
ASIP design based on CORDIC algorithm using

Xilinx and CoWare designer tools

A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Electronics and Communication Engineering

by

Debabrat Mishra (107EC013)

under the guidance of

Prof. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication, NIT Rourkela

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187920?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ASIP design based on CORDIC algorithm using

Xilinx and CoWare designer tools

A Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Electronics and Communication Engineering

by

Debabrat Mishra (107EC013)

Department of Electronics and Communication, NIT Rourkela

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

2011

iii

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “ASIP design based on CORDIC algorithm

using Xilinx and CoWare designer tools” submitted by Debabrat Mishra(107EC013)

in partial fulfillment of the requirements for the award of Bachelor of Technology

Degree in Mechanical Engineering at National Institute of Technology, Rourkela is an

authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in this thesis has not been submitted

to any other University/Institute for the award of any Degree or Diploma.

Date: Prof. K.K.Mahapatra

 Dept. of Electronics and Comm. Engineering

 National Institute of Technology

 Rourkela-769008

iv

ACKNOWLEDGEMENT

I am extremely grateful to my guide Prof. K.K. Mahapatra for giving me the opportunity

to work under him and for giving the topic to work on, which was both extremely

interesting as well as challenging. His timely advice from time to time, however, made

life much easier than it would have been.

I am also grateful to Mr. Jagannath, Mr Anup Sarma and Mr Soubhagya Sutar without

whose help, CoWare would have always remained an unsurmountable task. It was

because of their help and tips that I was able to complete my thesis on time.

Last but not the least, I am thankful to my family, all my professors and friends without

whose support this work would never have been possible.

 Date: Debabrat Mishra

 (107EC013)

 Dept. of Electronics and Comm. Engineering

 National Institute of Technology

 Rourkela-769008

v

ABSTRACT

Efficient generation of trigonometric as well as exponential functions without

much increase in hardware complexity has always been a challenge, owing mainly to

their importance and widespread use in Digital Signal Processing applications besides

other areas. One such algorithm which is very much effective for the calculation of

trigonometric, hyperbolic, exponential, linear and logarithmic functions is the CORDIC

algorithm. The algorithm is very much hardware efficient because it omits the

dependence on multipliers and is rather a combination of shift-add operations.

Application Specific Instruction-set Processors (ASIPs) are a type of processor

that serve as a compromise between General Purpose Processors (GPPs) and Single

Purpose Processors (SPP). Their data-path can be optimized for a particular class of

operations such as embedded control, Digital Signal Processing (DSP) applications etc.

This project deals with the design of an ASIP based on the CORDIC algorithm using two

very popular hardware designing tools, i.e , Xilinx Integrated Development Environment

(IDE) from Xilinx corporations, Inc. and LISA 2.0 description language and processor

designing environment from CoWare.

vi

CONTENTS

Certificate iii

Acknowledgement iv

Abstract v

List of figures viii

List of tables ix

Chapter 1 : Introduction 1

1.1 The CORDIC algorithm 2

1.2 Types of CORDIC algorithm 4

1.2.1 Sequential/iterative CORDIC 4

1.2.2 Parallel / cascaded CORDIC 5

1.2.3 Pipelined CORDIC 6

1.3 Types of Processors 7

1.3.1 General Purpose Processors 8

1.3.2 Single Purpose Processors 9

1.3.3 Application Specific Instruction-set Processors 9

1.4 Organisation of Thesis 10

Chapter 2 : Literature review 11

Chapter 3 : Design using Xilinx IDE 13

3.1 Introduction to Xilinx ISE 14

3.1.1 Design fundamentals 14

3.1.2 Design verification and simulation 15

3.1.3 Implementation of design 15

3.2 Design of CORDIC using Xilinx ISE 16

vii

3.2.1 Shift registers 16

3.2.2 ROM LUT 17

3.2.3 Behavioral description 18

Chapter 4 : Design using CoWare Processor Designer 19

4.1 Introduction to CoWare Processor Designer 20

4.1.1 Introduction to LISA 20

4.1.2 Resource modeling 20

4.1.3 Modeling instructions 21

4.1.4 Advantages of CoWare processor designer 23

4.1.5 Instruction Set Designer 23

4.1.6 CoWare processor Debugger 23

4.2 CORDIC processor design using CoWare 25

4.2.1 Pipelining 27

Chapter 5 : Simulation and Results 29

5.1 Simulation results of processor using Xilinx 30

5.1.1 Synthesis of the ROM LUT 30

5.1.2 Synthesis of the shift register 31

5.1.3 Device utilization and test bench waveform of processor 32

5.2 Simulation results of processor using CoWare 33

5.2.1 Synthesis of the external memory 33

5.2.2 Synthesis of the processor 34

Chapter 6 : Conclusion and Future Work 36

References 38

viii

LIST OF FIGURES

Sl No. Caption Page No.

1 . Vector rotation method of sine and cosine calculation 3

2 Sequential / iterative CORDIC structure 4

3 Parallel / cascaded CORDIC structure 5

4 Pipelined CORDIC structure 6

5 Different types of processors 8

6 Snapshot of the behavioral description window 14

7 Test Bench Waveform snapshot 15

8 Snapshot of the post-implementation design summary 16

9 Snapshot of the ROM_LUT behavioral description 18

10 Snapshot of the processor debugger window (with CORDIC assembly code) 24

11 CoWare design flow diagram 25

12 RTL schematic of the ROM LUT 30

13 RTL schematic of the implemented shift register 31

14 Test bench waveform of the CORDIC processor 32

15 RTL schematic of the external memory showing program and data memories 33

16 RTL schematic of CORDIC processor in CoWare 34

17 RTL schematic of the arithmetic and load-store branches (level 2) 35

ix

LIST OF TABLES

Table No. Caption Page No.

1 Device utilization summary of the ROM LUT 30

2 Device utilization summary of the shift register 31

3 Device utilization summary of processor 32

4 Device utilization summary of external memory 33

5 Device utilization summary of the CORDIC processor in coware 34

1

CHAPTER 1

Introduction

2

1.1 The CORDIC algorithm

The CO-ordinate Rotation DIgital Computer (CORDIC) [1] is a special purpose computer

meant for the real-time calculation of trigonometric and exponential functions by the use of

iterative vector rotations. Vector rotations can also be used for the conversion of polar to

rectangular and polar to rectangular coordinate conversions. The algorithm can be derived

from the rotation transform :

 x’ = x.cos ϕ – y.sin ϕ

 y’ = y.cos ϕ + x.sin ϕ

On rearrangement of the terms, this can be given as :

 x’ = cos ϕ [x – y. tan ϕ]

 y’ = cos ϕ [y + x. tan ϕ]

The implementation of these equations is still complex due to the presence of the

trigonometric functions. However, if the rotation angles are restricted to values such that

tan ϕ = ± 2
-i

, the multiplication by the tangent can be greatly simplified as it can be

implemented using simple shift operations . Thus, arbitrary angles can be obtained by

performing a series of rotations iteratively. At each rotation, the direction of rotation is

chosen by obtaining the difference between the actual angle and the angle obtained by

rotation. Mathematically, it can be given as shown in the next page.

3

 x i+1 = K i [x i – yi . di . 2
–i

] (1)

 y i+1 = K i [y i + xi . di . 2
–i

] (2)

where , Ki = cos (tan
-1

 2
–i

) = 1/ √ (1 + 2
-2i

)

 di = ± 1

The value of di is +1 if the angle to be obtained is greater than the current iterative angle and

is - 1

if the current iterative angle is greater. The value of Ki can be taken to be a constant

with a value of about 0.6073 when the number of iterations is taken large.

Fig.1. Vector rotation method of sine and cosine calculation

While computing we start with an initial value of x-coordinate at 1 and an initial value of y-

coordinate as 0. In the first iteration, the vector rotates by an angle of 45°, which gives us the

first iteration result. If this angle is greater than the angle β, the next rotation takes place in

the reverse direction, else in the same direction. Finally, after the specified number of

rotations, the value of cos(β) is given by the x-coordinate while the value of sin(β) is given

by the y-coordinate.

4

1.2 Types of CORDIC algorithm [2]

CORDIC algorithm for the calculation of sine and cosine values is of three types. Each of the

types have their own advantages and disadvantages.

The three types are :

1. Sequential / iterative

2. Parallel / cascaded

3. Pipelined

1.2.1 Sequential / iterative CORDIC :

In this type of CORDIC, a single iteration takes place in one clock cycle. The basic

hardware structure of sequential CORDIC algorithm is as shown :

Fig.2. Sequential / iterative CORDIC structure [2]

5

Advantages :

1. The hardware complexity is least and it occupies the least area.

2. It has maximum number of clock cycles per iteration.

3. Power consumption is least.

Disadvantage :

1. Maximum number of clock cycles are required to calculate the output, thus calculation

time is very slow.

2. Variable shifters do not map well on certain FPGAs due to high fan-in.

1.2.2 Parallel / cascaded CORDIC :

In this type of CORDIC algorithm, all the calculations take place within a single clock

cycle. The hardware of parallel CORDIC algorithm is as shown :

Fig.3. Parallel / cascaded CORDIC structure [2]

6

Advantages :

1. It has considerable delay, but processing time is reduced as compared to the iterative

process.

2. Shifters are of fixed size and so can be implemented in the wiring.

3. Constants can be hardwired instead of requiring storage space.

Disadvantages :

1. The amount of hardware required is large and the area required is maximum

2. Power consumption is highest among the three CORDIC architectures.

1.2.3 Pipelined CORDIC :

It is the most efficient of the CORDIC algorithms in which the iterations take place in

multiple clock cycles. However, different processes take place concurrently such that the

execution time is reduced. The structure of pipelined architecture is as shown :

Fig.4.Pipelined CORDIC structure [2]

7

Advantages :

1. FPGA implementation is easy, as registers are already available, thus requiring no

extra hardware.

2. Number of iterations after which the system gives accurate result can be modeled,

considering clock frequency of the system.

3. When operating at greater clock period power consumption in later stages reduces

due to lesser switching activity in each clock period.

Disadvantages :

1. Hardware complexity as well as area required is more than sequential architecture.

2. Power consumption is lower than parallel but higher than sequential structure.

1.3 Types of processors [3]

Processors mainly refer to the architecture of the computation mechanism employed to obtain

the desired functionality of a system. The processors may be programmable or non-

programmable, depending upon the application. They can be specialized and implement only

a single function, or be general purpose and implement a wide range of functions. The main

feature which governs the use of different types of processors for different applications are

the design metrics. Some of the most commonly considered design metrics are NRE cost,

flexibility, performance, power consumption, size, time-to-prototype and so on. The different

types of processors are as shown in the next page.

8

[3]

Fig.5. (a) General Purpose,(b)Application-specific & (c)Single Purpose Processors

1.3.1 General Purpose Processors

A General Purpose Processor(GPP) or microprocessor as it is generally called, is a

programmable device that has the aim of implementing a large number of applications

such that the number of devices sold is maximized. The main features of this processor

are that , the program memory is not built-in to the circuit, since it has to run different

programs at different times and it has a general datapath , with a large register file and

one or more general purpose Arithmetic and Logical Units (ALUs).

It has good time-to-market and NRE costs since only the program has to be changed for

the different applications without any change in hardware. Flexibility is also high due to

the same reason. However, the performance is poor for certain applications and the size

and power consumed are also high, because of the large hardware size.

9

1.3.2 Single Purpose Processors

A Single Purpose Processor(SPP) is a processor or a digital circuit which is designed to

execute only a single program. For example, the circuit used for image processing in a

digital camera is a SPP which has the single function of processing the input image and

storing it for subsequent retrievation. It has almost the opposite features of a GPP, since it

has a small register file, a dedicated datapath with an ALU performing only a limited

number of operations and no provision of altering the program memory.

It has several design benefits, since the performance may be fast, power consumption less

and also small size. However, it has the disadvantages of having very high NRE costs,

low flexibility and longer design time.

1.3.3 Application Specific Instruction-set Processors

An Application Specific Instruction-set Processor (ASIP) serves as a compromise

between a GPP and a SPP. It is a programmable processor which has an optimized

datapath for implementing only a particular class of operations. Several special

functionalities may be added while unnecessary ones eliminated. Microcontrollers and

Digital Signal Processors (DSPs) are some of the most common types of ASIPs in use.

They have a program memory that can be changed for different applications and limited

register-memory file depending upon the type of application and memory use.

It has the advantages of having flexibility, at the same time achieving good performance,

low power consumption and optimum size. The drawback is that it requires large NRE

cost to manufacture, especially to design the compiler. Certain design environments such

10

as CoWare offer the benefit of automatically generating the compiler which has greatly

reduced the cost and time of manufacturing the device.

1.4 Organisation of thesis

Second chapter deals with the literature survey on the different variations of the cordic

algorithm and its implementation on different platforms and design environments.

Third chapter gives an introduction to the Xilinx IDE from Xilinx, Inc. and the design of

the sequential CORDIC architecture and its different components such as the shift register,

the LUT etc in the Xilinx IDE.

Fourth chapter gives an introduction to the LISA 2.0 language from CoWare corporation

(recently acquired by Synopsis) and some of its typical features and advantages. Secondly, it

gives the design of the pipelined cordic architecture using LISA 2.0 language.

Fifth chapter gives the RTL schematics, Device utilization summaries, timing diagrams and

page snapshots of the designs implemented using both the Xilinx and CoWare tools.

Sixth chapter gives the conclusion, comparison and future work that could be carried out

relating to the CORDIC algorithm based processor design.

11

CHAPTER 2

Literature Review

12

Ray,Andraka[5] has carried out a comprehensive research on the different types of

CORDIC algorithms for the calculation of various trigonometric, exponential as well as

linear functions, transformation to and from polar and rectangular coordinates, the

extension to hyperbolic functions in the paper “A survey of CORDIC algorithms for

FPGA based computers”. Besides the survey of the different algorithms, the paper also

gives a list of a number of CORDIC processors, such as iterative, bit- iterative and their

implementation in an FPGA.

Sung T.Y. , Hsin H.C.[6] in their paper titled “Design and simulation of reusable IP

CORDIC core for special- purpose processors” have proposed an entirely new

extenstion to the in use CORDIC algorithm by the use of double rotation. Such a double

rotation increases the efficiency and greatly reduces the efficiency by reducing the time

of convergence. It also gives the architecture and implementation of such a CORDIC

algorithm on a FPGA.

Reimund Klemm, Javier Prieto Sabugo, Hendrik Ahlendorf, Gerhard Fettweis [7]

in their work “Using LISATek for the Design of an ASIP core including Floating Point

Operations” have provided great insights into the design of ASIPs and how the LISATek

tool is helping designers of processors to drastically shorten the design time, at the same

time making the designing task easier. Additionally, it integrates IP cores in terms of a

floating point processing unit to enable instruction customization. Besides, it gives an

analysis of area and delay parameters using different by pass modes and their product.

13

CHAPTER 3

Design using Xilinx IDE

14

3.1 Introduction to Xilinx ISE

Xilinx Integrated Software Environment (ISE) [4,8] is a software tool developed by

Xilinx corporation for the synthesis and analysis of Hardware Descriptive Language

(HDL) designs. It enables the synthesis of designs, timing analysis , Register Transfer

Level (RTL) diagram examinations, simulation as per different environments as well as

the configuration of the target device with the help of the programmer.

3.1.1 Design fundamentals

The first step in designing of any device in the Xilinx ISE is the creation of a new project

with the appropriate information regarding the product category, the family for which the

design is being made, the package, the speed grade, language etc. The next step is the

creation of a VHDL source file with information regarding the different inputs and

outputs to and from the design. Then the new source is created by giving the behavioral

description of the design. While doing this various language templates available in the

Xilinx library may also be used. Design may also include signals which are connected

within the circuit, besides the inputs and outputs.

Fig.6. Snapshot of the behavioral description window[4]

15

3.1.2 Design verification and simulation

After the behavioral description is provided, the syntax is checked for correctness using

the syntax process available. After ensuring correctness, the functionality of the design is

checked using the behavioral simulation. It involves the creation of a test bench

waveform, which is a graphical view of the test bench. Various parameters can be varied

in the test bench such as the clock high time, the clock low time, input setup time, output

delay, offset etc.

Fig.7. Test Bench Waveform

3.1.3 Implementation of design

After the verification of the design and that of the test bench waveform for proper

functioning, the implementation of the device is done. Post – implementation, a summary

is generated which contains, besides other things, the device utilization in the design. The

Register Transfer Level (RTL) description is generated which gives a clear picture of the

hardware components present.

16

Fig.8. Snapshot of the post-implementation design summary

3.2 Design of CORDIC using Xilinx ISE

The sequential CORDIC algorithm (as shown in fig.2) is implemented using the Xilinx

ISE design tool. As seen in the architecture, the main components of the design are the

shift registers, the adders and the Look-Up Table (LUT). Structural method of designing

is employed in which the different components are implemented separately and then the

final structure is made by combination and port mapping of the individual components.

3.2.1 Shift Registers

Shift registers are mainly used for the purpose of storing data. They contain a series of

flip-flops connected back to back such that the output from one flip-flop is the input to

the next flip-flop. A common clock drives all the flip-flops and they can be set and reset

at the same time. Such a shift register is called a Barrel shift register. It is mainly a

combinational circuit that has n – inputs , n – outputs and other control pins that specify

the type and amount of shift. The parameters of shifting specify the direction of shifting

17

(left or right), the number of bits by which the number is to be shifted and the type of

shift operation taking place i.e., circular, arithmetic or logical.

3.2.2 ROM LUT

A Read-Only Memory is essentially a type of memory device in which values are to be

pre-stored and can only be fetched / read. However, recent developments in memory

technology have bridged the gap between the different types of memory and the data in

the ROM devices is easily modifiable. In this case, the ROM is used to implement a LUT

which stores the angle values which are to be used in the computation.

A LUT is a type of data-structure, usually an array which is used to replace a run-time

computation with a list of stored values. Since retrieving from memory is much faster

than computation, it saves time and also reduces hardware complexity which would have

been required for the computation. In the current implementation, the arctan values from

i=0 to 28 are stored in the LUT, in the 16-point fixed format representation. The obtained

angle is compared with the desired angle in each of the iterations which is the deciding

factor for the direction of rotation.

18

Fig.9. Snapshot of the ROM_LUT behavioral description

3.2.3 Behavioral description

The behavioral description of the model is provided as shown below. The input is the

desired angle, for which the sine and cosine values are to be calculated. The i , i.e. the

number of iterations that are to be performed is specified depending upon the accuracy

of the result desired. Then after the syntax checking, the RTL schematic, test bench

waveform and the device utilization summary are generated which are given later in the

simulation and results section.

19

CHAPTER 4

Design using CoWare Processor

Designer

20

4.1 Introduction to CoWare Processor Designer [9]

CoWare processor generato is an automated ASIP design and optimization environment.

It was developed by coware corporation and has recently been acquired by synopsis.

Some of the major components of the processor designer are the LISA 2.0 language, the

processor debugger and the Instruction Set Designer.

4.1.1 Intoduction to LISA

LISA is an acronym which stands for ”Language for Instruction-Set Architectures”. It is

suited to the modeling of any architecture whose behavior is controlled by an instruction

set which is provided in the form of a dedicated resource. The language covers a wide

range of architecture types such as General Purpose, RISC , DSP, special-purpose

processors besides ASIPs for which it is most suited.

Resources and operations are the main components of a LISA processor model.

Resources describe all the storage elements of the processor such as the program

memory, data memory, the buses etc while the operations give the transition functions of

the processor, including the instructions as well as instruction-dependent functions.

4.1.2 Resource modeling

Processor resources include the storage elements, the input/ output pins, global variables,

bus architecture etc. The storage elements include the memoies as well as the registers.

Besides these, in cycle- accurate models of which a pipeline is an integral part, other

resources such as pipeline registers, interconnect signals. The resources are declared in

the resource section, a typical syntax of which is as shown in the next page.

21

RESOURCE

 {

 … RAM char prog_mem

 {

 SIZE(0x1000);

 BLOCKSIZE(8,8);

 FLAGS(R|X);

 }; …

 }

The declaration consists of an identifier, a data type specifier and an option to describe

the semantic type of the resource.

4.1.3 Modeling instructions

The basic building block of description of an instruction is the OPERATION, which

performs a role similar to classes in C++. The operation generally consists of three

sections such as CODING, SYNTAX and BEHAVIOR.

The OPERATION declaration consists of the OPERATION keyword followed by an

unique identifier which gives information about the functionality of the operation.

Operations may range from FETCH and DECODE operations, which give the manner in

which instructions are obtained from the program counter and how they are executed, to

ADD and MUL operations, which as their name suggest, give the functioning of the

arithmetic operations. A typical operation description is as shown :

22

 OPERATION identifier

{

 DECLARE { … }

 CODING { … }

 SYNTAX { … }

 BEHAVIOR { … }

 }

Declare section gives the list of resources that the particular operation uses. It gives the

instances or the groups of either the immediate operands or the registers and the number

of which it is using.

Behavior gives the model of the instruction behavior. It contains the arbitrary C block

code which describes the functionality of the operation.

Syntax gives the format in which the assembly instruction is to be provided to the

processor for the functioning of the particular operation. It is a usually a string or a

sequence of strings.

Coding section gives the binary image of the instruction operands. In the simplest case it

gives the opcode, the register which is to be used from the register file and the immediate

operand or address if any. It is a sequence of bit-fields, in which the register is specified

in 4-bits (out of a register-file of 16 registers), the immediate or address specified in 8-

bits and the opcode specified in a number of bits such that the total number of bits is 16.

23

The tools of the processor generator which require an instruction decoder generation,

extract information from the coding sections.

For example, 0b0011 reg16 imm8

4.1.4 Advantages of CoWare processor designer[9]

 The generation of RTL schematic takes place automatically with both the control as well

as the datapaths.

 It also automatically generates the software development tools required i.e. the compiler,

the decoder, assembler and linker.

 It is compatible with extensively used tools such as Xilinx , synopsis and cadence.

 It enables flexible designing and greatly reduces design time and engineer-years.

4.1.5 Instruction Set Designer[9]

The ISD is a Graphic User Interface that allows the designer to view, edit as well as

create LISA processor models. The option of having a graphical representation rather

than just the source code to edit makes processor design much simpler and easier to learn

since knowing the details of syntax is not necessary. The ISD and the LISA source code

compliment each other and changes made in either is reflected in the other.

4.1.6 CoWare Processor Debugger[9]

The CoWare Processor Debugger is also a Graphic Interface which allows the designer to

observe, edit and profile the assembly source code. The GUI shows the current

instruction of the assembly syntax which is being executed, the register values and

memory values, changes in which are taking place and also the changes in output. It is

24

intended to analyze and debug the LISA 2.0 processor model. A snapshot of the window

is provided below:

Fig.10. Snapshot of the processor debugger window (with CORDIC assembly code)

25

4.2 CORDIC Processor design using CoWare

An ASIP based on the CORDIC algorithm as described in the previous sections is

designed using the CoWare Design Environment. During this, one of the typical features

of CoWare design environment that is taken advantage of is the hardware – software co-

design flow. The typical flow of the processor design is as shown below:

[10]

Fig.11. CoWare design flow

 The instructions that are required for the implementation of the CORDIC algorithm are

estimated from the equations (1) and (2) (refer to chapter 1). The add, subtract and

multiply operations are realized by the use of arithmetic operations ADD, SUB and MUL

whereas the compare instruction is carried out by the subtraction, comparison of MSB

and the BC (Branch Conditional) operations. The 16-bit register file is used along with

the memory-file. A table of the mnemonics, syntax and the operation they perform is

given in the following page.

26

Sl. No. Mnemonic Syntax Operation

1 nop nop Performs no

operation

2 add add r1,r2,r3 adds value of GPR r2

to r3 and stores the

value in r1

3 sub sub r1,r2,r3 subtracts value of r3

from r2 and stores

value in r1

4 andl andl rd, #imm8 performs logical and

operation between

the imm8 value and

lower byte of GPR rd

5 andh andh rd, #imm8 performs logical and

operation between

the imm8 value and

upper byte of GPR rd

6 mul mul r1,r2,r3 multiplies value of r2

to r3 and stores the

value in r1

7 shr shr r1 shifts the bits of GPR

r1 by 1 bit to the

right

27

8 branch conditional,

no condition

bc @addr jumps to location

addr specified

9 branch conditional,

equal to zero

br @addr, rd:eq jumps to location

addr if value in GPR

rd is zero

10 branch conditional,

not equal to zero

br @addr, rd:neq jumps to location

addr if value in GPR

rd is not zero

11 ldl ldl rd, #imm8 loads immediate

value imm8 to lower

byte of GPR rd

12 ldh ldh rd, #imm8 loads immediate

value imm8 to higher

byte of GPR rd

4.2.1 Pipelining

Pipelining is one of the most intricate features of the CoWare design environment.

Without an instruction pipeline, generation and synthesis of a RTL schematic is not

possible in a CoWare design. In the current design, a three stage pipeline is used. The

stages are :

 Fetch / Decode (FD)

 Address Generation (AG)

 Execution (EX)

28

One of the many advantages of pipelining is that, the performance of the processor is

significantly increased. This is because although only a single operation of fetch/decode

takes place in the first clock cycle, in the subsequent clock cycles multiple operations

take place, thus increasing the throughput of the processor.

However the pipelining suffers from many problems known as hazards of pipelining. One

such example is that, the same memory locations may be accessed in different pipelining

stages most importantly during the address generation and the execution stages. To solve

these hazards, pipelining registers are provided and all the fetch/decode instructions are

modeled within those registers.

Thus, the CORDIC processor implemented in this case is the pipelined CORDIC

architecture.

29

CHAPTER 5

Simulation and Results

30

5.1 Simulation results of processor using Xilinx

5.1.1 Synthesis of the ROM LUT

Fig.12. RTL schematic of the ROM LUT

Device utilization

Table.1. Device utilization summary of the ROM LUT

31

5.1.2 Synthesis of the Shift Register

Fig.13. RTL schematic of the implemented shift register

Device utilization

Table.2. Device utilization summary of the shift register

32

5.1.3 Device utilization and test bench waveform of the processor

Table.3. Device utilization summary of processor

Fig.14. Test bench waveform of the CORDIC processor

33

5.2 Simulation results of processor using CoWare

5.2.1 Synthesis of the external memory

Fig.15. RTL schematic of the external memory showing program and data memories

Device utilization

Table.5. Device utilization summary of external memory

34

5.2.2 Synthesis of the processor

Fig.16. RTL schematic of CORDIC processor in CoWare

Device utilization

Table.6. Device utilization summary of the CORDIC processor in coware

35

Detailed RTL view

Fig.17. RTL schematic of the arithmetic and load-store branches (level 2)

Table.7. Device utilization summary of fetch/decode operations

36

CHAPTER 6

 Conclusion and Future Work

37

Conclusion

 The CORDIC algorithm for the calculation of trigonometric and exponential function

was reviewed and implemented using both Xilinx IDE as well as CoWare IDE

 The architecture implemented in Xilinx was sequential, which is the simplest of

architectures. It has least hardware complexity and ease of design, however it is time-

consuming since each new iteration takes place in a new clock cycle.

 The architecture implemented in CoWare LISATek is pipelined, in accordance with the

requirements of the processor designer for generation of RTL schematics. The pipelined

architecture is more hardware intensive and complex in design, but it has the advantage

of being much faster since multiple instructions get executed in the same clock cycle.

Future Work

 FPGA implementation of both the processors designed using Xilinx IDE as well as

LISATek could be done.

 Various new and more efficient algorithms of CORDIC rotation could be review and

implemented.

 CoWare LISATek is a tool with very powerful and time – saving features, though most of

it are a tad difficult to learn. Study and documentation of the software could be done

which would be extremely beneficial.

38

REFERENCES

[1] J.E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Transitions on

 Electronic Computers, vol. EC-8, no.3 , 1959, pp.330 -334

[2] Prof.Kris Gaj, Gaurav Doshi, Hiren Shah, “Sine/Cosine using Cordic Algorithm”

[3] Frank Vahid, Tony Givargis, “Embedded System Design” pp.9-11

[4] http://www.xilinx.com/publications/products/cpld/logic_handbook.pdf

[5] Ray Andraka,“A survey of CORDIC algorithms for FPGA based computers”

[6] Sung T.Y. , Hsin H.C.,”Design and simulation of reusable IP CORDIC core for special-

 purpose processors”

[7] Reimund Klemm, Javier Prieto Sabugo, Hendrik Ahlendorf, Gerhard Fettweis, “Using

 LISATek for the Design of an ASIP core including Floating Point Operations”

[8] http://en.wikipedia.org/wiki/Xilinx_ISE

[9] Dodani Vicky Rameshlal, Nikhil Kumar, “EMBEDDED DSP PROCESSOR DESIGN

 USING COWARE PROCESSOR DESIGNER AND MAGMA LAYOUT TOOL”

[10] CoWare, “The LISATek™ Solution-Automated Embedded Processor Design and Software

 Development Tool Generation”

[11] CoWare, The ESL design Leader reference manuals, Product version V2007.1.2,June-08

[12] http://en.wikipedia.org/wiki/CORDIC

[13] Rashid Muhammad, Ludovic Apvrille, and Renaud Pacalet, “Evaluation of ASIPs Design

 with LISATek”

[14] Oliver Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H. Meyr, Mario Steinert,

 Gunnar Braun, Achim Nohl, “RTL Processor Synthesis for Architecture Exploration and

 Implementation”

http://www.xilinx.com/publications/products/cpld/logic_handbook.pdf
http://en.wikipedia.org/wiki/Xilinx_ISE
http://en.wikipedia.org/wiki/CORDIC

