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ABSTARCT 

 

Antilock braking systems are used in modern cars to prevent the wheels from locking after 

brakes are applied. The dynamics of the controller needed for antilock braking system 

depends on various factors. The vehicle model often is in nonlinear form. Controller needs to 

provide a controlled torque necessary to maintain optimum value of the wheel slip ratio. The 

slip ratio is represented in terms of vehicle speed and wheel rotation.  

In present work first of all system dynamic equations are explained and a slip ratio is 

expressed in terms of system variables namely vehicle linear velocity and angular velocity of 

the wheel. By applying a bias braking force system, response is obtained using Simulink 

models. Using the linear control strategies like P - type, PD - type, PI - type, PID - type the 

effectiveness of maintaining desired slip ratio is tested. It is always observed that a steady 

state error of 10% occurring in all the control system models. 
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CHAPTER 1 

INTRODUCTION 

Anti-lock brake systems (ABS) prevent brakes from locking during braking. Under normal 

braking conditions the driver controls the brakes. However, during severe braking or on 

slippery roadways, when the driver causes the wheels to approach lockup, the antilock system 

takes over. ABS modulates the brake line pressure independent of the pedal force, to bring 

the wheel speed back to the slip level range that is necessary for optimal braking 

performance. An antilock system consists of wheel speed sensors, a hydraulic modulator, and 

an electronic control unit. The ABS has a feedback control system that modulates the brake 

pressure in response to wheel deceleration and wheel angular velocity to prevent the 

controlled wheel from locking. The system shuts down when the vehicle speed is below a 

pre-set threshold. 

 

1.1 IMPORTANCE OF ANTILOCK BRAKING SYSTEMS 

The objectives of antilock systems are threefold:  

1. to reduce stopping distances,  

2. to improve stability, and  

3. to improve steerability during braking. 

These are explained below 

Stopping Distance The distance to stop is a function of the mass of the vehicle, the initial 

velocity, and the braking force. By maximizing the braking force the stopping distance will 

be minimized if all other factors remain constant. However, on all types of surfaces, to a 

greater or lesser extent, there exists a peak in fiction coefficient. It follows that by keeping all 

of the wheels of a vehicle near the peak, an antilock system can attain maximum fictional 



2 | P a g e  
 

force and, therefore, minimum stopping distance. This objective of antilock systems however, 

is tempered by the need for vehicle stability and steerability. 

Stability Although decelerating and stopping vehicles constitutes a fundamental purpose of 

braking systems, maximum friction force may not be desirable in all cases, for example not if 

the vehicle is on a so-called p-split surface (asphalt and ice, for example), such that 

significantly more braking force is obtainable on one side of the vehicle than on the other 

side. Applying maximum braking force on both sides will result in a yaw moment that will 

tend to pull the vehicle to the high friction side and contribute to vehicle instability, and 

forces the operator to make excessive steering corrections to counteract the yaw moment. If 

an antilock system can maintain the slip of both rear wheels at the level where the lower of 

the two friction coefficients peaks, then lateral force is reasonably high, though not 

maximized. This contributes to stability and is an objective of antilock systems. 

Steerability Good peak frictional force control is necessary in order to achieve satisfactory 

lateral forces and, therefore, satisfactory steerability. Steerability while braking is important 

not only for minor course corrections but also for the possibility of steering around an 

obstacle. 

Tire characteristics play an important role in the braking and steering response of a vehicle. 

For ABS-equipped vehicles the tire performance is of critical significance. All braking and 

steering forces must be generated within the small tire contact patch between the vehicle and 

the road. Tire traction forces as well as side forces can only be produced when a difference 

exists between the speed of the tire circumference and the speed of the vehicle relative to the 

road surface. This difference is denoted as slip. It is common to relate the tire braking force to 

the tire braking slip. After the peak value has been reached, increased tire slip causes 

reduction of tire-road friction coefficient. ABS has to limit the slip to values below the peak 
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value to prevent wheel from locking. Tires with a high peak friction point achieve maximum 

friction at 10 to 20% slip. The optimum slip value decreases as tire-road friction decreases. 

 

The ABS system consists of the following major subsystems: 

Wheel-Speed Sensors 

Electro-magnetic or Hall-effect pulse pickups with toothed wheels mounted directly on the 

rotating components of the drivetrain or wheel hubs. As the wheel turns the toothed wheel 

(pulse ring) generates an AC voltage at the wheel-speed sensor. The voltage frequency is 

directly proportional to the wheel's rotational speed. 

Electronic Control Unit (ECU) 

The electronic control unit receives, amplifies and filters the sensor signals for calculating the 

wheel rotational speed and acceleration. This unit also uses the speeds of two diagonally 

opposed wheels to calculate an estimate for the speed of the vehicle. The slip at each wheel is 

derived by comparing this reference speed with the speeds of the individual wheels. The 

"wheel acceleration" and "wheel slip" signals serve to alert the ECU to any locking tendency. 

The microcomputers respond to such an alert by sending a signal to trigger the pressure 

control valve solenoids of the pressure modulator to modulate the brake pressure in the 

individual wheel-brake cylinders. The ECU also incorporates a number of features for error 

recognition for the entire ABS system (wheel-speed sensors, the ECU itself, pressure-control 

valves, wiring harness). The ECU reacts to a recognized defect or error by switching off the 

malfunctioning part of the system or shutting down the entire ABS. 

Hydraulic Pressure Modulator 

The hydraulic pressure modulator is an electro-hydraulic device for reducing, holding, and 

restoring the pressure of the wheel brakes by manipulating the solenoid valves in the 

hydraulic brake system. It forms the hydraulic link between the brake master cylinder and the 
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wheel-brake cylinders. The hydraulic modulator is mounted in the engine compartment to 

minimize the length of the lines to the brake master cylinder and the wheel-brake cylinders. 

Depending on the design, this device may include a pump, motor assembly, accumulator and 

reservoir. Fig 1 shows relationship between modulator, dynamics and controller. 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 Scheme of ABS 

 

Following brakes are generally used in automobiles. 

In disk brake, a force is applied to both sides of a rotor and braking action is achieved 

through the frictional action of inboard and outboard brake pads against the rotor. 

In drum brakes, a force is applied to a pair of brake shoes. A variety of configurations exists, 

including 1eading, trailing shoe (simplex), duo-duplex, and duo-servo. Drum brakes feature 

high gains compared to disk brakes, but some configurations tend to be more nonlinear and 

sensitive to fading.  

ABS 
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1.2 LITERATURE REVIEW 

Following literature is surveyed relating to ABS. 

Mirzaeinejad and Mirzaei [1] have applied a predictive approach to design a non- linear 

model-based controller for the wheel slip. The integral feedback technique is also employed 

to increase the robustness of the designed controller. Therefore, the control law is developed 

by minimizing the difference between the predicted and desired responses of the wheel slip 

and it’s integral. 

Baslamisliet al. [2] proposed a static-state feedback control algorithm for ABS control. The 

robustness of the controller against model uncertainties such as tire longitudinal force and 

road adhesion coefficient has been guaranteed through the satisfaction of a set of linear 

matrix inequalities. Robustness of the controller against actuator time delays along with a 

method for tuning controller gains has been addressed. Further tuning strategies have been 

given through a general robustness analysis, where especially the design conflict imposed by 

noise rejection and actuator time delay has been addressed. 

Choi [3] has developed a new continuous wheel slip ABS algorithm. here ABS algorithm, 

rule-based control of wheel velocity is reduced to the minimum. Rear wheels cycles 

independently through pressure apply, hold, and dump modes, but the cycling is done by 

continuous feedback control. While cycling rear wheel speeds, the wheel peak slips that 

maximize tire-to-road friction are estimated. From the estimated peak slips, reference 

velocities of front wheels are calculated. The front wheels are controlled continuously to 

track the reference velocities. By the continuous tracking control of front wheels without 

cycling, braking performance is maximized. 
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Rangelov [4] described the model of a quarter-vehicle and an ABS in MATLAB-

SIMULINK. In this report, to model the tire characteristics and the dynamic behavior on a 

flat as well as an uneven road, the SWIFT-tire model is employed. 

Sharkawy [5] studied the performance of ABS with variation of weight, friction coefficient of 

road, road inclination etc. A self-tuning PID control scheme to overcome these effects via 

fuzzy GA is developed; with a control objective to minimize stopping distance while keeping 

slip ratio of the tires within the desired range. 

Poursmad [6] has proposed an adaptive NN- based controller for ABS. The proposed 

controller is designed to tackle the drawbacks of feedback linearization controller for ABS. 

Topalovet al. [7] proposed a neurofuzzy adaptive control approach for nonlinear system with 

model uncertainties, in antilock braking systems. The control scheme consists of PD 

controller and an inverse reference model of the response of controlled system. Its output is 

used as an error signal by an online algorithm to update the parameters of a neuro-fuzzy 

feedback controller. 

Patil and Longoria[8] have used decoupling feature in frictional disk brake mechanism 

derived through kinematic analysis of ABS to specify reference braking torque is presented. 

Modelling of ABS actuator and control design are described. 

Layne et al. [9] have illustrated the fuzzy model reference learning control (FMRLC). 

Braking effectiveness when there are transition between icy and wet road surfaces is studied. 

Huang and Shih [10] have used the fuzzy controller to control the hydraulic modulator and 

hence the brake pressure. The performance of controller and hydraulic modulator are 

assessed by the hardware in loop (HIL) experiments. 

Onitet al. [11] have proposed a novel strategy for the design of sliding mode controller 

(SMC). As velocity of the vehicle changes, the optimum value of the wheel slip will also 

alter. Gray predictor is employed to anticipate the future output of the system.  
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1.3 SCOPE & OBJECTIVE OF PRESENT WORK 

During the design of ABS, nonlinear vehicle dynamics and unknown environment characters 

as well as parameters, change due to mechanical wear have to be considered. PID controller 

are very easy to understand and easy to implement. However PID loop require continuous 

monitoring and adjustments. In this line there is a scope to understand improved PID 

controllers with mathematical models. 

The present work, it is planned to understand and obtain the dynamic solution of quarter car 

vehicle model to obtain the time varying vehicle velocity and wheel.  After identification of 

system dynamics a slip factor defined at each instance of time will be modified to desired 

value by means of a control scheme. Various feedback control schemes can be used for this 

purpose. Simulation are carried out to achieve a desired slip factor with different control 

scheme such as 

1) Proportional Feedback control 

2) Proportional Derivative Feedback Control 

3) Proportional Integral Feedback Control 

4) Proportional Integral Derivative Feedback Control 

Graphs of linear velocity, stopping distance and slip ratio for each system is plotted and 

compared with each other. At the end, possible alternate solutions are discussed. 

The work is inspired from the demo model of ABS provided in Simulink software. 
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1.4 ORGANISATION OF THESIS 

 

Chapter 2 describes the mathematical modelling of quarter vehicle and vehicle dynamic 

equations used to describe the system. Feedback control systems which are used for ABS are 

explained. Simulink Models of each control system are described. 

Chapter 3 contains various graphs obtained from each of Simulink models. Comparison and 

discussion between different control schemes are shown. 

Chapter 4 concludes the above work. It contains summary of work and throws light on future 

scope for further studies and development. 
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CHAPTER 2 

MATHEMATICAL MODELLING 

 

2.1 VEHICLE DYNAMICS 

Basically, a complete vehicle model that includes all relevant characteristics of the vehicle is 

too complicated for use in the control system design. Therefore, for simplification a model 

capturing the essential features of the vehicle system has to be employed for the controller 

design. The design considered here belongs to a quarter vehicle model as shown in Fig 2.1. 

This model has been already used to design the controller for ABS. 

 

 

Fig 2.1 Quarter Vehicle Model 
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The longitudinal velocity of the vehicle and the rotational speed of the wheel constitute the 

degrees of freedom for this model. The governing two equations for the motions of the 

vehicle model are as follows: 

For braking force balance in longitudinal direction (vehicle) 

m ax = - µ FN         m 
    

   
 = - µ FN      (1) 

Summing torque at wheel centre (wheel) 

Jω αω = µ R FN - Tb       Jω ω̇  = µ R FN - Tb     (2) 

For convenience a slip ratio is defined according to:  

  
   – ω  

  
          (3) 

Differentiatingon both sides with respect to time (t), we get 

  ̇ =  
 ̇        –   ω̇ 

  
         (4) 

The nomenclature in above equations is presented as follows 

Vx = linear velocity of vehicle 

ax = linear acceleration of vehicle 

ω = rotational speed of wheel 

αω = angular acceleration of wheel 

Tb = braking torque 
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  = slip ratio 

µ = friction coefficient 

R = radius of tire 

m = mass of the model 

State space representation of above equation is presented below. During braking, the slip 

ratio is dependent on the input torque u and the vehicle velocity Vx. The system state 

variables are: 

x1 = Sx,          (5a) 

x2 = Vx,          (5b) 

x3 =  ,           (5c) 

where Sx is the stopping distance. The state space equations are 

 ̇  = x2          (6) 

 ̇  = 
      

 
          (7) 

 ̇  = 
     

  
(
    

 
   

  

  
)   

 

     
         (8) 

By controlling the braking torque u in the simulation tests to evaluate the performance of 

ABS, using different control strategies. 
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2.2 PROBLEM FORMULATION 

The relation of the frictional coefficient   versus wheel slip ratio  , provides the explanation 

of the ability of the ABS to maintain vehicle steerability and stability, and still produce 

shorter stopping distances than those of locked wheel stop. The friction coefficient can vary 

in a very wide range, depending on factors like: 

(a) Road surface conditions (dry or wet), 

(b) Tire side-slip angle, 

(c) Tire brand (summer tire, winter tire), 

(d) Vehicle speed, and 

(e) The slip ratio between the tire and the road. 

Friction model used in [5] is used here. It gives value of coefficient of friction as a function 

of linear velocity and slip ratio. 

  ( ,Vx) = [c1 (1-         ) - c3  ]  
            

(9) 

Where 

C1 is the maximum value of friction curve; 

C2 the friction curve shapes; 

C3 the friction curve difference between the maximum value and the value at   = 1; and 

C4 is the wetness characteristic value. It lies in the range 0.02–0.04s/m. 

Where for dry asphalt as the surface condition, above parameters are 
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C1= 1.2801, C2 = 23.99, C3=0.52, C4= .03 (assumed) 

The effective coefficient of friction between the tire and the road has an optimum value at 

particular value of wheel slip ratio. This value differs according to the road type. From Fig 

2.2 it is clear that, for almost all road surfaces the frictional coefficient value is optimum 

when the wheel slip ratio is approximately 0.2 and worst when the wheel slip ratio is 1 in 

other words when wheel is locked. So, objective of ABS controller is to regulate the wheel 

slip ratio ( ) to target value of 0.2 to maximize the frictional coefficient (µ) for any given 

road surface. 

 

Fig 2.2 Frictional Coefficient of Road Surface v/s Wheel Slip Ratio 

2.3 CONTROL SYSTEM 

A feedback control system is a closed loop control system in which a sensor monitors the 

output (slip ratio) and feeds data to the controller which adjusts the control (brake pressure 
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modulator) as necessary to maintain the desired system output (match the wheel slip ratio to 

the reference value of slip ratio). 

Fig 2.3 shows the block diagram of feedback control system 

 

 

 

 

 

 

 

This feedback controller can be any one of 

1) Proportional Control 

2) Proportional Derivative Control 

3) Proportional Integral Control 

4) Proportional Integral Derivative Control 

 

Proportional Feedback Control (P-type) 

A proportional controller attempts to control the output by applying input to the system which 

is in proportion to measured error (e) between the output and the set-point. Here control 

torque is  

Controller 

Sensor 

System 

System 

Input (u) 

Measured 

Error (e) 

Measured Output 

System 

Output 
Reference 

+ 

- 

Fig 2.3 Block Diagram of Feedback Control System 
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u = Kp e         (10) 

Where Kp is known as the proportional gain of the controller. 

e =  d -           (11) 

where  d is desired output and   is actual output measured by sensor 

Proportional Derivative Feedback Control(PD-type) 

This controller feeds both the error with constant gain (Kp) and the differentiation of error 

with constant gain (Kd) to the system in order to maintain the output of system at the set 

point. 

u = Kp e + Kd 
  

  
        (12) 

Where Kd is differential gain of the controller 

 

Proportional Integral Feedback Control(PI-type) 

Here input to the system is the error with constant gain (Kp) plus the integral of error with 

constant gain (Ki) to control the system output. 

u = Kp e + Ki  ∫            (13) 

Where Ki is integral gain of the controller. 

 

Proportional Integral Derivative Feedback Control (PID-type) 
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In PID controller system input is the addition of error with constant gain (Kp), integral of 

error with constant gain (Ki), and differential of error with constant gain (Kd). 

u = Kp e + Ki∫      + Kd  
  

  
      (14) 

To design ABS with control systems mentioned above the values of Kp, Ki and Kd of the 

controller can be determined by 

1) Trial and error, 

2) Manual tuning, and 

3) Simulation. 

Appropriate values of Kp, Ki and Kd are calculated using trial and error method by observing 

trend of graph of slip ratio versus time obtained using Simulink software tool.
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2.4 SIMULINK MODELS 

Simulink model of quarter vehicle 

In order to model the ABS with different controllers system incorporating the dynamic 

equations is modelled in Simulink environment. Fig 2.4 shows the block diagram of the 

Simulink model representing vehicle dynamics during straight line braking. 

 

 

 

 

 

 

 

 

Fig 2.4 Block Diagram Representing Dynamics of Equations 

 

To model this system in Simulink, several subgroups are used to avoid confusion. 

Slip ratio   calculation given in Eq. (9) can be formed as a subgroup shown in fig 2.5 

Braking 

Torque Tb 

(Input) 

Eq. (2) 

Eq. (10) 

µ 

calculation 

Eq. (1) 

Eq. (9) 

λ 

calculation 

µ 

FN 

ax 

Vx 

  

aω 

Vx 

  

Gain 
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Fig 2.5 Subgroup of Slip Ratio Calculation 

 

Similarly friction coefficient (µ) calculation can be formed in one subgroup 

 

Fig 2.6 Subgroup of µ Calculation 

 

Combining sub groups and modelling remaining equations into Simulink model, we get 

complete Simulink model of quarter vehicle during straight line braking without feedback 

control as shown in Fig 2.7 
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Fig 2.7 Vehicle Model Without Feedback Control 

 

 

 

 

Simulink model of ABS using proportional feedback control 

 

Simulink model shown in Fig 2.7 is modified to use it as a system subgroup in modelling of 

feedback control system. Fig 2.8 shows the modified version in which a SUM box is added 

between input terminal (which is control torque u) and brake torque Tb. So the total torque 

input  T to wheel is 

T = u + Tb         (15) 

This subgroup formed is shown in Fig 2.9 
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Fig 2.8 Modified Vehicle Model Without Feedback Control 

 

 

 

 

 

 

 

 

 
 

Fig 2.9 Subgroup of System  

 

 

 

 

 

 

 

Newly formed subgroup shown in Fig 2.8 is integrated with proportional feedback control 

with proportional gain Kp as shown in Fig 2.10 

 

 

 



21 |  P a g e
 

 
 

Fig 2.10 P-type Feedback control 

 

 

 

Simulink model of ABS using proportional deferential feedback control 

 

 

In this case system is fed with proportional deferential feedback control. Where Kp is 

proportional gain and Kd is differential gain. This system is shown in Fig 2.11 

 

 

 

Fig 2.11 PD-type Feedback control 
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Simulink model of ABS using proportional integral feedback control 

 

System is fed with proportional integral feedback control where Kp is proportional gain and 

Ki is integral gain. This system is shown in Fig 2.12 

 
Fig 2.12 PI-type Feedback control 

 

 

 

 

Simulink model of ABS using proportional integral deferential feedback control 

 

By combination of above systems we get PID- type control system where Kp is proportional 

gain’ Kd is differential gain and Ki is integral gain are used. This system is shown in Fig 2.13 



23 |  P a g e
 

 

Fig 2.13 PID-type Feedback control 
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CHAPTER 3 

RESULTS & DISCUSSION 

 

This chapter describes the controlled slip response outputs using linear control models. 

 

3.1 INPUT PARAMETERS USED 

To simulate the performance of different vehicle parameters with and without any feedback 

control system under straight line braking following input parameters are considered [5]. 

R=0.33 m, 

m =342 kg, 

Jw =1.13 kgm
2
, 

g =9.81 m/s
2
, 

Max braking torque = 1200Nm 

Initial linear velocity = 27.78m/s = 100 km/h 

Initial rotational speed = 
     

   
  = 84.18 rad/s 

λd = 0.2 

Kp = 250 

Kd = 5 

Ki = 10 
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3.2 STRAIGHT LINE BRAKING OF VEHICLE WITHOUT FEEDBACK  

Fig 3.1 and 3.2 shows the behaviour of vehicle parameters during straight line braking 

without any controller. 

Fig 3.1 a, b and Fig 3.2 a, b are plot of vehicle angular velocity, stopping distance, vehicle 

linear velocity and slip ratio respectively versus time. 

 

 

Fig 3.1: a) wheel angular speed v/s time; b) stopping distance v/s time 
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Fig 3.2: a)vehicle linear velocity v/s time; b) slip ratio v/s time 

 

It is seen that slip ratio has been varying from 0 to 1 from application of brakes to the wheel 

stopping instant. Even the wheel speed is zero at .42 seconds, the stopping distance of 45 m 

occurs at 3.6 seconds. This indicates that wheel has been locked before vehicle comes to halt. 

That means during braking steerability is lost at .42 seconds due to locking of wheel 
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3.3 PROPORTIONAL CONTROL 

When feedback control is incorporated in the system to maintain constant slip ratio value, 

simple linear model called P- control with a constant gain Kp comes first. 

Fig 3.3 and Fig 3.4 shows plot of slip ratio versus time and stopping distance versus time 

respectively. 

 

 

 

Fig 3.3: slip ratio v/s time (Kp = 250) 
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Fig 3.4: stopping distance v/s time 

Compare to 45 m stopping distance and increasing slip ratio in open loop case, P – controller 

supplies a control force and maintain slip ratio with 0.01 steady state error and the stopping 

distance reduced to 33 m. 

 

3.4 PROPORTIONAL DERIVATIVE CONTROL 

For PD type feedback control, plots of slip ratio versus time and stopping distance versus 

time are obtained. These plots are shown in Fig 3.5 a and b. 



29 |  P a g e
 

 

Fig 3.5: a) slip ratio v/s time; b) stopping distance v/s time 

As seen it is similar to P type controller. In this case stopping time is 2.4 seconds and 

stopping distance is 32 m. Stopping time and stopping distance are decreased slightly.  

3.5 PROPORTIONAL INTEGRAL CONTROL 

In this case also the plots of slip ratio versus time and stopping distance versus time are 

obtained. These plots are shown in Fig 3.6 a and b 

 

Fig 3.6: a) slip ratio v/s time; b) stopping distance v/s time 
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There is no much variation. This time stopping distance found to be 33 m and stopping time 

found to be 2.5 seconds. 

3.6 PROPORTIONAL INTEGRAL DERIVATIVE CONTROL 

Similarly in case of PID type feedback control plots of slip ratio versus time and stopping 

distance versus time are obtained. 

 

Fig 3.7: a) slip ratio v/s time; b) stopping distance v/s time 

Here the stopping time and stopping distance are slightly reduced. Stopping time is 2.3 

seconds and stopping distance is 31 m. Overall Comparisons are tabulated in Table 3.1. 
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Table 3.1 Braking Performance Results 

ABS Controller 

 

Stopping time 

(meters) 

Stopping distance 

(seconds) 

Braking Without 

controller 

45 3.6 

P-type 33 3 

PD-type 32 2.4 

PI-type 33 2.5 

PID-type 31 2.3 

 

3.7 DISCUSSION 

From Table 3.1, it is clear that ABS improves braking performance of vehicle. Comparing 

slip ratio v/s time graphs of different control schemes suggests that a proportional controller 

(Kp) will have the effect of reducing the rise time and will reduce but never eliminate 

the steady-state error. An integral control (Ki) will have the effect of eliminating the steady-

state error, but it may make the transient response worse. A derivative control (Kd) will have 

the effect of increasing the stability of the system, reducing the overshoot, and improving the 

transient response. Effects of each of controllers Kp, Kd, and Ki on a closed-loop system are 

summarized in the table shown below. 

Table 3.2 General Effects 

Gain Response Rise time Over shoot Settling time 

Kp Decrease Increase Small Change 

Ki Decrease Increase Eliminate 

Kd Small Change Decrease Decrease 

 

 

http://www.library.cmu.edu/ctms/ctms/extras/ess/ess.htm
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CHAPTER 4 

CONCLUSION 

In this thesis an attempt is made to understand the application of various type of linear controller 

used for antilock braking systems. The system was modeled with a quarter vehicle dynamics and 

differential equation of motion was formulated. The slip ratio is used control as a criterion for 

this control work. Friction force and normal reaction are function of slip ratio and in turn entire 

equations were nonlinear. The second order differential equations were written as three state 

space equations (1
st
 order equations) and solutions are obtained by time integration method and 

are directly achieved with MATLAB
TM

 Simulink block diagrams. The time histories of the 

wheel, stopping distance of the vehicle, and slip factor variation are obtained for benchmark 

problem available in literature. Various central strategies like P-type, PD-type, PI-type, and PID-

type have been implemented to augment the constant braking torque so as to control the slip 

ratio. 

 

4.1 FUTURE SCOPE 

In this work system is nonlinear model and controller is a linear type hence the effectiveness of 

the controller may not be good. In this line, as a future scope of the work well known linear 

controllers like neural networks, neuro-fuzzy, and fuzzy PID systems may be employed. Also, 

real time implementation of the control logic is needed with a on board micro-controller mounted 

over a small scaled model of the vehicle. 
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