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ABSTRACT 

Harmonics has been present for a long time and its presence shapes the performance of a power 

system. Therefore, estimation of harmonics is of paramount importance while analyzing a power 

system network. Following the inception of harmonics, various filters have been devised to achieve an 

optimal control strategy for harmonic alleviation. This thesis introduces various algorithms to analyze 

harmonics in the power system. The objective is to estimate the power system voltage magnitude in the 

presence distortions taking into account the noise by employing different estimation approaches. We 

have focused our attention towards the study of Least Mean Squares (LMS) based filter, Recursive 

Least squares (RLS) based filter, Kalman filter (KF) and Extended Kalman (EKF) filter. For a test 

signal LMS, RLS, KF and EKF based algorithms have been analyzed and results have been compared. 

The proposed estimation approaches are tested for only static signals.  
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1.1 HARMONICS 

Every load today is capable of creating harmonics with the exception of the incandescent light bulb.  

But, the harmonic content varies from load to load and each load responds to the effects of 

harmonics.[5] 

         Harmonics became a buzzword in the early 1980s, making many people reassessed the 

effectiveness of their building's wiring system. Yet, many still view the concept as a relatively new 

occurrence. However, harmonics have been there since well before the early '80s.The associated 

problems existed in the electrical system way back when transistor tubes were first used in the 1930s. 

Aside from grounding, many consider harmonics as one of the biggest concerns for the power quality 

industry today. In this chapter, we'll discourse the fundamentals of harmonics and the problems it can 

cause in a power system.[5] 

 

1.2 What are Harmonics 

           We define harmonics as voltages or currents at frequencies that are multiples of the fundamental 

frequency. In most systems, the fundamental frequency is 50 Hz. Therefore, harmonic order is 100 Hz, 

150 Hz, and 200 Hz and so on.[5]  

We usually specify these orders by their harmonic number or multiple of the fundamental frequency. 

For example, a harmonic with a frequency of 150 Hz is known as the third harmonic (50x3 = 150). In 

this case, for each cycle of the fundamental waveform, there are three complete cycles of the harmonic 

waveforms. The even multiples of the fundamental frequency are called as even-order harmonics while 

the odd multiples are called as the odd-order harmonics.[5] 

 

1.3 Creation of Harmonics 

Up until 1980, all loads were considered to be linear. This means if the voltage input to a device is a 

sinusoidal wave, the resultant voltage waveform generated by the load is also a sinusoidal wave.[5] 

In 1981, manufacturers of electronic hardware switched to an efficient type of internal power supply 

known as a switch-mode power supply (SMPS). The SMPS converts the applied voltage sine wave to a 
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distorted current waveform that resembles alternating current pulses, the original since the load no 

more exhibit constant impedance throughout the applied AC voltage waveform.[5] 

Most electrical equipment today creates harmonics. If a device converts AC power to DC power (or 

vice versa) as part of its steady-state operation, it is considered to be a harmonic current-generating 

device. Such devices include uninterruptible power supplies, copiers, PCs, etc.[5] 

 

1.4 Effects of Harmonics 

             The biggest problem with harmonics is voltage waveform distortion. We can calculate a 

relationship between the fundamental and distorted waveforms by finding the square root of the sum of 

the squares of all harmonics generated by a single load, and then dividing this number by the nominal 

50 Hz waveform value. We do this by a mathematical calculation known as a Fast Fourier 

Transform (FFT) Theorem. This calculation method determines the Total Harmonic Distortion 

(THD) contained within a nonlinear current or voltage waveform.[5] 

1.4.1 Triplen harmonics: 

 Electronic equipment generates more than one harmonic frequency. For example, computers generate 

3rd, 9th, and 15th harmonics. These are known as triplen harmonics. They pose a bigger problem to 

engineers and building designers because they do more than distort voltage waveforms. They can 

overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random 

end-user equipment failure.[5] 

1.4.2 Circuit overloading:  

Harmonics cause overloading of conductors and transformers and overheating of utilization equipment, 

such as motors. Triplen harmonics can especially cause overheating of neutral conductors on 3-phase, 

4-wire systems. While the fundamental frequency and even harmonics cancel out in the neutral 

conductor, odd-order harmonics are additive. Even under balanced load conditions, neutral currents 

can reach magnitudes as high as 1.73 times the average phase current.[5] 

This additional loading creates more heat, which breaks down the insulation of the neutral conductor. 

In certain cases, it breaks down the insulation between windings of a transformer. In both cases, the 

result is a fire hazard. But, one can reduce this potential damage by using sound wiring practices.[5] 
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To be on the safe side, more engineers are doubling the size of the neutral conductor from feeder 

circuits to panel boards and branch circuit partition wiring to handle the additive harmonic currents.[5] 

 

1.5 Methods of Elimination of Harmonics  

 

 Four of the most recommended solutions include:  

 Increasing the size of the neutral conductor  

 Decreasing the load of delta-wye transformer 

  Replacing the delta-wye transformer with a k-factor transformer 

 Installing a harmonic filter at the power source or equipment location. 

The first three solutions help us cope with the problem; the fourth actually eliminates the problem.[5] 

 

1.5.1 Neutral conductor sizing: 

We know that harmonic currents affect the neutral conductor. Since these currents don't cancel out in a 

balanced 3-phase system, the neutral carries more current than you anticipate. When this happens, the 

neutral conductor path overheats.[5] 

This is why we should double the size of the neutral conductor for feeders and branch circuits serving 

nonlinear loads. Office partition manufacturers have design requirements in place for doubling the 

neutral conductor in their partition wiring. Increased neutral currents sometimes cause many electrical 

fires within office partitions. Some OEM partition wiring schemes include a separate neutral per phase 

conductor while others use a shared neutral doubled in size.[5] 

 

1.5.2 Transformer loading:  

Transformers are more efficient when supplying linear loads. But, the majority feed nonlinear 

equipment, generating more copper losses in dry-type transformers than the fundamental current. 

These losses are associated with eddy currents and hysteresis in the core and skin effect losses in 

windings. The result is transformer overheating and winding insulation breakdown.[5] 
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1.5.3 K-factor transformers:  

These transformers differ in construction from standard dry-type transformers. They can handle 

harmonic currents at near capacity without having to be de-rated. Construction features include:  

 Electrostatic shield between the primary and secondary windings of each coil. 

  Neutral conductor lug size that's twice that of the phase conductor lugs. 

  Parallel smaller windings on the secondary to negate skin effect. 

 Transposition of primary delta winding conductors (in large size units) to reduce losses.[5] 

 

1.5.4 Harmonic filters: A harmonic filter can eliminate the potentially dangerous effects of harmonic 

currents created by nonlinear loads. It traps these currents and, through the use of a series of capacitors, 

coils, and resistors, shunts them to ground. A filter unit may contain several of these elements, each 

designed to filter a particular frequency.[5] 

We can install filters either between the device we are trying to protect and the load's power source, or 

between the device causing the condition and its power source.[5] 

 

There are two types of harmonic filters:  

 Passive Filter  

 Active Filter 

 

 Passive filters: These are inexpensive compared with most mitigating devices. Internally, they cause 

the harmonic current to resonate at its frequency. This prevents the harmonic current from flowing 

back to the power source and causing problems with the voltage waveform. A disadvantage of the 

passive filter is that it cannot be perfectly tuned to handle the harmonic current at a significant 

frequency.[5] 

Active filters: These filters, on the other hand, can be tuned to the exact frequency of the harmonic 

current and do not cause resonance in the electrical system. They can also address more than one 

harmonic problem at the same time. Active filters can also provide mitigation for other power quality 
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problems such as voltage sags and power line flicker. They use power electronics to replace part of the 

distorted current sine wave coming from the load, giving the appearance you're using only linear loads. 

As a result, the active filter provides power factor correction, which increases the efficiency of the 

load.[5] 

 

1.6 Determination of presence of harmonic currents 

If non-linear loads are a significant part of the total load in the facility (>20%), there is a chance of 

harmonics problem. So the amount of current produced by non-linear loads is calculated by calculating 

the THD.[6][24] 

1. Electronic Ballasts come with current THD ranging from 60% to 100%. It is absolutely 

necessary to avoid electronic ballasts with more than 20% THD. Near to 100% THD is 

produced by PWM ASDs. This can be easily brought down to less than half by installing cheap 

3% impedance line side reactors (chokes).[6][24] 

2. A measurement of current in the neutral of a 3-phase 4-wire system gives us knowledge about 

the presence of harmonics. If neutral current is found substantially higher than the imbalance 

from the imbalance in the 3-phase currents, it can be safely assumed that there are harmonics 

present in the system.[6][24] 

3. Another very important sign of presence of current harmonics in the system include 

inexplicable higher than normal temperatures in the transformer, voltage distortion and high 

crest factor.[6][24] 

1.7 Crest Factor 

Crest Factor of any waveform is defined as the ratio of the peak value to the RMS value. For a perfect 

sinusoidal wave it is equal to 1.414. Crest factors other than 1.414 indicate a distortion in the 

waveform. Typically distorted current waveforms have crest factor higher than 1.414 and distorted 

voltage waveforms have crest factor lower than 1.414.Distorted waveforms with crest factor lower 

than 1.414 lower than 1.414 are known as “Flat Top” voltage waveforms. The Computer and Business 

Equipment Manufacturers Association (CBEMA) recommend a method for de-rating transformers 

based on the current crest factor. CBEMA defines the transformer harmonic de-rating factor (THDF) 

as the ratio of 1.414 to the transformer current crest factor. The de-rated KVA of the transformer 



8 
 

would be the nominal KVA of the transformer multiplied by the THDF. This method is however 

applied when the distortion caused in the current is caused by single phase non-linear loads.[6][24] 

 

1.8 Measurement of distorted waveform  

 A digital oscilloscope is required to measure the wave shape, THD and amplitude of 

each harmonic.[6][24] 

 If only RMS value of the waveform is required, a “True RMS” multi-meter is enough. 

But this instrument is not used because all instruments do not give correct readings 

when measuring distorted waveforms.[6][24] 

 The majority of low cost portable instruments are “average responding RMS calibrated” 

.These instruments give correct readings for distortion free sine waves and would 

probably read low when the current waveform is distorted.[6][24] 

 

1.9 Characteristic and Non-Characteristic Harmonics 

The characteristic harmonics are harmonics of those orders which are always present under ideal 

operations- balanced AC voltages, symmetric three phase network and equidistant pulses In the 

AC/DC converter the DC current is assumed to be constant. In this case there are harmonics in the AC 

current of the order h=np+1, where p= pulse number, n is any integer. The harmonics in the converter 

of DC voltage are of the order h= np. The harmonics of the order other than characteristic harmonics 

are termed as non-characteristic. These are due to [7][24] 

 Imbalance in the operation of two bridges forming a 12 pulse converter. 

 Firing angle errors. 

 Imbalance and distortion in AC voltages. 

 Unequal transformer leakage impedances.[7][24] 

Filters can be designed to eliminate characteristic harmonics but the analysis and hence the elimination 

of non-characteristic harmonics is extremely difficult. So, it is necessary to take adequate precautions 

so that non-characteristic harmonics are not generated. 
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1.10 Estimation of Harmonics 

In order to provide the customers and electrical utilities a quality of power, it is imperative to know the 

harmonics parameters such as magnitude and phase. This is essential for designing the filter for 

eliminating or reducing the effects of harmonics in the power system.[8][24] 

Many algorithms have been proposed for the evaluation of harmonics. To obtain the voltage and 

current frequency spectrum from discrete time samples, most frequency domain harmonic analysis 

algorithms are based on the Discrete Fourier Transform (DFT) or on the Fast Fourier Transform (FFT) 

[8] method. However these two methods suffer three pitfalls, namely, aliasing, leakage and picket 

fence effect. [9], [10] and [11]. Although other methods, including the proposed algorithm in this paper 

, suffer from these three problems, and this is because of existing high frequency components 

measured in the signal [9], however truncation of the sequence of sampled data , when only a fraction 

of the sequence of a cycle exists in the analyzed waveform, can boost leakage problem of the DFT 

method. So, the need of new algorithms that process the data, sample-by-sample, and not in a window 

as in FFT and DFT, is of paramount importance. [8]. One of the methods is that Kalman Filter. A more 

robust algorithm for estimating the magnitudes of sinusoids of known frequency embedded in an 

unknown measurement noise which can be a measure of both stochastic and signals was introduced by 

Dash and Sharaf [12]. But this algorithm is not able to track the abrupt and dynamic changes of signals 

and its harmonics.[8][24] 

In this paper we have conducted a comprehensive study of the Kalman Filter, Extended Kalman Filter, 

Least Mean Squares (LMS) based filter and Recursive Least Squares (RLS) based filter. For 

simulations using MATLAB, a static power system signal is used .The characteristics and the 

algorithms of the afore-mentioned filters are thoroughly studied and the results are compared. 
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2.1-Least Mean Square Filter: 

  The least-mean-square (LMS) algorithm is a linear adaptive filtering algorithm that consists of two 

basic processes: [4] 

 

1. A filtering process which involves (a) computing the output of transversal filter produced by a 

set of tap inputs, and (b) generating an estimation error by comparing this output to desired 

response.[4] 

2. An adaptive process which involves the automatic adjustment of the tap weights of the filter in 

accordance with the estimation error.[4] 

 

   Thus, the combination of these two processes working together constitutes a feedback loop around 

the LMS algorithm. First we have a transversal filter around which LMS algorithm is built: this 

component is responsible for performing the filtering process. Second we have a mechanism for 

performing adaptive control process on the tap weights of the transversal filter, hence the designation 

“adaptive weight-control mechanism”. The tap inputs u(n), u(n-1), …., u(n-M+1) form the elements of 

M-by-1 tap input vector u(n), M-1 is the number of delay elements; these tap inputs span 

multidimensional space denoted by Un. Correspondingly, the tap weights ŵ0(n), ŵ1(n),…..ŵM-1(n) form 

the elements of M-by-1 tap weight vector ŵ(n).[4] 

 

   During filtering process the desired response is supplied for processing, alongside the tap input 

vector u(n). Given this input the transversal filter produces an output ∂(n/Un) used an estimate of the 

desired response d(n). We also define the estimation error as the difference between e(n) as the 

difference between the desired response and actual filter output. The estimation error e(n) and the tap-

input vector are applied to the control mechanism, the feedback loop around the tap weights is thereby 

closed. A scalar version of inner product of estimation error and tap input u (n-k) is computed for k = 1, 

2, 3…..,M-2, M-1. The result defines the correction δŵ(n) applied to weight ŵ (n) at n+1 iteration. The 

scaling factor used here is denoted by μ. It is called the step-size parameter. The LMS algorithm uses 

the product to u (n-k) e*(k) as an estimate of element k in the gradient vector  ∇J(n) that characterizes 

the method of steepest descent. Accordingly the computation of each tap weight in the LMS algorithm 

suffers from gradient noise.[4] 
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    The LMS algorithm involves feedback in its operation, which therefore raises the related issue of 

stability. In this context, a meaningful criterion is to require that [4] 

                                J(n) ⟶  J(∞)           as n⟶∞ 

 

     where J(n) is the mean-squared error produced by the LMS algorithm at time n and its final value 

J(∞) is a constant. For LMS algorithm to satisfy this criterion, the step-size parameter μ has to satisfy 

certain conditions related to the Eigen structure of the correlation matrix of the tap inputs.[4] 

 

2.1.1Least Mean Square Algorithm: 

     To develop an estimate of the gradient vector∇J(n), the strategy is to substitute the estimates of 

correlation matrix R and the cross correlation vector p [4] 

                                   𝛻𝐽(𝑛) = -2p + 2Rw(n)                                                                  (2.1) 

The simplest choice of estimators for R and p is to use instantaneous estimates that are based on 

sample values of the tap-input vector and desired response, as defined by, respectively [4] 

                            R̂(n) = u(n)uH(n)                                                                            (2.2) 

And 

                             p̂(n) = u(n)d*(n)                                                                                  (2.3) 

Correspondingly, the instantaneous estimate of the gradient vector is [4] 

                                     𝛻̂𝐽̂(𝑛) = -2u(n)d*(n) + 2u(n)uH(n) ŵ(n)                                 (2.4) 

   This estimate is biased because the tap weight estimator ŵ(n) is a random vector that depends upon 

tap-input vector u(n). Substituting the estimate for the gradient vector ∇J(n) in the steepest descent 

algorithm, we get the recursive relation for updating tap-weight vector: [4] 

                                      ŵ(n+1) = ŵ(n) + μ u(n)[d*(n) – uH(n)ŵ(n)]                           (2.5) 
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The result can be written in the form of three basic relations: 

1. Filter Output:  y(n) = ŵH(n) u(n)                                                                    (2.6) 

 

2.  Estimation Error :  e(n) = y(n) – d(n)                                                                        (2.7) 

 

3.  Tap Weight Adaptation :  ŵ(n+1) = ŵ(n) + μ u(n) e*(n)                                   (2.8) 

 

         Fig 2.1: Signal-flow Graph Representation of the LMS Algorithm 

 This above signal-flow graph has been reproduced from [4] 

  The estimation vector error e (n) is based on the current estimate of the tap -weight vector , ŵ(n). The 

second term μu(n)e*(n) on the right hand-side of (2.8) represents the correction that is applied to the 

current estimate of the tap -weight vector, ŵ(n). The iterative procedure is started with an initial guess 

ŵ(0).[4]  

   The algorithm described by (2.6) to (2.8) is the complex form of adaptive least-mean-square (LMS) 

algorithm. At each iteration or time update , it also requires the knowledge of most recent values : u(n), 
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d(n) and ŵ(n). The LMS algorithm is the member of family of stochastic-gradient-algorithms. When 

the LMS algorithm operates on stochastic inputs, the allowed set of directions along which we “step” 

from one iteration cycle to the next is random and cannot therefore be thought of as being true gradient 

directions.[4] 

    The LMS algorithm requires only 2M + 1 complex multiplications and 2M complex additions per 

iteration, where M is the number of tap weights used in the adaptive transversal filter. In other words, 

the computational complexity of the LMS algorithm is O(M).[4] 

2.2-Recursive Least Squares Filter:  

      An important feature of recursive least squares( RLS) algorithm is that it utilizes the information 

contained in the input data, extending back to the instant of time when the algorithm is initiated. The 

resulting rate of convergence is therefore typically an order of magnitude faster than the simple LMS 

algorithm. This improvement in performance is achieved at the expense of large increase in 

computational complexity.[4] 

         In the recursive implementations of the method of least squares, we start the computation with 

known initial conditions and use the information contained in new data samples to update the old 

estimates. So it is found that the length of the observable data is variable. Accordingly, we express cost 

function to be minimized as ϐ(n), where n is the length of the variable data. Also, we are introducing 

weighting factor into the definition of cost function ϐ(n). We thus write [4] 

                     ϐ(n) =  𝛽(𝑛, 𝑖)𝑛
𝑖=1  |e(i)|2                                                                         (2.9) 

 

where e(i) is the difference between the desired response d(i) and the output y(i) produced by a 

transversal filter whose tap inputs (at time i) equal u(i), u(i-1),.…..u(i-M+1). That is, e(i) is defined 

by[4] 

                         e(i) = d(i) - y(i)                                                                                  (2.10) 

                                  = d(i) – wH(n)u(i) 

Where u(n) is the tap input vector at time n, is defined by [4] 
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                            u(n) = [u(i), u(i-1),……,u(i-M+1)]T                                           (2.11) 

where w(n )is the tap weight vector at time n, is defined by [4] 

                              w(n) = [w0(n), w1(n),…..wM-1(n)]                                                  (2.12) 

The tap weights of the transversal filter remain fixed during the observation interval 1≤ I ≤ n  for which 

the cost function ϐ(n) is defined.[4] 

 The weighting factor 𝛽(𝑛, 𝑖) in (2.9) has the property that  

                                  0 < 𝛽(𝑛, 𝑖) ≤ 1      i = 1, 2,……,n                                                             (2.13) 

          A special form of weighting that is commonly used is the exponential weighting factor or 

forgetting factor defined by [4] 

                                   𝛽(𝑛, 𝑖) = 𝜆n-i       i = 1, 2,…..,n                                                             (2.14) 

  𝜆 is a positive constant with value close to, but less than 1. When λ is 1, we have the ordinary method 

of least squares. The inverse of 1 – λ is a measure of the memory of the algorithm. The λ = 1 case, 

corresponds to infinite memory. Thus in the method of exponentially weighted least squares, we 

minimize the cost function [4]                            

                                      ϐ(n) =  𝜆𝑛−1𝑛
𝑖=1  |e(i)|2                                                     (2.15) 

The optimum value of the tap weight vector, ŵ(n) for which the cost function attains its minimum 

value is defined by the normal equations written in matrix form: [4] 

                                       ɸ(n)ŵ(n) = z(n)                                                                     (2.16)   

The M-by-M correlation matrix ɸ(n) is now defined by  

                                         ɸ(n) =  𝜆𝑛−1𝑛
𝑖=1  u(i)uH(i)                                                (2.17)  

The M-by-1 cross-correlation vector z(n) between the tap inputs of the transversal filter and the desired 

reponse is defined by [4] 
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                                           z(n) =  𝜆𝑛−1𝑛
𝑖=1  u(i)d*(i)                                              (2.18)                                              

    Isolating the term corresponding to i = n from the rest of the summation on the right hand side of 

(2.17), we may write [4]                        

                                              ɸ(n) = λ[ 𝜆𝑛−1−𝑖𝑛−1
𝑖=1  u(i)uH(i)] + u(n)uH(n)               (2.19) 

The recursion for updating the value of correlation matrix of the tap inputs: [4] 

 

                                                 ɸ(n) = λ ɸ(n-1) + u(n)uH(n)                                           (2.20) 

 where ɸ(n-1) is the old value of correlation matrix, and the matrix product u(n)u
H
(n) plays the role of 

“correction” term in the updating operation.[4] 

    We may use (2.18) to derive the following recursion for updating the cross-correlation vector 

between the tap inputs and the desired response: [4]  

                                                      z(n) = λ z(n-1) + u(n)d*(n)                                   (2.21) 

 

2.1.2Recursive Least Square Algorithm: 

     With the correlation matrix ɸ(n) assumed to be positive definite and therefore nonsingular, we may 

apply the matrix inversion lemma to the recursive equation (2.20). We first make the following 

identifications: [4] 

                            A   =  ɸ(n)                                               

                           B-1 = λ ɸ(n-1)    

                           C  =  u(n) 

                           D  =  1 
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Applying the matrix inversion lemma, we obtain the following recursive equation for the inverse of 

correlation matrix: [4]     

           ɸ-1(n) = λ-1ɸ-1(n-1) - 
𝜆−2ɸ−1(𝑛−1)𝑢(𝑛)𝑢𝐻 (𝑛)ɸ−1(𝑛−1)

1+ 𝜆−1𝑢𝐻(𝑛)ɸ−1(𝑛−1)𝑢(𝑛)
                                 (2.22) 

For convenience of computation, let 

                P(n)  =  ɸ-1(n)                                                                                                   (2.23) 

  And  

               k(n)  =  
𝜆−1𝑃(𝑛−1) 𝑢(𝑛)

1+ 𝜆−1𝑢𝐻(𝑛)𝑃(𝑛−1)𝑢(𝑛)
                                                                               (2.24) 

               P(n) = λ-1P(n-1) – λ-1k(n)uH(n)P(n-1)                                                           (2.25) 

The M-by-M matrix P(n) is referred to as the inversion correlation matrix.[4] 

We have  

             k(n) = λ-1P(n-1)u(n) – λ-1k(n)uH(n)P(n-1)u(n)                  

                 =  [λ-1 P(n-1) -  λ-1k(n)uH(n)P(n-1)]u(n)                                                       (2.26) 

So, we get 

               k(n) = P(n)u(n)                                                                                                (2.27) 

or,            k(n) = ɸ-1(n)u(n)                                                                                              (2.28) 

The gain vector k(n) is defined as the tap input vector u(n) transformed by the inverse of the 

correlation matrix ɸ(n).[4] 

To develop recursive equation for developing the least squares estimate ŵ (n) for the tap weight vector 

we use equation (2.21), (2.23) and (2.24) to express the least squares estimates ŵ(n) for the tap weight 

vector at iteration at n as follows: [4] 

                  ŵ(n) = ɸ-1(n) z(n) 
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                            = P(n) z(n)                                                                                       (2.29) 

                     = λ P(n)z(n-1) + P(n)u(n) d*(n)  

Substituting (2.25) for P(n) in the first term only in the right-hand side of (2.29) we get 

                    ŵ(n) = ŵ(n-1) – k(n)uH(n)ŵ(n-1) + P(n)u(n)d*(n)                            (2.30) 

Using P(n)u(n) equals the gain factor k(n), we get the desired recursive equation for updating the tap 

weight vector [4] 

                    ŵ(n) = ŵ(n-1) + k(n)[d*(n) – uH(n)ŵ(n-1)]                                              (2.31) 

                    ŵ(n) = ŵ(n-1) + k(n)ξ*(n) 

where ξ(n) is the priori estimation error defined by 

                      ξ(n) = d(n) - uT(n)ŵ*(n-1)                                                                    (2.32) 

                          = d(n) - ŵH(n-1)u(n) 

The inner product ŵ
H
(n-1)u(n) represents the estimate of the desired response d(n), based on the old 

least squares estimate of the tap weight vector that is made at time n-1.[4] 

The a priori estimation error ξ(n) is different from the posteriori estimation error [4] 

                  e(n) = d(n) - ŵH(n)u(n)                                                                       (2.33) 

 

2.3 KALMAN FILTER: 

          The important feature of the kalman filtering is the recursive processing of the noise 

measurement data. In power system applications, kalman filter is used to estimate voltage and 

frequency variations. The kalman filtering has also been used for dynamic estimation of voltage and 

current phasors. This filtering technique is used to obtain the optimal estimate of the power system 

voltage magnitudes at different harmonic levels.[1] The Kalman filter is an estimator which is used to 
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estimate the state of a linear dynamic system influenced by Gaussian White noise, using measurement 

that are linear functions of the system state, but corrupted by additive Gaussian white noise. The 

Kalman Filter allows to estimate the state of dynamic systems with certain types of random behavior 

by using these statistical information.[2] 

2.3.1Estimation of a process: 

The Kalman filter deals with the general problem of trying to estimate the state of a discrete-time 

controlled process that is governed by the linear stochastic difference equation [3] 

                       

                    Xk = Axk-1+ Buk-1+ wk-1                                                                                 (2.34) 

With a measurement z ϵ R
m

 that is 

 

                       Zk = Hxk + vk                                                                                           (2.35) 

 

The random variables wk and vk represent the process and measurement noise and are assumed to be 

independent of each other. They are white noise with normal probability distributions.[3]                                 

                             p(w)  ~  N(0,R)                                                                              (2.36) 

                             p(v)   ~  N(0,Q)                                                                              (2.37) 

With each time step or measurement the process noise covariance R and measurement noise 

covariance Q matrix may change. But, here we are assuming they are constant. The matrix n х n matrix 

A in the difference equation and the n х l matrix B refer to the state at the previous time step k-1 to the 

state at the current step k. Here, both A and H are assumed to be constant.[3] 

2.3.2The computational origins of the filter: 
    
  We define 𝑥̂𝑘

−
  as our a priori state estimate at step k given knowledge of the process prior to step k, 

and x̂k as our a posteriori state estimate at step k given measurement zk. Then, we can write a priori 

and a posteriori estimate errors as[3] 

 

              𝑒𝑘
− =  xk  -  𝑥̂𝑘

−, and 
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                ek  =  xk  -  x̂k 

 

Then, a priori estimate error covariance is 

 

              𝑃𝑘
− = E[𝑒𝑘

−𝑒𝑘
−𝑇]                                                                                   (2.38) 

 And the a posteriori estimate error covariance is                                                                  

 

                 Pk = E[ekekT]                                                                                   (2.39)   

Our goal is to find an equation that computes an a posteriori state estimate x̂ k as a linear combination 

of an a priori estimate 𝑥̂𝑘
−

 and a weighted difference between an actual measurement zk and a 

measurement prediction Hx̂ k.[3] 

 

                      x̂k =  𝑥̂𝑘
−  + K(zk - H𝑥̂𝑘

− )                                                                                       (2.40)   

 

The difference (zk - H𝑥̂𝑘
−

) is called the measurement innovation, or the residual. The residual reflects 

the inconsistency between the predicted the measurement H𝑥̂𝑘
−

 and the actual measurement zk. If the 

residual is zero then, the two are in complete concurrence.[3] 

The n х m matrix K in (2.40) is the gain or blending factor that minimizes the a posteriori error 

covariance (2.39). This minimization can be achieved by first substituting (2.40) into the above 

definition for ek, substituting it into (2.39), performing the mentioned expectations, taking the 

derivative of the trace of the result w.r.t K, adjusting that result equal to zero, and then solving for 

K.[3]  

The kalman gain calculated that minimizes Pk is given by  

                        Kk =  𝑃𝑘
−HT(H𝑃𝑘

−HT + R)-1 

 

                             =   
𝑃𝑘

−𝐻𝑇

𝑅+𝐻𝑃𝑘
−𝐻𝑇                                                                              (2.41)                                              
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We can observe that as the measurement error covariance approaches zero, the gain K weights the 

residual more heavily. Specifically,[3]  

 

                      𝑙𝑖𝑚
𝑅𝑘 ⟶0

𝐾𝑘  = H-1                                        

On the other hand, as the a priori estimate error covariance approaches zero, the gain K weights the 

residual less heavily. Specifically,[3] 

                       

                     𝑙𝑖𝑚𝑃𝑘
−⟶0 𝐾𝑘   =  0 

So, we can see that as the measurement error covariance R approaches zero, the actual measurement zk 

is trusted more and more, while the predicted measurement H𝑥̂𝑘
−

 is trusted less and less. On the other 

hand, as the a priori estimate error covariance P𝑘
− approaches zero the actual measurement zk is trusted 

less and less, while the predicted measurement H𝑥̂𝑘
−

  is trusted more and more.[3] 

 

2.3.3Kalman Filtering Algorithm: 

 

      The kalman filter incorporates a form of feedback control by estimating the process state at some 

time and then obtaining the feedback in the form of noisy measurements. The kalman filter equations 

can be divided into two groups: time update equations and measurement update equations. The time 

update equations are accountable for extrapolating forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step. The measurement update 

equations are accountable for incorporating a new measurement into the a priori estimate to obtain an 

improved a posteriori estimate. The time update equations can also be considered as predictor 

equations, while the measurement update equations can be considered as corrector equations. So, the 

final estimation algorithm acts as a predictor-corrector algorithm for solving various numerical 

problems.[3] 

 

The time update equations are: 

 

                                      𝑥̂𝑘
− = A𝑥̂𝑘−1

−  + Buk-1                                                             (2.42) 

 

                                       𝑃𝑘
− = APk-1AT + Q                                                                   (2.43) 
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The measurement update equations are: 

 

                                        Kk =  𝑃𝑘
−HT(H𝑃𝑘

−HT + R)-1 
                                                  (2.44) 

                            

                                       x̂k =  𝑥̂𝑘
−  + K(zk - H𝑥̂𝑘

− )                                                      (2.45)   

 

                                        Pk = (I - KkH) 𝑃𝑘
−

                                                                                  (2.46)   

 

The first step in the measurement update is to compute the Kalman gain, Kk. The next step is to 

measure the process to obtain zk, and then to generate an a posteriori state estimate by incorporating 

the measurement as in (2.45). The final step is to obtain an a posteriori error covariance estimate using 

(2.46). After each time and measurement update pair, the process is repeated with the previous a 

posteriori estimates used to predict the new a priori estimates.[3]      

 
                               Fig 2.2: Kalman Filter Prediction Estimation Cycle 

 
This figure has been reproduced from [3] 
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2.4Extended Kalman filter 

In estimation theory, extended kalman filter (EKF) is the non-linear version of the kalman filter i.e., it 

can be used for state estimation in system that is non-linear. This non-linear filter linearizes about the 

current mean and variance.[23] 

 

2.4.1The process to be estimated 

The Kalman Filter addresses the general problem of trying to estimate the state 𝑥 ∈ 𝑅𝑛  of a discrete 

time-controlled process that is governed by a linear stochastic difference equation. But some of the 

most interesting and successful applications of Kalman Filtering have been the ones when the process 

to be estimated and the measurement relationship to the process is non-linear. A Kalman Filter that 

linearizes about the current mean and covariance is known as an Extended Kalman Filter or EKF.[3] 

In something similar to the Taylor Series, we can linearize the estimation around the current estimate 

using the partial derivatives of the process and the measurement functions to compute the estimates 

even in the case of non-linear relationships. This is done by modifying some of the material presented 

in the kalman filtering algorithm. Let us consider that the process has a state vector 𝑥 ∈ 𝑅𝑛 , but that 

process is now governed by the non-linear stochastic difference equation.[3] 

                         𝑥𝑘 = 𝑓 𝑥𝑘−1, 𝑢𝑘−1 ,𝑤𝑘−1  ,                                                                   (2.47) 

with a measurement 𝑧 ∈  𝑅𝑚  that is  

                          𝑧𝑘  =  ℎ(𝑥𝑘 , 𝑣𝑘)                                                                                   (2.48) 

where the random variables 𝑤𝑘  and 𝑣𝑘 again represent the process and measurement noise  as in (2.36) 

and (2.37). In this case the non-linear function f  in the difference equation (2.47)  relates the state at 

the previous time step k-1 to the current time step k. It includes parameters as a driving function 𝑢𝑘−1 

and the zero mean process noise 𝑤𝑘 . The non-linear function h in the measurement equation (2.48) 

refers to the state 𝑥𝑘  to the measurement𝑧𝑘 .[3] 

Actually, one does not know the individual values of the noise 𝑤𝑘  and 𝑣𝑘  at each time step. However, 

one can approximate the state and measurement vector without considering them [3] 
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                         𝑥 𝑘 = 𝑓(𝑥 𝑘−1  , 𝑢𝑘−1 , 0)                                                                      (2.49)      

                              𝑧 𝑘 = ℎ(𝑥 𝑘 , 0),                                                                                                  (2.50)                                                                                                                                                                              

Where 𝑥 𝑘   is some a posteriori estimate of the state (from previous time step k).  

One of the fundamental flaws of EKF is that the distributions (or densities in the continuous case) of 

the random variables remain no longer normal after undergoing respective non-linear transformations. 

The EKF is simply a specific state estimator that only approximates the optimality of Bayes’ Rule by 

linearization.[3] 

 

2.4.2The computational origins of the filter 

To estimate a process with non-linear difference and measurement relationships, we begin by writing 

new governing equations that linearize an estimate about (2.49) and (2.50),  [3] 

                             𝑥𝑘 ≈ 𝑥 𝑘 + 𝐴(𝑥𝑘−1 − 𝑥 𝑘−1) + 𝑊𝑤𝑘−1,                                          (2.51) 

                             𝑧𝑘 ≈  𝑧 𝑘 + 𝐻(𝑥𝑘 − 𝑥 𝑘) + 𝑉𝑣𝑘 .                                                     (2.52) 

where, 

 𝑥𝑘  and 𝑧𝑘  are the actual state and measurement vectors, 

 𝑥 𝑘  and 𝑧 𝑘  are the approximate state and measurement vectors form (2.49) and (2.50), 

 𝑥 𝑘  is an a posteriori estimate of the state at step k 

 The random variables 𝑤𝑘   and  𝑣𝑘  represent the process and measurement noise as in (2.36) 

and (2.37), 

 A is the Jacobian matrix of partial derivatives of f with respect to x,  that is , 

 

𝐴[𝑖,𝑗  =  
𝜕𝑓[𝑖 

𝜕𝑥[𝑗  
(𝑥 𝑘−1, 𝑢𝑘−1, 0), 
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 W is the Jacobian matrix of partial derivatives of f with respect to w, that is , 

     𝑊[𝑖,𝑗  =  
𝜕𝑓[𝑖 

𝜕𝑤[𝑗  
(𝑥 𝑘−1, 𝑢𝑘−1, 0), 

 H is the Jacobian matrix of partial derivatives of h with respect to x, i.e.,  

𝐻[𝑖,𝑗  =
𝜕ℎ[𝑖 

𝜕𝑥[𝑗  
(𝑥 𝑘 , 0) 

 V is the Jacobian Matrix of partial derivatives of h with respect to v, i.e., 

𝑉[𝑖,𝑗  =  
𝜕ℎ[𝑖 

𝜕𝑣[𝑗  
(𝑥 𝑘 , 0) 

It is to be noted that for simplicity in the notation we don’t use the time step subscript k with the 

Jacobians A, W, H and V even though they are different in fact at each time step.[3] 

Now we define a new notation for the prediction error, 

                        𝑒 𝑥𝑘 
≡  𝑥𝑘 − 𝑥 𝑘                                                                                    (2.53) 

And the measurement residual, 

                         𝑒 𝑧𝑘
≡ 𝑧𝑘 − 𝑧 𝑘                                                                                     (2.54) 

In practice, one does not have access to 𝑥𝑘  in (2.53), it is the actual state vector, i.e., the quantity one is 

trying to estimate. On the other hand, one does have access to 𝑧𝑘   in (2.54), it is the actual 

measurement that one is trying to estimate  𝑥𝑘  . Using (2.53) and (2.54) we can write the governing 

equations for an error process as [3] 

                          𝑒 𝑥𝑘
≈ 𝐴(𝑥𝑘−1 − 𝑥 𝑘−1) +  𝜀𝑘                                                              (2.55) 

                          𝑒 𝑧𝑘
≈ 𝐻𝑒 𝑥𝑘

+  𝜂𝑘                                                                                (2.56) 

Where𝜀𝑘and 𝜂𝑘 represent new independent random variables with zero mean and covariance matrices 

𝑊𝑄𝑊𝑇  and  𝑉𝑅𝑉𝑇 , with Q and R as in (2.36) and (2.37) respectively.[3] 
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It is to be noted that the equations (2.55) and (2.56) are linear, and that they closely represent the 

difference and measurement equations (2.34) and (2.35) from the Kalman Filter. This motivates us to 

use the actual measurement residual 𝑒 𝑧𝑘
in (2.54) and a second (hypothetical) Kalman Filter to estimate 

the prediction error 𝑒 𝑥𝑘
given by (2.55). This estimate, call it𝑒̂𝑘 , could then be used along with (2.53) 

to obtain a posteriori state estimates for the original non-linear process as [3] 

                            𝑥 𝑘 =  𝑥 𝑘 +  𝑒̂𝑘                                                                                  (2.57) 

The random variables of (2.55) and (2.56) have approximately the following probability distributions: 

𝑝 𝑒 𝑥𝑘
 ~ 𝑁 0, 𝐸 𝑒 𝑥𝑘

𝑒 𝑥𝑘

𝑇    

𝑝(𝜀𝑘)~ 𝑁(0, 𝑊𝑄𝑘𝑊
𝑇) 

𝑝(𝜂𝑘)~ 𝑁(0, 𝑉𝑅𝑘𝑉
𝑇) 

Given these approximations and letting the predicted value of  𝑒̂𝑘 to be zero, the Kalman filter equation 

used to estimate 𝑒̂𝑘 is:[3] 

                             𝑒̂𝑘 =  𝐾𝑘𝑒 𝑧𝑘
                                                                                     (2.58) 

By substituting (2.58) back into (2.57) and making use of (2.54) we see that we do not actually need a 

second (hypothetical) Kalman Filter:[3] 

                                       𝑥 𝑘 =  𝑥 𝑘 +  𝐾𝑘𝑒 𝑧𝑘
                                                                     (2.59) 

                                        =  𝑥 𝑘 + 𝐾𝑘 (zk - z᷉k) 

Equation (2.59) can now be used for the measurement update in the Extended Kalman Filter, with 

𝑥 𝑘 and  𝑧 𝑘 coming from (2.49) and (2.50) and the Kalman gain 𝐾𝑘 coming from (2.44) with the 

appropriate substitution for the measurement error covariance.[3] 
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The complete set of equations for the EKF is shown below in the table 2-1 and table 2-2. Here 𝑥 𝑘
−

 is 

substituted for 𝑥 𝑘 .[3] 

 

                                      Table 2-1 EKF Time Update Equations: 

                                         𝑥̂𝑘 
−  = f( 𝑥̂𝑘−1

− , uk-1, 0)                                                           (2.60)                                              

                                            𝑃𝑘
− =  Ak-1Pk-1 𝐴𝑘 

𝑇  + WkQk-1𝑊𝑘
𝑇                                             (2.61) 

As with the basic discrete Kalman Filter the time update equations in Table 2-1 project the state and 

covariance estimates from the previous time step k-1 to the current time step k. Also, f  in (2.60) comes 

from (2.49), 𝐴𝑘  and 𝑊𝑘  are the process Jacobians at the step k , and 𝑄𝑘 is the process noise covariance 

(2.36) at step k.[3] 

                                                          

                             Table 2-2 EKF Measurement Update Equations:  

                                              𝐾𝑘 =  𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 +  𝑉𝑘𝑅𝑘𝑉𝑘
𝑇)−1                                               

(2.62) 

                                               x̂k =  𝑥̂𝑘
− + Kk (zk – h(𝑥̂𝑘

−, 0))                                                  (2.63) 

                                                Pk = (I – Kk Hk) 𝑃𝑘
−                                                                   (2.64) 

As with the basic discrete Kalman Filter, the measurement update equations in Table 2-2 correct the 

state and covariance estimates with the measurement𝑧𝑘 . Also, h in (2.63) comes from (2.50) 𝐻𝑘  and V 

are the measurement Jacobians at step k, 𝑅𝑘  is the measurement noise covariance (2.37) at step k. 

The basic operation of the EKF is same as that of the linear discrete Kalman Filter. Figure below 

shows a complete picture of the operation of the EKF, combining the high-level diagram of Fig 2.1 

with the equations from Tables 2-1 and 2-2.[3] 
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            Fig 2.3: A complete picture of the operation of the Extended Kalman Filter 

     This figure has been reproduced from [3] 
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                                    CHAPTER 3 

  COMPARISON BETWEEN LMS, RLS, KF AND EKF ESTIMATION METHOD   

 

        3.1 COMAPRISON BETWEEN RLS AND LMS ALGORITHMS 

        3.2 COMPARISON BETWEEN RLS, LMS AND KF ALGORITHMS 

        3.3 COMPARISON OF KF AND EKF ALGORITHMS 

                                                                                                                                                                                              

 

 

 

 

 

 

 

 

 

 

 



30 
 

3.1 Comparison between Recursive Least Squares (RLS) and Least Mean Squares 

(LMS) algorithms 

 In the LMS algorithm, the correction applied to the previous estimate comprises of product of 

three factors: the (scalar) step-size parameter 𝜇, the error signal e(n-1) and the tap-input vector 

u(n-1). On the other hand in the RLS algorithm this correction comprises of the product of 

two factors: the true estimation error 𝜂(𝑛)and the gain vector k(n). The gain vector consists of 

the inverse deterministic correlation matrix𝜙−1(𝑛), multiplied by the tap input vector u(n). 

The major difference between the LMS and RLS algorithms is therefore the presence of 

𝜙−1(𝑛) in the correction term of the RLS algorithm that has the effect of de-correlating the 

successive tap inputs, which makes the RLS algorithm self-orthogonalizing. Because of this 

property, the RLS algorithm is independent of the eigenvalue spread of the correlat ion matrix 

of the filter input.[13] 

 In the LMS algorithm, the correction that is applied in updating the old estimate of the 

coefficient vector is based on the instantaneous sample value of the tap-input vector and the 

error signal. Whereas, in the RLS algorithm, we have to utilize the past available information to 

make this computation.[13] 

 The LMS algorithm requires approximately 20M iterations to converge in mean square, where 

M is the number of tap coefficients. But the RLS algorithm converges in mean square in less 

than 2M iterations. The rate of convergence of the RLS algorithm is thus faster than the LMS 

algorithm.[13] 

 No approximations are made in the RLS algorithm unlike the LMS algorithm. Thus, as the no 

of iterations reaches infinity, the least-squares estimate of the coefficient vector approaches the 

optimum Weiner value, and correspondingly the mean square error approaches the minimum 

value possible. Thus the RLS algorithm, in theory, exhibits zero misadjustment. The LMS 

always exhibits non-zero maladjustment, but this can be made quite small by using a 

sufficiently small step-size parameter.[13] 

 Although the RLS algorithm is superior in performance to the LMS algorithm, it is by far more 

complex in nature as compared to its counterpart. The complexity of an algorithm for real time 

operation is determined by two principal factors :[13] 
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o The number of multiplications(with divisions counted as multiplications) per iteration, 

and  

o The precision required to perform mathematical operations.[13] 

The RLS algorithm requires a total of 3M(3+M)/2 multiplications, which increases as the size 

of M , the number of filter coefficients. The LMS algorithm requires a total of 2M+1 

multiplications, increasing linearly with M. e.g. when M=35, the RLS algorithm requires 1995 

multiplications, but the LMS algorithm requires only 71.[13] 

 

3.2 Comparison between Kalman,  Recursive Least Squares(RLS) and Least Mean 

Squares(LMS) Filter 

A significant number of Active Noise Control (ANC) systems use some form of the LMS [17] [18] 

algorithm due its relatively reduced complexity. However, it suffers from problems namely slow 

convergence and high sensitivity to the eigenvalue spread [18] [4]. To overcome these problems we 

generally use a RLS based filter, but it is widely known that the RLS loses many of its good properties 

for a forgetting factor lower than one. Namely, in some of the applications, the LMS filter is better in 

tracking non-stationery signals than the RLS algorithm [4] [19]. One approach, which works 

considerably well with the non-stationery signals, is to use a Kalman Filter, which is a generalised 

version of the RLS filter [4][20][21]. But, similar to the RLS algorithm, the Kalman Filter has high 

computational complexity, which makes it expensive to use for some applications.[22] 

The convergence of all the three algorithms can be interpreted as the convergence of several modes 

corresponding to the eigenvectors of the autocorrelation matrix of the reference signal.  If the 

frequency response of the path to be identified is somewhat flat then the models with lower energy 

(eigen values) in the reference signal will also have low energy in the desired signal. In such cases, the 

step size and the forgetting factors of the RLS and the LMS algorithms can be so adjusted that the 

filters corresponding to higher energy modes have similar bandwidth to the ones generated by the 

Kalman Filter. Thus, a good tracking response can be achieved. However, this changes when the path 

to be identified has resonance or the desired noise reduction is high.[22] 

But, if the real purpose is system identification and not noise reduction, all the modes are equally 

important. Therefore, in this case the KF has a clear advantage over the RLS and LMS algorithms.[23] 
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3.3 Comparison between Kalman Filtering and Extended Kalman Filtering  

Algorithms 

Although the Kalman filtering algorithm is one of the most widely used methods for tracking and 

estimation due to its simplicity, robustness and optimality, its application to non-linear systems is 

virtually impossible. One of the most common approaches for non-linear systems is the use of 

Extended Kalman Filter (EKF) [15] [16].  The EKF linearizes all the non-linear models so that 

traditional Kalman filtering can be applied. But, whereas the EKF scores over the KF as far as the non-

linear systems are concerned, it suffers from certain disadvantages as it is difficult to tune, implement 

and its algorithm is significantly complex in nature. [14] 

The EKF applies the KF to non-linear systems by simply linearising all the non-linear models so that e 

we can apply the Kalman Filter equations to the non-linear systems. But it suffers from two well-

known drawbacks: 

 Linearisation can lead to highly unstable filters if the assumptions of local linearity are 

violated. 

 The derivation of Jacobian matrices is non-trivial in most applications and often leads to 

significant implementation difficulties. [14] 
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                                     CHAPTER 4 

 

                      ESTIMATION OF POWER SYSTEM HARMONICS 

 

4.1 ESTIMATION OF A TEST SIGNAL USING LEAST MEAN SQUARE  

4.2 ESTIMATION OF A TEST SIGNAL USING RECURSIVE LEAST SQUARES 

4.3 ESTIMATION OF A TEST SIGNAL USING KALMAN FILTERING 

4.4 EXTENDED KALMAN FILTER OUTPUT SHOWING MEAN SQUARE ERROR 
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ESTIMATION OF POWER SYSTEM HARMONICS USING LEAST 

MEAN SQUARE, RECURSIVE LEAST SQUARES, KALMAN 

FILTERING AND EXTENDED KALMAN FILTERING: 

A signal containing N sinusoids has been considered as given below: 

                    X =  𝐴𝑖sin(𝑤𝑖𝑡𝑘 + 𝜑𝑖)
𝑁
𝑖=1  + vk,        k = 1,2,3,…..,N 

Where Aik, wi and 𝜑i is the amplitude, frequency and phase of the i
th
 sinusoid respectively. tk is the k

th
 

sample of the sampling time and vk is a zero mean Gaussian white noise. In this thesis, we have used 

this signal having amplitude of 1p.u (for LMS & RLS) and 20p.u (for KF) and frequency of 50Hz. The 

process noises are generated using the random number generator with the help of matlab command 

“randn”. The amplitude estimation of the signal (where the estimated is the filtered one in case of LMS 

and RLS) has been carried out at different harmonic levels starting from fundamental to 5
th 

harmonic 

signal. The simulation results have been shown in the subsequent pages which compare between the 

original signal and estimated signal. 

A static test signal corrupted with non-linearities and Gaussian noise has been used and the estimation 

of amplitude is done using Extended Kalman filtering algorithm. The original signal and estimated 

signal and the comparison between the two have been shown in fig 4.10. The mean square error for the 

estimated signal has been found out and shown in fig 4.11. 
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 SIMULATION RESULTS: 

 ESTIMATION OF A TEST SIGNAL USING LEAST MEAN SQUARE 

 ESTIMATION OF A TEST SIGNAL USING RECURSIVE LEAST SQUARES 

 ESTIMATION OF A TEST SIGNAL USING KALMAN FILTER 

 EXTENDED KALMAN FILTER OUTPUT SHOWING MEAN SQUARE ERROR 
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4.1 Least Mean Square Simulation Results: 

                     

 

                         Fig 4.1: Fundamental Amplitude Estimation Using LMS               
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                     Fig 4.2: 3
RD

 Harmonic Amplitude Estimation Using LMS 
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                           Fig 4.3: 5
TH

 Harmonic Amplitude Estimation Using LMS 
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4.2 Recursive Least Squares Simulation Results: 

                                             

 

                           Fig 4.4: Fundamental Amplitude Estimation Using RLS 
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                          Fig 4.5: 3
RD

 Harmonic Amplitude Estimation Using RLS 



41 
 

                           

 

                         Fig 4.6: 5
TH

 Harmonic Amplitude Estimation Using RLS 
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4.3 Kalman Filtering Simulation Results: 

                            

 

             Fig 4.7: Fundamental Amplitude Estimation Using Kalman Filter 
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                        Fig 4.8: 3
RD

 Harmonic Amplitude Estimation Using Kalman Filter                       
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                          Fig 4.9: 5
TH

 Harmonic Amplitude Estimation Using Kalman Filter 
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4.4 Extended Kalman Filter Simulation Results: 

 

 

                       Fig 4.10: Extended Kalman Filter Output                     
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                     Fig 4.11: Mean Square Error in EKF 
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                                   CONCLUSION 

Harmonic distortion is one of the different aspects that affect the power system efficiency. Since the 

harmonic content of the power circuit depends upon the load, the presence of a non-linear load and 

electronic converters in the system are the main cause of harmonics. Harmonics can be broadly divided 

into two categories: characteristic and non-characteristic. The production of non-characteristic 

harmonics in the circuit should be avoided as far as the technical aspects are concerned. Characteristic 

harmonics are the integral multiples of the fundamental frequency and their amplitude is directly 

proportional to the fundamental frequency and inversely proportional to the order of the harmonic. 

Since it is essential to filter out those harmonics, we require an estimator to estimate the parameters of 

the harmonics.  

There are various methods for the estimation of the parameters. We have discussed about the Least 

Mean Squares(LMS), Recursive Least Squares (RLS), Kalman Filter(KF) and Extended Kalman Filter 

(EKF) algorithms in this thesis. 

The LMS is the most commonly used algorithm used for estimation. It is a gradient descent algorithm 

which adjusts the adaptive filter taps changing them by a quantity proportional to the instantaneous 

estimate of the gradient of the error surface.  

The RLS algorithm performs an exact minimization of the sum of the squares of the desired signal 

estimation errors at each instant. 

The Kalman Filter is basically a recursive estimator and its algorithm is also based on the least square 

error. Since all the algorithms produce a noisy estimate of the filter taps, we need a low pass filter 

which would then process this noisy signal. The filter bandwidth of this filter should be so chosen that 

it compromises between eliminating the noise from the noisy estimate and preserving the original 

signal. This feature is only provided by the KF. The RLS algorithm is not capable of doing this since 

its filter bandwidth is fixed. The LMS algorithm has this feature but its quantitative values are not 

adequate. But one limitation of KF is that it cannot be used for non-linear systems. 

To work with non-linear systems we proposed the Extended Kalman Filter (EKF) .In this algorithm we 

need to compute the matrix of partial derivatives (Jacobians) in order to linearize the non-linear system 

about the current mean and co-variance. We found out that although this filter is able to estimate the 
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parameters for non-linear systems significantly, it suffers from strategic disadvantage as the 

computation of Jacobians is very difficult. 

Our main objective has been to compare between the various afore-mentioned algorithms and decide 

upon the most appropriate algorithm to be used depending upon the need of the situation. 
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