.   

                       

           
      

        
 

 

                                                                              .                  

                                                                              . 

                                                                              . 

                                                              
       

         
                                          

The above set of equations must have at least one solution because of the way the syndromes 

are defined. This solution is unique. Thus the decoder‘s task is to find the unknowns given 

the syndromes. This is equivalent to the problem in solving a system of non-linear equations. 

Clearly, the direct solution of the system of nonlinear equations is too difficult for large 

values of v. Instead, intermediate variables can be computed using the syndrome coefficients 

Sj from which the error locations, X1, X2  ,......., Xv  , can be determined. The error-locator 

polynomial is introduced as, 

                                                    
       

                                               

The polynomial is defined with roots at the error locations −1 i.e Xl
-1

 for l=1,2,…v. The error 

location numbers l, X indicate errors at locations il for l=1, 2, …v This can be written as,   

                                                                                                           

Where, Xl =αil 
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BERLEKAMP- MASSEY ALGORITHM: The Berlekamp-Massey algorithm relies on the 

fact that the matrix equation of is not arbitrary in its form, rather, the matrix is highly 

structured. This structure is used to obtain the vector σ by a method that is conceptually more 

complicated. If the vector σ is known, then the first row of the above matrix equation defines 

Sv+1 in terms of  S1 , S2 ,........Sv. The second row defines Sv+2 in terms of S2,S3,....... Sv+1  and 

so forth. This sequential process can be summarized by the recursive relation, 

       

 

   

      

                                                           Where, j = v+1,………,2v                           (4.12) 

For fixed σ, this is equivalent to the equation of an autoregressive filter. It can be 

implemented as a linear-feedback shift register with taps given by the coefficients of σ. Using 

this argument, the problem has been reduced to the design of a linear- feedback shift register 

that will consequently generate the known sequences of syndromes. Many such shift registers 

exist, but it is desirable to find the smallest linear-feedback shift register with this property. 

This will give the least-weight error pattern with a polynomial σ (x) of smallest degree v. The 

polynomial of smallest degree v is unique, since the v × v matrix of the original problem is 

invertible. Any procedure for designing the autoregressive filter is also a method for solving 

the matrix equation for the σ vector. The procedure applies in any field and does not assume 

any special properties for the sequence S1, S2,........S2t. To design the required shift register, 

the shift register length L and feedback connection polynomial σ (x) must be determined.       

The σ (x) is in following form, 

                                             
       

                                                           

Where,  degσ(x) ≤ L. 

 

The flowchart of Berlekamp-Massey Algorithm is given in figure 4.4 below. 
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                                      Figure 4.4: Berlekamp-Massey Algorithm [2] 

            

            

Initialization 

 
      

 

      

 

   

        

Compute error in next syndrome 

 

                   

Compute new correction polynomial for 

which       

 

               

 

 

Proceed to Next Step 

Yes 

No 

      

       

         
       Normalize and store old shift reg. 

                     Update shift reg. 

                        Update length 

 

                   

   

 

                    

   

 

      

More than t errors 

No 

No 

No 

Yes 

Yes 

Yes 



26 
 

EUCLID'S ALGORITHM: Euclid's algorithm is a recursive procedure for calculating the 

greatest common divisor (GCD) of two polynomials. In a slightly expanded version, the 

algorithm will always produce the polynomials a(x) and b(x) satisfying, 

GCD [s(x), t(x)] = a(x)s(x) + b(x)t(x) 

The flowchart for Euclid‘s Algorithm Is given in figure 4.5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         Figure 4.5: Euclid‘s Algorithm [2] 
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4.2.3 Solving the Error Locator Polynomial-CHIEN Search 

Once the error locator and error evaluator polynomials have been determined using the 

above techniques, the next step in the decoding process is to evaluate the error polynomial 

and obtain its roots. The roots thus obtained will now point to the error locations in the 

received message. RS decoding generally employs the Chien search scheme to implement the 

same. A number ‘n‘ is said to be a root of a polynomial, if the result of substitution of its 

value in the polynomial evaluates to zero. Chien Search is a brute force approach for guessing 

the roots, and adopts direct substitution of elements in the Galois field, until a specific i from 

i=0, 1,.., (n-1) is found such that σ (α
i
) = 0 . In such a case α

i
 is said to be the root and the 

location of the error is evaluated as σ(x). Then the number of zeros of the error locator 

polynomial σ(x) is computed and is compared with the degree of the polynomial. If a match 

is found the error vector is updated and σ (x) is evaluated in all symbol positions of the 

codeword. A mismatch indicates the presence of more errors than can be corrected [1].  

4.2.4 Error Value Computation-FORNEY Algorithm 

Once the errors are located, the next step is to use the syndromes and the error 

polynomial roots to derive the error values.   Forney Algorithm is generally    used   for   this   

purpose [1]. It is an efficient way of performing a matrix inversion, and involves two main 

stages.  

First the error evaluator polynomial ω(x) is calculated. This is done by convolving the 

syndromes with the error polynomial σ(x) (from the Euclid‘s algorithm).  

                                                                                                                        

This calculation is carried out at each zero location, and the result thus arrived is then divided 

by the derivative of lambda. Each such calculation gives the error symbol at the 

corresponding location. The error magnitude at each error location    is given by, 

 

                                                           
     

      
                                                                      (4.15) 

 

If the error symbol has any set bit, it means that the corresponding bit in the received symbol 

is at error, and must be inverted. To automate this correction process each of the received 

symbol is read again (from an intermediate store), and at each error location the received 
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symbols XOR‘ed with the error symbol. Thus the decoder corrects any errors as the received 

word is being read out from it. 

In summary, the decoding algorithm works as follows [1]: 

Step 1: Calculate the syndromes according to Equation (4.6) 

Step2: Perform the Berlekamp-Massey or Euclid's algorithm to obtain the error locator                

polynomial σ (x). Also find the error evaluator polynomial ω(x). 

Step 3: Perform the Chien Search to find the roots of σ (x). 

Step 4: Find the magnitude of the error values using the Forney‘s Algorithm. 

Step 5: Correct the received word C ( x ) = E(x) + R ( x ) 
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CHAPTER- 5 

VHSIC HARDWARE DESCRIPTION LANGUAGE 

 

VHDL is an acronym for VHSIC Hardware Description Language(VHSIC is an 

acronym for Very High Speed  Integrated Circuits).It is a hardware description language that 

can be used to model a digital system at many levels of abstraction, ranging from the 

algorithmic level to the gate level[18]. 

Hardware description languages are especially useful to gain more control of parallel 

processes as well as to circumvent some of the idiosyncrasies of the higher level 

programming languages. The compilers often add latency to loops during compilation for 

implementation. This can be difficult to fix in the higher-level languages, though the solution 

may be quite obvious at the hardware description level. One particularly frustrating 

peculiarity is the implementation of multipliers. For all multiply commands, the complier 

requires three multipliers to be used, though typically one is sufficient. The compiler‘s 

multipliers also are intended for integers. For a fixed-point design, the decimal point must be 

moved after every multiply. This is much easier to implement at the hardware description 

level [1]. 

VHDL is a programming language that has been designed and optimized for 

describing the behavior of digital systems. VHDL has many features appropriate for 

describing the behaviour of electronic components ranging from simple logic gates to 

complete microprocessors and custom chips. Features of VHDL allow electrical aspects of 

circuit behavior such as rise and fall times of signals, delays through gates, and functional 

operation to be precisely described. The resulting VHDL simulation models can then be used 

as building blocks in larger circuits using schematics, block diagrams or system-level VHDL 

descriptions for the purpose of simulation. 

VHDL is also a general-purpose programming language: just as high-level 

programming languages allow complex design concepts to be expressed as computer 

programs, VHDL allows the behavior of complex electronic circuits to be captured into a 

design system for automatic circuit synthesis or for system simulation. Like Pascal, C and 

C++, VHDL includes features useful for structured design techniques, and offers a rich set of 

control and data representation features. Unlike these other programming languages, VHDL 

provides features allowing concurrent events to be described. This is important because the 
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hardware described using VHDL is inherently concurrent in its operation. One of the most 

important applications of VHDL is to capture the performance specification for a circuit, in 

the form of what is commonly referred to as a test bench. Test benches are VHDL 

descriptions of circuit stimuli and corresponding expected outputs that verify the behaviour of 

a circuit over time. Test benches should be an integral part of any VHDL project and should 

be created in tandem with other descriptions of the circuit. One of the most compelling 

reasons for learning VHDL is its adoption as a standard in the electronic design community. 

Using a standard language such as VHDL virtually guarantees that the engineers will not 

have to throw away and recapture design concepts simply because the design entry method 

chosen is not supported in a newer generation of design tools. Using a standard language also 

means that the engineer is more likely to be able to take advantage of the most up-to-date 

design tools and that the users of the language will have access to a knowledge base of 

thousands of other engineers, many of whom are solving similar problems. 

5.1  History of VHDL 

 1981 - Initiated by US DoD to address hardware life-cycle crisis 

 1983-85 - Development of baseline language by Intermetrics, IBM and TI 

 1986 - All rights transferred to IEEE 

 1987 - Publication of IEEE Standard 

 1987 - Mil Std 454 requires comprehensive VHDL descriptions to be delivered 

with Asics 

 1994 - Revised standard (named VHDL 1076-1993)  
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5.2 Capabilities  

The following are the major capabilities that the language provides along with the 

features that differentiated from other hardware description language [18]. 

 The language can be used as an exchange medium between chip vendors and CAD 

tool users. Different chip vendors can provide VHDL description of their components 

to system designers. 

 The language can also be used as communication medium between different CAD 

and CAE tools. 

 The language supports hierarchy; that is a digital system can be modelled as a set of 

interconnected components. 

 The language supports flexible design methodologies: top-down, bottom-up, or 

mixed. 

 The language is not technology-specific, but is capable of supporting technology-

specific features. It can also support various hardware technologies. 

 It supports both synchronous and asynchronous timing models. 

 Various digital modelling techniques, such as finite-state machine descriptions, 

algorithmic descriptions and Boolean equations, can be model using the language. 

 The language is publicly available, human-readable, machine-readable and above all, 

it is not proprietary. 

 It is an IEEE and ANSI standard; therefore model described using this language is 

portable. 

 The language supports three basic different description styles: structural, data flow 

and behavioural. A design may  also be expressed in any combination of these three. 

 It supports a wide range of abstraction levels ranging from abstract behavioural 

descriptions to very precise gate-level descriptions. 

 Arbitrarily large designs can be modelled using this language, and there are no 

limitations imposed by the language on the size of design. 

 The language has elements that make large-scale design modelling easier. 

 Nominal propagation delays, min-max delays, setup and hold timing, timing 

constraints and spike detection can all be described very naturally in this language. 
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5.3  Design Units 

Every VHDL design description consists of at least one entity/architecture pair.To 

describe an entity, VHDL provides five different types of primary constructs, called design 

units [1] [17][19]. They are: 

 Entity declaration 

 Architecture body 

 Configuration declaration 

 Package declaration 

 Package body 

An entity is modelled using an entity declaration and at least one architecture body. 

The entity declaration describes the external view of the entity; for example the input and 

output signal names. 

The configuration declaration is used to create a configuration for an entity. It 

specifies the binding of one architecture body from many architecture bodies that may be 

associated with the entity. An entity will have any number of different configurations. 

A package declaration encapsulates a set of related declarations, such as type declaration, 

sub type declarations, and subprogram declaration, which can be shared across two or more 

design units .  

 

5.4   Levels of Abstraction 

VHDL supports many possible styles of design description. These styles differ primarily 

in how closely they relate to the underlying hardware. When we speak of the different styles 

of VHDL, we are really talking about the differing levels of abstraction possible using the 

language—behavior, dataflow, and structure [1]. 

5.4.1 Behavior 

The highest level of abstraction supported in VHDL is called the behavioral level of 

abstraction. When creating a behavioral description of a circuit, the circuits is described in 

terms of its operation over time. The concept of time is the critical distinction between 
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behavioral descriptions of circuits and lower-level descriptions specifically descriptions 

created at the dataflow level of abstraction.  

In a behavioral description, the concept of time can be expressed precisely, with actual 

delays between related events (such as the propagation delays within gates and on wires), or 

it may simply be an ordering of operations that are expressed sequentially (such as in a 

functional description of a flip-flop). While writing VHDL for input to synthesis tools, 

behavioural statements in VHDL can be used to imply that there are registers in your circuit. 

It is unlikely, however, that the synthesis tool will be capable of creating precisely the same 

behavior in actual circuitry as defined in the language. It is also unlikely that the synthesis 

tool will be capable of accepting and processing a very wide range of behavioral description 

styles [1]. 

5.4.2 Dataflow 

In the dataflow level of abstraction, the circuit is described in terms of how data moves 

through the system. Registers are the most important part of most digital systems today, so in 

the dataflow level of abstraction it is described how the information is passed between 

registers in the circuit. The combinational logic portion of the circuit may also be described at 

a relatively high level (and let a synthesis tool figure out the detailed implementation in logic 

gates), but specifications about the placement and operation of registers in the complete 

circuit are given by the user. The dataflow level of abstraction is often called register transfer 

logic, or RTL [1]. 

 

5.4.3 Structure 

The third level of abstraction is structure. It is used to describe a circuit in terms of its 

components. Structure can be used to create a very low-level description of a circuit such as a 

transistor-level description or a very high-level description such as a block diagram. In a 

gate-level description of a circuit, components such as basic logic gates and flip-flops might 

be connected in some logical structure to create the circuit. This is often called a net list. 

For a higher-level circuit — one in which the components being connected are larger 

functional blocks — structure might simply be used to segment the design description into 

manageable parts. 



34 
 

Structure-level VHDL features, such as components and configurations, are very useful 

for managing complexity. The use of components can dramatically improve the ability to re-

use elements of the designs and they can make it possible to work using a top-down design 

approach [1]. 

5.5   Objects 

VHDL includes a number of language elements, collectively called objects that can be used 

to represent and store data in the system being described. Three basic types of objects that are 

used when entering a design description for synthesis or creating functional tests (in the form 

of a test bench) are signals, variables and constants. Each object that is declared has a specific 

data type (such as bit or integer) and a unique set of possible values. 

 

5.5.1 Signals 

Signals are objects that are used to connect concurrent elements (such as components, 

processes and concurrent assignments), similar to the way that wires are used to connect 

components on a circuit board or in a schematic. Signals can be declared globally in an 

external package or locally within architecture, block or other declarative region. 

 

5.5.2 Variables 

Variables are objects used to store intermediate values between sequential VHDL 

statements. Variables are only allowed in processes, procedures and functions, and they are 

always local to those functions. The 1076-1993 language standard adds a new type of global 

variable that has visibility between different processes and subprograms. Variables in VHDL 

are much like variables in a conventional software programming language. They immediately 

take on and store the value assigned to them and they can be used to simplify a complex 

calculation or sequence of logical operations. 
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CHAPTER- 6 

SIMULATION RESULTS OF REED-SOLOMON CODES IN 

MATLAB & VHDL 

 

In previous chapters RS codes and their encoding and decoding procedures were thoroughly 

discussed and this chapter describes the implementation  of RS codes in MATLAB and 

VHDL and their simulation results.  

 

6.1  Implementation of  RS Code in MATLAB 

Our main aim for simulating the RS code in MATLAB was to understand the phenomenon as 

how the signal is being encoded and, what would happen if the signal has some error and up 

to what extent, the decoder can detect and correct errors. In first simulation MATLAB, a 

random symbol of integers was taken as input. These random symbols were then encoded 

using RS encoder. Following this signal was passed through AWGN channel, these symbols 

were then received at the decoder end. Now at the decoder end, the decoder can correct up to 

t symbols.. The reed Solomon decoder actually corrects symbols up to 2t symbols from the n 

number of symbols. It never matters whether the errors are in parity symbols or the 

information symbols. After correcting the error, however the decoder takes the redundant bits 

out which were generated while encoding the symbols.  

6.1.1 RS Codes with Noise 

To verify the capability of RS codes in detecting and correcting the errors, it was 

implemented as per the implement the block diagram shown in figure 6.1 using MATLAB 

programme. 

 

 

 

Figure 6.1: Block diagram of RS codes with noise 
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I/P Data 
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For this case, we used one set of RS code for the simulation, that is RS(255,251).The figure 

6.2 shows the result of randomly generated input data, where the number of data points is 

equal to k i.e 255. 

 

Figure 6.2: Input Data Points 

This Input data was encoded by RS encoder and the number of data points at the output of 

encoder is n (i.e 255), which is equal to message plus parity (in this case n=k+2t, where 

k=251and t=2). This encoded data is added with some noise and the RS decoder detect the 

errors and correct ‗t‘ numbers of errors.  All the simulation result is shown in figure 6.3, 6.4 

& 6.5 below. 
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Figure 6.3: Encoded data 

 

Figure 6.4: Transmitted Data 
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Figure 6.5: Decoded Data 

The number of data points of the decoder output is equal to the input data points, that means 

the decoder removes the parity bits which was added by the encoder and correct the t      

(t=(n-k)/2) number of errors. 

 

6.1.2 Error performance of RS coding over AWGN channel 

 

To analysis the performance of digital communication using RS coding, the system was 

implemented as per the block diagram shown in figure 6.6 by MATLAB programme. In this 

case we use M-ary FSK modulation technique and we consider a AWGN channel for analysis 

of performance of communication system by using RS coding. 

 

 

 

 

 

Figure 6.6: Block Diagram of communication system using RS Code 

The theoretical bit error probability of MFSK without RS code is shown in figure 6.7 and 

with RS code is shown in figure 6.8. 
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      Figure 6.7: BER vs SNR for MFSK                  Figure 6.8: BER vs SNR with RS coding 

The simulation results for MFSK with and without RS code is shown in figure 6.9 & 6.10. 

 

 

Figure 6.9: BER vs SNR 
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Figure 6.10: BER vs SNR 

 

6.2   Implementation of  RS Code in Simulink 

A simulation model is constructed for analysis of performance of RS coding system over 

AWGN channel is shown in figure 6.11. Then, simulating the model and extract BER 

performance curve by using BERTool functions. The simulation result is shown in figure 

6.12. 

 

Figure 6.11: Simulation model for RS coding system 
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Figure 6.12: Simulation result of simulink model 

 

6.3  Implementation of  RS Encoder in VHDL 

The Encoder block is divided into two modules as described below.  

1. Redundant generator: It is the main module in which the arithmetic operations    have     

been   done to generate the redundant symbols. The design has been done as explained in the 

architecture. It has been controlled by some control signals which have been derived by the 

control logic. 

2. Control logic: The control logic has been used to generate the control signals for the 

redundant generator circuit. An additional provision has been given for bypassing any 

symbol. When the bypass signal is active whatever input given to the encoder will appear at 

the output without taking part in the encoding process. Along with the encoded data output 

encoder provides some status signal to indicate valid output, redundant symbol transfer and 

ready to accept the next block of input. It has also been responsible for deriving appropriate 

generator polynomial from the number of message symbols and number of redundant 

symbols taken as input.  

The architecture of encoder is shown below figure6.13 
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                                               Figure 6.13: Architecture of encoder 

Reed Solomon Encoder has been synthesized on XILINX XCV2P30 FPGA. RTL schematic 

a test bench wave form found is shown in figure 6.14 & figure 6.15.  

 

                                          Figure 6.14:   RTL schematic of RS encoder 
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                                  Table 6.1 Device utilization in FPGA in RS encoder 

In the figure 6.15 below we have taken the different signals RST(reset) . CLK-(clk signal), 

STR-(start execution of program). RD-(data read out strobe). D_IN-(data input). D_OUT-

(data output). SNB(impulse when encoding is finished). pr231, pr210, pr30& pr116 are 

Galois multiplier having primitive element. 

 

                                    Figure 6.15; Test bench wave form of RS encoder 

The output of encoder data bit stream is found. 8bit data input 01011101.Output after  

encoding of a single signal 01011101. No. of clock cycle 2
m

-1equal to255 cycles. First k 

cycles are used to move the data bit stream right ward and then  next n-k bits are used to 

encode the data using Read out strobe. Length of clock cycles 200ns For start bi tone time 

equal to 51400ns . Read out strobe 4 clock cycles. Output after 51800ns, 258 clock cycles. 

One clock cycle is error. 
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                                              CHAPTER- 7 

CONCLUSIONS AND FUTURE WORK 

 

         In this thesis the important characteristic of RS error correcting coding technique has 

been discussed. Convolutional code process bit-by-bit, but block code like Reed-Solomon 

code process on block-by-block basis. The actual maximum code rate allowed depends on 

error-correcting code used.  Reed-Solomon code are systematic code that is why actual 

information appears unaltered in the encoded data, redundant bit are added for detection and 

correction of error. Key idea behind Reed-Solomon code is data visualized as a polynomial.  

 

Reed Solomon code was simulated in MATLAB. In encoder redundant symbols were 

added using generator polynomial. Decoder error location and magnitude are calculated using 

same generator polynomial. In RS(255,251) after encoding information remaining same 

while extra 4-bit parity symbol are added. Before data transmission the encoder attached 

parity symbol using a predefine algorithm. It was found that if the error is in parity symbols 

even then the decoder is able to detect the output. The decoder first corrects the symbols and 

then removes the redundant parity symbols from the code word and produces the original 

input data. From the simulation result it has been shown that the decoder can correct upto  ‗t‘ 

numbers of error. 

The simulation result for MFSK with and without RS CODE graph between BER VS 

SNR has been plotted. The error performance of the RS coding system has also been 

calculated by the simulation model using SIMULINK. In the error probability graph, it was 

seen that for a particular range of SNR, the number of error bits present can be found out 

using the bit error rate probability.  For different error correcting capabilities of RS code, the 

range of SNR goes on increasing as the error correcting capability increases.  

 

Reed Solomon Encoder has been implemented in VHDL synthesise is done on 

XILINX  XCV2P30 FPGA. RTL schematic has been found and a test bench has been written 

to verify the functionality of the encoder. The output of the encoder is seem to be  same as 

input after 255 cycles, it will take only four bit parity. . In future, one can design the RS 

decoder and then test this benchmark in a real time based example. One can also implement 

this in an FPGA. 
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