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Abstract 

Barium Strontium Titanate (Ba0.6Sr0.4TiO3) has been prepared and characterized in this present 

study. Phase pure BST powder has been prepared following combustion synthesis technique. 

Citric acid, ethylene glycol and glycine have been used as a fuel in this combustion process. 

Different process parameters mainly additional NH4NO3, citric acid as fuel amount, additional 

chelating agent EDTA and pH of the precursor solution has been optimized with an aim to 

achieve phase pure BST at a low temperature. Effect of mixed fuel i.e. citric acid + ethylene 

glycol and citric acid + glycine, has also been studied as a function of powder morphology of 

BST powder. The optimum precursor combination Metal: Citric Acid: Ammonium Nitrate: 

EDTA are: 1:1.5:12:0.1 at pH of the precursor solution 7, has been found to yield phase pure 

BST powder at 800
o
C. The densification behavior and densification kinetics of the BST powder 

has also been studied. Powder morphology and microstructure of sintered BST samples was 

found to depend strongly on the fuel used for combustion. Dielectric behavior of BST samples 

has also been studied as a function of fuel used. 
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Introduction: 

Barium Strontium Titanate(BST) is mainly used in piezoelectric sensors, dynamic random access 

memory (DRAM), microwave phase shifters and infrared detectors.  BST with its high dielectric, 

ferroelectric, pyroelectric properties and as a lead free material has generated greater 

interest.[1].BST has attracted attention due to its strong dielectric nonlinearity under bias electric 

field and linearly adjustable Curie temperature with the strontium content over a wide 

temperature range 

With rapid advancements in the field of communication, there has been an ever increasing 

demand for very powerful and low cost microwave systems for the use in fast band switching in 

multimedia services. It is being widely used because of the high data transmitting rates which is 

a requirement in fast data transfer. 

They are also used in electronically steerable antennas in automobiles which serve the purpose of 

safe navigation of vehicle in case of any difficulty. As a part of collision radars, they have helped 

to improve the safety of people. Tunable microwave components like varactors, filters, 

oscillators and phase shifters currently based on PIN diodes, GaAs Schottky diodes or 

ferromagnetics help to achieve tunability and band switching.[2] 

But in contrast to these microwave components, the ferroelectric components have a distinct 

advantage over them. They provide continuous, quick and low power tenability up to very high 

frequencies. The tunability of ferroelectric materials is based on the nonlinear behavior of 

internal electrical polarization with the external electromagnetic field of the steerable radars. 

There is also marked cost reduction due to integration in the ferroelectric ceramic materials. This 

has renewed interests for research in BST material systems to be used in room temperature. 
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The tunablity of BST makes it a perfect candidate for microwave applications. The uses of BST 

in tunable microwave devices have been explored in various forms, such as bulk ceramics, thin 

films and thick films. BST thin films has a disadvantage of higher production cost, hence powder 

production is still one of the important aspect of research.  

BST is also used as composite with La0.7Ca0.3MnO3 [3], BaZn6Ti6O19 [4], MgO [5], ZnNb2O6 [6] 

and Mn [7] to either increase its efficiency or to diversify its application area. 

The property of the BST depends on factors like grain size, grain morphology, sintering 

temperature, sintering conditions, doping amount, porosity, and structural defects. Hence 

property of the BST can also be tailored by controlling the above parameters. 

BST powders have been prepared by different process and each process has its own merits and 

demerits. Sol gel method is costly, time consuming and its precursors are sensitive to moisture, 

temperature and even light [8][9]. Co-Precipitation requires repeated washing of the precipitate 

to remove the soluble anions from the precipitate making the process time consuming and 

complicated [10][11]. In mechanochemical synthesis high energy is consumed for milling and 

particle homogeneity is also not maintained and also there is a chance of contamination. 

Combustion synthesis is a very important technique for the synthesis of very high purity nano 

materials [12][13]. Advantages of combustion synthesis over the above mentioned process is that 

its cost effective, produces uniform particle size, energy efficient less probability of 

contamination and high production rate. 

The property of the powder formed depends on a lot of factors which govern the kinetics of the 

combustion reaction which are called process parameters. In the literature we don’t find any 

optimization for these parameters. For example we know that NH4NO3 addition enhances the 
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productivity of the powders but we don’t know in what ration NH4NO3 must be added for better 

results. 

Fuels used in the combustion precursor also have significant effect on the properties of the 

powder. Though combustion is mainly carried out using citric acid but a large number of other 

fuels are also available like glycine, ethylene glycol, urea, tartaric acid etc. One of the main 

problems with these fuels is that they do not provide chelating action like citric acid; hence 

mostly these fuels are used in combination with other chelating agents like EDTA or citric acid. 
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2. Literature Review 

Since the development of BST several aspects pertaining to its property has been studied. In the 

recent years, the work is mainly focused on the tailoring the morphology of the powder and 

particle size, thin film fabrication and improvement of the tenability of the ceramics.  

Liu et al. [14] have synthesized Ba0.5Sr0.5TiO3 powders using citrate–nitrate combustion 

technique. The precursor used was barium nitrate, strontium nitrate, tetrabutyl titanate and 

ammonia. It has been reported that phase pure BST could be obtained at temperatures above 

700
o
C. The BST powder synthesized in this technique was very fine about 40 nm. Samples 

sintered by spark plasma sintering showed improved dielectric  

Longxiang et al. [15] have synthesized uninodal and narrow particle size cuboidal BST 

nanoparticles in a glycothermal route using oleic acid in form of a growth directing agent. 

Effect of different process parameters like oleic acid amount, duration of reaction and 1,4-

butanediol/water volume ratio on phase purity, particle morphology and distribution. They found 

that presence of oleic acid in the glycothermal system promotes the yield of nanocrystals. The 

BST nanocrystals are formed through seeding and growth process. Oleic acid adsorption on 

facets having lower value of plane indices of the BST nuclei directs the growth forming cuboidal 

BST nanocrystals. The resultant BST particles are self-assembling in nature in organic solvents. 

They are dropped on hydrophobic substrate’s surface, causing the nano-crystals to self-assemble 

forming nano electronic devices. 

BST powder was synthesized with M:CA ration keeping 1:1.5, and addition of NH4NO3 as a 

combustion promoter. [16]. DTA of the gel revealed that a large exothermic peak at about 450°C 

occurred with about 38% weight loss. Addition of NH4NO3 favors the reaction and gives a more 

uniform particle size distribution, and those without it are non-uniform and agglomerated in 
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nature. The NH4NO3 produced huge amount of gasses which made the powder fluffy and soft in 

nature. 

Haixin et al, synthesized BST nano particles by hydrolysis method using N,N-dimethylacetamide 

as a solvent at 120 °C and 140 °C[9]. The as-prepared particles presented a perovskite 

polycrystalline structure. The particle sizes were in the range of 5 – 30 nm. Good dielectric 

properties were displayed by the composition without any annealing treatment characterized with 

the parallel plate capacitor method. The thermal reaction of barium acetate, strontium acetate and 

tetrabutyltitanate in N,N-dimethylacetamide helped to synthesize ferroelectric nanoparticles of 

BST. The temperature for synthesis can greatly affect the crystallinity of the sample. The 

dielectric loss varied from 1.1% to 3.7%. The dielectric constant decreased to a small 

valueabruptly with the increase of frequency. When curves of dielectric loss as a function of 

frequency were studied a maximum dielectric loss was observed. Restriction of mobile charges 

in BST ceramics by the reduced relaxation effect under a high frequency can be a possible reason 

for this observation. 

Leiqing et al, synthesized BST spherical nano particles having size 20-80 nm in a microwave-

activated glycothermal route [17]. Effect of different process conditions like the microwave 

irradiation duration, 1,4-butanediol/water and Ba/(Ba + Sr) on composition, particle-sizes and 

morphologies were studied. It was reported that BST crystals formed within 1 min in the 

microwave-glycothermal process through an in situ reaction kinetics, where the highly dispersed 

TiO2·xH2O colloidal particles which are amorphous in nature reacts with Ba 
2+

 and Sr
2+

 ions and 

then coarsening occurs. The particle size, morphology, composition and crystal structure of BST 

particles can be tailored by influencing the process parameters 
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The solvothermal synthesis of single-crystalline BST nanocubes was done using TiCl4–BaCl2 as 

precursors in the mixed solvent of water–ethanol–ethylene glycol monomethylether [18]. Being 

of regular cubic shape, the as-prepared BST powder with cubic perovskite structure is important 

in the study of the relationship of particle shape and material performance. BST nanocubes are 

well dispersed with narrow particle size distribution and thus are attained by this simple 

solvothermal method. The Sr/(Sr + Ba) mole ratio in reactants determines the particle 

morphology and size of powders.The crystal size of BST increases slightly in comparison with 

pure BaTiO3 nanocube prepared by the solvothermal method, with however, the particle size 

decreases as expected. 

A modified oxalate co-precipitation method was used to obtain Single-phase BSTO powders i.e. 

the quantitative barium–strontium titanyl oxalate (BSTO) precursor powders [11]. The principle 

behind it finds its basis in the cation-exchange reaction between the stoichiometric solutions of 

oxalotitanic acid (HTO) and barium + strontium nitrate solution containing stoichiometric 

quantities of Ba and Sr ions. On pyrolysis of the aforementioned BSTO at 800°C/4 h in air 

homogeneous cauliflower-like morphology of BST powders is produced. Concrete investigation 

was carried out on the effect of polyethylene glycol (PEG) on morphology of BSTO and BST 

powders. The BSTO and BST powders yielded in the following technique without PEG, 

displayed homogeneity with noticeable spherical shape. On the effect of PEG, the powders grew 

into spindle shape. 

A wet chemical synthesis technique for large-scale fabrication of perovskite BST nano-particles 

near room temperature and under ambient pressure is reported in the process which employs 

titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple 

operation steps [19]. By changing the processing parameters, particle size and crystallinity of the 
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particles are controlled. The particles were well-crystallized, chemically stoichiometric and 50 

nm in diameter. The nanoparticles show typical ferroelectric hysteresis loops and can be sintered 

into ceramics at 1150°C. .  

Khemprasit et al, fabricated BST nanofibers by electro-spinning method using a solution that 

contained poly(vinylpyrrolidone) and a sol–gel solution of BST is studied[20] .Calcinations of 

the as-spun BST/PVP composite nano fibers at above 700°C in air for 2 h, helps to obtain BST 

nano fibers of 188±25 nm in diameter having well-developed cubic-perovskite successfully. The 

crystal structure and morphology of the nano fibers were influenced by the calcination 

temperature. Calcination at below 700°C resulted in amorphous phase whereas BST with second 

phase such as barium titanate were formed at above 700°C. Diameters of the nano fibers 

decreased from 208±35 to 161±18 nm with increasing calcination temperature between 600 and 

800°C.Thenanofibers consisted of the structure of packed particles or crystallites of 40–60 nm. 

The electrospun BST nano fibers could have potential in some new applications as ferroelectric 

BST fibers for nano composites and as electronic material for nano devices and is has generated 

interests among the researchers. 

Berbecaru, [21] synthesized Ba0.6Sr0.4TiO3 (BST 40) by solid-state reaction at 1210-1450°C. 

Densification of 94% was attained. Normal as well as abnormal grain growth was observed in 

the microstructure. Presence of secondary phase was also there. Dielectric behavior was studied 

in the range of - 150°C to + 150°C, and 150 Hz-5 MHz. It was reported that with increasing 

sintering temperature permittivity value increased. Sharp and well defined transition peaks were 

reported for high temperature of sintering. Low values of permittivity were obtained for 

microwave measurements at room temperature. Dielectric losses were reported to be less than 
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1% at 0.7 GHz. The sintering schedule and phase purity of precursor materials results in changed 

transition temperature for varying Sr content which was sintered at 1260°C for 2 h. 

Longo et al, [22] synthesized BST in the temperature range 100-130 °C through Hydrothermal-

microwave method (HTMW). BaCO3 as impurity was present at lower temperature of synthesis. 

Lattice OH- groups, were found in the synthesized sample. Particles were of the range of 40-80 

nm. Lower sintering temperature yield small and uniform grains while at high temperature there 

are large grains embedded in a matrix of small grains. HTMW route was reported to be rapid, 

cost effective, and an alternative route to obtain BST nanoparticles. 

Mansingh et al, synthesized BST thin films in the sol–gel technique on platinized silicon 

substrate for the composition range x = 0.0 to 1.0 in steps of 0.1 [23]. The as-deposited films 

which were amorphous initially, crystallized on annealing in air at 700°C for 1 h. In the 

temperature range − 180°C to 150°C and in the frequency range 0.1 to 100 kHz dielectric 

constant (ε′) and loss tangent (tanδ) were measured. A small dispersion for all the compositions 

is shown for both ε′ and tanδ this is more at the peak value than at room temperature. Except 

strontium titanate all the compositions show a transition from ferroelectric to paraelectric phase 

and also the transition temperature shows a systematic decrease with increase in strontium 

content. The variation is found at a rate of 3.4°C/mol% of SrTiO3. The room temperature 

dielectric constant variation with barium content shows maxima at the compositions x = 0.4 and 

x = 0.8. The dielectric constant and dielectric loss for all the compositions show very little 

frequency dispersion in the range 0.1 to 100 kHz for films deposited on platinized silicon 

substrate. This may be attributed to the contribution from the hopping conduction and to the 

dispersion due to the barrier layer at the film electrode interface and at the grain boundaries. A 

diffuse phase transition for all the frequencies is shown by the various compositions used and the 
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diffusivity increases with increasing Sr content. Near about the bulk transition temperature, all 

the compositions except x = 0.0 show a transition from ferroelectric to paraelectric phase.  
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3. Objective: 

In the present work we will be synthesizing BST powders through solution combustion route. 

The following work has been covered: 

1. Optimization of the process parameters in the citrate-nitrate route 

2. Sintering behavior of the powder produced. 

3. Microstructure of the sintered powder as a function of sintering temperature 

4. Study of dielectric behavior of the sintered sample 

5. Correlation between the above produced powder with the samples produced by a mixture 

of CA + Glycine and CA+ Ethylene Glycol 
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4. Experimental Procedure: 

BST powders were synthesized using the combustion synthesis technique. Combustion synthesis 

is a relatively new method for synthesizing phase pure multi-component single phase material 

having a uninodal particle size distribution. Combustion synthesis is mainly a reaction between 

the metal complexes formed with the fuel or chelating agents and the oxidant. In this method, the 

precursor materials, which are preferably nitrates salts of the metal, are made soluble in water. 

Then a fuel and/or chelating agent is added to this solution and then the desired pH is achieved. 

The oxidant is mainly the nitrate ion that’s being derived from the metal salt or the presence of 

nitrate ion present in the solution or, in some cases, additional ammonium nitrate is added as an 

oxidant material. The fuels that had been used in this work are citric acid, glycine and ethylene 

glycol, and the additional chelating agent used was EDTA. 

The above precursor solution containing the metal nitrates forms a soluble complexes with the 

fuels and/or the chelating agents which on further heating at 80°C-90°C forms a viscous gel. The 

gel thus formed undergoes dehydration on further heating and self-ignites with the evolution of 

huge amount of gases. Hence the residual ash that is formed after combustion has a floppy 

structure. This ash is further calcined to get the pure phase powder. The complex formation and 

self-ignition or decomposition of the gel depends on a number of process parameters. 

In the present study, Ba0.6Sr0.4TiO3, powder was prepared using combustion synthesis technique. 

The precursors for the metal cation were TiO(NO3)2, Ba(NO3)2 and Sr(NO3)2. The TiO(NO3)2 

was prepared in house. The fuel used wascitric acid for optimizing the process parameters, and 

then a mixture of citric acid and glycine and a mixture of citric acid and ethylene glycol. The 

other constituents were EDTA as chelating agent and ammonium nitrate as an additional oxidant. 
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The different experimental techniques used in the present study have been discussed below. 

4.1 Preparation of TiO(NO3)2 : 

TiO2 is only soluble in sulphuric acid (H2SO4) and forms titanium oxy-sulphate (TiO(SO4)). The 

rate of formation of TiO(SO4) is enhanced in the presence of ammonium sulphate ((NH4)2SO4). 

The reaction kinetics got enhanced on maintaining a temperature of 90°C-95°C. The procedure 

for TiO(NO3)2  solution preparation is discussed below. 

First (NH4)2SO4 {Merck}, was added into concentrated H2SO4{Merck} and was stirred till it 

dissolved. Weighted amount of TiO2 {Merck} was then added to this solution and stirred. TiO2, 

(NH4)2SO4 and H2SO4 was in the ration of 1gm:6gm:12ml. After adding TiO2 it forms a 

suspension which needs to be vigorously stirred over a hot plate until the suspension turns into a 

clear solution. The reaction that occurs can be written as: 

                                                TiO2 + H2SO4 —>TiO(SO4) + H2O 

This solution was cooled for 12 hours and then diluted with water in the ratio of 1:2, and titrated 

against ammonium hydroxide (NH4OH) {Oster} solution, which gives rise to a white precipitate. 

The reaction that occurs can be written as: 

TiO(SO4) + 2NH4OH —>TiO(OH)2 ↓ + (NH4)2SO4 

The precipitate was washed until it gets sulphate free. Then this precipitate was dissolved in a 

1:1 dilute nitric acid (HNO3) {Merck}. The reaction that occurs can be written as: 

TiO(OH)2 + 2HNO3 = TiO(NO3)2 + 2H2O 

The strength of the Ti
+4 

present in the solution was determined by gravimetric technique. 
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4.2 Combustion Synthesis of BST powders: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1 Flow chat for the powder production 

Calcining at 800oC 
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Ba(NO3)2 
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BST powder was prepared using citrate-nitrate combustion synthesis method. Precursors used for 

synthesis were TiO(NO3)2 {as prepared}, Ba(NO3)2 {LobaChemie}, citric acid {Merck}(and 

glycine{Qualigens} or ethylene glycol{Qualigens}), ammonium nitrate NH4NO3 {Merck}and 

Ethylene diamine tetra acetic acid(EDTA) {LobaChemie}. Required amount of above precursors 

were taken together. pH of the solution was adjusted using NH4OH.The solution was placed on 

the hot plate. The temperature of the hot plate was kept in the range of 80°C-90°C Dehydration 

of the homogeneously mixed solution forms a viscous gel. This gel on further heating swells and 

then self-ignites. The ash that was produced was voluminous and floppy in nature. This ash on 

calcination yield phase pure BST powder. The calcinations were done at 800°C and the rate of 

heating was 3°C/min. The flow chart for the powder synthesis is given in Fig. 4.1 

4.3Powder Characterization: 

4.3.1. Thermal Decomposition behavior of the Gel: 

Thermal decomposition behavior of the gel has been studied using Netzsch, STA 449C. The 

DSC/TG patterns were collected as a function of temperature and time up to 900°C under N2 

atmosphere. The heating rate was 10°C/min. Reference material used was alpha alumina. 

4.3.2 Phase Analysis 

The calcined powder sample and the sintered samples were analyzed for the phase present using 

the X-Ray diffraction technique (Philips PAN analytical, The Netherland) using CuKα radiation. 

The generator voltage was 35 KV and current was 25 mA.Phases present were analyzed by the 

Philips X’pertHighscore software. 

4.4. Preparation of bulk sample: 

Calcined powder was mixed with 3 wt.% PVA (Poly Vinyl Alcohol) binder. The binder mixed 

powder was dried and was compacted to give a desired shape for further characterization. The 



Page | 30 
 

binder mixed powders were pressed uniaxially in a HC-HCr die intocylindrical pellets (12 

mmΦ). The uniaxial pressing was done at 4T pressure in a hydraulic press (10 T, Carver 

Industries, USA). A holding time of 120seconds was givenfor pressing of each sample. The 

pressed green compacts were sintered in air with a heating rateof 3°C/min at the temperature 

ranges 1250°C -1350°C with a holding time of 4 hours in electrical furnace. The bulk density 

and apparent porosity of the sintered specimen were measured byArchimedes Principle. 

4.5. Densification Study: 

The densification behavior and sintering kinetics have been studied using NETZSCH DL 420 

Dilatometer in the isothermal as well as non-isothermal (Constant Rate Heating) conditions. 

4.6. Microstructural Analysis: 

Microstructure of calcined powders and sintered pellets has been studied using Scanning 

Electron Microscope (JOEL-JSM 6480LV). The generator voltage was 15kV. The powder 

samples were dispersed in isopropyl alcohol and deposited on glass slides. The sintered pellets 

were washed in isopropyl alcohol. The samples were electroplated with platinum for making the 

surface conducting. 

4.7. Dielectric Measurement: 

The sintered pellets were polished and coated with silver paste [Alkem]. Then they were cured at 

a temperature of 600°C for 1hr. Dielectric Measurement of the samples have been done using the 

Solatron S1 1260 Impedance/Grain-phase analyser with Solatron 1296 dielectric interface. The 

frequency range for the dielectric measurement was varied from 1Hz to 1MHz. The dielectric 

measurement was also studied as a function of temperature. The temperature was varied from 

40°C to 150°C. 
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5. Results and Discussions: 

5.1 Optimization of Process Parameters using Citric Acid as Fuel: 

Combustion synthesis is an important technique for the synthesis of pure phase ceramic 

materials. The exothermicity of the redox reaction between the fuel and the oxidant is utilized to 

form the powder.  BST is synthesized using this technique. The property of the powder formed 

depends on a several factors which govern the kinetics of the combustion reaction are called 

process parameters. 

These process parameters include citric acid (CA), ammonium nitrate (O) as oxidant, 

ethylenediaminetetra-acetic acid (EDTA) and pH of the solution. In this optimization process 

attempt has been made to first optimize a single component and then keeping that constant 

optimize the next component. All the optimizations were done by analyzing the DSC plots of the 

gel and XRD plots of the calcined powders. 

5.1.1 Optimization of Ammonium Nitrate: 

A through literature review show that the better BST powder could be prepared while CA molar 

amount was taken to be 1.5 with respect to the metal ion concentration[10]; the pH was of the 

precursor solution should be in the range 6-7 [9], and the ammonium nitrate was a preferred 

combustion promoter [10]. In this work some amount of EDTA has also been added as an extra 

chelating agent. 

Hence the initial molar ratio of Metal (M):CA:EDTA=1:1.5:0.1, the pH =7 and the molar amount 

of NH4NO3 was varied as 4, 8 and 12.The DSC of the gel as a function of different NH4NO3 

concentration is in the Fig. 5.1 and the XRD of the calcined powders calcined at 800°C were 
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shown as a function of different NH4NO3 concentration in the Fig. 5.2; Table I, shows the 

different molar ratios in the different batches used for optimizing the NH4NO3. 

TableI.Molar ratio of different process parameters in different batches for the optimization of NH4NO3 

Metal(M) Citric 

Acid(CA) 

NH4NO3 (O) EDTA pH Phase Purity 

1 1.5 4 0.1 7 Impure 

1 1.5 8 0.1 7 Impure 

1 1.5 12 0.1 7 Pure 

 

 

Fig.5.1. DSC pattern of BST precursor gel as a function of ammonium nitrate molar ratio 
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The DSC pattern of the BST precursor gel showed the existence of three exothermic peaks in the 

temperature zone 200-300
o
C when the molar ratio of NH4NO3 was 4, while two exothermic 

peaks was observed in the gel prepared with NH4NO3 molar ratio8. It could also be observed that 

only one exothermic peak in the said temperature zone in the sample prepared with 

NH4NO3molar ratio 12. 

 
Fig.5.2 XRD pattern of the BST powder as a function of ammonium nitrate in the precursor solution 

 

It could be seen from the figure that trace amount of BaCO3present in the samples prepared with 

NH4NO34 and 8. While it was found that phase pure BST is formed when NH4NO3 was 12. No 

other impurity phases could be detected in the XRD pattern.  

Existence of 3 peaks in first case and 2 peaks in second case causes the decomposition of citrate-

nitrate complex in 3 and 2 steps respectively, which couldn’t yield phase pure powder as a result 

BaCO3 peaks are observed in the first and second case of the XRD pattern. 
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5.1.2 Optimization of Citric Acid: 

It was confirmed that NH4NO3 12 yields a phase pure powder. Hence the CA optimization was 

studied keeping NH4NO3 fixed in molar ration of 12. The molar ratio of CA was varied among, 

1, 1.5 and 2.The DSC of the gel as a function of different CA concentration is shown in the Fig. 

5.3 and the XRD of the calcined powders calcined at 800°C were shown as a function of 

different CA concentration is shown in the Fig. 5.4; Table II, shows the different molar ratios in 

the different batches used for optimizing the CA. 

TableII.Molar ratio of different process parameters in different batches for the optimization of CA 

Metal(M) Citric 

Acid(CA) 

NH4NO3 (O) EDTA pH Phase Purity 

1 1 12 0.1 7 Impure 

1 1.5 12 0.1 7 Pure 

1 2 12 0.1 7 Impure 

 

The DSC pattern of the BST precursor gel showed the existence of 2 exothermic peaks in the 

temperature zone 200-300
o
C when CA was 2, while a single exothermic peak with very low 

exothermicity was observed in the gel prepared with CA molar ratio1. It could also be observed 

that only one exothermic peak in the said temperature zone in the sample prepared with CA 

molar ratio 1.5. 
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Fig.5.3. DSC pattern of BST precursor gel as a function of citric acid molar ratio 

 

Fig.5.4.  XRD pattern of the BST powder as a function of citric acid in the precursor solution 
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It could be seen from the XRD figure that trace amount of BaCO3present in the samples prepared 

with CA2 and additional TiO2, with CA 1. While it was found that phase pure BST is formed 

when CA was 1.5. No other impurity phases could be detected in the XRD pattern.  

Existence of 2 peaks in case of CA 2, first is due to the combustion of the citrate-nitrate complex 

and the second is due to the combustion of the excess CA present that didn’t take part in the 

chelation, which results in the formation of the impure phase of BaCO3, as the reaction takes 

place in 2 steps. Impure phase of TiO2 and BaCO3 is formed with CA 1, due to inadequate 

chelation. 

5.1.3 Optimization of EDTA: 

It was confirmed that NH4NO3 12 and CA 1.5 yield a phase pure powder. Hence the EDTA 

optimization was studied keeping NH4NO3 and CA fixed in the molar ration of 12 and 1.5 

respectively. The molar ratio of EDTA was varied among 0, 0.1 and 0.2.The XRD of the 

calcined powders calcined at 800°C were shown as a function of different EDTA concentration 

is shown in the Fig. 5.5; Table III, shows the different molar ratios in the different batches used 

for optimizing the EDTA. 

TableIII.Molar ratio of different process parameters in different batches for the optimization of EDTA 

Metal(M) Citric 

Acid(CA) 

NH4NO3 (O) EDTA pH Phase Purity 

1 1.5 12 0 7 Impure 

1 1.5 12 0.1 7 Pure 

1 1.5 12 0.2 7 Impure 
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Fig.5.5.  XRD pattern of the BST powder as a function of EDTA in the precursor solution 

 

It could be seen from the XRD figure that trace amount of BaCO3present in the samples prepared 

with EDTA0.2 and 0. While it was found that phase pure BST is formed when EDTA was 0.1. 

No other impurity phases could be detected in the XRD pattern.  

When no EDTA was used, there was incomplete chelation due to which there was some residual 

BaCO3 phase, and when EDTA was 0.2, there was excess carbon containing species which was 

responsible for the BaCO3 impure phase. 
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5.1.4 Optimization of pH: 

It was confirmed that NH4NO3 12, CA 1.5 and EDTA 0.1 yield a phase pure powder. Hence the 

pH optimization was studied keeping the above parameters fixed. The pH was varied among 3, 7 

and 10.The DSC of the gel as a function of different pH is shown in Fig. 5.6 and the XRD of the 

calcined powders calcined at 800°C were shown as a function of different pH in the Fig. 5.7; 

Table IV, shows the different pH in the different batches used for optimizing the CA. 

TableIV.Molar ratio of different process parameters in different batches for the optimization of pH 

Metal(M) Citric 

Acid(CA) 

NH4NO3 (O) EDTA pH Phase Purity 

1 1.5 12 0.1 3 Impure 

1 1.5 12 0.1 7 Pure 

1 1.5 12 0.1 10 Impure 

 

The DSC pattern of the BST precursor gel showed the existence of 4 exothermic peaks in the 

temperature zone 200-400
o
C when the pH was 3, while two exothermic peaks was observed in 

the gel prepared with pH in the temperature range 200-300
o
C. It could also be observed that only 

one exothermic peak in the above temperature zone in the sample prepared with pH7. Each peak 

in DSC corresponds to a single species present in the gel, hence the number of peaks in pH 3 and 

pH 9, shows that the number of combustible species is more than one. 

It could be seen from the XRD figure that trace amount of BaCO3 present in the samples 

prepared with pH3 and TiO2, in pH 10. While it was found that phase pure BST is formed when 

pH was 7 No other impurity phases could be detected in the XRD pattern. 
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Fig.5.6. DSC pattern of BST precursor gel as a function of pH 

 

 
Fig 5.7.  XRD pattern of the BST powder as a function of pH 
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The optimum pH was calculated for synthesizing BST powders by auto-combustion route using 

citric acid as the chelating agent [9].  It has been reported that Ba
+2

 forms a stable chelation with 

CA at a pH > 4.58, Sr
+2

 forms a stable chelation with CA at a pH >4.83 and optimum pH at 

which TiO
+2

 would be chelated with CA is pH < 7. Hence the pH range at which all the above 

species would be stable is 4.83 < pH < 7. At high pH the CA remains in the form of HCit
2−

 and 

Cit
3−

, and the chelating complex of Ba
+2 

and Sr
+2

 with H2Cit
−
 wasn’t stable hence the pH that 

was calculated for which the ionic distribution of H2Cit
−
was zero was found to be pH < 6.4. 

From the above data it was calculated that the pH range for the formation of stable BST-CA sol 

was 6.4<pH<7. 

5.2 Synthesis of BST: 

Hence BST powders were synthesized from the previously optimized batch of 

M:CA:NH4NO3:EDTA=1:1.5:12:0.1 and at a pH of the precursor solution was 7. All further 

studies were done at with this optimized batch. 

5.2.1 Powder Morphology: 

The produced powders were flaky in nature and have a uniform size distribution as evident from 

its SEM image in Fig. 5.8. The surface area as measured from the BET surface analyzer was 

found to be4.918 m
2
/gm. The particle size was calculated to be 215 nm. 
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Fig 5.8 SEM image of the BST powder prepared from the optimized batch. 

5.3 Sintering Behavior: 

Initial stage sintering kinetics has been analyzed for constant rate heating and isothemal heating 

from the dilatometric data. Attempt has also been made to identify the densification mechanism 

of BST powder during the initial stage of sintering (assuming solid state densification). It has 

been well studied that dilatometric data (below 3% shrinkage) could be well fitted with the 

following equation: 
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Where, T is the temperature, 
    ⁄

  
 is the rate of densification, ΔL is the change in length,Lis the 

initial length, Q is the activation energy for the sintering, βis the rate of heating, n is the 

exponent that depends on the mode of sintering and R is the universal gas constant. 

So, the plot
  

 
vs  [

    ⁄

  
] , as shown in the Fig.5.9, an approximate straight line is obtained, 

whose slope would give the value 
   

  
 .and from that the value of Q/n was obtained. 

 

Fig 5.9 Non-Isothermal behavior of the BST powder 

 



Page | 44 
 

The initial stage sintering data for isothermal sintering could be fitted into the logarithmic 

equivalent of the following equation: 

  

 
   

 
 ⁄  

Where, ΔL is the change in length, L is the initial length; A is the constant which depends on 

temperature, t is the time of sintering and n is the exponent that depends on the mode of 

sintering. The above equation can be written as: 

 

So the plot of log t vs log
  

 
   , was shown in Fig.5.10, then the slope of the line would be 2/n, 

from which the value of n was obtained to be 6.31. 

 

5.10. Isothermal behavior of the BST powder 
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The value of Q was then calculated by using the value of n. Hence the value of Q was obtained 

to be around 912 KJ/mol. 

5.4Microstructure after Sintering: 

The SEM micrographs of the BST samples sintered at 1250°C, 1300°C and 1350°C for 4 hrs 

have been given in the Fig. 5.11. The average grain has also been provided in the Table V. 

 

Fig.5.11. SEM micrographs of a. 1250
o
C/4hrs, b. 1300

o
C/4hrs, c. 1350

o
C/4hrs 
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Table V. Mean Grain size as a function of different sintering temperatures 

Temperature Size (in micron)  

1250°C/4hrs 2.87 

1300°C/4hrs 6.45 

1350°C/4hrs 18.25 

 

In 1250
o
C/4hrs, the image showed almost uniform grain size with a few large grains embedded 

within the small grain matrix. The large grains are formed due to the agglomerates present in the 

powder. Porosity is present at the grain boundary only.  In 1300
o
C/4hrs, the image showed 

obvious effect of grain growth with temperature. Here the smaller grains existed within the 

matrix of the larger grains. In 1350
o
C/4hrs, the image showed relatively dense microstructure 

with large grains present in it. It may be due to the abnormal grain growth of BST ceramics at 

high temperature. 

5.5 Dielectric Behavior of BST: 

The frequency dependent as well as temperature dependent dielectric behavior of BST sample 

sintered at 1350°C/4hrs was studied, as it gave the highest density. The Fig 5.12 shows the 

results of those studies. Fig 5.12a and Fig 5.12.b shows the relative permittivity (εr) and tanδ 

value of BST as a function of frequency at three different temperatures respectively. The three 

temperatures are 50°C, 100°C and 150°C. The Fig 5.12c shows the relative permittivity (εr) and 

tanδ value of BST as a function of temperatures at three different frequencies. The three 

frequencies are 100 KHz, 1 KHz and 100 Hz. 
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Fig.  5.12. Relative permittivity (a), Loss factor (b) of BST ceramics as a function of frequency at50, 100, 

150 Hz, Relative permittivity and Loss factor  (c) as a function of temperature at 100Hz, 1KHz and 

100KHz 
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At 50°C the permittivity varies from 2000 to 1800 with respect to frequency, the permittivity has 

a highest value of around 2400 at 40°C and 100Hz frequency. 

The relative permittivity of the BST remained mostly constant for a particular temperature, over 

the range of frequency. The loss factor tanδ also remained constant for 50°C and 100°C, but for 

150°C, it was seen that for low frequency there was high loss but for higher frequencies it 

became constant. It’s because at higher temperature the electronic prolarization in the contact 

points caused the loss at the lower frequencies. This is the also the reason for the high loss of 

100Hz at high temperature. 

5.6 Synthesizing BST using Modified Citrate Method:  

After the optimization of the citrate-nitrate route, the fuel was changed into 2 different systems; 

one was a mixture of citric acid and glycine (G)(modified glycine route) and other a mixture of 

citric acid and ethylene glycol (EG) (modified ethylene glycol route). Different fuel molar ratios 

were tried and the best ratio was used for the further studies. The other process parameters were 

kept to the same optimized value as obtained from the previous study. Table VI and Table VII 

gives the molar ratio of CA:G and CA:EG respectively. 

Table VI. Molar ratio combinations of CA and G tried 

Citric Acid Glycine Phase 

1 0.5 Impure 

1 1 Pure 

1 2 Pure 

0.5 1 Impure 

0.5 2 Impure 
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Table VII. Molar ratio combinations of CA and EG tried 

Citric Acid Ethylene glycol Phase 

1 1 Impure 

1 2 Pure 

 

As the combustion were done at a pH of 7 and glycine and ethylene glycol at that pH does not 

act as chelating agent, hence their only job is to help in the combustion process.  

For glycine, the molar ratio CA:G of 1:0.5 yield impure phase because the exothermicity may 

not be high due to the presence of lower amount of fuel, and the last two molar ratio CA:G of 

0.5:1 and 0.5:2  gave impure phase either due to improper chelation due to less amount of 

chelating agent. The molar ratio CA:G of 1:1 and 1:2 gave pure phase, but there was some 

problem in densification of 1:2 batch maybe due to high particle agglomeration, which is caused 

due to the presence of excessive fuel amount. For ethylene glycol, only the 2 successful ratios of 

glycine batch were repeated, and it gave pure phase in only one batch i.e. CA:EG= 1:2. 

Hence for further studies the batches that were selected are CA=1.5, and CA:G=1:1 and 

CA:EG=1:2. The DSC of the gel and XRD pattern of powder as a function of these fuels were 

shown in the Fig5.13 and Fig5.14 respectively. 
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Fig 5.13 DSC of the precursor gel prepared from the three fuel combinations 

 

Fig 5.14 XRD of the calcined powder prepared from the three fuel combinations 
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The DSC plot showed that in case of only CA there is only one single exothermic peak, as 

explained earlier, in case of CA:G there are about 3 different exothermic peaks and they occur 

very near to each other which is a convergence of peak found in case of CA and the other would 

be of combustion of glycine. In case of CA:EG we see the peaks are quite separated to each other 

and there is no sign of convergence of the CA peak and a sharp exothermic peak which would be 

due to EG. Analyzing it with the SEM micrographs of the powder sample in Fig 5.15, it can be 

concluded that the different combustion temperatures may be responsible for the large 

agglomeration of the powder in case of CA:EG. 

 

Fig 5.15. SEM micrographs of powders for different fuel combinations 
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The SEM micrograph showed that the powder in case of CA:G is more uniform and has a lower 

particle size, and the powder of CA:EG is highly agglomerated in nature. 

5.7. Comparative Sintering Behavior: 

From the Fig 5.16 and Fig 5.17 it can be clearly seen that in both isothermal and non-isothermal 

sintering, the batch made with only CA attains a higher densification and that of CA+G and 

CA+EG, whereas there is nearly same amount of densification in case of CA+G and CA+EG in 

isothermal case, but CA+EG attains a slightly higher densification than CA+G in non-isothermal 

sintering. 

 

Fig.5.16. Comparative isothermal sintering of BST 
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Fig.5.17. Comparative non-isothermal sintering of BST 

From the non-isothermal sintering it can be concluded that the sintering of fine powders present 

in CA+G and CA+EG systems stars to get sinter at a lower temperature than CA system, but 

their sintering slows down once the sintering of the fine powders are over, while in the meantime 

the CA batch powders attains densification. 

The SEM micrographs of the sintered samples at 1350°C/4hrs are shown in the Fig 5.18.That 

also matches with the above sintering data. 
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Fig. 5.18. SEM micro graphs of samples sintered at 1350
o
C/4 hrs 

The CA samples have a higher densification and higher grain size. The CA:G sample have some 

porosity in it, as they are not able to sinter itself to a high density, but still have a more or less 

uniform grain size distribution. The CA:EG samples have some porosity in it as its not able to 

sinter to a higher density, and it has a very non-uniform and highly disordered grain size. The 

average grain size of the above samples is given in the Table VIII. 
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Table VIII. Mean Grain size as a function of fuel systems 

Fuel Size(in micron) 

CA 18.25 

CA+G 6.80 

CA+EG 13.50 

 

5.8. Comparative Dielectric Behavior: 

The dielectric behavior of different samples sintered at 1350°C/4hrs, was studied, and the results 

were plotted in Fig5.19 as a function of different fuels. The dielectric permittivity and the loss 

factor were plotted against temperature for three different frequencies (100Hz, 1 KHz and 100 

KHz).  

In all the cases the CA samples gave much higher dielectric permittivity and low loss, its mainly 

because of the fact that they have been sintered to a higher density. The CA+G and CA+EG 

samples though have nearly equal amount of porosity, still the former is giving much higher 

dielectric permittivity and the low loss due to its small grain size. 

The gap between the dielectric permittivity of different samples at a particular frequency 

increases with increasing the frequency. It is due to the ionization of the air gaps present in the 

porous samples 
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Fig. 5.19. Comparative Dielectric Behavior of different fuel systems as a function of different 

frequencies. 
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6.1 Conclusion 

Optimized process parameters for citrate-nitrate combustion synthesis were found to be Metal: 

Citric Acid: Ammonium Nitrate: EDTA is: 1:1.5:12:0.1 at pH of the precursor solution was 7. 

The studies with different fuel ratio showed that CA:G produced best results when used in a 

molar ration of 1:1 and CA:EG produced best results when mixed in a ratio of 1:2, with the other 

optimized process parameters of the citrate-nitrate combustion synthesis. Among these the best 

result is shown when only Citric Acid is used, but the CA+G fuel produced a more uniform 

particle size distribution.  

The fuel mixture of CA+G gives better dielectric property than CA+EG because the former had a 

more uniform and small grain size distribution than the later. Dielectric properties have a direct 

relation on porosity, grain size, and grain size distribution. 

6.2 Scope of Further Work: 

 Optimization  of modified glycine route can be studied so as to produce a more uniform 

and narrow grain size distribution with high densification 

 More work needed to be done on the Citric Acid route so as to optimize the different 

parameters by changing more than one parameter simultaneously. 

 Dielectric behavior of optimized CA samples can be studied as a function of sintering 

temperature and sintering schedule.  
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