
Speech Recognition in Hindi

Thesis submitted in partial ful�llment

of the requirements for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Abhisek Paul (107CS058)
Satyabrata Chayani (107CS060)

under the guidance of

Prof. Banshidhar Majhi

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769 008, Orissa, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769 008, Orissa, India

Certi�cate

This is to certify that the work in this thesis Report entitled "Speech Recognition in

Hindi" submitted by Abhisek Paul(107CS058) and Satyabrata Chayani(107CS060)

has been carried out under my supervision in partial ful�llment of the requirements for the

degree of Bachelor of Technology in Computer Science during session 2010-2011 in the de-

partment of Computer Science and Engineering, National Institute of Technology, Rourkela,

and this work has not been submitted for any degree or academic award elsewhere.

Place: NIT, Rourkela Prof. Banshidhar Majhi

Date: 10/05/11 Professor

Department of CSE

NIT Rourkela

2

ACKNOWLEDGEMENT

First of all we would like to express our deep sense of respect and gratitude towards our

advisor Prof. Banshidhar Majhi, Professor, Department of Computer Science and Engi-

neering, for his guidance, support, motivation and encouragement throughout the period this

work was carried out. His readiness for consultation at all times, his educative comments,

his concern and assistance even with practical things have been invaluable.

We would also like to convey our sincerest gratitude and indebtedness to our entire faculty

members and sta� of the Department of Computer Science and Engineering, NIT Rourkela,

who bestowed their e�orts and guidance at appropriate times without which it would have

been very di�cult on our part to �nish the project work. A vote of thanks to our fellow

students for their friendly co-operation and suggestions.

Abhisek Paul(107CS058)

Satyabrata Chayani(107CS060)

3

Abstract

This project is an attempt towards reducing the gap between the computer and

the people of rural India, by allowing them to use Hindi language, the most common

language being used by the people in rural areas. Speech recognition will, indeed, play

a very signi�cant role in promoting the technology in the rural areas. Although many

speech interfaces are already available, the need is for speech interfaces in local Indian

languages, hence we attempt to build a speech recognition system in Hindi, in this

project.

The project report explains in brief about the basic model of a speech recognition

engine and its di�erent modules. It also briefs about the construction of the Hindi

language dictionary and training the model for recognition of speech and �nally testing

the model for accuracy. The results of the tests have been provided and �nally the

report ends with the derived conclusion and recommended future work.

1

Contents

1 Introduction 5

1.1 Existing Systems . 5

1.2 Speech Recognition - De�nition and Issues 6

1.3 Design of the System . 6

1.4 Structure of Speech . 7

2 Sound Recording and Word Detection 8

2.1 Sound Recorder . 8

2.2 Word Detector . 9

3 Feature Extraction 9

3.1 Mel Frequency Cepstrum Coe�cients computation 11

4 Knowledge Models 12

4.1 Acoustic Model . 12

4.1.1 Word Model . 12

4.1.2 Phone Model . 12

4.2 Language Model . 13

5 Implementation 13

5.1 Requirements for System preparation . 13

5.1.1 Phone Set . 13

5.1.2 Dictionary . 13

5.1.3 Multiple Pronunciations . 14

5.1.4 Filler Dictionary . 14

5.1.5 Transcript File . 15

5.1.6 Train �leids and Test �leids . 15

5.2 Language Model . 15

5.2.1 Components provided for Training 15

5.2.2 Components provided for Decoding 16

2

5.2.3 Setting up the system . 16

5.2.4 Setting up the trainer . 17

5.2.5 Performing a preliminary training run 18

6 Pruning and Performance Parameters 20

6.1 Beam Pruning . 20

6.2 Absolute Pruning . 20

6.3 Pruning Parameters . 21

7 Creating Language Model for Hindi 21

7.1 lt-sphinx3_decode parameters . 24

7.1.1 Primary Flags . 24

7.1.2 Additional Con�guration Flags . 25

8 Results 25

9 Conclusion 28

10 Future Work 28

3

List of Figures

1 Block diagram of Speech Recognition system 7

2 Block diagram of Feature Extraction module 10

3 Di�erent window functions (a)Rectangle (b)Bartlett (c)Hamming (d)Cosine . 11

4 Flow diagram of Language Model . 22

4

1 Introduction

In todays world, computers have become absolutely indispensable especially for the people

of urban India. But for the development of the country, where most of the people live

in rural areas as a whole, the technology has to reach them as well. The various computer

accessories, like the keyboard and the mouse, require a certain level of expertise from the user,

which cannot be expected from rural people, or for that matter, the physically challenged

or blind people. Besides, they also require people to be pro�cient in English as well, to be

able to use the computer. In a country like India, where the literacy rate is quite low, the

above-mentioned constraints have to be discarded, for the technology to be able to reach the

grass-root level. This is where speech recognition becomes useful.

The two main components of speech interfaces are: speech synthesiser and speech recog-

niser. The speech synthesiser transforms the written text into speech where as the speech

recogniser understands the spoken words and changes them into text.

1.1 Existing Systems

Although speech recognition systems are already available, most of them have been built for

English language. The languages model and the language dictionary that have been used in

these systems are in English, and hence, they are not of much use to the rural people. How-

ever, there has been some signi�cant work towards developing a speech recognition system

in Hindi o� late. [1] explains how an acoustic model for English can be used to develop an

acoustic model for Hindi.

Many speech recognition software and language processing tools have been developed for

this purpose. ISIP and Sphinx are the most commonly used speech recognition software in

open source.

5

1.2 Speech Recognition - De�nition and Issues

Speech recognition is the process of converting an input acoustic signal (input in audio for-

mat in the form of spoken words) and recognises the various words contained in the speech.

These recognised words can be the �nal results, which may serve as commands and control,

or they may serve as input to further language processing. In simple words, speech recogni-

tion can be put together as the ability to take the audio format as input and then generate

the text format from it as output.

Speech recognition involves di�erent steps:

1. Voice recording

2. Word boundary detection

3. Feature extraction

4. Recognition with the help of language models

1.3 Design of the System

The basic block diagram of the speech recognition system as explained in [5] has been given

below:

The di�erent components of the recognition system [5] have been de-briefed below:

1. Sound recording and Word detection Component This component takes the input

from the audio recorder, preferably microphone, and identi�es the words in the input signal.

Word detection is usually done by using the energy and the zero crossing rate of the signal.

The output of this component is then sent to the feature extractor module.

2. Feature Extractor component This component is generally responsible for generating

the feature vectors for the audio signals input to it from the word detection component. It

generates the MFCC (Mel Frequency Cepstrum Coe�cients) which is used later to identify

the audio signal uniquely.

3. Recognition System It is the most important part of the design model. It is a con-

tinuous, multi-dimensional HMM (Hidden Markov Model-based) component which takes as

6

Figure 1: Block diagram of Speech Recognition system

input, the feature vectors generated from the feature extractor component and then �nds

the best or most suitable match from the knowledge model

4. Knowledge Model This component, along with the language dictionary, is used for

identifying the sound signal.

1.4 Structure of Speech

Speech is a form of continuous audio stream where stable states get mixed with dynamically

changed states. In this case, more or less similar classes of sounds called phones can be

de�ned - words are considered to be built of phones. Di�erent factors like phone context,

style of speech, speaker and many other factors a�ect the acoustic property of the waveform

corresponding to the phones. Moreover, co articulation makes phones sound very di�erent

from their canonical representation. Furthermore, the transitions between the phones are

also very important, and thus come the concept of diphones- parts of speech between two

7

consecutive phones.

Often, three states in phone are selected for HMM recognition, with the �rst part being

dependent on the previous phones, the middle part being stable and the last part being

dependent on the subsequent phone.

The non-linguistic sounds are usually referred to as �llers (breath, um, uh, cough, etc.). The

words and these other non-linguistic sounds form utterances- which are separate chunks of

audio between pauses.

2 Sound Recording and Word Detection

This component as described in [5] is responsible for capturing the input from a microphone

and then forwarding it to the feature extraction component of the system. Before forwarding

to the feature extraction module, it also identi�es the segments of the sound containing the

words, that is, word detection. It is the responsibility of this module to save the audio �les

in the .WAV format which is required for further training the model.

2.1 Sound Recorder

Voice recording is the �rst step in speech recognition. The sound recorder takes the input

from the microphone, saves these audio �les in the .WAV format and �nally forwards them

to the next module. It also supports change of di�erent factors like the sampling rate, the

number of channels and the size of the sample. In this project, the sampling rate of the

sound recorder has been kept at 16000 samples per second.

The sound recorder actually has two classes or functions implemented in it - sound reader

class and sound recorder class.

1. It is the responsibility of the Sound Reader class to receive the input audio from the

microphone, with its parameters being sampling rate, number of channels and the sample

size. It has three basic functions- Open, Read and Close. The Open function opens the

device in the read mode, the Read function checks if there is some valid sound present in

8

the audio signal and then returns the content, while the Close function releases the device.

2. It is the responsibility of the Sound Recorder class to convert the input audio signal

from its raw format to .WAV format.

2.2 Word Detector

In speech recognition system, detection of words in sound signals is very important. It is able

to detect the silence region, and thus, anything other than the region of silence is considered

to be a word. Usually, the zero crossing rate is used to detect the region of silence.

For word detection, the audio signal is sampled over a particular time interval, for which

the energy and the zero crossing rates are calculated. Zero crossing rate is de�ned as the

number of times the wave goes from the positive value to the negative value and vice-versa.

The �rst 100 milli-seconds are considered to be the region of silence during which the average

zero crossing rate is calculated to determine the background noise. Upper threshold value

for zero crossing rate is �xed as 2 times this value while the lower threshold value is set to

0.75 times the upper threshold.

During word detection, if the zero crossing rate goes above the upper threshold value and

stays there for consecutive three sample periods, then it is assumed that word is present.

Thus, recording is started and continues till the zero crossing rate falls below the lower

threshold value and stays there for a minimum period of 30 milli-seconds continuously.

3 Feature Extraction

The feature extraction module [5] is one of the most important modules in the speech recog-

nition system. To identify a spoken word, the speech recognition system has to identify and

di�erentiate between di�erent sounds in the same way as human beings do. However, the

most important point is that although the same word, if spoken by di�erent people, produces

di�erent types of sound waves, human beings still have the ability to understand that the

spoken word is the same. This is primarily because of the fact that these words, although

9

spoken by di�erent people, tend to have some common features, which makes recognition

possible. Thus, in the same way, these features have to be extracted by the feature extractor

module for e�cient speech recognition.

The features actually get extracted over de�nite intervals of time, this time interval is called

Figure 2: Block diagram of Feature Extraction module

a window and the data extracted during this interval is called the frame. Usually the fea-

tures get extracted every 10 milli-seconds, this is known as the frame rate, while the window

duration is usually 25 milli-seconds. Di�erent types of windows used for feature extraction

are:-

1. Rectangular Window : w(n) = 1

2. Bartlett window : w(n) = 0.5 (1 - cos (2*pi*n / (N-1)))

3. Hamming Window : w(n) = 0.54 - 0.46 cos (2*pi*n / (N-1)))

4. Cosine Window : w(n) = cos ((pi*n/n-1) - (pi/2))

Out of these windows, the Hamming window is the most commonly used window for

10

speech recognition system as it involves the least possible amount of disturbance or distor-

tion.

Figure 3: Di�erent window functions (a)Rectangle (b)Bartlett (c)Hamming (d)Cosine

3.1 Mel Frequency Cepstrum Coe�cients computation

Di�erent temporal and spectral analysis is done on the sound signals to extract the use-

ful features, the most important of them being the Mel Frequency Cepstrum Coe�cients

11

(MFCC). MFCC is considered to be the closest possible approximation to the human ear.

MFCC is generated from the sound signal by passing through high band pass �lters which

results in higher frequencies becoming more distinct than the lower frequencies. MFCCs are

the coe�cients that collectively make up an MFC. They are derived from a type of cepstral

representation of the audio clip.

4 Knowledge Models

Before the speech recognition system is able to recognise the input, it is necessary to train

the system. During training, the system generates the acoustic and language models from

the data given by the user. These models have been described in [5].

4.1 Acoustic Model

Features that were extracted from the input sound by the extraction module have to be

compared with some prede�ned model to identify the spoken word. This model is known as

the Acoustic Model.

4.1.1 Word Model

In word model, the words are modelled as a whole. During recognition, the input sound is

matched against each word present in the model and the best possible match is then consid-

ered to be the spoken word.

4.1.2 Phone Model

In phone model, only parts of words called phones are modelled instead of modelling the

word as a whole. Instead of matching the sound with each word, we match the sound with

12

the words and recognise the parts. These parts are then put together to form a word.

In both these models, the silence and the �ller words have to be modelled. Filler words are

actually the ones that are produced by the human beings between two words.

4.2 Language Model

Providing a fair idea about the context and the words that can occur in the context, to the

speech recognition system, is the main idea of the language model. It provides an idea about

the di�erent words that are possible in the language and the sequence in which these words

may occur.

The language model developed and used in this project has been described in detail in the

next chapter.

5 Implementation

5.1 Requirements for System preparation

5.1.1 Phone Set

Phoneme is the basic or the smallest unit of sound in any language. In the phone set that

we have used to develop the speech recognition system for Hindi language, the phone set

consists of 59 phonemes. The di�erent phonemes that have been used are:-

A AA R I K K~N EI S T OO L P II N: Y M V U D G G B H J T: CH SH D: UU DH SHH

ND~BH AI AU TH PH PH~KH KH~D~RX CHH T:H GH D:H JH DH~O O- NJ~NG~L:

H: E- E J~SIL

5.1.2 Dictionary

A dictionary (also known as the pronunciation lexicon) speci�es the pronunciations of the

words as linear sequence of phonemes in such a way that each line in the dictionary contains

13

exactly one pronunciation speci�cation. An example dictionary has been shown below:-

ADHYAYANA A DH Y A Y A N A

TARAHA T A R A H A

SAMAADHI S A M AA DH I

YUDHISHHT:HIRA Y U DH I SHH T:H I R A

KHAADA KH AA D A

The pronunciation is completely case-insensitive, that is, it is not possible to have two dif-

ferent pronunciations KHAADA and khaada in the dictionary.

5.1.3 Multiple Pronunciations

A word may have more than one pronunciation with each one on a separate line. They are

distinguished by a unique parenthesised su�x for the word string, with the �rst appearance

in unparenthesised form. For example:-

BAHUTA B A H U T A

BAHUTA(2) B A H OO T A

5.1.4 Filler Dictionary

In addition to the regular lexicon that contains the words in the language for which we are

developing the recognition system, the Sphinx3 decoders also need a �ller lexicon to de�ne

the words that are not present in the language. To be more speci�c, the �ller dictionary

speci�es those words which are not present in the language model, but are still encountered

during normal speech. This �ller dictionary includes the special beginning-of-sentence and

the end-of-sentence tokens <s> and </s> respectively as well as the silence word <sil>.

However, all of them have the same SIL (silence-phone) as their pronunciation.

Example:-

<s> SIL

</s> SIL

<sil> SIL

14

It is important to make sure that there are no blank spaces after any line in the dictionary.

5.1.5 Transcript File

This �le included the sentences (or utterances) ,consisting of the spoken text to the corre-

sponding audio �les in the following format.

<s> KRXPAYAA KARAKEI YAHA LIKHA DIIJIEI </s> (test39)

<s> MUJHEI ISA CHIIJA KAA KUCHHA PATAA NAHIIN: HAI </s> (test40)

Each word in the transcript �le has to be present in the language dictionary.

Example:

PATAA P A T AA should be present in dictionary.

5.1.6 Train �leids and Test �leids

The train �leids �le contained each name of the .WAV �le that was spoken by the speaker

for training present in the .WAV directory.

On the other hand, the test �leids contained the name of the .WAV �le which was to be

tested by recording.

It is importnant that each word of the corpus is present in dictionary and also in the tran-

script �le.

For each phoneme , there must be at least one word which is present in the dictionary as

well as in the transcript �le.

5.2 Language Model

5.2.1 Components provided for Training

The SPHINX trainer trains the recognition system using a set of sample acoustic signals.

The trainer also needs to know which sound units whose parameters it has to learn and in

what sequence they appear, this information is usually provided in the transcript �le using

15

a tag. The trainer then looks at the trainer dictionary to map the words to a sequence of

sound units, besides it also uses the �ller dictionary to map the non-speech sounds to the

corresponding non-speech or speech-like sound units. Thus the components provided for

training as given in [7] are:-

1. Trainer source code

2. Acoustic signals

3. Transcript �le

4. Language dictionary

5. Filler dictionary

5.2.2 Components provided for Decoding

The data to be recognised are usually referred to as the test data. Altogether, the di�erent

tools provided for decoding are:-

1. Decoder source code

2. Language dictionary

3. Filler dictionary

4. Language model

5. Test data

6. Acoustic models (provided during training the system)

5.2.3 Setting up the system

First of all, a directory tutorial had to be created and then move to that directory. The de-

tailed procedure for setting up the data and the trainer and then performing a preliminary

training and decode run are explained in detail in [7]. The Sphinxbase usually provides two

databases for testing the data initially from which either one can be chosen. In this project,

AN4 database was chosen, which is a quite small database. AN4 was downloaded to the

tutorial directory and the contents were then extracted using the commands as given below:-

• mkdir tutorial

16

• cd tutorial

• gunzip -c an4_sphere.tar.gz | tar xf -

5.2.4 Setting up the trainer

The SphinxTrain, Sphinxbase and Sphinx3 were also downloaded to the tutorial directory

and installed from the respective tar �les and their contents were extracted by using the

commands:-

• gunzip -c SphinxTrain.nightly.tar.gz | tar xf -

• gunzip -c sphinxbase.nightly.tar.gz | tar xf -

• gunzip -c sphinx3.nightly.tar.gz | tar xf -

For compilation, the following commands were used:-

• cd SphinxTrain

• ./con�gure

• make

• cd ../sphinxbase

• ./con�gure

• make

• cd ../sphinx3

• make

• make install

After the code compilation, the tutorial was set up by copying all the executables and

scripts to the same folder where the data was present. For this, the following command is

required:-

• cd sphinx3

• perl scripts/setup_tutorial.pl an4

17

5.2.5 Performing a preliminary training run

After setting up the trainer we carry out a preliminary training run. The speech recognition

component cannot work directly with the input test acoustic signals. These signals have

to be �rst converted to a sequence of feature vectors, in this case the MFCCs which are

compared with the features of the stored signals and the test data is identi�ed. To perform

this parameterization, the following command is used:-

• perl scripts_pl/make_feats.pl -ctl etc/an4_train.�leids

For each word, a sequence of 13-dimensional vectors called feature vectors consisting of

the MFCCs will be computed by the above command. The MFCCs generated will be stored

in the /feats directory.

Now within the /scripts_pl directory there were several directories numbered from 00 to

99. We enter each directory and run the slave*.pl �le or in case there is a single .pl �le in

the directory, we run it.

• perl scripts_pl/00.verify/verify_all.pl

• perl scripts_pl/10.vector_quantize/slave.VQ.pl

• perl scripts_pl/20.ci_hmm/slave_convg.pl

• perl scripts_pl/30.cd_hmm_untied/slave_convg.pl

• perl scripts_pl/40.buildtrees/slave.treebuilder.pl

• perl scripts_pl/45.prunetree/slave.state-tying.pl

• perl scripts_pl/50.cd_hmm_tied/slave_convg.pl

• perl scripts_pl/90.deleted_interpolation/deleted_interpolation.pl

• perl scripts_pl/99.make_s2_models/make_s2_models.pl

We could have otherwise run the RunAll.pl script as following which also does the same:-

• perl scripts_pl/RunAll.pl

After we ran these commands, several new directories were created within the current direc-

18

tory which contained �les which were generated and were extremely essential in the course

of training. A .html �le appeared in the directory which contained the status report of the

job being launched and its progress. It was checked that the current slave*.pl script got

completed successfully before launching the next slave*.pl. These steps have been explained

in [7].

It has to be noted that during this process some of the steps are not required for the creation

of semi-continuous models and these scripts when invoked do nothing and are skipped.

perl scripts_pl/00.verify/verify_all.pl :

It is mainly responsible for checking whether the dictionary and the �ller dictionary agree

with the phone list. It also checks whether all the words in the transcript �le are also there

in the dictionary and also ensures that there are no duplicate entries present in the dictio-

nary. Besides it also ensures that all the phones present in the phone list appear at least once.

perl scripts_pl/10.vector_ vector_quantize/slave.VQ.pl :

This step was skipped because of continuous model.

perl scripts_pl/20.ci_hmm/slave_convg.pl :

This step trains the context independent (CI) models for the sub-words present in our dic-

tionary.

perl scripts_pl/30.cd_hmm_untied/slave_convg.pl :

This step trains the Context-Dependent models with untied states. They are required to

build the decision trees so that the states can be tied.

perl scripts_pl/40.buildtrees/slave.treebuilder.pl :

This script generates for each subword unit their corresponding decision trees.

perl scripts_pl/45.prunetree/slave.state-tying.pl :

This step prunes the decision trees and ties the states.

19

perl scripts_pl/50.cd_hmm_tied/slave_convg.pl :

This script trains the �nal models for the triphones in the corpus.txt �le which are called

the CD-tied models.

During training of the model, a few noncritical errors appeared like:

This step had 6 ERROR messages and 2 WARNING messages. Please check the

log �le for details.

The main causes of such errors were small amount of data in an4 and the bad quality of

recordings.

6 Pruning and Performance Parameters

To restrict the active search space to manageable limits, pruning is perormed, so that the

less promising state likelihoods are discarded during the recognition process.

6.1 Beam Pruning

At each instant, the decoder has a number of active HMMs to match with the next frame

of input speech. But it has to �rst eliminate those whose state likelihoods fall below certain

threshold value, with respect to the best HMM state likelihood at that instant.

6.2 Absolute Pruning

Even with beam pruning, sometimes the number of active entities may become very large

to compute. If a large number of HMMs come within the pruning threshold, they are kept

active. However, when their number grows beyond certain limits, the chances of �nding

out the correct word are considerably reduced. In such cases, the active search space is not

allowed to grow beyond limits. It can be restricted using pruning parameters that restrict

20

the number of active entities at any point of time.

6.3 Pruning Parameters

The pruning parameters are the following:

• -beam: Determines which HMMs remain active at any given instant during recognition.

• -pbeam: Determines which active HMM can undergo transition to its successor in the

tree at any instant.

• -wbeam: Determines which words are recognized by the decoder.

• -maxhmmpf: Determines the number of HMMs that can remain active at any instant.

• -maxwpf: Determines the number of distinct words recognized at any given frame.

• -subvqbeam: Determines its active mixture components at any frame.

7 Creating Language Model for Hindi

A new experiment folder was created and named as /�nal directory under the /tutorial dirc-

tory.. The setup is copied from the directory /tutorial/an4 to the directory /tutorial/�nal,

using the simple command:-

• cd an4

• perl scripts_pl/copy_setup.pl -task �nal

For language modelling, we used the Version 2 of the CMU Cambridge Statistical Lan-

guage Modelling Toolkit. This toolkit has been explained in detail in [8].

The generation of the language model consists of the following steps as explained in [8]:

1. Initially the corpus.txt which contains the sentences and utterances in the spoken text

corresponding to the acoustic signals in the ./wav directory, is used to compute the word

frequencies

• cat corpus.txt | ./text2wfreq > a.wfreq

2. Then the vocabulary (a.vocab �le) is generated from the a.wfreq �le using the wfreq2vocab

21

Figure 4: Flow diagram of Language Model

script.

• cat a.wfreq | ./wfreq2vocab -top 20000 > a.vocab

3. Based on this vocabulary, a binary id 3-gram of the training text is created using the

text2idngram script.

• cat a.text | ./text2idngram -vocab a.vocab > .idngram

4. The idngram is then converted into a binay format language model using the idngram2lm

script.

• ./idngram2lm -idngram a.idngram -vocab a.vocab -binary a.binlm

5. Then the language model is created which is in the .arpa format which is recognised by

the sphinx speech recogniser using the binlm2arpa script.

• ./binlm2arpa -binary a.binlm -arpa �nal.arpa

6. The Binary Dump �le necessary for recognition is created by installing the lm3g2dmp

utility from the link mentioned below:

https://cmusphinx.svn.sourceforge.net/svnroot/cmusphinx/trunk/share/lm3g2dmp

22

Sphinx recognises the .DMP format which is generated by the following command

• ./lm3g2dmp input directory/corpus.arpa output directory

Then the di�erent sound units that we used to train the system are kept in the language

dictionary /�nal/etc/�nal.dic and the �ller dictionary /�nal/etc/�nal.�ller, and the sound

units in these �les are noted. The list of all the standard phonemes is also mentioned in the

�le /�nal/etc/�nal.phone. After re-designing these units, the �le /�nal/etc/sphinx_train.cfg

was altered accordingly:-

CFG_DICTIONARY = our training dictionary with full path.

CFG_FILLERDICT = our �ller dictionary with full path.

CFG_RAWPHONEFILE = our phone list with full path.

CFG_HMM_TYPE = this variable could have the values .semi. or .cont.. The most

common choice for SPHINX-3 is .cont..

CFG_STATESPERHMM = it could be any integer, but the values recommended are 3

or 5. Here we have used the value 5.

CFG_SKIPSTATE = this can be set to either no or yes. Here we have set this value to

yes.

CFG_N_TIED_STATES = this number can be set to any value between 500 and 2500.

In this case, we have set the value to 1000.

CFG_CONVERGENCE_RATIO = this value is set to a value lying between 0.1 and

0.001. This value is de�ned as the ratio of the di�erence in likelihood values between the

current iteration and the previous iteration of Baum-Welch and the total likelihood value in

the previous iteration of Baum-Welch. In this case, we have set this value to 0.04

Once all the desired changes were made, we trained a new set of models, by re-running all the

slave*.pl scripts from the directories /�nal/scripts_pl/00* through /�nal/scripts_pl/99* ,

or simply by running perl scripts_pl/RunAll.pl.

23

Then we changed the decoder parameters, a�ecting the recognition results, by editing the

�le /�nal/etc/sphinx_decode.cfg . Changing the decoding parameters present in the con�g-

uration �le, we decoded several times without retraining the acoustic models to �nd out as

to which values of the di�erent parameters give the best results.

The di�erent con�guration parameters of sphinx_decode.cfg �le are:-

DEC_CFG_GAUSSIANS = it counts the number of densities used by the decoder in

the recognition model. In this case, since we trained continuous models,it created interme-

diate models where the number of Gaussians was 1, 2, 4, 8, etc.

DEC_CFG_MODEL_NAME = it is the model name. By default, it uses the context

dependent (CD) tied state models but can also use the CD untied and CI models to analyse

how accuracy changes.

DEC_CFG_LANGUAGEWEIGHT = it de�nes the language weight and usually the

value ranges between 6 and 13.

7.1 lt-sphinx3_decode parameters

7.1.1 Primary Flags

The minimum parameters that we needed to provide were the input and output databases

or �les:

Model de�nition input �le: -mdef

Acoustic model �les : -mean, -var, -mixw, -tmat, -subvq

Main and �ller lexicons : -dict, -fdict

Language model binary dump �le: -lm

Filler word probabilities : -�llpen, -�llprob, -silprob

24

7.1.2 Additional Con�guration Flags

These are the additional parameters needed to obtain the right decoder con�guration.

Feature type con�guration: -cmn, -agc, -varnorm, -lowerf, -upperf, -n�lt, -sampre

control �le: -ctlo�set, -ctlcount

8 Results

To test data we used the following shell script:

##For recording data

rec -r 16000 /home/bablu/tutorial/�nal/wav/test.wav

For playing the test data.

play /home/bablu/tutorial/�nal/wav/test.wav

##For converting wav �le to MFCC

./wave2feat -verbose yes -ei wav -di /home/bablu/tutorial/�nal/wav -mswav

yes -eo mfc -do /home/bablu/tutorial/�nal/feat/ -alpha 0.97 -dither yes - doublebw

no -n_lt 40 -ncep 13 -lowerf 133.33334 -upperf 6855.4976 -n_t 512 -wlen 0.0256 -c

/home/bablu/tutorial/�nal/etc/project_test.�leids

For decoding test data

lt-sphinx3_decode

-mdef /home/bablu/tutorial/�nal/model_architecture/�nal.ci.mdef -senmgau .cont.

-mean /home/bablu/tutorial/�nal/model_parameters /�nal.ci_cont/means

-var /home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/variances

-mixw /home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/ mixture_weights

-tmat /home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/ transition_matrices

-lw 23 -feat 1s_c_d_dd -beam 1e-120 -wbeam 1e-80 -/home/bablu/tutorial/�nal/etc/�nal.dic

-fdict /home/bablu/tutorial/�nal/etc/�nal.�ller

25

-lm /home/bablu/tutorial/�nal/etc/�nal.ug.lm.DMP

-wip 0.2 -ctl /home/bablu/tutorial/�nal/etc/�nal_test.�leids

-ctlo_set 0 -ctlcount 1 -cepdir /home/bablu/tutorial/�nal/feat

-cepext .mfc -hyp /home/bablu/tutorial/�nal/result/�nal-1-1.match

-agc none -varnorm no -cmn current

Input data :

ISAKEI ATIRIKTA KACHCHII VA ADHAPAKII MACHHALIYOON: KAA SEIVANA

KADAAPI NA KIYAA JAAYEI

Output:

INFO: utt.c(195): Processing: testINFO: feat.c(1134): At directory /home/bablu/tutorial/�nal

/featINFO: feat.c(377): Reading mfc _le: /home/bablu/tutorial/�nal/feat/test.mfc[0..-1]INFO:

cmn.c(175): CMN: 4.56 0.28 0.08 0.22 -0.17 -0.12 -0.01 -0.15 -0.01 -0.13 0.02 -0.11 -0.05

...

INFO: fast_algo_struct.c(397): HMMHist[0..0](test): 767(100)INFO: lm.c(950): 2269307

tg(), 2133753 tgcache, 135545 bo, 2816 _lls, 63 in mem (15.3Backtrace(test) FV:test>

WORD SFrm EFrm AScr(UnNorm) LMScore AScr+LScr AScale fv:test> <sil> 0 114

20062080 -59089 20002991 20575472 fv:test> ISA 115 136 478572 -95685 382887 678950

fv:test> <sil> 137 143 810830 -59089 751741 913218 fv:test> KARA 144 187 553258 -

163914 389344 1502484 fv:test> KII 188 212 -304787 -123174 -427961 168131 fv:test> <sil>

213 223 1365539 -59089 1306450 1601337 fv:test> AN:KA 224 246 19773 -169283 -149510

525230

fv:test> THII 247 276 1109971 -151293 958678 1597874 fv:test> VA 277 306 782948 -160827

622121 1140490 fv:test> PAN:PA 307 344 745489 -169773 575716 1413909

fv:test> KI 345 365 -184050 -169794 -353844 87331

fv:test> MACHHALIYOON: 366 422 291205 -169773 121432 1665013

fv:test> KAA 423 442 -155944 -21527 -177471 -27273

fv:test> DEIRA 443 487 1962580 -183409 1779171 2911046

fv:test> PAN:PA 488 525 142783 -169794 -27011 738801

26

fv:test> AADHII 526 566 359401 -169794 189607 1115775

fv:test> NA 567 583 -109915 -161863 -271778 187951

fv:test> KIYAA 584 612 -190718 -37711 -228429 251749

fv:test> JAAYEI 613 652 1084740 -21527 1063213 1740168

fv:test> <sil> 653 766 19854433 -59089 19795344 20388884

FV:test> TOTAL 48678188 -2375497

FWDVIT: ISA KARA ATIRIKTA AN:KA THII VA ADHAPAKII MACHHALIYOON:

KAA DEIRA PAN:PA AADHII NA KIYAA JAAYEI

(test)FWDXCT: test S 60257593 T 48354157 A 48678188 L -324031 0 20062080 -7675 <sil>

115 478572 -12903 ISA 137 810830 -7675 <sil> 144 553258 -22650 KARA 188 -304787 -

16830 KII 213 1365539 -7675 <sil> 224 19773 -23417 AN:KA 247 1109971 -20847 THII 277

782948 -22209 VA 307 745489 -23487 PAN:PA 345 -184050 -23490 KI 366 291205 -23487

MACHHALIYOON: 423 -155944 -2309 KAA 443 1962580 -25435 DEIRA 488 142783 -23490

PAN:PA 526 359401 -23490 AADHII 567 -109915 -22357 NA 584 -190718 -4621 KIYAA 613

1084740 -2309 JAAYEI 653 19854433 -7675 <sil> 767 INFO: stat.c(156): 767 frm; 0 cd-

sen/fr, 177 cisen/fr, 0 cdgau/fr, 158 cigau/fr, Sen 0.01, CPU 0.01 Clk [Ovrhd 0.01 CPU 0.01

Clk]; 526 hmm/fr, 67 wd/fr, Search: 0.07 CPU 0.07 Clk (test) INFO: corpus.c(661): test:

0.6 sec CPU, 0.6 sec Clk; TOT: 0.6 sec CPU, 0.6 sec Clk INFO: stat.c(206): SUMMARY:

767 fr; 0 cdsen/fr, 177 cisen/fr, 0 cdgau/fr, 158 cigau/fr, 0.01 xCPU 0.01 xClk [Ovhrd 0.01

xCPU 0 xClk]; 526 hmm/fr, 66 wd/fr, 0.07 xCPU 0.07 xClk; tot: 0.08 xCPU, 0.08 xClkroot

23425 64.0 0.2 4932 2636 pts/0 S+ 03:24 0:00 lt-sphinx3_decode -mdef

/home/bablu/tutorial/�nal/model_architecture/�nal.ci.mdef -senmgau .cont. -mean

/home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/means -var

/home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/variances -mixw

/home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/mixture_weights -tmat

/home/bablu/tutorial/�nal/model_parameters/�nal.ci_cont/transition_matrices -lw 7 -

feat 1s_c_d_dd -beam 1e-120 -wbeam 1e-80 -dict

27

/home/bablu/tutorial/�nal/etc/�nal.dic -fdict /home/bablu/tutorial/�nal/etc/�nal.�ller -

lm /home/bablu/tutorial/�nal

/etc/�nal.ug.lm.DMP -wip 0.2 -ctl /home/bablu/tutorial/�nal/etc/�nal_test.�leids -ctlo_set

0 -ctlcount 1 -cepdir

/home/bablu/tutorial/�nal/feat -cepext .mfc -hyp /home/bablu/tutorial/�nal/result/�nal-

1-1.match -agc none -varnorm no -cmn currentro ot 23426 0.0 0.1 4652 1088 pts/0 S+ 03:24

0:00 sh -c ps aguxwww | grep sphinx3_decoderoot 23428 0.0 0.0 4044 708 pts/0 R+ 03:24

0:00 grep sphinx3_decode

9 Conclusion

In this project, sound in the form of Hindi speech was recorded with the help of microphone.

A Hindi language dictionary and a �ller dictionary was created along with the transcript

�le, which was used for training a word-based acoustic model.

This model was then used to recognise words spoken by other speakers. This speech

recognition system gave quite satisfactory results when it was tested for words whose corre-

sponding sound signals had been used to train the model.

10 Future Work

In this project, the speech recognition system in Hindi along with the Hindi language model

has been developed and tested. The trainer and the decoder con�guration �les have several

parameters, these parameters can be tested to improve the e�cieny of the speech recognition

system.

Besides, other than Hindi, this speech recognition system can be further extended to

include other regional languages as well, by developing their corresponding language dictio-

28

naries. This will add to the Development of Multimodal User Interface (DMU).

References

[1] Samudravijaya K and Maria Barot.A comparison of public domain software tools for

speech recognition. Workshop on Spoken Language Processing, 2003, pages 125-131.

[2] N. Rajput M. Kumar and A. Verma.A large-vocabulary continuous speech recognition

system for hindi.IBM Journal for Research and Development

[3] L.R. Bahl, P.F. Brown, P.V. deSouza, R.L. Mercert. A tree-based statistical language

model for natural language speech recognition IEEE Transaction on Acoustic, Speech,

Signal Processing, Vol.37, July 1989, pages 1001-1008.

[4] L. R. Bahl, S.V. De Gennaro, P.S.Gopalakrishnan, R.L. Mercer.A fast approximate acous-

tic match for large vocabulary speech recognition IEEE Transactions on Speech and Audio

Processing, Jan. 1993, pages 59-67.

[5] Ripul Gupta.Speech Recognition for Hindi M.Tech Thesis, IIT Bombay

[6] L. R. Rabiner.A tutorial on hidden markov models and selected applications in speech

recognition Proceedings of the IEEE, 1989, pages 256-286.

[7] http://www.speech.cs.cmu.edu/sphinx/tutorial.html Robust group's Open Source Tuto-

rial. Carnegie Mellon University.

[8] http://www.speech.cs.cmu.edu/SLM/toolkit_documentation.html The CMU-

Cambridge Statistical Language Modeling Toolkit v2

29

