
Resource Allocation Optimization through

Task Based Scheduling Algorithms in

Distributed Real Time Embedded Systems

A THESIS

SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR DEGREE OF

BACHELOR OF TECHNOLOGY

IN THE DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

by

Swagat Mishra

107CS010

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela-769 008, Orissa, India

May 2011

Supervisor: Prof. P. M. Khilar

1

CERTIFICATE

This is to certify that the work in the thesis entitled ’Resource Allocation Opti-

mization through Task Based Scheduling Algorithms in Distributed Real

Time Embedded Systems’ by Swagat Mishra, Roll No: 107CS010 is a record

of an original research work carried out by him under my supervision and guidance

in partial fulfillment of the requirement for the award of the degree of Bachelor of

Technology in Computer Science Engineering at National Institute of Tech-

nology, Rourkela.

To the best of my knowledge the matter embodied in the thesis has not been submit-

ted to any other university/institute for the award of any degree or diploma.

Prof. Pabitra Mohan Khilar

Department of Computer Science and Engineering,

National Institute of Technology,

Rourkela-769008

i

ACKNOWLEDGEMENT

Words will do no justice to the constant support and encouragement extended by

Prof. P. M. Khilar who guided this thesis. If the work has seen light today, it is only

because of his motivation during times of hardship.

Learning is a gradual process of assimilation of learned concepts and cultivating it

into the knowledge base. It was an honour to learn from illustrious individuals like

Prof. A. K. Turuk,Prof. M.N Sahoo and Prof. S. K. Rath. Whatever little I could

learn from them surely helped me smoothen the learning curve, broaden horizons and

sustain interest and passion in my work.

I also express my indebtness to my friends who playfully taught me several lessons of

a life, something that is a treasure trove for me. Their indirect help in this thesis is

worthy of mention.

I would also like to acknowledge the help of Prof. P.K. Sa without whom this thesis

would not look as good as it does today.

Finally, a special thaks to the Almighty for seeing this work through and renewing

satisfaction and confidence in me.

Swagat Mishra

ii

Contents

Certificate i

Acknowledgement ii

List of Figures iv

List of Algorithms v

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Overview . 2

1.3 Thesis Objective . 3

1.4 Assumptions . 3

1.5 Thesis Organisation . 4

1.6 Conclusion . 4

2 LITERATURE REVIEW 5

2.1 Scheduling Algorithms . 6

2.1.1 Graph Folding . 6

2.1.2 Algorithm . 6

2.2 Fault Detection . 6

2.3 Fault Recovery . 7

2.3.1 Uncoordinated Checkpointing 7

2.3.2 Coordinated Checkpointing 8

2.4 Temperature Control . 8

2.5 Conclusion . 9

3 System and Fault Model 10

3.1 System Model . 11

3.2 Fault Model . 12

3.3 Conclusion . 12

4 Algorithm 13

4.1 Algorithm Description . 17

4.1.1 Types of Nodes . 17

4.2 Heartbeat and checkpointing mechanism 18

iii

4.3 Algorithm Analysis . 18

Before setup of pipeline . 19

After setup of pipeline . 19

4.4 Conclusion . 19

5 Simulation 20

5.1 Implementation . 21

5.2 Simulation Results . 22

5.3 Implementation Analysis . 25

5.4 conclusion . 25

6 Conclusion 26

6.1 Conclusion . 27

iv

List of Figures

3.1 System Model . 11

4.1 Processor Interaction Diagram . 17

5.1 Fault Injection Simulation . 23

5.2 Messages passed with pipeline not set 23

5.3 Optimized Algorithm vs Old Algorithm 24

v

List of Algorithms

1 Working of Monitor Node . 14

2 Working of Processor Node . 16

vi

Abstract

Distributed embedded system is a type of distributed system, which consists of a

large number of nodes, each node having lower computational power when compared

to a node of a regular distributed system (like a cluster). A real time system is the

one where every task has an associated dead line and the system works with a con-

tinuous stream of data supplied in real time.Such systems find wide applications in

various fields such as automoble industry as fly-by-wire,brake-by-wire and steer-by-

wire systems. Scheduling and efficient allocation of resources is extremely important

in such systems because a distributed embedded real time system must deliver its

output within a certain time frame, failing which the output becomes useless.In this

paper, we have taken up processing unit number as a resource and have optimized

the allocation of it to the various tasks.We use techniques such as model-based re-

dundancy,heartbeat monitoring and checkpointing for fault detection and failure re-

covery.Our fault tolerance framework uses an existing list-based scheduling algorithm

for task scheduling.This helps in diagnosis and shutting down of faulty actuators be-

fore the system becomes unsafe. The framework is designed and tested using a new

simulation model consisting of virtual nodes working on a message passing system.

Chapter 1

INTRODUCTION

1

1.1 Motivation

Distributed embedded systems (DES) is a vastly important topic and represents a

revolution in the field of computing and information technology(IT) [1, 2].DES are

networks of embedded computers whose functional components are nearly indivisible

to end users. they have the potential to alter radically the way in which people interact

with their environment by linking a range of devices and sensors that will allow in-

formation to be collected, shared, and processed in unprecedented ways. Widespread

use of DES is fast spreading through the computing area and is indicative of the

long term trend of moving away from centralized, high cost, low volume products

towards distributed, low-cost, high-volume products. It could easily dwarf previous

revolutions in IT for two main reasons- Firstly, Moores law is primarily driving device

miniaturization and reduced power consumption (instead of increased speed). Sec-

ondly, the industry is fast becoming better equipped with development tool chains

(software included) and pervasive standards-based communications protocols. As a

consequence, embedded computing and communications technology can quite literally

be everywhere and extend into all aspects of lifean invisible component of almost ev-

erything in everyones surroundings. Distributed embedded real time systems handle

jobs that have deadlines (hard or soft) associated with them. Lately such systems

have found application in a number of sectors. They will be the informational power

grids for the 21st century. The major industry sectors where DES is likely to be used

are automotive, avionics/aerospace, industrial automation (and robotics); telecommu-

nications; consumer electronics and intelligent homes; health and medical systems. In

this thesis the applications of Distributed embedded real time systems in the field of

automotive and aerospace sectors is of most importance. In the automotive sector,

DES is used for transmission, airbags, antilock braking, cruise control, audio systems,

windows, doors, mirror adjustment etc. The DES units may be used in the form of

sensors, actuators or other control devices. An aerospace model may consist of such

activities like launch of a rocket or an aeroplane. These are real time applications of

DES and can incorporate the algorithms and frame work proposed in this paper for

efficient and fault tolerant scheduling.

1.2 Overview

In the automobile industry distributed embedded systems have very high safety con-

straints to avoid accidents due to faults like unintended steering of the vehicle.This

presents several challenges to the developement of an efficient error diagnosis mecha-

nism.Total Processor cost is another important consideration which has to minimized

by minimizing the number of processors used in the system,without compromising

the safety of the system.The temperature of individual nodes requires careful moni-

toring as well. Uncontrolled increase in temperature can lead to degraded performance

and decreased reliablity of the system [3].It can also damage the nodes of the DES

resulting in damage to the Steer-by-Wire system itself [4].To this end,model based

redundancy [5] is used which uses the discrepancies between the results of the ac-

2

tuators and a mathematical model to detect faults.However,using redundancy alone

as a fault detection technique leads to wastage of processing units as the same task

is being done by a number of processing units.To this end, heartbeat monitoring is

being used as an extra layer of fault detection measure.This will enable us to reduce

the redundancy that is employed in the system.Failure detection is done as usual by

checkpointing.

1.3 Thesis Objective

The various objectives that this thesis accomplishes are

• Given a system model as shown in figure 3.1 and task graphs as in [6],we wish to

design a general framework based on a monitor module.The framework reduces

the level of redundancy needed in the system, by detecting and removing faulty

nodes in the system.

• We also present a dynamic scheduling algorithm based on [6],that allows reschedul-

ing of tasks with changes in the release time,execution time and deadline con-

straints.The types of faults dealt with are crash faults and transient faults in

the system.

• The proposed framework is implemented and analysed using message passing in-

terface(OpenMPI) libraries.Analysis is done on the basis of number of messages

passed between nodes and the response of the system to faults.

1.4 Assumptions

To achieve the above objectives,we make the following assumptions

• The distributed embedded system’s nodes are connected by a reliable commu-

nication network.

• The processors are susceptible to crash and transient faults whcih can cause

them to be permanently or temporarily decapacitated resulting in errors.However

a faulty processor does not effect the remaining healthy ones.

• A stable storage is present to store the global state during checkpointing.

• During the execution of a task,if at most k faults may occur to the processors

executing the task during the corresponding iteration then the task is executed

by at least k processors.This assumption limits the number of faults to k during

a single iteration only.Another k faults can occur during subsequent iterations

as well.

• The various tasks,including control and diagnostic tasks, can be pre-empted

and resumed from a suspended state, provided their execution deadline is not

missed.

3

1.5 Thesis Organisation

This thesis has been divided into 6 chapters.Each chapter explains a different aspect

of this thesis.

Chapter 1 introduces the topic of fault tolerance in distributed embedded systems.It

explains the applications of distributed embedded systems and the motivation behind

this thesis.It also provides the objectives of the thesis and explains what the thesis

strives to achieve.

Chapter 2 deals with the literature and related works on which this thesis is based

on.It provides the various fault tolerance mechanisms and scheduling algorithms that

are used in the design of the fault tolerance framework.It covers scheduling,fault de-

tection,fault recovery and temperature control of the distributed embedded system.

Chapter 3 describes the system and fault models for the system.

Chapter 4 provides the pseudo code of the entire algorithm.It describes and analysis

the algorithm and gives in detail the checkpoint and heartbeat mechanism used in

the algorithm.

Chapter 5 describes the simulation methodology used to validate the system.It pro-

vides the simulation results and analyses the results.

Chapter 6 concludes the thesis and provides the conclusion from the simulation and

analysis results.

1.6 Conclusion

Distributed embedded systems have inportant applications in automobile and other

sectors which makes it critical to make such systems fault tolerant.Besides the auto-

mobile sector, distributed embedded systems also find applications in a large number

of fields such as medical etc.In this chapter,we have examined the various objectives

of this work and the assumptions required to achieve these objectives.This chapter

also details the organisation of the entire thesis.

4

Chapter 2

LITERATURE REVIEW

5

2.1 Scheduling Algorithms

The scheduling algorithm used in the thesis is adapted from [6].It may be divided into

2 parts

2.1.1 Graph Folding

Graph folding is used during scheduling of tasks on the execution pipeline. It is

preferred over graph unrolling because it does not introduce any jitter.To unroll a

graph, the tasks are executed such that tasks belonging to different iterations are

executed together in a schedule. This involves controlled unrolling of the graph to

expose several iterations of the graph.The tasks are scheduled in a frame of constant

size.Tasks that cross the frame boundary are considered as separate tasks and folded

to fit in the frame boundary.For a detailed discussion of graph folding,see [7]

2.1.2 Algorithm

The algorithm as given is [6] is a static,list scheduling algorithm.It schedules the

tasks on a first in first out basis.Before assigning a task to a processor, it checks

if the various constraints related to the task are satisfied and the preceding tasks

are completed.If these conditions are satisfied,the task is assigned to a processor.The

execution occurs in time frames.The tasks are fit into the time frames and the tasks

that cross the time frame boundary are folded to fit into the time frame.We make

changes to this algorithm and make it dynamic by allowing the processing nodes to

check the execution time of the tasks.If the actual execution time varies from the

time given in the pipeline by a certain threshold, the processing unit may notify the

monitor node to invalidate the pipeline and recalculate the schedule.

2.2 Fault Detection

For fault detection, we are using hearbeat monitoring.Our heartbeat monitoring sys-

tem is partially based on the ”lazy” heartbeat approach as given in [8].

The type of failure detectors used in our fault detection algorithm is an example of a

hybrid ”push and pull” mechanism.In this mechanism,a fault detector node queiries

another node to check if the node is ”alive” or not.From the acknowledgement to this

heartbeat message, the fault detector can trust the node to be fault free for a certain

interval of time ∆trust.After this interval, the detector sends another heartbeat signal

and the process goes on.If a timeout occurs to the receipt of a heartbeat signal by the

detector, then it puts the node in the list of nodes suspected of being faulty.Faults

can be confirmed by the use of successive heartbeat signals.Our approach has higher

message overhead than a failure detection system based only on the ”push” mech-

anism.However,it has the significant advantage of being able to detect faults in the

processor as well as monitor nodes.”Lazy” monitoring approach tries to send as few

heartbeats as possible to reduce the overall message overhead.This is done by treating

6

the application messages being sent to the processor nodes are treated as heartbeat

signals.This can be achieved by keeping the inter-heartbeat interval ∆i large enough

so that any 2 application messages fall in the inter-heartbeat interval.This is useful in

the case of distributed embedded systems in which a only a few faults have occured

and there is sufficient redundancy in the system to mask any faults.As given in [8],

the heartbeat mechanism is susceptible to errors due to message delay,message loss

and processing delay. All of these must be taken into account while determining the

inter-heartbeat receipt times.For our purposes, we have modified the heartbeat sam-

ple duration equation to look like:

s = ∆i+l ∗∆i-f ∗∆f

where ∆i is the initial heartbeat interval,

l ∗∆i is the message loss rate with l being the successive messages lost,

f is the number of nodes that have been found to be faulty and hence have resulted

in a decrease in redundancy for the task,

and ∆f is the increase in sampling rate that must be effected to counter the loss in

redundancy. This basically means that for a message loss which is the charecteristic

of the network, we take delayed samples to allow heartbeats to reach the monitoring

nodes after incurring message losses.However, samples are taken at a quicker rate

after a fault occurs in the processing nodes.This can be done by switching from us-

ing application messages as heartbeats to using actual heartbeat signals sent by the

monitor nodes.

2.3 Fault Recovery

Fault recovery is done via checkpoint based protocols,details of which are availiable

in [8].we present a brief overview of the various protocols we use in our fault toler-

ance framework.The basic principle behind failure recovery is storage of a globally

consistent system state.It is defined as one in which if the sender of a message reflects

sending of a message ,then this must be reflected in the receiver and vice-versa [8].An

inconsistent state is generally charecterized by orphan messages,which after roll back

seem to have been received by a node but do not have a sender.To avoid this, after

rollback if a sender is rolledback to a state where it has not sent a message,then the

corresponding receiver must also be rolledback to a state where it has not received

the message.For our purpose,2 types of checkpointing protocols are of interest

2.3.1 Uncoordinated Checkpointing

In uncoordinated checkpointing, the nodes have the freedom to take checkpoints with-

out consulting other nodes.No central node is present to supervise the checkpointing

of various nodes.It has the advantage of having minimum communication overhead,

as the nodes do not have to pass messages to determine when to take checkpoints.It

is also very simple to implement.However, this method has 2 chief disadvantages.One

is that ,without co-ordination, the nodes may take a checkpoint which is not part

of a global consistent state and hence is an useless checkpoint.Secondly, this type of

7

checkpointing gives rise to the domino effect [9].When a node rollsback to a previous

state, it may make the state of another node invalid,which must rollback to a previous

state to maintain consistency.This inturn may trigger rollbacks in other nodes,the en-

tire process leading to loss of a large amount of computation.This is called as domino

effect and is a major problem of uncoordinated checkpointing.

2.3.2 Coordinated Checkpointing

In this protocol, the nodes take checkpoints in collaboration with each other so as to

ensure a global consistent system state.Usually, a monitor node is present which co-

ordinates the nodes to take consistent checkpoints.Our checkpointing protocol is par-

tially based on the cooridinated checkpointing protocol approach as suggested by [10]

.In this protocol, a central coordinator takes a checkpoint and sends messages to all

nodes to take respective checkpoints.On receipt of this message, the nodes block all

communications, take a checkpoint and send an acknowledgement to the coordinator

which finally commits all the checkpoints.In our case, interprocessor communication

is not of much importance as the jobs are being executed parellely and indepen-

dently.Hence,our approach consists of a monitoring node instructing other processing

nodes to take checkpoints.The checkpoint data is received as acknowledgement by the

monitor,which validates the checkpoints.

Coordinated checkpointing has several advantages.It does not suffer from the domino

effect.It also has less storage overhead than uncoordinated checkpointing.However it

has high message overhead due to the communcations between coordinator and other

nodes prior to taking a checkpoint.

2.4 Temperature Control

Overheating of processing units is an inevitable problem.The various problems due

to overheating of processing units have been discussed earlier.The different proces-

sor utilization for the processing units result in different thermal profiles for each

node.overheating of nodes can result in physical damage to the processing units which

would increase the cost of the system.2 strategies are being used for heat control.The

first is simple shutdown of overheated nodes.once the temperature of a node crosses

the safety threshold,it is shutdown by the monitoring system and is replaced by a

spare processer.The task schedule migration occurs after the end of the current iter-

ation.

Heat control is also done by the use of schedule swapping [11].This technique has

been shown to reduce the average temperature of the distributed embedded system by

11◦C.In this method,The processors are sorted in order of their temperature. Then the

task schedules of the hottest processer and the coldest processer are exchanged.This

processer is done for all pair of hot and cold processors, to ensure uniform rise in

temperature for all processing units.

Either one or both of these methods may be used to control temperature in the system.

8

2.5 Conclusion

This chapter details our literature survey into the various fields required for our the-

sis.We examine in details concepts such as fault recovery,fault detection,temperature

control and scheduling algorithms.This helps us adapt the various fault tolerance

strategies for our framework.This literature survey also gives the various modifica-

tions that we make to established fault tolerance techniques, so that they can be used

in our framework.Thus, this chapter shows how different fault tolerance techniques fit

together flawlessly in our framework.

9

Chapter 3

System and Fault Model

10

3.1 System Model

Figure 3.1: System Model

A distributed approach to fault diagnosis in actuator control is given in [6].How-

ever,we use a completely message passing based approach to diagnose faults.The sys-

tem model is as shown in figure 3.1.

The system comprises of sensors,acuators,residue generators,voters,stable storage de-

vice and a monitor module.Redundancy is used by using a number of redundant

and possibly diverse sensors to collect data,which is passed onto the ”compute and

actuate” block .In the ”compute and actuate” block,results are computed from the

sensor data and executed by the actuator.Sensor data is also passed into a residue

generator which computes model-based results.These results are compared with the

actuator results and put to vote.If a deviation is found from the model based results

in the actuator results, a fault is concluded to have occured and the faulty actuator is

shutdown.Analytical redundancy is implemented for faults occuring per iteration.If k

faults occur in an iteration of the graph, we have k+1 processors executing the task

to enable succesful detection.

The monitor module nodes are fully connected to each other and also to the processing

units.They are responsible for set up of the schedule pipeline,taking checkpoints and

heartbeat monitoring of the nodes.Faulty nodes in the monitor system are detected by

the processing units.They expect heartbeat signals from the monitor nodes at certain

intervals of time.If heartbeat signals are not sent at such times,the processing units

assume the monitor node to be faulty and request other monitor nodes to replace it.

Some spare processors are present in a ”turned off” state to provide replacement nodes

11

for overheated or faulty nodes.They are connected to the communication network but

have no functions till they are turned on by the monitor.Overheated nodes also form a

part of the spare processors set till they cool down and are ready to work again.Faulty

nodes are replaced by task migration during slack time.

The stable storage provided is an abstraction for a magnetic disk or a set of proces-

sors.It is required to store checkpoint data reliably and consistently.It should remain

fault free even when the rest of the system goes down due to faults,so that the data

in the stable storage may be used to resume execution.

The entire system is connected by a communication network such as shared bus.Messages

are exchanged between processors by a reliable protocol such as a TDMA protocol.

3.2 Fault Model

The system is designed to handle 2 kinds of faults

• Crash Faults These fault occur due to a permanent failure in a processing unit

of the system.The affected processor stops sending and receiving messages and

can no longer take part in processing.Such faults normally occur due to physical

damage to the processing unit such as in case of overheating.In our framework,

they are taken care of by the monitor module,which replaces the crashed pro-

cessors.Since the processors are fail-silent,any timeout in receiving heartbeat

signals from the processors can be used to suspect a fault.

• Transient Faults These faults are random in occurance and disappearance.Unlike

crash faults,they are temporary and may disappear at any time.These faults

generally result in calculation errors in the task being executed in the processor

when the fault occurs.These faults may occur due to random factors and may

be corrected by handling the incorrect results they produce.This is done by the

use of masking resundancy so that when one of the processors gives an incorrect

result due to a transient fault,the results from fault-free nodes may be used to

detect the fault node by polling and aslo ensure that the task execution results

are fault free.

3.3 Conclusion

This chapter explains the system model and fault model for the framework that we

have designed.The system model shows how the various components fit together and

validates the various design decisions that we have taken for our framework

12

Chapter 4

Algorithm

13

Algorithm 1 Working of Monitor Node

1: if NODE is a MONITORNODE then

2: loop

3: source = Receive(anysource)// listen for processor nodes

4: if processblock(source) == NULL then

5: Create Process block()

6: end if

7: if MESSAGE = SETPIPELINE then

8: // get next job from job list for processor

9: next job← nextjobtobeexecuted

10: for i = 0 to num of jobs do

11: if taskgraph[i][next job] 6= −1 then // if current job precedes next job

12: // check previous job to be completed

13: if job not complete then

14: tryagain = 1

15: break

16: end if

17: end if

18: end for

19: // next job is started after the last preceding job is complete

20: start time← highest prev job timestamp + next job releasetime

21: if tryagain 6= 1 then

22: send(job id,start timestamp)

23: else

24: send(”try again”)

25: end if

26: end if

27: if request = SETJOB then // a node finishes a task

28: update(process block)

29: end if

30: if time = receive heartbeat interval then

31: receive(”heartbeat”,monitored node list)

32: else if time = checkpoint interval then

33: send(”checkpoint” ,monitored node list)

34: else if time = receivecheckpointdata then

35: receive(”checkpoint data”,monitored node list)

36: end if

37: end loop

38: end if

14

Algorithm 2 Working of Processor Node

1: if NODE is a PROCESSORNODE then

2: loop

3: if Pipeline is set then

4: source = receive(pipeline) // receive task from pipeline

5: else

6: source = receive(monitor node) // receive task from monitor

7: end if

8: if message = job then

9: while timestamp 6= start timestamp do

10: execute task

11: end while

12: send(monitor node,task info)// update process block

13: else if message = try again then

14: wait(wait interval) // wait for an interval before tryagain

15: else if message = heartbeat then

16: send(heartbeat ack)

17: else if time − heartbeat receive = timeout then // heartbeat not received

at proper time

18: send(suspect monitor node)

19: else if message = checkpoint then // checkpoint request

20: send(checkpoint data)

21: end if

22: end loop

23: end if

15

4.1 Algorithm Description

The interaction between various processor nodes is summarized in the following figure

‘

Figure 4.1: Processor Interaction Diagram

4.1.1 Types of Nodes

The nodes are mainly divided into 2 classes- monitoring nodes and processor nodes.

• Monitor Node They are completely connected to each other and to the processor

nodes.They diagnose faults in processor nodes through heartbeats.They induce

checkpointing to ensure proper fault recovery.Checkpointing is done in regular

intervals of time as per the timestamp of the nodes.All the nodes of the system

maintain a timestamp variable which is updated from a central clock and is used

for synchronization.The monitor nodes also schedule the tasks on the pipeline

when the event reset pipeline is fired by a processor node.This event is fired

when the actual execution or release time of a task is different from the time

given in the task graph maintained by the system.They are also responsible

for migration of task execution from one processor to another when the node

stops working due to a fault or overheating.Monitor nodes may appear to be a

centralized system and may seem to present a single point of failure.However,

the monitor nodes are made fault tolerant through the processor nodes.If the

processor node does not receive a heartbeat signal to acknowledge, it suspects

16

the monitor node to be faulty and reports it to the other monitor nodes to

replace.

• Processor Node The processor nodes are responsible for several functions such

as residue generation,actuation of tasks and voting.The redundancy for each

task is less than the number of monitor nodes used in the system.The analytical

redundancy used in the processor nodes helps diagnose faults in a single itera-

tion of the graph.In subsequent iterations, the faulty nodes are replaced which

increases the reliability of each individual node and decreases the redundancy

needed for each task.The processor nodes can determine faults in the monitor

nodes on the basis of timeout in the acknowledgement to the heart beat signals

they send to the monitor nodes.

Important structures and variables include the process control block and the

task graph. The task graph is represented by a sparse matrix or equivalent data

structure like linked list or hashmap.it is defined as a matrix M of size n ∗ n
where if M [i, j] = k means i precedes j with a release time of k units.The pro-

cess control block is depicted as shown in algorithm 2.It is maintained by the

montoring system for each set of processors executing a task.It is implemented

as a linked list,with each node representing a processor.

It must be noted that structurally there is no difference between a monitor and

a processor node,except that the monitor node must be completely connected

to the processor nodes that they monitor.Due to this, a monitor node can be

used to take the place of a faulty processor node in case there is a shortage of

healthy processing units in the spare processor set.

4.2 Heartbeat and checkpointing mechanism

Checkpoints are taken by the processing nodes,the number of checkpoints depending

on the type of task being executed.The processing node takes a checkpoint on receipt

of a checkpoint signal from the monitor node.These checkpoint signals are also used

as heartbeat signals to detect faults in the system as they are being sent regularly to

the processing nodes by the monitor nodes.However as stated earlier,

s = ∆i+l ∗∆i-f ∗∆f

Hence,the monitor node starts sending additional heartbeats if it detects faults in

processing units.This enables the heartbeat detection system to compensate for the

decrease in redundancy of the task,because with increase in heartbeat signal fre-

quency,the sampling duration decreases and the system is able to detect further faults

in the system accurately.Thus the number of heartbeat signals being sent varies from

zero to a maximum limit,after which the system becomes unsafe to continue operation.

4.3 Algorithm Analysis

Since our fault tolerance framework has been designed and implemented on a mes-

sage passing system, our main parameter for analysis is the number of messages being

17

exchanged between the nodes and the resultant communication overhead.We assume

that the communication overhead for an update message,which results in the update

of the storage device,incurs more communication overhead than a simple query mes-

sage.Thus the number of query messages carries less importance than the number of

update messages.The execution occurs in the form of timeframes.The task graph iter-

ates infinitely with each iteration being folded to subsequent iterations.The algorithm

analysis has been divided into 2 parts-

Before setup of pipeline

if number of nodes=Nproc

number of tasks=Ntask

frame duration=L units

number of heartbeats=T per frame

x utilization of frame=H, with each frame containing P tasks

Numberofmessageswithnopipeline is given as

messages = Nproc ∗Ntask + T ∗Nproc + Ntask

After setup of pipeline

Numberofmessageswithpipeline is given as

messages= Nproc ∗ L
2
− H

2

4.4 Conclusion

This chapter provides the algorithm,its description and complete analysis .The work-

ing of the various kinds of nodes has been described in detail so that the functioning

of the system is clear.The heartbeat and checkpointing mechnism been detailed here

as it forms a very important part of the system.The complete algorithm has been

divided into 2 parts for simplicity as well as to distinguish between the 2 major

classes of nodes in the system.The processor control block has also been described

and its various attributes have been outlined so that its role in the system can be

fully grasped.

18

Chapter 5

Simulation and Results

19

5.1 Implementation

The various steps of implemetation are detailed below:

• Platform: In order to accurately portray a distributed embedded system for

simulation purposes, vmware has been chosen running over windows vista.A

vmware team is used,each of which runs on a minimal ubuntu installation de-

scribed next. The team consists of a larger number of virtual emulations of

ubuntu each of which represents 2 nodes as the underlying structure has 2 cores

hence providing 2 processors. Ethernet adapters are used to connect the nodes

to each other via LAN segments. The LAN segments can be set to have different

extents of signal loss depending on requirement. Similarly, the LAN segments

between the nodes can be changed to portray any topology required for simula-

tion. There is a master node that is used to controll the simulation and is used

for output of results .

• Operating System: Most distributed embedded systems use tinyos as the op-

erating system of choice. For simulation process, a stripped down version of

ubuntu 10.04 similar to is used. For this purpose, the latest version of the

ubuntu kernel has been compiled and only the important services and daemons

have been retained.The Ubuntu kernel was chosen because of its comparatively

higher stability and familiarity.This reduced the minimum requirement of RAM

for each node,resulting in formation of a larger number of nodes as is common

in embedded systems. Only the simulation controlling node has a graphical user

interface while the other nodes operate only on consoles to save memory.XFCE

has been chosen as the GUI environment due to its minimal space and process-

ing power requirements. From a simulation point of view the program execution

is controlled by the node with GUI but from practical point of view all nodes

are independent and controll is decentralised.

• Networking File System: The networking file system has been used to make sure

that all nodes have the same versions of MPI libraries as the master node. The

delays caused by NFS do not matter in the simulation as they are negligible for

small clusters and DES which this project is meant to test at the current stage.

In addition to NFS, openssh has been implemented to communicate between

the nodes securely. The SSH has been kept passphrase free as the nodes are all

parts of a distributed system and need full access rights to each other.

• Open MPI implementation : OpenMPI 2.4 has been installed in the master node

as it is the latest version of OpenMPI implementation and is open source. All

other nodes access openMPI installed on the master node via the networking

file system described earlier. The program to be run is also loaded onto the

master node which is then accessed by other nodes using NFS.

• Master Node: The master node is the node that is used to controll the entire

simulation. However it is similar in computational functionality to the other

20

nodes and does not have any special status. It is the only node equipped with a

graphical user interface.The program to be tested is also loaded onto the master

node and the other nodes access it via NFS. The results of the simulation are

also displayed on the master node’s console.

• Graph Generation The analysis and result data derived from the openMPI sys-

tem is used to generate graphs in a matlab environment.Matlab is also used to

calculate the number of signals.

5.2 Simulation Results

With the above described simulation environment,the following graphs were obtained:

21

Figure 5.1: Fault Injection Simulation

Figure 5.2: Messages passed with pipeline not set

22

Figure 5.3: Optimized Algorithm vs Old Algorithm

23

5.3 Implementation Analysis

The results from the graphs agree with our algorithmic analysis.The graphs with no

faults have a low message overhead due to ”lazy” heartbeat monitoring,as described

earlier..A fault injection graph has been provided that shows the change in heartbeat

signals with the increase in number of faults.The graph is skewed due to the corre-

spoding decrease in the number of healthy functioning nodes in the system.Overall

the system succeeds in achieving its goal of reducing number of messages being trans-

mitted in the system and also decreasing the total number of nodes used in the system

while increasing the fault tolerance level of the system.

The system we have proposed results in a decrease of N/2 nodes with N/4 moni-

tor nodes.This results in saving of N/4 over a traditional system using only redun-

dancy.This also results in decrease in messages passed as shown in above figure 5.7

5.4 conclusion

This chapter provides us the simulation methodology used for the framework.We have

also simulated the distributed embedded system using a completely new simulation

method using openMPI.The results obtained are promising and prove our objectives

to have been achieved.

24

Chapter 6

Conclusion and Future Work

25

6.1 Conclusion

In this thesis,We present a general,scalable framework for fault diagnosis in distributed

embedded systems.Our framework achieves its goal of decreasing the number of nodes

needed for fault diagnosis and increases the overall efficiency of the system.It also

adheres to the deadline restrictions of the tasks,while limiting the number of messages

being transmitted in the system.Fault diagnosis is also timely and fault recovery

is done without the system falling into an unsafe state.Thus,we meet our aim of

reducing the overall cost of the system while meeting the fault diagnosis and recovery

requirements.

6.2 Future Work

The work presented in this thesis can be extended in a number of ways.The fault

tolerance framework can be extended and re-designed for fly-by-wire systems,which

comprise of far larger number of nodes than a steer-by-wire or brake-by-wire system.

The framework can also be extended to include other types of faults such as byzan-

tine faults.Finally, we can design a fault tolerance system for a wireless distributed

embedded system in which there are no wired connectiions between the nodes and

the nodes may be static or mobile.these are some of the fronts on which the work

presented in this thesis may be extended

26

Bibliography

[1] “http://msdn.microsoft.com/en-us/library/dd129911.aspx.”

[2] “http://en.wikipedia.org.”

[3] N. V. R. Rajaraman, K. Ramakrishnan, Y. Xie, and M. Irwin, “Temperature

and voltage scaling effects on electrical masking,” 2008.

[4] J. Council, “failure mechanisms and models for semiconductor devices,” JEDEC

Publication, 2002.

[5] J. Gertler, “Fault detection and diagnosis in engineering systems,” Marcel

Dekker,New York, 1998.

[6] N. Kandasamy, J. Hayes, and B. Murray, “Time-constrained failure diagnosis in

distributed embedded systems: application to actuator diagnosis,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 16, pp. 258 – 270, march 2005.

[7] G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man, “An efficient microcode

compiler for application specific dsp processors,” Computer-Aided Design of In-

tegrated Circuits and Systems, IEEE Transactions on, vol. 9, pp. 925 –937, sep

1990.

[8] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A lazy monitoring

approach for heartbeat-style failure detectors,” in Availability, Reliability and

Security, 2008. ARES 08. Third International Conference on, pp. 404 –409, 2008.

[9] B. Randell, “System structure for software fault tolerance,” IEEE Transactions

in software.Engineering, pp. 220 –232, 1975.

[10] Y. TAMIR and C. H. SEQUIN, “Error recovery in multicomputers using global

checkpoints,” in Proceedings of the International Conference on Parallel Process-

ing, pp. 32–41, 1984.

[11] F. Ghahfarokhi and A. Ejlali, “Schedule swapping: A technique for temperature

management of distributed embedded systems,” in Embedded and Ubiquitous

Computing (EUC), 2010 IEEE/IFIP 8th International Conference on, pp. 1 –6,

dec. 2010.

27

