View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ethesis@nitr

ASIP design based on CORDIC algorithm using

Xilinx and CoWare designer tools

A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology
in
Electronics and Communication Engineering

by
Debabrat Mishra (107EC013)
under the guidance of
Prof. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication, NIT Rourkela

Lyt

ROURKELA

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
ROURKELA
2011

https://core.ac.uk/display/53187920?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ASIP design based on CORDIC algorithm using

Xilinx and CoWare designer tools

A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology
in

Electronics and Communication Engineering

by
Debabrat Mishra (107EC013)

Department of Electronics and Communication, NIT Rourkela

Lyt

ROURKELA

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
ROURKELA
2011

ROURKELA

National Institute of Technology
Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “ASIP design based on CORDIC algorithm
using Xilinx and CoWare designer tools” submitted by Debabrat Mishra(107EC013)
in partial fulfillment of the requirements for the award of Bachelor of Technology
Degree in Mechanical Engineering at National Institute of Technology, Rourkela is an

authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in this thesis has not been submitted

to any other University/Institute for the award of any Degree or Diploma.

Date: Prof. K.K.Mahapatra
Dept. of Electronics and Comm. Engineering
National Institute of Technology
Rourkela-769008

ACKNOWLEDGEMENT

| am extremely grateful to my guide Prof. K.K. Mahapatra for giving me the opportunity
to work under him and for giving the topic to work on, which was both extremely
interesting as well as challenging. His timely advice from time to time, however, made

life much easier than it would have been.

| am also grateful to Mr. Jagannath, Mr Anup Sarma and Mr Soubhagya Sutar without
whose help, CoWare would have always remained an unsurmountable task. It was

because of their help and tips that | was able to complete my thesis on time.

Last but not the least, I am thankful to my family, all my professors and friends without

whose support this work would never have been possible.

Date: Debabrat Mishra
(107EC013)
Dept. of Electronics and Comm. Engineering
National Institute of Technology
Rourkela-769008

ABSTRACT

Efficient generation of trigonometric as well as exponential functions without
much increase in hardware complexity has always been a challenge, owing mainly to
their importance and widespread use in Digital Signal Processing applications besides
other areas. One such algorithm which is very much effective for the calculation of
trigonometric, hyperbolic, exponential, linear and logarithmic functions is the CORDIC
algorithm. The algorithm is very much hardware efficient because it omits the

dependence on multipliers and is rather a combination of shift-add operations.

Application Specific Instruction-set Processors (ASIPs) are a type of processor
that serve as a compromise between General Purpose Processors (GPPs) and Single
Purpose Processors (SPP). Their data-path can be optimized for a particular class of
operations such as embedded control, Digital Signal Processing (DSP) applications etc.
This project deals with the design of an ASIP based on the CORDIC algorithm using two
very popular hardware designing tools, i.e , Xilinx Integrated Development Environment
(IDE) from Xilinx corporations, Inc. and LISA 2.0 description language and processor

designing environment from CoWare.

CONTENTS

Certificate

Acknowledgement

Abstract

List of figures

List of tables

Chapter 1 : Introduction

1.1 The CORDIC algorithm
1.2 Types of CORDIC algorithm

1.2.1 Sequential/iterative CORDIC
1.2.2 Parallel / cascaded CORDIC

1.2.3 Pipelined CORDIC

1.3 Types of Processors
1.3.1 General Purpose Processors

1.3.2 Single Purpose Processors

1.3.3 Application Specific Instruction-set Processors

1.4 Organisation of Thesis

Chapter 2 : Literature review

Chapter 3 : Design using Xilinx IDE
3.1 Introduction to Xilinx ISE

3.1.1 Design fundamentals

3.1.2 Design verification and simulation

3.1.3 Implementation of design

3.2 Design of CORDIC using Xilinx ISE

Vi

~N o o B~ B~ DN

oo

10

11

13
14
14
15
15
16

3.2.1 Shift registers
3.2.2 ROM LUT

3.2.3 Behavioral description

Chapter 4 : Design using CoWare Processor Designer

4.1 Introduction to CoWare Processor Designer
4.1.1 Introduction to LISA
4.1.2 Resource modeling
4.1.3 Modeling instructions
4.1.4 Advantages of CoWare processor designer
4.1.5 Instruction Set Designer
4.1.6 CoWare processor Debugger

4.2 CORDIC processor design using CoWare
4.2.1 Pipelining

Chapter 5 : Simulation and Results
5.1 Simulation results of processor using Xilinx
5.1.1 Synthesis of the ROM LUT
5.1.2 Synthesis of the shift register

5.1.3 Device utilization and test bench waveform of processor

5.2 Simulation results of processor using CoWare
5.2.1 Synthesis of the external memory
5.2.2 Synthesis of the processor

Chapter 6 : Conclusion and Future Work

References

Vii

16
17

18

19
20

20
20

21
23

23
23

25
27

29
30

30
31

32
33

33

34

36

38

SI No.

10

11

12

13

14

15

16

17

LIST OF FIGURES

Caption
. Vector rotation method of sine and cosine calculation
Sequential / iterative CORDIC structure
Parallel / cascaded CORDIC structure
Pipelined CORDIC structure
Different types of processors
Snapshot of the behavioral description window
Test Bench Waveform snhapshot
Snapshot of the post-implementation design summary

Snapshot of the ROM_LUT behavioral description

Snapshot of the processor debugger window (with CORDIC assembly code)

CoWare design flow diagram

RTL schematic of the ROM LUT

RTL schematic of the implemented shift register

Test bench waveform of the CORDIC processor

RTL schematic of the external memory showing program and data memories

RTL schematic of CORDIC processor in CoWare

RTL schematic of the arithmetic and load-store branches (level 2)

viii

Page No.

14

15

16

18

25

30

31

32

34

35

Table No.

LIST OF TABLES

Caption
Device utilization summary of the ROM LUT
Device utilization summary of the shift register
Device utilization summary of processor
Device utilization summary of external memory

Device utilization summary of the CORDIC processor in coware

Page No.
30
31
32
33
34

CHAPTER 1
Introduction

1.1The CORDIC algorithm

The CO-ordinate Rotation DIgital Computer (CORDIC) [1] is a special purpose computer
meant for the real-time calculation of trigonometric and exponential functions by the use of
iterative vector rotations. Vector rotations can also be used for the conversion of polar to
rectangular and polar to rectangular coordinate conversions. The algorithm can be derived

from the rotation transform :

X’ =x.coS ¢ —y.Sin ¢

y’ =y.cos ¢ + X.Sin ¢

On rearrangement of the terms, this can be given as :

x’=cos¢[x—y.tan ¢]

y’=coso[y+Xx.tan ¢]

The implementation of these equations is still complex due to the presence of the
trigonometric functions. However, if the rotation angles are restricted to values such that
tan ¢ = + 27, the multiplication by the tangent can be greatly simplified as it can be
implemented using simple shift operations . Thus, arbitrary angles can be obtained by
performing a series of rotations iteratively. At each rotation, the direction of rotation is
chosen by obtaining the difference between the actual angle and the angle obtained by

rotation. Mathematically, it can be given as shown in the next page.

Xin=Ki[xi-yi.di.27'1 (1)

yin=Ki[yitx.di.27'1 (@

where , Ki=cos(tan2 ") =1/v(1+2%)

d=+1

The value of d; is +1 if the angle to be obtained is greater than the current iterative angle and
is -1 if the current iterative angle is greater. The value of K; can be taken to be a constant

with a value of about 0.6073 when the number of iterations is taken large.

1 Va
. V3
y=sin(®) [/ .
0 : ' Vo
0 x=cos(B3) 1

Fig.1. Vector rotation method of sine and cosine calculation

While computing we start with an initial value of x-coordinate at 1 and an initial value of y-
coordinate as 0. In the first iteration, the vector rotates by an angle of 45°, which gives us the
first iteration result. If this angle is greater than the angle B, the next rotation takes place in
the reverse direction, else in the same direction. Finally, after the specified number of
rotations, the value of cos(p) is given by the x-coordinate while the value of sin(p) is given

by the y-coordinate.

1.2 Types of CORDIC algorithm [2]

CORDIC algorithm for the calculation of sine and cosine values is of three types. Each of the
types have their own advantages and disadvantages.

The three types are :

1. Sequential / iterative

2. Parallel / cascaded

3. Pipelined

1.2.1 Sequential / iterative CORDIC :
In this type of CORDIC, a single iteration takes place in one clock cycle. The basic

hardware structure of sequential CORDIC algorithm is as shown :

START DONE CLK COS(X) SINX)

. - - .
| i
I I
I I
| |
| |
I I
I k4 |
I [YREG I
: , :
i v i
I I:: I
I I
i Dx Dy i
: N\ :
| ¢]
i L 4 b 4 A i
I R N VT I
; +- A +- 4= _+- &
i Zmsb Zmsh Zmshb i
i I
i NEWX NEWY NEWZ i
| |
| |
| |

Fig.2. Sequential / iterative CORDIC structure [2]

1.2.2

Advantages :

1. The hardware complexity is least and it occupies the least area.
2. It has maximum number of clock cycles per iteration.

3. Power consumption is least.

Disadvantage :

1. Maximum number of clock cycles are required to calculate the output, thus calculation
time is very slow.

2. Variable shifters do not map well on certain FPGASs due to high fan-in.

Parallel / cascaded CORDIC :
In this type of CORDIC algorithm, all the calculations take place within a single clock

cycle. The hardware of parallel CORDIC algorithm is as shown :

[0.60725 | [0.00000 |]

==0 >‘;0 | arctan(l) |

w

N AL Zar N\ S F 1N e 7

e >>'1 |arctan(0.5) |

y

N A O et e B A

P
<

|a|'ctan(0. 25)'

== >

r

N A e W o S N

L

COS(X) SIN(XD) z

Fig.3. Parallel / cascaded CORDIC structure [2]

Advantages :
1. It has considerable delay, but processing time is reduced as compared to the iterative
process.

2. Shifters are of fixed size and so can be implemented in the wiring.

3. Constants can be hardwired instead of requiring storage space.
Disadvantages :
1. The amount of hardware required is large and the area required is maximum

2. Power consumption is highest among the three CORDIC architectures.

1.2.3 Pipelined CORDIC :
It is the most efficient of the CORDIC algorithms in which the iterations take place in
multiple clock cycles. However, different processes take place concurrently such that the

execution time is reduced. The structure of pipelined architecture is as shown :

Input Data o ' Output Data
Registers Eipatina Regisiars Registers
32 i
it | H)) R H
nout A 1 slot 0 _{ slo;_Z H slo;_4 b slo;_6 4 slo;_B jOutput
Data ; | Data
slot 1 k slot_3 slot_5 slot 7 slot 9

Clock

Fig.4.Pipelined CORDIC structure [2]

Advantages :

1. FPGA implementation is easy, as registers are already available, thus requiring no
extra hardware.

2. Number of iterations after which the system gives accurate result can be modeled,

considering clock frequency of the system.

3. When operating at greater clock period power consumption in later stages reduces
due to lesser switching activity in each clock period.

Disadvantages :

1. Hardware complexity as well as area required is more than sequential architecture.

2. Power consumption is lower than parallel but higher than sequential structure.

1.3 Types of processors [3]

Processors mainly refer to the architecture of the computation mechanism employed to obtain
the desired functionality of a system. The processors may be programmable or non-
programmable, depending upon the application. They can be specialized and implement only
a single function, or be general purpose and implement a wide range of functions. The main
feature which governs the use of different types of processors for different applications are
the design metrics. Some of the most commonly considered design metrics are NRE cost,
flexibility, performance, power consumption, size, time-to-prototype and so on. The different

types of processors are as shown in the next page.

Controller Datapath
- Register Controller Datapath
Control file atapz
logic Controller
- 1 \ (‘lontlrol Registers Contro] Datapath
ogic I .
General - | LO(‘TC 1 [index| |total
PC ATU PC Custom]
E E ALU State register El
7Y .
v v |
Program Data Program Data Data
memory memory memory memory memory
Assembly Assembly
code for: code for:
total =0 total =0
fori=lto... fori=lto...
(@) (b) (© [3]

Fig.5. (a) General Purpose,(b)Application-specific & (c)Single Purpose Processors

1.3.1 General Purpose Processors
A General Purpose Processor(GPP) or microprocessor as it is generally called, is a
programmable device that has the aim of implementing a large number of applications
such that the number of devices sold is maximized. The main features of this processor
are that , the program memory is not built-in to the circuit, since it has to run different
programs at different times and it has a general datapath , with a large register file and

one or more general purpose Arithmetic and Logical Units (ALUS).

It has good time-to-market and NRE costs since only the program has to be changed for
the different applications without any change in hardware. Flexibility is also high due to
the same reason. However, the performance is poor for certain applications and the size

and power consumed are also high, because of the large hardware size.

1.3.2

1.3.3

Single Purpose Processors

A Single Purpose Processor(SPP) is a processor or a digital circuit which is designed to
execute only a single program. For example, the circuit used for image processing in a
digital camera is a SPP which has the single function of processing the input image and
storing it for subsequent retrievation. It has almost the opposite features of a GPP, since it
has a small register file, a dedicated datapath with an ALU performing only a limited

number of operations and no provision of altering the program memory.

It has several design benefits, since the performance may be fast, power consumption less
and also small size. However, it has the disadvantages of having very high NRE costs,

low flexibility and longer design time.

Application Specific Instruction-set Processors

An Application Specific Instruction-set Processor (ASIP) serves as a compromise
between a GPP and a SPP. It is a programmable processor which has an optimized
datapath for implementing only a particular class of operations. Several special
functionalities may be added while unnecessary ones eliminated. Microcontrollers and
Digital Signal Processors (DSPs) are some of the most common types of ASIPs in use.
They have a program memory that can be changed for different applications and limited

register-memory file depending upon the type of application and memory use.

It has the advantages of having flexibility, at the same time achieving good performance,
low power consumption and optimum size. The drawback is that it requires large NRE

cost to manufacture, especially to design the compiler. Certain design environments such

as CoWare offer the benefit of automatically generating the compiler which has greatly

reduced the cost and time of manufacturing the device.

1.4 Organisation of thesis

Second chapter deals with the literature survey on the different variations of the cordic

algorithm and its implementation on different platforms and design environments.

Third chapter gives an introduction to the Xilinx IDE from Xilinx, Inc. and the design of
the sequential CORDIC architecture and its different components such as the shift register,

the LUT etc in the Xilinx IDE.
Fourth chapter gives an introduction to the LISA 2.0 language from CoWare corporation
(recently acquired by Synopsis) and some of its typical features and advantages. Secondly, it

gives the design of the pipelined cordic architecture using LISA 2.0 language.

Fifth chapter gives the RTL schematics, Device utilization summaries, timing diagrams and

page snapshots of the designs implemented using both the Xilinx and CoWare tools.

Sixth chapter gives the conclusion, comparison and future work that could be carried out

relating to the CORDIC algorithm based processor design.

10

CHAPTER 2
L iterature Review

11

Ray,Andraka[5] has carried out a comprehensive research on the different types of
CORDIC algorithms for the calculation of various trigonometric, exponential as well as
linear functions, transformation to and from polar and rectangular coordinates, the
extension to hyperbolic functions in the paper “A survey of CORDIC algorithms for
FPGA based computers”. Besides the survey of the different algorithms, the paper also
gives a list of a number of CORDIC processors, such as iterative, bit- iterative and their

implementation in an FPGA.

Sung T.Y., Hsin H.C.[6] in their paper titled “Design and simulation of reusable IP
CORDIC core for special- purpose processors” have proposed an entirely new
extenstion to the in use CORDIC algorithm by the use of double rotation. Such a double
rotation increases the efficiency and greatly reduces the efficiency by reducing the time
of convergence. It also gives the architecture and implementation of such a CORDIC

algorithm on a FPGA.

Reimund Klemm, Javier Prieto Sabugo, Hendrik Ahlendorf, Gerhard Fettweis [7]
in their work “Using LISATek for the Design of an ASIP core including Floating Point
Operations” have provided great insights into the design of ASIPs and how the LISATek
tool is helping designers of processors to drastically shorten the design time, at the same
time making the designing task easier. Additionally, it integrates IP cores in terms of a
floating point processing unit to enable instruction customization. Besides, it gives an

analysis of area and delay parameters using different by pass modes and their product.

12

CHAPTER 3
Design using Xilinx IDE

13

3.1

3.11

Introduction to Xilinx ISE

Xilinx Integrated Software Environment (ISE) [4,8] is a software tool developed by
Xilinx corporation for the synthesis and analysis of Hardware Descriptive Language
(HDL) designs. It enables the synthesis of designs, timing analysis , Register Transfer
Level (RTL) diagram examinations, simulation as per different environments as well as
the configuration of the target device with the help of the programmer.

Design fundamentals

The first step in designing of any device in the Xilinx ISE is the creation of a new project
with the appropriate information regarding the product category, the family for which the
design is being made, the package, the speed grade, language etc. The next step is the
creation of a VHDL source file with information regarding the different inputs and
outputs to and from the design. Then the new source is created by giving the behavioral
description of the design. While doing this various language templates available in the
Xilinx library may also be used. Design may also include signals which are connected

within the circuit, besides the inputs and outputs.

ES Xilinx - ISE - C:\iMPACT Test\ISE\tutorial\tutorial.ise - [counter.vhd]

[l File Edit View Project Source Process Window Help
D2EF L mREX @@
EE @ e SRS EE - =

3 4 [<count> ~

i3
s for: | Implementation ~ 14
tutonal 1s
= €7 xc3s200-4t 256 16

[k countter - Behavioral {counter.vhd) iz

1
[Py Fles | s Snapshots| [P Libraries 3
4q
i
Processes for: xc3s200-4ft 256 26
— Add Bdsting Source 27

1 Create New Source
=% Design Ukiities >
30
31

entity counter is

Port (CLOCK : in
32 DIRECTION : 1
33 COUNI_OUT :
34 end counter;

36 architecture Sehavioral of counter is

38 begin

41 end Behavioral:

Fig.6. Snapshot of the behavioral description window[4]

14

3.1.2

3.13

Design verification and simulation

After the behavioral description is provided, the syntax is checked for correctness using
the syntax process available. After ensuring correctness, the functionality of the design is
checked using the behavioral simulation. It involves the creation of a test bench
waveform, which is a graphical view of the test bench. Various parameters can be varied
in the test bench such as the clock high time, the clock low time, input setup time, output

delay, offset etc.

1425.0
End Time: ez 0ne]

1500 ns
anorock o UMMM AU U A UL LU
ANDIRECTION 0

QR COUNT_OU.. 4h0 ¢ 4h0

Fig.7. Test Bench Waveform

Implementation of design

After the verification of the design and that of the test bench waveform for proper
functioning, the implementation of the device is done. Post — implementation, a summary
is generated which contains, besides other things, the device utilization in the design. The
Register Transfer Level (RTL) description is generated which gives a clear picture of the

hardware components present.

15

3.2

3.2.1

E= Xilinx - ISE - C:\iMPACT Test\lSE\tutoriali\tutorial.ise - [Design Summary]

. File Edit View Project Source Process Window Help & X
D EHS | L DR D | AL E | [AT B M~ kR M e [<count> ~: W
EET E @ = TSR T i« 2 4R R D H OO
ummary |~ tutorial Project Status (12/11/2007 - 11:35:57) o
E Implemertat,
or | Implementation _ Project tutorial ise Current State: Placed and Routed
orial File:
= ﬂchsiDl}AﬂZSE [2] I0B Propertiss Module counter + Emors:- Mo Emors
- [ual ey counter - Behavioral {counter.vhd) 2] Module Level LI Name:
(=] Timing Constrai Target %035 2004256 + Wamings: Mo Wamings
[Pinout Report Device:
Product ISE 10.1 - Foundation ~ Routing Al Signals
Version: Simulator Results: Completely Routed
N3 Seurce |[™ Fles || pg Snapshe|| [Librare s Design Balanced + Timing All Constraints Met
sl S Goal - Constraints:
oo
- — [E] Map Messages Desion iliros Defauft - Final Timing 0 (Timing Report}
A g e [2] Place and Rout Strategy: {unlocked) Score:
[E1E view Syrthesis Report [Z] Timing Messages |+
[&] Wiew RTL Schematic Froject Froperties v tutorial Partition Summarny =
[Z] View Technology Schematic Enable Enhanced De: Mo partition information was found.
€ 2ED Check Syrtax O Enable Message Filter
= PR Generats Post-Synthesis Simulz [Display Increme rital M T ——r— a7
= @ 2@ Implement Design Erhanced Design Summary Cc e e L ey =
= (}OTmnslale Show Partition Data Logic Utilization Used il Uil i
5 T AED Map O sh Number of Slice Flip Flops 4 3.840 1%
= @D Place & Routs = Mumber of 4 input LUTs 4 3.240 1%
. =5 z - TS
< I 109, Dummbamen - — ~
P
= lEmc=sas [l countervhd | 3£ Design Summany
> [Process "Generate Post-Place & Route Static Timing"” completed successfully -~
= -
& (&3 >
| [5] console Erors 1, Wamings Tol Shell i@ Find in Files
= i o0
Ln 39 Col 1

Fig.8. Snapshot of the post-implementation design summary

Design of CORDIC using Xilinx ISE

The sequential CORDIC algorithm (as shown in fig.2) is implemented using the Xilinx
ISE design tool. As seen in the architecture, the main components of the design are the
shift registers, the adders and the Look-Up Table (LUT). Structural method of designing
is employed in which the different components are implemented separately and then the

final structure is made by combination and port mapping of the individual components.

Shift Registers

Shift registers are mainly used for the purpose of storing data. They contain a series of
flip-flops connected back to back such that the output from one flip-flop is the input to
the next flip-flop. A common clock drives all the flip-flops and they can be set and reset
at the same time. Such a shift register is called a Barrel shift register. It is mainly a
combinational circuit that has n — inputs , n — outputs and other control pins that specify

the type and amount of shift. The parameters of shifting specify the direction of shifting

16

3.2.2

(left or right), the number of bits by which the number is to be shifted and the type of

shift operation taking place i.e., circular, arithmetic or logical.

ROM LUT

A Read-Only Memory is essentially a type of memory device in which values are to be
pre-stored and can only be fetched / read. However, recent developments in memory
technology have bridged the gap between the different types of memory and the data in
the ROM devices is easily modifiable. In this case, the ROM is used to implement a LUT

which stores the angle values which are to be used in the computation.

A LUT is a type of data-structure, usually an array which is used to replace a run-time
computation with a list of stored values. Since retrieving from memory is much faster
than computation, it saves time and also reduces hardware complexity which would have
been required for the computation. In the current implementation, the arctan values from
i=0 to 28 are stored in the LUT, in the 16-point fixed format representation. The obtained
angle is compared with the desired angle in each of the iterations which is the deciding

factor for the direction of rotation.

17

3.2.3

.—5 Xilinx-lsg-D:\Fmalyearpmjan\ROM,LUT\RDM,Lunse-[ROM,Lm - v ‘;. "L B St S=RRea X
[File Edit View Project Source Process Window Help [SCI]
DREHF L& £EX 2@ PLXAPR|IA TEODT: AN 0MH FEFFAISIRALL OORLL ¢ 00O
EE|Z2ZL(AARR IR

20 library -
Sources for: | Implementation - 21

E{ROM_LUT 22
Er £ xc 2500 4g320 23

[2)e%; ROM_LUT - Behavioral (ROM_LLI z:

26
27
28
29
30
31 encicy ROM LUT is

32 Port (en,clk,reset,readl : in STD LOGIC:

ing library declaration if instantiating
in this code.

n

g0 33 n:in STD L0GIC; L
- 32 angle : cut sfixed(15 downto 0));

E[gSnun:E|l||'j Files |m Snapsh(|® Librarie e oM LT

38 -

37 architecture Behavioral of ROM_LUT is

Processes for: HOM_LUT-Benavieral || 35
[Add Exsting Source 39 type ROM_array is array(0 to 39) o
[Create New Source 40 constant content:ROM_array:=(0=>"0

41 1=

ctor (15 downto 0);

E View Design Summary

% Design Utities L zi gf

B User Canstraints s p

T Syrthesize - XST e fmnn

T2 Implement Design 25 o=

¥) Generate Programming File L a7 7=

¥) Configure Target Device 2 48 g=; i

i J afF v
Processes

® Vihat's New in ISE Design Sute 10.1 | i Design Summary | [ROM_LUT.vhg
Started : "Launching Design Summary™. q
Started : "Launching ISE Text Editor to edit ROM LUT.vhd". j

< e
Console | @ Erors | g\ Wamings | [Tel Shell | |gg Find n Fes

Float this window CAPSINUMISCRI [1n1 Coll [VHDI

Fig.9. Snapshot of the ROM_LUT behavioral description

Behavioral description

The behavioral description of the model is provided as shown below. The input is the
desired angle, for which the sine and cosine values are to be calculated. The i, i.e. the
number of iterations that are to be performed is specified depending upon the accuracy
of the result desired. Then after the syntax checking, the RTL schematic, test bench
waveform and the device utilization summary are generated which are given later in the

simulation and results section.

18

CHAPTER 4
Design using CoWare Processor

Designer

19

4.1

411

41.2

Introduction to CoWare Processor Designer [9]

CoWare processor generato is an automated ASIP design and optimization environment.
It was developed by coware corporation and has recently been acquired by synopsis.
Some of the major components of the processor designer are the LISA 2.0 language, the

processor debugger and the Instruction Set Designer.

Intoduction to LISA

LISA is an acronym which stands for ”Language for Instruction-Set Architectures”. It is
suited to the modeling of any architecture whose behavior is controlled by an instruction
set which is provided in the form of a dedicated resource. The language covers a wide
range of architecture types such as General Purpose, RISC , DSP, special-purpose

processors besides ASIPs for which it is most suited.

Resources and operations are the main components of a LISA processor model.
Resources describe all the storage elements of the processor such as the program
memory, data memory, the buses etc while the operations give the transition functions of

the processor, including the instructions as well as instruction-dependent functions.

Resource modeling

Processor resources include the storage elements, the input/ output pins, global variables,
bus architecture etc. The storage elements include the memoies as well as the registers.
Besides these, in cycle- accurate models of which a pipeline is an integral part, other
resources such as pipeline registers, interconnect signals. The resources are declared in

the resource section, a typical syntax of which is as shown in the next page.

20

4.1.3

RESOURCE

{
... RAM char prog_mem
{
SIZE(0x1000);
BLOCKSIZE(8,8);
FLAGS(R|X);
fas
}

The declaration consists of an identifier, a data type specifier and an option to describe

the semantic type of the resource.

Modeling instructions
The basic building block of description of an instruction is the OPERATION, which
performs a role similar to classes in C++. The operation generally consists of three

sections such as CODING, SYNTAX and BEHAVIOR.

The OPERATION declaration consists of the OPERATION keyword followed by an
unique identifier which gives information about the functionality of the operation.
Operations may range from FETCH and DECODE operations, which give the manner in
which instructions are obtained from the program counter and how they are executed, to
ADD and MUL operations, which as their name suggest, give the functioning of the

arithmetic operations. A typical operation description is as shown :

21

OPERATION identifier

{
DECLARE{ ... }
CODING{ ... }
SYNTAX{ ...}
BEHAVIOR{ ... }
}

Declare section gives the list of resources that the particular operation uses. It gives the
instances or the groups of either the immediate operands or the registers and the number

of which it is using.

Behavior gives the model of the instruction behavior. It contains the arbitrary C block

code which describes the functionality of the operation.

Syntax gives the format in which the assembly instruction is to be provided to the
processor for the functioning of the particular operation. It is a usually a string or a

sequence of strings.

Coding section gives the binary image of the instruction operands. In the simplest case it
gives the opcode, the register which is to be used from the register file and the immediate
operand or address if any. It is a sequence of bit-fields, in which the register is specified
in 4-bits (out of a register-file of 16 registers), the immediate or address specified in 8-

bits and the opcode specified in a number of bits such that the total number of bits is 16.

22

414

4.1.5

4.1.6

The tools of the processor generator which require an instruction decoder generation,
extract information from the coding sections.

For example, 0b0011 reg16 imm8

Advantages of CoWare processor designer|[9]

The generation of RTL schematic takes place automatically with both the control as well
as the datapaths.

It also automatically generates the software development tools required i.e. the compiler,
the decoder, assembler and linker.

It is compatible with extensively used tools such as Xilinx , synopsis and cadence.

It enables flexible designing and greatly reduces design time and engineer-years.

Instruction Set Designer[9]

The ISD is a Graphic User Interface that allows the designer to view, edit as well as
create LISA processor models. The option of having a graphical representation rather
than just the source code to edit makes processor design much simpler and easier to learn
since knowing the details of syntax is not necessary. The ISD and the LISA source code

compliment each other and changes made in either is reflected in the other.

CoWare Processor Debugger[9]

The CoWare Processor Debugger is also a Graphic Interface which allows the designer to
observe, edit and profile the assembly source code. The GUI shows the current
instruction of the assembly syntax which is being executed, the register values and

memory values, changes in which are taking place and also the changes in output. It is

23

intended to analyze and debug the LISA 2.0 processor model. A snapshot of the window

is provided below:

& Applications Actions %"1

@ sunvay 8 116PM @

Processor. Debugger: /home/NIS/BTECH0812/debabrat/Deskiop/Tutorialprocessor/i6/200.

Eile Program Debug View Profiing Windows Exftras Help

EEEIEE L DEE IR N EEE O NEEREDEE R
HSymboI Set IEImage Symbols j Goto Symbol | EXIT -| Goto Address|0x00000000 j‘HIDefault (|| B2 j|
= x| |
: |Symbo\s |Address |Instruction |Disassemb|y |Loop |C0ntro\ Stepl Relatv= | [N zme |Va|ue |
% 00000000 0000 HOP 1 0.89 e ARGGTGEG EFiles
B 00000002 0000 HOP 1 0.89 R[]] &1 Search Di...
5 00000004 1101 LOL R[1] ., #1 1 0.89 BI1] dant EOther Flles
a 00000006 1200 LOL R[2] ., #0 1 0.89 R2]] G Assembly ..
- 00000008 130F LOL R[3] ., #15 1 0.89 B3] T Header FIL..
a¥ 00000004 239 LOH R[3] , #-55 1 0.89 Rl4] DT B1CICH+ Flles
Lt 0000000 1414 LDL R[4] , #20 1 0.89 RIS 2000
=l 0000000 2580 LOH R[5] , #-128 1 0.89 RI6] ETE
00000010 1701 LOL R[7] ., #1 1 0.89 BT Qa0
00000012 1874 LOL R[B] ., #116 1 0.89 B8] Sl
00000014 2890 LDH R[] , #-101 1 0.89 B9] ap7a
a0a0a016 00 HOP 1 0.8 RIL0]]
a0a0a01a8 00 woe 1 0.8 RIL1] 0000
000000 a 2c05 LOH R[12] , #5 5 4.45 RI1Z] e
a000001 ¢ 7635 SUB R[6] , R[3] , R[&] 5 4.45 RIL3] ch7a
a000001 & 5060 BC @DxD0GD , R[6]:EQ 5 4.45 Ri14]]
+ O0000020 961 BNDL R[E] , #-1 4 3.57 RILS] 0000
00000022 667 BNDH R[E] , #127 4 3.57 = o]
a0nnannzd 7447 sUB R[4] , R[4] , R[T] 4 3.57 g noe0
00000026 5860 BC @DxD0GD , R[4]:EQ 4 3.57
000000238 <916 ML R[9] , R[] , R[B] 4 3.57
00000028 ca2h MUL R[10] , R[2] , R[S] 4 3.57 Registers A Contral R «|»
000000Ze caaf ML R[10] , R[10] , R[8] 4 3.57
000000Ze bl 5 ML R[11] , R[11 , R[S] 4 3.57
A0000030 cbbf ML R[11] , R[11] , R[8] 4 3.57
00000032 aoZf ML R[12] , R[Z]1 , RIE] 4 3.57
a0a0a034 00 HOP 4 3.57
a0000036 0000 HOP 4 3.57
A0000038 5030 BC @0xD03c , R[6]:EQ 4 3.57
A000003a Gods INDH R[1Z] , #78 4 3.57
a000003e Tdda sUB R[13] , R[3] , R[10] 4 3.57
0000003e Jsbo won R[141 , R[111 , R[1Z2] 4 3.57
4| nnnnnnan annd TR RIM131 . afznnnn | a ?,ﬁ'?;lll Files S mtﬂ»
_xl nNotning to do ;I

Nothing to do
Nothing to do
Nothing to do
Nothing to do
Nothing to do
Nothing to do hd
stdout A stderr

[Simulation Mode : JIT-CCS [Step : 112[{c) CoWare Processor Debugger Version 2007.1.2 Linux — July, 2008
(B Terminal |5§_ [CoWare & Pm((l‘_r_ F‘rucEssurDEhugl rl'umrialumnassnl;l t6 | [app] |t._» ,’hume,’NISfBTECl;‘L 2007.1.2_linux |‘,‘ bin |E.’;l

Fig.10. Snapshot of the processor debugger window (with CORDIC assembly code)

24

4.2 CORDIC Processor design using CoWare

An ASIP based on the CORDIC algorithm as described in the previous sections is
designed using the CoWare Design Environment. During this, one of the typical features
of CoWare design environment that is taken advantage of is the hardware — software co-

design flow. The typical flow of the processor design is as shown below:

Adjust Generate

CoWare

Processor C-Compiler
Designer

Assembler

Simulator

Design goals
met?

RTL Generation

Analyze

CoWare Software RTL
Platform Architect Tools Implementation
System(C Models (Verilog, VHDL, System()
[10]

Fig.11. CoWare design flow
The instructions that are required for the implementation of the CORDIC algorithm are
estimated from the equations (1) and (2) (refer to chapter 1). The add, subtract and
multiply operations are realized by the use of arithmetic operations ADD, SUB and MUL
whereas the compare instruction is carried out by the subtraction, comparison of MSB
and the BC (Branch Conditional) operations. The 16-bit register file is used along with
the memory-file. A table of the mnemonics, syntax and the operation they perform is

given in the following page.

25

SI. No.

Mnemonic

Syntax

Operation

nop

nop

Performs no

operation

add

add r1,r2,r3

adds value of GPR r2

to r3 and stores the

value inrl

sub

sub rl,r2,r3

subtracts value of r3

from r2 and stores

value inrl

andl

andl rd, #imm8

performs logical and
operation between
the imm8 value and

lower byte of GPR rd

andh

andh rd, #imm8

performs logical and
operation between
the imm8 value and

upper byte of GPR rd

mul

mul r1,r2,r3

multiplies value of r2
to r3 and stores the

value inrl

shr

shrrl

shifts the bits of GPR
rl by 1 bit to the

right

26

equal to zero

8 branch conditional, bc @addr jumps to location
no condition addr specified
9 branch conditional, br @addr, rd:eq jumps to location

addr if value in GPR

rd is zero

10 branch conditional,

not equal to zero

br @addr, rd:neq

jumps to location
addr if value in GPR

rd is not zero

11 [o]! Idl rd, #imm8 loads immediate
value imm8 to lower
byte of GPR rd

12 Idh Idh rd, #imm8 loads immediate
value imma8 to higher
byte of GPR rd

4.2.1 Pipelining

Pipelining is one of the most intricate features of the CoWare design environment.

Without an instruction pipeline, generation and synthesis of a RTL schematic is not

possible in a CoWare design. In the current design, a three stage pipeline is used. The

stages are :
e Fetch / Decode (FD)
e Address Generation (AG)

e Execution (EX)

27

One of the many advantages of pipelining is that, the performance of the processor is
significantly increased. This is because although only a single operation of fetch/decode
takes place in the first clock cycle, in the subsequent clock cycles multiple operations

take place, thus increasing the throughput of the processor.

However the pipelining suffers from many problems known as hazards of pipelining. One
such example is that, the same memory locations may be accessed in different pipelining
stages most importantly during the address generation and the execution stages. To solve
these hazards, pipelining registers are provided and all the fetch/decode instructions are

modeled within those registers.

Thus, the CORDIC processor implemented in this case is the pipelined CORDIC

architecture.

28

CHAPTER 5
Simulation and Results

29

5.1 Simulation results of processor using Xilinx

5.1.1 Synthesis of the ROM LUT

ROM

Addr(4:0) Data(15:0)

BRE

FDE

CE

[

clk

reset >-

INV

e

FDPE

CE

PRE

0

Device utilization

Fig.12. RTL schematic of the ROM LUT

Device Liilization Summary (estimated values) H
Logic Wtilization Used Awvailable Litilization
Number of Slices 1 4656 0%
MNumber of Slice Fip Fops 18 9312 18
MNumber of 4 input LUTs 2 9312 14
Number of bonded IOBs 21 232 9%
Number of GCLKs 1 24 4%

Table.1. Device utilization summary of the ROM LUT

30

5.1.2 Synthesis of the Shift Register

e =5 I r—'l_—-]—;_ s i P e
=] =
EET U x I - 3
= S | R = IR T
=T = i | I
| = | = i ‘ ﬂ
1 =" = g
I=5 — T] *;gf']
Emmg == S
= et —]
| = S g =1 —
— @'ﬁ

—

Device utilization

Fig.13. RTL schematic of the implemented shift register

Logic Utiization Used Available Utihzation

Hurmbes of Shes () 50 0
Humber of 4 puk LUTs W 718 I
Humber of borded 1083 ¥ b 164

Table.2. Device utilization summary of the shift register

31

5.1.3 Device utilization and test bench waveform of the processor

Logic Lltilization

Used

Available

Utilization

Humber af Slices

9

4

Humber of 4 input LUTs

1504

il

Humber of bonded 1085

5

2

Humber of GCLKs

Current Simulation
Time: 1000 ns

B rads(5:-15]

ollclk

Table.3.

Device utilization summary of processor

ollaclr

B sine(0:-15]

B cosine(0-15]

ol! period

oll duty_cycle

RIS = =17 8

ol offset

32

Fig.14. Test bench waveform of the CORDIC processor

5.2 Simulation results of processor using CoWare

5.2.1 Synthesis of the external memory

[MEM _data mem data in_0(7:0))—————= data_in_cp0(7:0) data_out ¢p0(7:0) | MEM data_mem data out 0(7:0)>

[MEM data mem rw address 0(11:0))———————== rw_addr_cp0(11:0)

[_clk_main ———#———cik

[MEM_data_mem_ew 0> ' ew_cp0
[rst_main>—#— st
[MEM_prog mem data in 0(7:0))——+—+—== data_in_cp0(7:0) data_out ¢p0(7:0) pmee————{ MEM prog mem data out 0(7:0)>
[MEM prog mem rw address 0(11:0) »————————== rw_addr_cp0(11:0)
— clk
[MEM_prog_mem ew 0>—— —ew_cp0

rst

Fig.15. RTL schematic of the external memory showing program and data memories

Device utilization

Device Utilization Summary (estimated values) ' H
Logic Uilization | Used | Available Uiization
Number of Slices ‘ 0 ’ 4656 ‘ %
Number of bonded I0Bs | 60 | 2 2",

Table.5. Device utilization summary of external memory

33

5.2.2 Synthesis of the processor

| =
!

Fig.16. RTL schematic of CORDIC processor in CoWare

Device utilization

Logic Utilization Used Available Utilization

Number of Slices 1661 4656 35%
Number of Slice Flip Flops 378 9312 4%
Number of 4input LUTs 3197 9312 34%
Number of bonded 10Bs 60 232 25%
Number of MULT18X18SI0s 1 20 5%
Number of GCLKs 1 24 4%

Table.6. Device utilization summary of the CORDIC processor in coware

34

Detailed RTL view

| PREG _RD_AG_S) sty YR_n(¥20)

[FREG R0 AG_SX_mpenand L12Um B3

PO MG EX_spenasd 22 mBY

A X B> AATDEA_.
AWCAE A
[A e ek g A EA W) resed_branch a3 E3_js

W_R_SAT_oud 0

sl O

e — LR

EW_BRC_ et 028 00 |
RN oud
BWR_AE3 ok |

G _WR_IPC_sate 138 ot

W R0, e e, BT)

LNER O gaa man 143w op

LD, s e 184 T 0

PREG RO AR EX N A0 MWD

FREG_RD, AL EX rts, SR_n(501

FREC MDA EX Wi LIS

AR S, rren, 1o 1)

AN _Sda_rrern_1e4_oas v
ks, e AT DR 1)
AT_sba_rree J0_oas 1t)
R AT

PR TR
MR an
MEUWR_cta_rem 0 adT O
MEU_WR_ta w14 st D
REGAWRFPC_Yannd
REC_WH_SRC_ BT a %
REG_WRR_D0_an vl
FEC_WRR_TS st
RECWRR_ WLl 08
BR_deta_rwey_ (00 ¢
ER_0s_men_124 34

ER_SRC it zet
Em_EFC_yebo_ Wi ok
TA_ERC_2 24

B _E°C_%T e
EW_tts e _WT_sd
EW_ddta_rme_140_sd

EmR. 000

TR DS 0l

En R ML
LomtZianches_DC_pee fOAG Nub_sd
RED_WREPC yata, 154 09
REC_WT_IIC yuid_¥0_sd

[XBCXEEX W 480 ECn
(A AEEC D> A 808 3w
(AT RS EN S ST
A ER> SR
R e
[(AErRCA e T AT
——{E0 5. vcome s
QL5 swcommn
NG 7 drcoma
M e 139 [

Available

Number of Slices

57

Number of 4input LUTs

103

1%

Number of bonded 10Bs

177

76%

Table.7. Device utilization summary of fetch/decode operations

35

CHAPTER 6
Conclusion and Future Work

36

Conclusion

® The CORDIC algorithm for the calculation of trigonometric and exponential function

was reviewed and implemented using both Xilinx IDE as well as CoWare IDE

® The architecture implemented in Xilinx was sequential, which is the simplest of
architectures. It has least hardware complexity and ease of design, however it is time-

consuming since each new iteration takes place in a new clock cycle.

® The architecture implemented in CoWare LISATek is pipelined, in accordance with the
requirements of the processor designer for generation of RTL schematics. The pipelined
architecture is more hardware intensive and complex in design, but it has the advantage

of being much faster since multiple instructions get executed in the same clock cycle.

Future Work
® FPGA implementation of both the processors designed using Xilinx IDE as well as
LISATek could be done.

® Various new and more efficient algorithms of CORDIC rotation could be review and

implemented.

® CoWare LISATek is a tool with very powerful and time — saving features, though most of
it are a tad difficult to learn. Study and documentation of the software could be done

which would be extremely beneficial.

37

REFERENCES

[1] J.E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Transitions on
Electronic Computers, vol. EC-8, no.3, 1959, pp.330 -334

[2] ProfKris Gaj, Gaurav Doshi, Hiren Shah, “Sine/Cosine using Cordic Algorithm”

[3] Frank Vahid, Tony Givargis, “Embedded System Design” pp.9-11

[4] http://www.xilinx.com/publications/products/cpld/logic_handbook.pdf

[5] Ray Andraka,“4 survey of CORDIC algorithms for FPGA based computers”

[6] SungT.Y., Hsin H.C.,”Design and simulation of reusable IP CORDIC core for special-
purpose processors”

[71 Reimund Klemm, Javier Prieto Sabugo, Hendrik Ahlendorf, Gerhard Fettweis, “Using
LISATek for the Design of an ASIP core including Floating Point Operations ”

[8] http://en.wikipedia.org/wiki/Xilinx_ISE

[9] Dodani Vicky Rameshlal, Nikhil Kumar, “EMBEDDED DSP PROCESSOR DESIGN
USING COWARE PROCESSOR DESIGNER AND MAGMA LAYOUT TOOL”

[10] CoWare, “The LISATek™ Solution-Automated Embedded Processor Design and Software
Development Tool Generation”

[11] CoWare, The ESL design Leader reference manuals, Product version V2007.1.2,June-08

[12] http://en.wikipedia.org/wiki/CORDIC

[13] Rashid Muhammad, Ludovic Apvrille, and Renaud Pacalet, “Evaluation of ASIPs Design
with LISATek”

[14] Oliver Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H. Meyr, Mario Steinert,
Gunnar Braun, Achim Nohl, “RTL Processor Synthesis for Architecture Exploration and

Implementation”

38

http://www.xilinx.com/publications/products/cpld/logic_handbook.pdf
http://en.wikipedia.org/wiki/Xilinx_ISE
http://en.wikipedia.org/wiki/CORDIC

