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ABSTRACT 

 

Phonocardiogram (PCG) signals as a biometric is a new and novel method for user 

identification. Use of PCG signals for user recognition is a highly reliable method 

because heart sounds are produced by internal organs and cannot be forged easily as 

compared to other recognition systems such as fingerprint, iris, DNA etc. PCG signals 

have been recorded using an electronic stethoscope. Database of heart sound is made 

using the electronic stethoscope. In the beginning, heart sounds for different classes is 

observed in time as well as frequency for their uniqueness for each class. The first step 

performed is to extract features from the recorded heart signals. We have implemented 

LFBC algorithm as a feature extraction algorithm to get the cepstral component of heart 

sound. The next objective is to classify these feature vectors to recognize a person. A 

classification algorithm is first trained using a training sequence for each user to generate 

unique features for each user. During the testing period, the classifier uses the stored 

training attributes for each user and uses them to match or identify the testing sequence. 

We have used LBG-VQ and GMM for the classification of user classes. Both the 

algorithms are iterative, robust and well established methods for user identification. We 

have implemented the normalization at two places; first, before feature extraction; then 

just after the feature extraction in case of GMM classifier which is not proposed in earlier 

literature. 
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CHAPTER 1 

Introduction 

1.1. Biometric Systems 

In recent years, it has become very important to identify a user in applications such as 

personnel security, defence, finance, airport, hospital and many other important areas [1]. So, 

it has become mandatory to use a reliable and robust authentication and identification system 

to identify a user. Earlier the methods for user identification were mainly knowledge-based 

such as user password or possession-based such as a user key; but due to vulnerability of 

these methods it was easy for people to forge the information. Hence, the performance-based 

biometric systems for identification, where a user is recognized using his own biometrics. 

Biometrics uses the methods for recognizing users based upon one or more physical and 

behavioural traits. Hence, conventional biometric identification systems such as iris, 

fingerprint, face and speech have become popular for user identification and verification. 

However, all these identification methods have weaknesses that they can be forged as shown 

in Table 1.1 [2] [3] [21]. 

 

1.2. PCG Signals as a Biometric 

In this project, we use the heart sounds (PCG signals) as a biometric for user 

identification. Use of phonocardiogram signals has many advantages over other biometrics 

based on the following properties of heart sounds [4]: 

1. Universal: Every living human being has a pumping heart. 

2. Measurable: PCG signals can be recorded using an electronic stethoscope 
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3. Vulnerability: Heart sounds cannot be copied or reproduced easily as it is based on 

intrinsic signals acquired from the body. Heart sounds cannot be taken without the 

consent of the person. Moreover, to reproduce the heart sounds, an anatomy of heart 

as well its surroundings has to be created as heart sounds depends on the anatomy of 

the body. 

4. Uniqueness: Heart sounds depend on the physical state of an individual's health, age, 

size, weight, height, structure of the heart as well as the genetic factors. The heart 

sounds of two persons having the same type of heart diseases also vary. 

5. Simplicity: Moreover, heart sounds are easy to obtain, by placing a stethoscope on the 

chest. 

Table 1.1 Drawbacks of various biometric systems. 

Identification trait weaknesses 

DNA Easy to steal a piece of DNA  

Speech Speech can be recorded and played 

Signature Can be reproduced easily 

Fingerprint Can be recreated in latex using an object touched by the person 

Face and iris Can be recorded by a camera 

 

Human heart sounds are natural signals, which have been applied in the doctor's 

auscultation for health monitoring and diagnosis for thousands of years. In the past, study of 

heart sounds focus mainly on the heart rate variability [5]. However, we conjecture that since 

the heart sounds also contain information about an individual's physiology, such signals have 

the potential to provide a unique identity for each person. Like ECG, these signals are 
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difficult to disguise and therefore reduces falsification. Moreover, heart sounds are relatively 

easy to obtain, by placing a conventional stethoscope on the chest. 

 

1.3 Mechanism for  heart sound  production 

The human heart has four chambers, two upper chambers called the atria and two 

lower chambers called ventricles, as shown in Fig. 1.1. There are valves located between the 

atria and ventricles, and between the ventricles and the major arteries from the heart [6]. 

These valves close and open periodically to permit blood flow in only one direction. 

 

Fig. 1.1: Cross-section of a typical human heart (source: http://images.google.com). 

 

Two sounds are normally produced as blood flows through the heart valves during 

each cardiac cycle as shown in Fig. 1.2. The first heart sound S1, is a low, slightly prolonged 
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“lubb”, caused by vibrations set up by the sudden closure of the mitral and tricuspid valves as 

the ventricles contract and pump blood into the aorta and pulmonary artery at the start of the 

ventricular systole. The second sound S2 is a shorter, high-pitched “dupp”, caused when the 

ventricles stop ejecting, relax and allow the aortic and pulmonary valves to close just after the  

Fig. 1.2: waveform of first heart sound S1 and second heart sound S2. 

 

end of the ventricular systole. They are the “lubb-dupp” sounds that are thought of as the 

heartbeat. S1 has duration of about 0.15 s and a frequency of 25–45 Hz. On the other hand,  

S2 lasts about 0.12 s, with a frequency of 50 Hz. 

The sounds associated with the opening and closing of different values can be heard 

by placing a microphone directly on the various auscultation points on the chest wall as 

shown in Fig. 1.3 [7]. The time domain and frequency domain characteristic of heart sounds 

recorded from 3 persons are shown in Fig. 1.4 and Fig. 1.5 respectively. From the time and 

frequency domain plots, it is clear that the time and frequency characteristics are different for 

different persons. These observations suggest that the heart sounds are distinct for different 
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persons and gives us the motivation that phonocardiogram signals can be used for biometric 

identification of a person.  

 

Fig. 1.3: Four sites to place stethoscope. 

Fig. 1.4: Heart sound waveform comparison in time domain. 
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Fig. 1.5: Heart sound waveform comparison in frequency domain 

 

1.4 OBJECTIVES 

The main objective of this project is to use different classification schemes to 

recognize a person using phonocardiogram signals as a biometric. The first task is to record 

the PCG signals using an electronic stethoscope for making the database and transfer the 

recorded signals to a computer for further processing of the signal. The next task is to extract 

the features from the recorded signals and use the extracted features for classification. We 

propose the use of normalization of the signals at two places: first, before the feature 

extraction and second, after the feature extraction. 
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CHAPTER 2 

Data Acquisition 
 

2.1 Hardware 

The electronic stethoscope used for recoding PCG signals is HD Fono / HD FonoDoc 

manufactured by HD Medical Services (India) Private Limited. This device allows us to 

adjust audio volume. It also has a visual display for observing heart sounds that represent 

valvular functions of the heart in real time, called Phonocardiogram (PCG). The stethoscope 

head is put on the user’s chest for recording. It also has a USB interface with the computer 

for data download, review and storage. This device allows us the storage of 10 seconds 

signals that can be downloaded to PC/Laptop. 

 

2.2 Software 

The software used for transferring the data and storing the signals in PC is HD fono 

Recording and Playback Software V3.4. This software has the ability to acquire/retrieve heart 

sounds displayed by HD Fono device and save them along with the patient’s information on 

the computer. It also displays waveforms for quick and correct identification of murmurs and 

gallops. It Visualization tools include zoom and callipers. It can be used to transfer the stored 

waveforms stored in device to PC for analysing and generating user’s reports. 
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2.3 Processing Software   

The PCG signals stored in the PC are processed using sound editing software 

AUDACITY and MATLAB. Programming for the feature extraction and classification is 

done in MATLAB software. 

 

2.4 Database  

Database of 8 people was made using the hardware and softwares described above. 

For each one of the best locations out of four locations was selected for stethoscope 

placement on the chest. For each user 10 samples were collected each of 1 minute duration. 

Out of 10 samples for each user 4 were used for training the algorithms described in the 

subsequent sections. Remaining 6 samples were used for matching purpose/testing the 

algorithms. 
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CHAPTER 3 

Feature extraction 
 

Feature extraction finds a transformation that converts the original heart signal into a 

feature space preserves the information required for the application and enables meaningful 

comparisons. Due to the overlap of the heart sound components and the noises and 

disturbances caused by other internal organs such as lungs, analysis of the heart sound in the 

time domain is not possible. For the biometric application, the physiological properties of the 

heart sounds are more important than the heart rate. Hence, we will process the heart sounds 

in the frequency domain. 

 

The algorithm used for feature extraction is Linear Frequency Bands Cepstra (LFBC) 

[8]. It has been demonstrated that parameterization in the cepstral domain gives good 

discrimination and various manipulations can be performed [8]. As proposed in Ref. [8], the 

effect of inserting a transmission channel on the input heart sound is to multiply the heart 

sound spectrum by the channel transfer function. In the log cepstral domain, this 

multiplication becomes addition which can be removed by subtracting the cepstral mean from 

all input vectors. The mean is estimated over a limited amount of heart sound data so the 

subtraction will not be perfect. This technique is very effective because it compensates for 

long-term spectral effects such as those caused by different stethoscopes. As a result, we use 

the cepstral coefficient as the feature. The heart sound can be modelled as the outcome of a 

time-varying linear system as shown in Fig. 3.1, where the excitation input carries 

information of the  heart  signal, and the transfer function is time varying. The block diagram 

of the feature extraction module is shown in Fig. 3.2. 
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Fig. 3.1: Linear model of heart sound. 

 

 

Fig. 3.2: Block diagram of feature extraction process. 

 

3.2 Normalization 

Normalization [20] is used to make all the signals to be restricted to the same range. 

In this technique, we divide the whole signal vector from the element of the signal whose 

absolute value is maximum. Thus, we limit the range of all the signal vectors to [-1, 1]. 

 

3.3 Short-time discrete Fourier Transform (STDFT): 

Heart sounds are pseudo-random signals and hence STDFT [17] [18] is used to find 

the frequency components. The STDFT signal is given by: 

 ,   -  ∑    ,  (   ) - (  
  

 
  )
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Where, 

n is the frame index, 

k is the frequency index,  

N is the frame length, 

S is the frame shift and, 

w denotes the window. 

 

Unlike speech signals, where the speech signals changes after each 20–25ms, heart 

sounds are more stationary and therefore the window length should be larger. The optimal 

window length was found to be about 500ms. For GMM as the classification method, 

independence between samples is required to estimate the probability distributions. 

Consequently, the non-overlap windowing is the most optimal. We use only the information 

magnitude of the STDFT signal and ignore the phase components because phase components 

are sensitive to the noise 

 

3.4 Filter Bank 

In this block, we pass passes the signal spectrum through a filter-bank [8]. Filter-

banks are used because the sound spectrum has some special shapes and are distributed by a 

non-linear scale in frequency domain. Using the filter-banks with spectral characteristics 

which are well matched to those of the desired signal, the contribution of noise components 

in the frequency domain can be reduced. Mel-frequency filter-banks are best in the speech 

recognition and speaker identification. However, the heart sound spectrum has the range of 

20–150 Hz. Full resolution is required in such a narrow band to capture more information of 

the signal spectrum. Hence, we simply filter out the frequency bins outside the range of 20–

150 Hz. 
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3.5 Dimension Compression 

This block is very similar to the standard MFCC feature extraction used in speaker 

recognition [8]. The spectral magnitude is compressed in the logarithmic domain, followed 

by the Discrete Cosine Transform (DCT) [18] which gives the cepstral components. The 

cepstral component c[n,k] can be written as 

 ,   -  ∑   (| ,   -|)    (
   

 
)

   

   

 

 k= (1, 2… K), 

Where, K is the number of bins in the frequency band of 20–150 Hz. 

The first 24 coefficients for each frame are selected for dimension compression. The higher 

coefficients are less informative. To distinguish heart-sound’s feature from the standard 

MFCC, this feature set is called the Linear Frequency Bands Cepstra (LFBC) [8]. 

 

3.6 Spike Removal 

There is always interference in the heart sounds caused because of the movement of 

the stethoscope. Conventional filtering technique is ineffective because the spectra of these 

interferences and heart sounds overlap. We set an energy threshold to remove the high energy 

segments that contains the burst [8]. 

10 log(E[n]) -     (     ( , -)   , 

Where, n is the segment index and, 

µ=15dB is an energy threshold. 
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3.7 Cepstral Means Subtraction 

There is always a fluctuation on the “relative transfer function because the positions 

of stethoscope cannot be fixed at all times. This acts as a “relative transfer function” as 

characterized by the propagation of heart sounds to the recorder. We apply the cepstral mean 

subtraction to remove this effect. In the frequency domain the output is equal to the 

multiplication of the signal measured in a fixed position, X[n,k], and the relative transfer 

function in the frequency domain, H[k]. This can be expressed in the logarithmic domain by 

the equation [8], 

log(|Y[n,k]|)=log(|X[n,k]|)+log(|H[k]|) 

the cepstra of the recorded signals can be represented as follows: 

  ,   - =   ,   - +   ,   - 

  ,   - can be removed by taking the long term averaging in each dimension k: 

  ,   - -   ̂,   - =  ,   - -   ̂,   - 

 

3.8 Simulation Results 

Frequency components for each user are obtained using STDFT. The signals after 

STDFT for three users are shown in Fig. 3.3. It is demonstrated that the frequency spectrum 

for each user is different. 
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Fig. 3.3: Signals after STDFT operation 

It is observed that the higher frequency components don’t give much information and 

the information is contained within the frequency range 20-150 Hz. Hence, the frequency 

components outside this range are discarded using filter bank. The filtered output for three 

users is shown in Fig. 3.4. 

 

Fig. 3.4: Signals after filter operation 
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Finally, the cepstral components are obtained for each user by the LFBC algorithm 

described in the previous section. It was observed that the higher cepstral components don’t 

have much signal information. Hence only first 24 cepstral coefficients are used and rest are 

discarded. The cepstra for three users are shown in Fig. 3.5. 

Fig. 3.5: Cepstrum for three users 
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CHAPTER 4 

Classification methods 
 
 

Vector quantization (VQ) and GMM are well known conventional and successful 

methods for the speaker recognition approaches [9] and [10]. So, these methods can be 

applied to the phonocardiogram signal recognition. 

 

4.1 Vector Quantization 

Vector quantization (VQ) [19] is a lossy-data-compression method based on the 

principle of block coding [11]. It is a fixed-to-fixed length algorithm. In the earlier days, the 

design of a vector quantization (VQ) is considered to be a challenging problem due to the 

need for multi-dimensional integration. In 1980, Linde, Buzo, and Gray (LBG) proposed a 

VQ design algorithm [11] based on a training sequence. The use of a training sequence 

bypasses the need for multi-dimensional integration. VQ that is designed using this algorithm 

are referred to in the literature as an LBG-VQ. 

 

4.1.1 Design Problem 

Given a vector source with its statistical properties known, given a distortion measure, 

and given the number of code-vectors, find a codebook and a partition which result in the 

smallest average distortion. 

We assume that there is a training sequence consisting of M source vectors [11]:  

  *         + 
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The training sequence is the feature vectors that we get after the feature extraction. 

The dimension of each vector is k, 

  = (                 ),        m=1, 2,…, M 

Let N be the number of code vectors and let  

  *         +, 

represents the codebook. Each code vector is k-dimensional,  

  = (                 ),        m=1, 2,…,N 

Let Sn be the encoding region associated with code vector   and let  

  *         +, 

denote the partition of the space. If the source vector   is in the encoding regionSn, then its 

approximation (denoted by Q(xm) is  :  

Q(xm) =  ,  if xmε    

Assuming a squared error distortion measure [20], the average distortion is given by:  

     
 

  
∑ ‖    (  )‖

 

   

2 

The design problem can be stated as follows [9]: Given T and N, find C and P such that      

is minimized. 

 

4.1.2 Optimality criteria 

If C and P are a solution to the above minimization problem, then it must satisfy the 

following two criteria [11]: 

 Nearest Neighbor Condition: This condition says that the encoding region Sn should 

consists of all vectors that are closer to  , than any of the other code-vectors. For 

those vectors lying on the boundary (blue lines), any tie-breaking procedure will do. 

Sn={x:‖    ‖2
≤x:‖     ‖2

 for all n’=1,2,…, N} 



18 
 

 Centroid Condition: This condition says that the code vector   ,should be average of 

all those training vectors that are in encoding region Sn. In implementation, one should 

ensure that at least one training vector belongs to each encoding region (so that the 

denominator in the above equation is never 0). 

   
∑        

∑       

 n=1, 2,…,N 

 

4.1.3 LBG Design Algorithm 

The LBG VQ design algorithm [5], [9] is an iterative algorithm which alternatively 

solves the above two optimality criteria. The algorithm requires an initial codebook. This 

initial codebook is obtained by the splitting method. In this method, an initial code vector is 

set as the average of the entire training sequence. This code vector is then split into two. The 

iterative algorithm is run with these two vectors as the initial codebook. The final two code 

vectors are split into four and the process is repeated until the desired number of code vectors 

is obtained [9]. 

1. Given T. Fixed ε>0 to be a small number. 

2. Let N=1 and 

  
  

 

 
∑   

 

   

 

Calculate  

    
  

 

  
∑ ‖     

 ‖ 
   

2 

3. Splitting: For i=1,2,… , N, set  

  
( )

=(1+ε)  
  

  
( )

=(1+ε)  
  

Set N=2N.  
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4. Iteration: Let     
( )

=    
 . Set the iteration index i=0.  

a. For m=1,2,…,M, find the minimum value of  

‖     
 ‖2

 , 

over all n=1,2,… ,N. Let n
*
be the index which achieves the minimum. Set  

Q(xm) =  
( )

, 

b. For n=1,2,… ,N, update the code vector 

   
∑    (  )   

( )

∑  
 (  )   

( )
 

 

c. Set,i=i+1 

d. Calculate  

    
( )

 
 

  
∑ ‖    (  )‖

 

   

2 

e. If (      
(   )

     
( )

)       
(   )

 ε, go back to Step (i). 

f. Set       
      

( )
 For n-1,2,… ,N, set  

  
    

( )
 

  as the final code vectors.  

5. Repeat Steps 3 and 4 until the desired number of code vectors are obtained. 

 

4.1.4 Matching Algorithm 

 For testing, the extracted feature vectors are mapped to the quantized space obtained 

during training. 

 Distortion is calculated by calculating the average distance of the testing feature 

vector from the code vectors of each user generated during training. 

 The codebook, for which the distortion is minimum, is taken as a match. 
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4.1.5 Parameters used 

1. Threshold, ε=0.001 

2. Number of training vectors for each user, M = 480 (4 samples of 1 minute each) 

3. Number of code vectors, N = 8 

4.1.6  Simulation Results 

 Total number of users = 8 

 Length of each sample = 1minute 

 Total number of training samples for each user = 4 

 Total number of testing samples for each user = 6 

 Total number of testing samples = 6*8 = 48 samples 

 Total number of samples matched correctly = 39 

 Total number of mismatch = 9 

 Accuracy of the algorithm=39/48*100 = 81.25% 

Hence, an accuracy of 81.25% was achieved using LGB-VQ algorithm [9] [11]. Table 

4.1 elaborates in detail the matching accuracy for different users which is measured using the 

distortion of the testing samples for each user from the samples from the database. 
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Table 4.1 Distortion of testing samples for each user 

Distortion 

from different 

users 

TESTING SAMPLES OF USER 1 

1 2 3 4 5 6 

1 123.29602 135.05503 110.91204 112.42552 140.48974 119.35754 

2 139.46906 140.05533 118.03497 126.36017 156.21953 135.85946 

3 133.13051 138.31153 111.3568 117.43518 145.91584 129.07704 

4 131.13084 141.48886 111.5071 119.87895 145.51849 129.00216 

5 135.63569 140.32307 119.43973 123.99398 149.82502 129.57042 

6 129.7968 138.4468 117.51373 119.79257 145.06039 123.4855 

7 130.10378 135.44991 112.68265 120.18531 147.54791 128.03929 

8 130.44248 137.69459 113.26103 115.335 147.84013 124.12876 

 
TESTING SAMPLES OF USER 2 

 
1 2 3 4 5 6 

1 115.71986 116.68066 105.57611 113.10451 121.50116 99.795568 

2 108.68176 108.72687 100.21558 106.85937 116.40973 94.417286 

3 111.51221 113.94851 104.33573 109.26654 117.66454 97.027154 

4 110.91259 113.54518 104.55136 109.24979 118.32758 99.093 

5 112.72898 112.70452 103.32044 109.88826 120.67631 100.08787 

6 112.82366 114.1217 103.3564 110.1797 117.57014 99.442057 

7 112.99424 112.26002 103.04122 108.68368 116.95251 99.894215 

8 112.11043 114.85864 104.1365 110.62567 118.73745 96.626932 

 
TESTING SAMPLES OF USER 3 

 
1 2 3 4 5 6 

1 127.49318 93.995419 147.77205 151.6504 138.09103 142.93057 

2 132.00905 98.436619 147.2147 152.28172 139.92505 155.58558 

3 121.88142 91.0375 141.37242 148.61088 135.84673 134.72329 

4 127.88979 96.678393 144.76436 154.581 131.32526 148.85389 

5 132.56635 103.07042 155.05401 155.40889 135.93063 150.30692 

6 128.94207 98.714613 147.04726 150.87891 131.06824 148.24478 

7 127.19962 95.948537 146.89333 153.09533 135.66425 145.78088 

8 126.16144 92.194574 145.71407 151.35727 132.71427 144.6421 

 
TESTING SAMPLES OF USER 4 

 
1 2 3 4 5 6 

1 123.66165 146.18036 144.46816 128.92931 148.5529 139.72892 

2 127.08876 146.48499 149.80419 131.09875 151.77042 140.52855 

3 119.92198 144.78224 140.88383 127.78448 147.17763 140.36675 

4 114.83553 146.33345 135.02984 125.47581 143.9754 133.88021 

5 123.5244 147.08899 145.47209 126.55038 152.28035 140.96865 

6 118.13347 148.14468 136.82714 118.24063 147.98747 138.30589 

7 124.76335 141.45074 145.12515 127.29052 151.7787 139.90017 

8 123.29121 144.50474 143.21481 119.32069 151.12861 136.87513 
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Distortion 

from different 

users 

TESTING SAMPLES OF USER 5 

1 2 3 4 5 6 

1 120.69368 141.50944 119.19777 136.38067 127.17992 131.22901 

2 116.05916 148.16 122.82356 139.84404 134.81284 138.07743 

3 116.95013 139.00664 116.06076 132.23227 126.952 130.96994 

4 116.53862 139.21603 115.60681 137.42037 124.00731 127.97106 

5 112.13049 136.31119 112.75866 134.52144 119.84244 124.56339 

6 117.75783 136.36738 115.19286 134.71796 123.49975 129.60469 

7 107.88854 137.36244 118.57622 135.02698 125.8877 128.39566 

8 113.84086 138.91668 115.17895 135.8984 123.27937 128.14741 

 
TESTING SAMPLES OF USER 6 

1 1 2 3 4 5 6 

2 111.84658 96.096461 138.33305 132.64034 125.83236 146.00028 

3 104.47313 90.191741 130.61441 127.46397 110.31408 133.585 

4 96.204789 86.236461 128.43218 127.4774 103.232 138.80068 

5 101.32804 90.493212 133.08436 132.43929 118.24336 145.41865 

6 92.128324 82.563871 127.64691 125.42082 102.8333 136.91662 

7 104.64624 93.461525 134.41351 133.07835 117.57059 140.75542 

8 96.638031 83.865445 135.23066 130.23185 109.27844 136.52357 

 
TESTING SAMPLES OF USER 7 

 
1 2 3 4 5 6 

1 107.86363 136.94625 148.56329 118.91715 100.64625 145.17064 

2 109.06051 144.92832 147.09551 118.62185 104.37783 147.73499 

3 105.69257 142.98396 147.90124 117.89723 101.51801 143.08098 

4 106.61763 141.59848 152.82664 116.78857 98.6814 148.12468 

5 107.38338 142.16568 147.857 117.96179 99.513868 146.96557 

6 106.59738 141.54126 149.47664 117.80307 100.25909 148.71874 

7 102.08331 138.56263 140.13958 113.09241 95.403361 138.27615 

8 105.23385 137.23456 146.80261 117.49934 100.28184 146.2447 

 
TESTING SAMPLES OF USER 8 

 
1 2 3 4 5 6 

1 120.23121 127.25893 124.24967 130.74134 125.71729 123.66842 

2 134.27944 140.69237 132.79413 138.39877 134.03453 133.59355 

3 127.73654 135.1348 129.20715 130.24875 127.27726 128.12592 

4 130.13225 132.12627 130.36657 133.11874 127.39573 127.49284 

5 127.81403 128.00302 125.77263 135.23219 121.09521 122.57889 

6 126.97009 130.01245 127.90983 132.81282 123.73391 125.45549 

7 127.40728 128.1145 124.68999 132.5757 122.95325 124.89971 

8 124.56823 125.83394 121.76383 131.51536 119.11413 120.74858 
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4.2 Gaussian Mixture Modeling (GMM) 

4.2.1 Introduction 

The second classification method implemented for matching is the GMM [10], which 

can be considered as a stochastic generalization of VQ. The GMM method is a stochastic 

process where the matching process is based on the probabilistic calculation of the user 

features. 

For identification system using heart sound, the GMM model is trained for each 

person and a model is generated for each user which contains information based on statistical 

processing of data. During testing, each user is referred to by his/her model and the user is 

identified based on maximum probability criteria. 

 

4.2.2 Normalization 

In this step, we normalize the extracted feature vectors that we got after the feature 

extraction method. This limits all the feature vectors to a common range of [-1, 1]. 

 

4.2.3 Algorithm description 

In the first step we choose the number of component densities required to specify a 

user. GMM [10] algorithm is named based on number of component densities. For example, 

if the number of component densities is four, the GMM is called as GMM-4. Similarly, if the 

number of components is eight, the GMM is called as GMM-8. 

Mixture density in GMM is the weighted sum of M component densities and is given 

by the equation, 
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 ( ̅| )  ∑    

 

   

( ̅) 

Where, x is a D-dimensional feature vector,  

  ( ̅), i=1,2,…, M, are the component densities and 

  , i=1,2,… ,M, are the mixture weights. 

 

Each component density is a Gaussian function given by [6], 

  ( ̅)  
 

(  )   |  |
   exp{ 

 

 
( ̅    ̅)

   
  ( ̅    ̅)} 

Where,    is the mean vector and    is the covariance matrix. 

The mixture weights are bound by the constraint that, ∑   
 
   =1. 

A user can be completely described by the parameters, mean vectors, covariance and 

mixture weights for all component densities, M. These parameters collectively represented 

by, 

λ = {  ,   ̅   },    i=1, 2,…, M 

For heart sound recognition, each speaker is represented by his/her model λ [10]. 

 

4.2.4 Maximum likelihood (ML) estimation 

The goal of GMM model is to estimate the parameters λ of the GMM from the 

training heart signals which describes the distribution of the training feature vectors. The 

most popular and well-established method for estimating the parameters of GMM is 

maximum likelihood (ML) estimation [12]. 

ML estimation finds the model parameters for the given training data and maximizes 

the likelihood of the GMM [10], [12]. For a given T training vectors X = {  ,  ,…,   }, 

GMM likelihood is given by 
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 ( | ) = ∏  ( 
     ̅| λ) 

 

This is a nonlinear function of the parameter λ and hence, direct maximization is not 

possible. Hence we estimate ML parameters iteratively using an algorithm known as 

Expectation-Maximization (EM) algorithm [13]. 

 

4.2.5 Expectation Maximization (EM) Algorithm 

In EM algorithm [13] we begin with an initial model for λ. After that we estimate a 

new model  ̅ such that  ( | ̅)≥  ( | ). This new model is taken as an initial model for the 

next iteration and the process is repeated until a threshold is reached. The threshold is 

determined such that the algorithm is convergent. 

After each iteration, the parameters are calculated using following formulas which 

give a surety that the model’s likelihood value is monotonically increasing. 

 Mixture weight: 

  ̅ = 
 

 
∑  (  |  ⃗⃗  ⃗ 

    , λ) 

 Means: 

  ̅ = 
∑  (  |  ⃗⃗⃗⃗  

      )    ⃗⃗⃗⃗ 

∑  (  |  ⃗⃗⃗⃗  
      )

 

 Variances: 

  ̅ = 
∑  (  |  ⃗⃗⃗⃗  

      )    ⃗⃗⃗⃗ 
 

∑  (  |  ⃗⃗⃗⃗  
      )

 -   ⃗⃗  ⃗
 
 

The a posteriori probability for user class i is given by [10] 

 (  |  ⃗⃗  ⃗   ) = 
     (  ⃗⃗⃗⃗ )

∑      (  ⃗⃗⃗⃗ ) 
   

 

For training a Gaussian mixture model we select the order M of the mixture and the 

initial model parameters prior to the EM algorithm. 
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For initialization of model parameters, we take the LBQ-VQ codebook as an initial 

for the GMM fitting by EM algorithm. 

 

4.2.6 Matching Algorithm 

For user identification, a group of S users S = (1, 2,. . . , S} is represented by GMM's 

parameters   ,   ,… ,   . The user, for which the a posteriori probability is maximum, is 

identified as match [6]. 

The classification rule [6] is given by, 

 ̂ = arg          ( |  ) 

 

4.2.7 Simulation Results 

The GMM algorithm was implemented first in the training period for generating λ for 

each user. The number of Gaussian mixture densities for which optimum results came was 

M=4. Hence this algorithm was GMM-4. During testing, the λ information stored in the 

training period is used and matching algorithm based on maximum probability of matching 

was implemented. Table 4.1 clearly demonstrates the a posteriori probability for all the users 

during training period.  

Total number of training signals per user = 6 (of 1 minute each) 

Total number of training signals for 8 users = 48 

Number of users identified correctly = 35 

Hence, accuracy of the GMM algorithm implemented = 35/48 *100 = 72.91% 
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Table 4.2 probability of matching for GMM algorithm 

Probability of 

matching for 

users 

TESTING SAMPLES OF USER 1 

1 2 3 4 5 6 

1 0.3052453 1.0105913 0.9180256 1.5716292 2.1221714 2.509422 

2 0.1058883 0.307824 0.1434022 0.342168 0.2957833 0.2644168 

3 0.1174221 0.9957861 0.1305413 0.5526605 0.2156395 1.4903397 

4 0.0958147 0.2116015 0.403997 0.3274893 0.2492973 0.7835387 

5 0.1257055 0.4180496 0.1265558 0.3460479 0.1159908 0.8470383 

6 0.101197 0.3218849 0.4714902 0.6247784 0.1022745 0.6182716 

7 0.1561092 0.8169835 0.4834926 0.6128483 0.9862494 0.2269349 

8 0.1902646 0.3988331 0.2678484 1.1484947 0.2319656 0.2050847 

 
TESTING SAMPLES OF USER 2 

 
1 2 3 4 5 6 

1 0.1334416 2.5153554 0.1389285 0.4523106 1.3060099 0.0492749 

2 0.517726 0.6266755 1.673393 0.5758635 0.5717287 0.7390498 

3 0.3178255 3.2836101 0.5665971 1.9608275 0.8764505 0.3099441 

4 0.2257807 2.5194343 0.8638951 0.516076 0.5010131 0.4643311 

5 3.6372873 2.5071275 0.4191767 1.0350282 0.8851531 0.3189091 

6 0.4880209 4.5388714 0.5936376 0.6056465 0.7035359 0.3459007 

7 1.6538684 8.2678042 0.3270153 5.6415613 1.372504 0.2931081 

8 0.8491168 0.805906 0.2712024 0.798455 0.6780509 0.4308308 

 
TESTING SAMPLES OF USER 3 

 
1 2 3 4 5 6 

1 2.4534422 1.6566185 0.9050893 0.9656017 1.6544764 0.9442298 

2 0.5519181 1.3857494 0.2575687 0.2854358 2.0341275 0.7749498 

3 2.7698084 6.9889462 2.6679984 1.4942529 6.9964542 3.856792 

4 1.6198385 0.9910375 0.4437287 0.8841203 5.6226856 0.7520534 

5 0.3288258 1.2348914 0.5228902 0.3685042 3.3126519 0.9843302 

6 0.8257574 2.4734779 0.3450829 0.9187856 2.4661226 1.5249744 

7 0.7018838 5.900967 0.2522972 1.4292294 1.6101185 2.8208858 

8 0.8743793 1.7436654 0.1549353 0.3588307 1.8778682 0.611791 

 
TESTING SAMPLES OF USER 4 

 
1 2 3 4 5 6 

1 0.5911689 0.0391628 0.1749556 0.5137697 3.8145568 1.7664702 

2 0.3543888 0.5400244 0.3347942 0.1643372 0.9365388 0.5575518 

3 1.0413592 0.7399526 0.3700812 3.3878493 10.070376 0.975605 

4 18.809395 0.768313 2.9119717 22.586797 303.42831 26.586224 

5 0.2554774 0.4841295 0.3733521 0.6375684 0.8338768 0.2459198 

6 0.3183166 0.1627882 0.8602892 0.8719282 11.461788 1.1369508 

7 0.4018136 0.2004119 0.135591 1.2735881 0.9108894 2.1603475 

8 0.4705731 0.3296181 0.2772492 0.5848233 1.3692882 0.8324867 
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Probability of 

matching for 

users 

TESTING SAMPLES OF USER 5 

1 2 3 4 5 6 

1 0.361882 0.1334416 0.7900505 0.4839683 1.1819528 0.5601131 

2 0.1665104 0.517726 0.2941798 0.1577066 0.1815039 0.2535528 

3 0.265413 0.3178255 0.9056787 0.3269116 1.7068561 1.312091 

4 0.0575955 0.2257807 1.6356709 0.169017 1.8280889 0.9731304 

5 0.3152453 3.6372873 1.4066512 0.4627475 1.375416 0.9637991 

6 0.1356935 0.4880209 1.8362612 0.5126883 4.3805771 1.6120221 

7 1.3035036 1.6538684 2.2881673 0.6315786 3.6136082 3.4145925 

8 1.1120009 0.8491168 1.5058038 0.1685078 1.1141782 0.5483321 

 
TESTING SAMPLES OF USER 6 

 
1 2 3 4 5 6 

1 2.6027397 1.4577717 0.0209098 0.4423808 0.1724882 0.1941023 

2 1.312011 0.3143008 0.1683967 0.1650536 0.4582385 0.1615074 

3 3.708837 1.1100937 0.4430339 0.9017928 0.8544069 0.2965159 

4 10.285453 15.611199 0.1685961 0.2744581 1.1386429 0.3219365 

5 2.2747094 1.0487854 0.2584566 0.5595458 0.7315061 0.290012 

6 128.23658 7.1624753 0.5115649 2.8780724 1.196135 2.2432338 

7 4.0466112 0.4177809 0.1754366 1.0385564 0.3948026 0.2858536 

8 5.250256 1.0155271 0.169101 0.3504488 0.6774534 0.3020754 

 
TESTING SAMPLES OF USER 7 

 
1 2 3 4 5 6 

1 2.9280155 0.4096631 1.7465065 0.5429076 1.3949801 0.6222646 

2 0.3577466 0.1449087 0.4045894 0.3551959 0.6545519 0.0919448 

3 4.1168193 0.1373913 0.3090071 0.2794579 2.8447123 0.1433349 

4 0.1999171 0.2551535 0.1906565 0.100501 0.920804 0.0534717 

5 1.1565806 0.3336019 0.30441 0.6550373 1.048545 0.3821664 

6 0.846143 0.8302776 0.1788715 0.3558203 1.3163543 0.153962 

7 7.6807815 0.440093 2.840876 2.0135794 6.0861207 1.0441653 

8 0.6154201 0.1402846 0.406105 0.2981293 0.8029348 0.2831999 

 
TESTING SAMPLES OF USER 8 

 
1 2 3 4 5 6 

1 0.0483223 0.5206269 0.361882 1.6993782 3.0474996 0.4893896 

2 0.0393402 0.3135498 0.1665104 0.7023135 1.0992351 0.7336329 

3 0.2145518 0.916437 0.265413 1.753626 2.4834402 0.4987379 

4 0.1364793 0.4165047 0.0575955 1.4221358 1.9968108 0.5850998 

5 0.1641518 0.6293799 0.3152453 0.8664372 1.4827072 0.7739822 

6 0.0386734 0.5069832 0.1356935 1.6887445 2.2979435 0.8502223 

7 0.0496738 0.6804082 1.3035036 1.0167986 1.0419757 0.2137184 

8 0.2151053 1.0883502 1.1120009 2.3169957 2.5265219 2.7703224 
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CHAPTER 5 

CONCLUSION AND 

FUTURE SCOPE 
 

 

5.1 CONCLUSION 

In this project, we used the PCG signals for user identification. After the initial study 

of heart signals in time domain and frequency domain we got the motivation to use PCG 

signals for user identification. Hence, we can conclude that heart sounds can be used as a 

biometric, and are reliable then other biometric identification systems because heart sounds 

are least susceptible to attacks from a forger. Heart sound can be itself used for identification 

or we can use it with other available identification system to make the overall system easy 

and reliable to implement.  

 

We found that the LFBC algorithm is more suitable for heart sound feature extraction 

as compared to MFCC for speaker recognition. LFBC was implemented to obtain cepstral 

components as feature vectors. The important feature of heart sound is that it cannot be easily 

forged as compared to general biometrics like face, fingerprint, DNA, voice etc. It is not 

possible to recognize a person if he/she is not living. PCG signals are easy to capture as 

compared to ECG signals and enables real time identification system design. 
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We successfully implemented the normalization technique at two places that was not 

used in [8]. Here we normalized the signals before feature extraction. We also applied 

normalization on the feature vectors just before using them for GMM algorithm. 

 

We studied and implemented two classification methods for matching: LBG-VQ and 

GMM. The LBG-VQ-4 code book was used as an initialization of the statistical means and 

priors for the Expectation Maximization (EM) algorithm of GMM. The accuracy in both the 

algorithms was found to be less than expected because of the limitations of the Data 

Acquisition System. The accuracy is expected to increase if the Data Acquisition System is 

improved to capture a long signal at a time. Moreover, the accuracy for LBG-VQ algorithm 

was found to be higher than GMM. 

 

 

5.2 FUTURE SCOPE 

 This work can be further improved to increase the robustness of the system; for that, it 

is highly required to make a robust Data Acquisition System which is least sensitive 

to noise and can record signals continuously over a long duration of time. 

 Other algorithms can be implemented for feature extraction and classification. The 

main objective could be to find the best algorithm suitable for heart sound processing. 

 Further, this work can be extended to make a real time system for user identification 

and verification. 

 The new dimension of the work could be to use the heart sounds to find the heart 

diseases and other pathological cases. 

 The other aim could be to analyse the heart signals over a long period of time to prove 

its variability or invariability. 
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