
A

Project Report

On

PLC Implementation of Supervisory Control for a Dynamic Power Flow

Controller using a Modular Approach

Submitted by

S.Sivaraman, Shishir Ramkrishna Joshi, Sudeep Maharana

(107EI006) (107EI014) (107EI034)

In partial fulfillment of the requirements for the degree in

Bachelor of Technology in Electronics & Instrumentation Engineering

Under the guidance of

Prof. Tarun Kumar Dan

Department of Electronics & Communication Engineering

National Institute of Technology Rourkela

May, 2011

i

CERTIFICATE

It is certified that the work contained in the thesis titled “Supervisory Control of Discrete Event

System Model of a Dynamic Power Flow Controller using a Modular Approach” submitted by

Mr. S.Sivaraman, Mr. Shishir Ramkrishna Joshi and Mr. Sudeep Maharana, has been

carried out under my supervision and this work has not been submitted elsewhere for a degree.

Date: Mr. Tarun Kumkar Dan

 Professor

 Dept. of Electronics and

 Communication Engg.

 NIT Rourkela

ii

Acknowledgement

First and the foremost, we would like to offer our sincere gratitude to our thesis supervisor, Prof.

Tarun Kumar Dan for his immense interest and enthusiasm on the project. His technical

prowess and vast knowledge on diverse fields left quite an impression on us. He was always

accessible and worked for hours with us and we always found his helping hand when it was

required. He has been a constant source of encouragement for us. We also sincerely thank Prof.

Max H. Queiroz, Federal University of Santa Catarina for his constant support and help by

sharing his work with us. The software tool ides2st developed by his team has been of great

importance to our work.

S.SIVARAMAN

107EI006

SHISHI RAMKRISHNA JOSHI

107EI014

SUDEEP MAHARANA

107EI034

iii

ABSTRACT

Dynamic Power Flow Controller (DPFC) provides steady-state and dynamic power flow control

for power lines and is considered as a Flexible AC Transmission System (FACTS) controller.

This paper deals with control of a standard DPFC using a Discrete Event System model. The

Supervisory Control of DES has been used to implement Modular supervisors for the DPFC.

Despite the fact that the SCT is well consolidated, with a large number of publications focusing

on the theoretical aspects, the industrial application is unknown. It is mainly due to the

complexity of the theory. The numbers of states and events to be controlled are very large even

for the seemingly simple systems. In recent years, a model for modular approach to the

Supervisory Control for performing the formal synthesis of Supervisors has been

proposed. Programmable Logic Controllers are used for the physical implementation of the

controllers. Some problems in physical realization of Supervisors in PLCs are dealt with.

Keywords: Discrete Event Systems, Dynamic Power Flow controllers, Programmable Logic

Controllers

iv

List of Tables

Chapter 4

4.1 Powermeter events

4.2 TSC events

4.3 PST events

List of Figures

Chapter 3

3.2.1 Block Diagram of A Supervisor

3.3.1 Circuit Diagram of DPFC

3.4.1 PLC Scan Cycle

3.4.2 Ladder Logic

Chapter 4

4.1 DPFC

4.2 Generators of Powermeter, TSC, PST

4.3 Behavioural Model of TSC

4.4 Behavioural Model of PST

4.5 Behavioural Model of Control System 2

4.6 Behavioural Model of Control System 1

4.7 Supervisor TSC

4.8 Supervisor Control System 1

v

4.9 Supervisor Control System 2

4.10 Supervisor PST

Chapter 5

5.1 Reduced Supervisor for TSC

5.2 Reduced Supervisor for Control System 2

5.3 Reduced Supervisor for PST

5.4 Reduced Supervisor for Control System 1

5.5 Ides2st Code Generation

5.6 ides2st Code Dumping To Check Transition List

5.7 PLCsim Simulation

vi

CONTENTS

 PAGE NO.

Acknowledgement ii

Abstract iii

List of tables iv

List of Figures iv

CHAPTER 1: Introduction

 1.1 Definition and Brief Review 1

 1.2 Research Objectives 3

CHAPTER 2: Literature Survey 4

CHAPTER 3: Theory

 3.1 Discrete Event Systems 6

 3.2 Supervisory Control 13

 3.3 Dynamic Power Flow Controller 18

 3.4 Programmable Logic Controllers 20

 3.5 Problems in PLC implementation of Supervisors 23

CHAPTER 4: Modeling 27

CHAPTER 5: Automatic Code generation and Simulation 36

CHAPTER 6: Results and Discussion 42

REFERENCES 44

1

CHAPTER 1

 Introduction

1.1 Definition and Brief Review

 Programmable logic controllers have been used extensively in industrial control

applications since their advent in the 70s. The programming of logic controllers has been done

majorly by the knowledge of the programmer and no formal methods are used. Hence, the task of

writing the code becomes a difficult one with the efficiency of the code varying from

programmer to programmer. The ladder logic structure of coding PLCs makes it difficult to

realize higher level concepts such as function calls and looping. The discrete event based

modeling of systems provides a suitable sequential structure to the programming of PLCs.

 Many control problems in the industry, especially manufacturing processes, can be dealt as

Discrete Event problems. The DES based modeling and Supervisory Control of a manufacturing

cell is already dealt with in [1]. Hence, in our paper, we deal with another problem, that is,

Supervisory Control of a Dynamic Power Flow Controller using the same approach as in [2]. The

Supervisory Control Theory (SCT) was proposed first by Ramadge and Wonham [3]. In this

paper, they introduce the concept of Supervisors and how a feedback system is established for

the control of a DES. Although, SCT has gained critical acclaim in the academic sector,

industrial applications have been minimal. This is mainly due to the fact that the number of states

in the Supervisor increases exponentially and is so larger that the physical realization becomes

impossible. A modular approach was suggested by Max and Vieira [4]. According to this

2

approach, instead of a single monolithic supervisor, a number of decentralized supervisors are

used which work synchronously to achieve the same control action as the monolithic

supervisor.

 The physical implementations of the supervisors are somewhat complicated due the

“bridge between the asynchronous DES world and synchronous PLC world” [5]. The DES

modeling assumes the events to occur spontaneously at any random instant. But, the PLC follows

a synchronous system of scan cycles. Some problems with physical implementation of

supervisors are dealt with in [5], [6], [7]. In [5] , Fabian and Hellgren discuss some problems

such as causality, inexact synchronization and avalanche effect. They discuss some possible

solutions to t above problems which are to some extent implemented in our work. For physical

implementation of the supervisors, they define a concept called interleave insensitivity and Malik

[6] proposes an algorithm to verify if a supervisor satisfies this condition. Although all these

problems have been discussed effective solutions are still open to research. Max and Vieira [4]

suggest some methods while programming to overcome some of the problems discussed. They

define a three level architecture which contains the Modular supervisors at the top, the product

systems in the next level and the related operational procedures in the lowest level. They also use

some auxiliary variables in the code to make sure the supervisors are not updated in the next

cycles before the output is changed. Our work uses all these methods to implement the modular

supervisors for a DPFC.

3

1.2 Research Objectives

As discussed earlier the SCT, although it has earned much acclaim in the academic sector, does

not have much industrial applications as of yet. Hence, the major objective of our research is:

 to model a Discrete Event System, in our case a Dynamic Power Flow Controller.

 to develop supervisors to the system using SCT with a modular approach.

 to simulate the supervisors and the system to test proper functioning.

 automatic code generation for a PLC using ides2st.

 to address some implementation problems of SCT and suggest solutions.

Our work mainly aims at proving that the complete automation of the SCT based controller

design process in possible in the future. By this paper, we hope to spread the advantages of SCT

based modelling to conventional methods and finally aid the process of utilization of SCT in

industrial control applications.

4

CHAPTER 2

 Literature Review

 Earlier Discrete-Event Systems were sufficiently simple that intuitive and ad-hoc

solutions were sufficient. But, due to the increasing complexity of man-made systems, has taken

such systems to such a level that formal methods for analysis and design are required. One of the

first papers on the formal methods for control of discrete event systems were by Ramadge and

Wonham [3]. The main advantage of the model is that it separates the concept of open loop

dynamics (plant) from the feedback control, and thus permits the formulation and solution of

a variety of control synthesis problems. After the initiative by them, many other researchers

developed the theory to include concepts like controllability, observability, aggregation, and

modular, decentralized, and hierarchical control. But, what the researches had not considered

was the implementation of SCT.

 In 1992, Balemi [8] proposed an interpretation of supervisory control theory from an

input/output perspective. The plant was modeled as an input/output process accepting commands

as inputs, and producing as outputs some messages regarding changes that occurred in the

system. A controller controlling the system was described in a similar way, accepting the outputs

of the plant, and in turn producing commands. Under these semantics both the controller and the

plant formed the “generating” process in the closed-loop systems. This was in contrast to the

original framework of Ramadge and Wonham where the plant alone was the “generator”. Balemi

also dealt with some problems of communication delay between the plant and the supervisor.

Using this scheme a control environment for a Rapid Thermal Multiprocessor (RTM) had been

5

implemented at the Center for Integrated Systems at Stanford University. The environment

provided both manual and automatic control.

 Although the SCT attained critical acclaim in academia, its industrial applications were

unknown. Fabian and Hellgren [5] in 1996, suggested that the main reason for this was the

discrepancy between the abstract supervisor and its physical implementation. This is specifically

noticeable when the implementation is supposed to be based on programmable logic controllers

(PLCs), as is the case with many manufacturing systems. The asynchronous event-driven nature

of the supervisor is not straightforwardly implemented in the synchronous signal-based PLC.

They dealt with some problems in physical implementation of supervisors like simultaneity of

events, inexact synchronization, causality and choice with examples. Malik [6] also dealt with

problems like determinism and suggested some solutions.

 In 2002 Max and Cury [1] attempted the modular supervisory control of a manufacturing

cell. They suggest a three level structure for the PLC implementation of the supervisors. Again in

2006 [4], they improved their structure and proposed a Sequential Flow Chart based algorithm

for developing the PLC code. In 2009 Max and Silva [2], developed the control scheme for a

factory manufacturing cell using the methods in [4] and they also used an automatic code

generator for the PLC code part. This was a real step forward in the automation of the controller

implementation process. Further, the tools TCT and IDES developed by Wonham [9] and Rudie

[10] respectively greatly aided to the ease of design process.

6

CHAPTER 3

 Theory

3.1 Discrete Event Systems

A system is one of those primitive concepts whose understanding is best left to intuition.

The IEEE Standard Dictionary of Electrical and Electronic Terms defines a system as a

combination of components that act together to perform a function not possible with any of the

individual parts. There are two salient points in this definition; firstly the system contains

interacting components. Secondly, they perform specific functions. Systems can be classified

into varies types on the basis of various criteria such as Static and Dynamic Systems, Time-

varying and Time-invariant Systems, Linear and Nonlinear Systems, Continuous-State and

Discrete-State Systems, Time-driven and Event-driven System, Deterministic and Stochastic

Systems, Discrete-time and Continuous-time Systems.

When the state space of a system is naturally described by a discrete set like {0, 1, 2,...},

and state transitions are only observed at discrete points in time, we associate these state

transitions with “events” and talk about a “discrete event system” [9]. An event should be

thought of as occurring instantaneously causing a transition from one state to another. An event

may be identified with a specific action taken (e.g., somebody presses a button). It may be

viewed as a spontaneous occurrence dictated by nature (e.g., a computer goes down for whatever

reason too complicated to figure out). Or it may be the result of several conditions which are

suddenly all met.

7

Definition. A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its

state evolution depends entirely on the occurrence of asynchronous discrete events over time.

 One of the formal ways to study the logical behavior of DES is based on the theories of

languages and automata. The starting point is the fact that any DES has an underlying event set E

associated with it. The set E is thought of as the “alphabet” of a language and event sequences

are thought of as “words” in that language.

For real systems, E is finite. A sequence of events taken out of this alphabet forms a “word” or

“string”. A string consisting of no events is called the empty string and is denoted by ε. The

length of a string is the number of events contained in it, counting multiple occurrences of the

same event. If s is a string, its length is denoted by |s|. By convention, the length of the empty

string ε is taken to be zero.

Language

A language defined over an event set E is a set of finite-length strings formed from events

in E. As an example, let E = {a, b, g} be the set of events. A language may be defined as for this

event set, L1= {ε, a, abb}

Operations on Languages:

The usual set operations, such as union, intersection, difference, and complement with

respect to E∗, are applicable to languages since languages are sets. In addition, there are some

more operations defined:

Concatenation:

Let La,Lb ⊆ E∗,

8

then LaLb := {s ∈ E∗:(s = sasb) and (sa ∈ La) and (sb ∈ Lb)}

In words, a string is in LaLb if it can be written as the concatenation of a string in La with a string

in Lb.

Prefix-closure:

Let L ⊆ E∗,

then L := {s ∈ E∗:(∃t ∈ E∗)[st ∈ L]}

In words, the prefix closure of L is the language denoted by L and consisting of all the prefixes of

all the strings in L. In general, L ⊆ is said to be prefix-closed if L = . Thus language L is

prefix-closed if any prefix of any string in L is also an element of .

Formal Definition of a DES

A discrete Event System maybe define by a Deterministic automaton denoted by G, is a six-tuple

G =(X,E, f, Γ,x0,Xm)

where:

X is the set of states

E is the finite set of events associated with G

f : X × E → X is the transition function: f(x, e)= y means that there is a transition labeled by

event e from state x to state y; in general, f is a partial function on its domain.

Γ: X → 2
E
 is the active event function (or feasible event function); Γ(x)is the set of all events e

for which f(x, e) is defined and it is called the active event set (or feasible event set) of G at x.

x0 is the initial state.

Xm ⊆ X is the set of marked states.

9

The automaton G operates as follows. It starts in the initial state x0 and upon the occurrence of an

event e ∈ Γ(x0) ⊆ E it will make a transition to state f(x0,e) ∈ X. This process then continues

based on the transitions for which f is defined.

Languages generated and marked

The language generated by G =(X,E, f, Γ,x0,Xm)is

 ∈ ∗

The language marked by G is

 ∈ ∈

Blocking

Automaton G is said to be blocking if

where the set inclusion is proper, and non-blocking when

Unary Operations

Now let‟s consider operations that alter the state transition diagram of an automaton. The

event set E remains unchanged.

Accessible Part

 From the definitions of L(G)and Lm(G), we can delete from G all the states that are not

accessible or reachable from x0 by some string in L(G), without affecting the languages

generated and marked by G. When a state is “deleted”, all the transitions that are attached to that

state are also deleted.

10

 Ac(G):=(Xac,E,fac,x0,Xac,m) where

Ac stands for accessible part of G.

Xac = {x ∈ X :(∃s ∈ E∗)[f(x0,s)= x]}

Xac,m = Xm ∩ Xac

fac = f|Xac×E→Xac

The notation f|Xac×E→Xac means that „f‟ is restricted to the smaller domain of the accessible

states Xac.

Clearly, the Ac operation has no effect on L(G)and Lm(G). Thus, without loss of generality, an

automaton is accessible, that is, G = Ac(G).

Co-accessible Part

 A state x of G is said to be co-accessible to Xm, or simply co-accessible, if there is a path

in the state transition diagram of G from state x to a marked state. The operation of deleting all

the states of G that are not coaccessible is denoted by CoAc(G), where CoAc stands for taking

the “coaccessible” part.

CoAc(G):=(Xcoac,E,fcoac,x0,coac,Xm)

Where

Xcoac = {x ∈ X :(∃s ∈ E∗)[f(x, s) ∈ Xm]}

x0,coac = x0 if x0 ∈ Xcoac

undefined otherwise

fcoac = f|Xcoac×E→Xcoac

The CoAc operation may shrink L(G), since it may involve deleting states that are accessible

from x0; however, the CoAc operation does not affect Lm(G), since a deleted state cannot be on

11

any path from x0 to Xm. If G = CoAc(G), then G is said to be coaccessible; in this case, L(G)=

Lm(G).

Coaccessibility is closely related to the concept of blocking; since an automaton is said to be

blocking if L(G) = Lm(G). Therefore, blocking necessarily means that Lm(G) is a proper subset of

L(G) and consequently there are accessible states that are not coaccessible.

If the CoAc operation results in Xcoac = ∅ (this would happen if Xm = ∅ for instance), an empty

automaton is obtained.

Trim Operation

An automaton that is both accessible and coaccessible is said to be trim. Trim operation is

defined to be

Trim(G):= CoAc[Ac(G)] = Ac[CoAc(G)]

where the commutativity of Ac and CoAc is easily verified.

Projection and Inverse Projection

Let G have event set E. Consider Es E. The projections of L(G)and Lm(G)from E∗ to E∗
s ,

Ps[L(G)] and Ps[Lm(G)], can be implemented on G by replacing all transition labels in E \ Es by ε.

The result is a nondeterministic automaton that generates and marks the desired language.

Composition Operations

Two operations on automata are defined: product, denoted by ×, and parallel composition,

denoted by ||. Parallel composition is often called synchronous composition and product is

12

sometimes called completely synchronous composition. These operations model two forms of

joint behavior of a set of automata that operate concurrently.

Product

The product of G1 and G2 is the automaton

G1 × G2 := Ac(X1 × X2,E1 ∪ E2,f, Γ1×2, (x01,x02),Xm1 × Xm2)

where

 {
 ∈

and thus Γ1×2(x1,x2)=Γ1(x1) ∩ Γ2(x2).

Properties of product

1. Product is commutative up to a reordering of the state components in composed states.

2. Product is associative i.e.G1 × G2 × G3 = (G1 × G2) × G3 = G1 × (G2 × G3)

Parallel Composition

The parallel composition of G1 and G2 is the automaton

G1 || G2 = Ac(X1 × X2,E1 ∪ E2,f, Γ1||2, (x01,x02),Xm1 × Xm2)

where

{

 ∈

 ∈

() ∈

and thus Γ1||2 (x1 ,x2)=[Γ1 (x1) ∩ Γ 2(x2)] ∪ [Γ1 (x1) \ E] ∪ [Γ2 (x2) \ E].

13

 Properties of parallel composition:

1. The set inclusion

 Pi[L(G1||G2)] ⊆L(Gi), for i =1, 2

The same result holds for the marked language. The coupling of the two automata by common

events may prevent some of the strings in their individual generated languages to occur, due to

the constraints imposed in the definition of parallel composition regarding these common events.

2. Parallel composition is commutative up to a reordering of the state components in composed

states.

3. It is associative:

3.2 Supervisory Control Theory

 Consider a DES modeled by a pair of languages, L and Lm , where L is the set of all

strings that the DES can generate and Lm ⊆ L is the language of marked strings that is used to

represent the completion of some operations or tasks; the definition of Lm is a modeling issue.

L and Lm are defined over the event set E. L is always prefix-closed, that is, L = , while

Lm need not be prefix-closed. Assume that L and Lm are the languages generated and marked by

automaton

G = (X, E, f, Γ, x0 , Xm)

where X need not be finite; that is,

 L(G) = Lm (G) = Lm

14

Fig 3.2.1

A supervisor S is to be attached to interact with G in a feedback manner as depicted in the Fig

3.2.1.

The event set E can be divided into two sets

 E = Ec ∪ Euc

Where

Ec is the set of controllable events: these are the events that can be disabled by supervisor S.

Euc is the set of uncontrollable events: these events cannot be disabled by supervisor S.

 There are many reasons why an event would be modeled as uncontrollable: it is

inherently unpreventable, it cannot be prevented due to hardware or actuation limitations, or it is

modeled as uncontrollable by choice, as for example when the event has high priority and thus

should not be disabled or when the event represents the tick of a clock.

 Assuming that all the events in E executed by G are observed by supervisor S, in

Fig. 3.2.1, s is the string of all events executed so far by G and s is entirely seen by S. The

control paradigm is as follows. The transition function of G can be controlled by S

in the sense that the controllable events of G can be dynamically enabled or disabled by S.

15

Formally, a supervisor S is a function from the language generated by G to the power set

of E:

For each s ∈ L(G) generated so far by G (under the control of S),

 S(s) ∩ Γ(f (x0 , s))

is the set of enabled events that G can execute at its current state f (x0 , s). In other words,

G cannot execute an event that is in its current active event set, Γ(f (x0 , s)), if that event is not

also contained in S(s). In view of the partition of E into controllable and uncontrollable events,

we could say that supervisor S is admissible if for all s ∈ L(G)

 Euc ∩ Γ(f (x0 , s)) ⊆ S(s)

which means that S is not allowed to ever disable a feasible uncontrollable event.

Languages generated and marked by S/G

The language generated by S/G is defined recursively as follows:

1. ε ∈ L(S/G)

2. [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ S(s))] ⇔ [sσ ∈ L(S/G)] .

The language marked by S/G is defined as follows:

 Lm (S/G) := L(S/G) ∩ Lm (G)

Clearly, L(S/G) ⊆ L(G) and it is prefix-closed by definition. As for Lm (S/G), it consists

exactly of the marked strings of G that survive under the control of S. Overall, we have the set

inclusions

 ∅ ⊆ Lm (S/G) ⊆ Lm (S/G) ⊆ L(S/G) ⊆ L(G)

 The empty string ε is always in L(S/G) since it is always contained in L(G); here, we

have excluded the degenerate case where G is the empty automaton. Thus, when we adjoin S to

16

G, G is to start in its initial state at which time its possible first transition will be constrained by

the control action S(ε).

 To Prevent a supervisor from being blocking(live block/ dead block), we define a

blocking and non-blocking supervisor as follows-

Blocking in controlled system

The DES S/G is blocking if

 L(S/G) = Lm (S/G)

and non-blocking when

 L(S/G) = Lm (S/G)

 Since the blocking properties of S/G are as much the result of S as of the structure

of G, supervisor S controlling DES G is blocking if S/G is blocking, and supervisor S is non-

blocking if S/G is non-blocking.

 Modeling of Specifications as Automata

 In most of the cases, the construction of the automaton that generates/marks the

applicable language requirement, say La, is preceded by the construction of a simple automaton

that captures the essence of the natural language specification. Let this automaton be Hspec . We

then combine Hspec with G, using either product or parallel composition, as appropriate, to obtain

Ha where

 L(Ha) = La

In the case of several natural language specifications, there will be many Hspec,i , i = 1, . . . , n,

that will be combined with G.

17

 The choice of product or parallel composition to compose Hspec with G is based on the

events that appear in the transition diagram of Hspec and on how we wish to define the

event set of Hspec :

 If the events that can be executed in G but do not appear in the transition diagram of Hspec

are irrelevant to the specification that Hspec implements, then we use parallel composition

and define the event set of Hspec to be those events that appear in its transition diagram.

 On the other hand, if the events that can be executed in G but do not appear in the

transition diagram of Hspec are absent from Hspec because they should not happen in the

admissible behavior La, then product composition operation is used. Equivalently,

parallel composition can still be used provided the event set of Hspec is defined carefully

and includes the events that should be permanently disabled.

In most cases, all the states of Hspec will be marked so that marking in Ha will be solely

determined by G.

Illegal States

 If a specification identifies certain states of G as illegal, then it suffices to delete these

states from G, that is, remove these states and all the transitions attached to them, and

then do the Ac operation to obtain Ha such that L(Ha) = La . If the specification also

requires non-blocking behavior after the illegal states have been removed, then we do the

Trim operation instead of the Ac operation and obtain Ha such that Lm (Ha) = Lam and

L(Ha) = Lam

18

Controllability Theorem

 Consider DES G = (X, E, f, Γ, x0) where Euc ⊆ E is the set of uncontrollable events. Let

K ⊆ L(G), where K = ∅. Then there exists supervisor S such that L(S/G) = K if and

only if

 KEuc ∩ L(G) ⊆ K

This condition on K is called the controllability condition.

Controllability

Let K and M = be languages over event set E. Let Euc be a designated subset of E. K

is said to be controllable with respect to M and Euc if

 KEuc ∩ M ⊆ K

By definition, controllability is a property of the prefix-closure of a language. Thus K is

controllable if and only if K is controllable. The language expression for the controllability

condition can be rewritten as follows:

for all s ∈ K, for all e ∈ Euc , se ∈ M ⇒ se ∈ K

3.3 Dynamic Power Flow Controller

 A Dynamic Power Flow Controller is used in power flow control in transmission lines

and is considered a Flexible AC Transmission (FACTS) device. A DPFC consists of a PST

(Phase Shifting Transformer) and series of TSCs (Thyristor Switched Capacitor). We will not

discuss the working principle of the PST and TSC in detail, but it is important to note that due to

their inherent large time constants, PST does not provide very good dynamic control. Hence,

19

TSC which have very quick response are used for dynamic control and as PST provide a better

steady-state response, they are used for static control. Hence, our control modeling should first

take care of switching the TSC and then the PST. We will discuss the features of a standard

DPFC for flow control as in [10]. We wish to model the same DPFC specifications as in [10].

The DPFC consists of:

 a conventional 115-MW (mechanically-switched) Phase-Shifting Transformer (PST) that

can inject a quadrature voltage up to Vp=0.26pu, with 19 steps of 2-kV, and

consequently introduces a maximum of 15° phase-shift, which can inject a lead/lag

quadrature-phase voltage.

 a three-module series-connected multi-module Thyristor-Switched Capacitor (TSC) with

reactance of XC1=4Ω, XC2=8Ω and XC3=12Ω, which provides seven steps

corresponding to XCeq = 0, 4, 8, 12, 16, 20 and 24Ω. TSC can insert series capacitive

reactance in 7 discrete steps to adjust the line series reactance.

 a 2×25-MVAr shunt-connected Mechanically-Switched Capacitor (MSC) at bus j to

supply the required reactive power.

Fig.3.3.1 One-Line diagram of system

20

The TSC consists of three capacitors, which using the thyristors, give 7 combinations. We can

regulate the reactive power by switching between these combinations. When an increase in

power supply is demanded, the effective capacitance must be increased so that the reactive

power increases. When power supply has to be decreased, a combination is chosen such that the

effective capacitance is lowered.

 The PST regulates the power supply in 19 steps. These tap-steps must be

increased for an increase in power supply and decreased for decreasing power supply. When

power supply has to be either lowered or increased, the TSC is switched to meet the

requirements. As the PST tap-steps are increased/decreased, corresponding action is taken in the

TSC so that the power supply is maintained at a constant level. In the ideal case, the power

supply is at such a value that the TSC is in the default position. This is to ensure that a sudden

change in demand is met with quickly.

 The TSC and PST regulate power supply on the event of occurrence of certain signals

from the powermeter. Moreover, the switching of the TSC and PST between different levels has

to be controlled. Hence a Discrete Event System model is apt to describe the system accurately.

3.4 Programmable Logic Controllers

 A programmable logic controller, commonly known as PLC, is a solid state, digital,

industrial computer. It was invented in order to replace the sequential relay circuits which are

mainly used for machine control. Applications of PLCs in automation are in the field of sequence

control, motion control, process control, data management, and communication. Majority of the

PLC applications are still utilized in machine control, material handling, sequence control

applications; but on the other hand the number of process control applications that make use of

21

Execute program

Diagnostics
communications

Update output

Read inputs

PLC are also in the rise. Apart from performing basic functions like sequential operation, timing

and counting, PLCs can perform arithmetic operations as well. PLCs also have special modules

for analog control functions like P, PI PID positioning control. PLCs can provide information on

alarm limit detection, alarm messages, machine malfunction, production summary, machine

status, etc. Intelligent modules with onboard microprocessors are also available.

Operation of a PLC

Fig. 3.4.1

Figure3.4.1 shows the steps in PLC operation cycle. During program execution, the processor

reads all the inputs, and according to control application program energizes or de-energizes the

outputs. Once all the logic has been solved, the processor will update all the outputs. The process

of reading the inputs, executing the control application program, and updating the output is

known as scan. During a scan operation, the processor also performs housekeeping tasks.

 The inputs to the PLC are sampled by processor and the contents are stored in memory.

Control program is executed. The input values stored in memory are used in control logic

calculations to determine the values of outputs. The outputs are then updated. The cycle

consisting of reading of inputs, executing the control program, and actuating the outputs is

22

referred to as „scan‟, and the time taken to perform scan is called „scan time‟. The speed at which

PLC scans the memory depends on clock speed of CPU. The time to scan a program depends on

the following parameters-

 Scan rate

 Length of the program

 Types of functions used in the program

 Faster scan time implies the inputs and outputs are updated frequently. Due to advanced

technique of ASIC within the microcomputer for specific functions, scan times of different

PLCs have reduced greatly.

Relay Logic and Ladder Logic

 A relay is a simple device that uses a magnetic field to control a switch. When a voltage

is applied to the input coil, the resulting current creates magnetic field. The magnetic field pulls a

metal switch towards it and the contacts touch, closing the switch. The contact that closes when

the coil is energized is called normally open (NO). The normally closed (NC) contacts close

when the input coil is not energized and open when the input coil is energized.

 The Ladder logic in the PLC is actually a computer Program that the user can enter and

change. The ladder diagram language is basically a symbolic set of instructions used to create the

controller program. These symbols are arranged to obtain the desired control logic that is to be

entered into the memory of the PLC. A ladder diagram consists of individual rungs just like a

real ladder. A line showing an input or several inputs and an output is known as a rung.

Ladder logic programing is a graphical representation of the program designed to look like relay

logic. The many similarities between the ladder diagrams used to program PLCs and the relay

ladder logic formerly used to control industrial systems eased the transition from hardwired relay

23

systems to PLC-based systems. The ability to monitor PLC logic in ladder diagram format also

made troubleshooting easier for those already familiar with relay -based control systems.

Fig 3.4.2

3.5 Problems in PLC Implementation of Supervisors

 At first it may seem easy to implement the supervisors in a PLC. It looks like merely a

matter of making the PLC behave as a state machine. But, there are a number of problems in

implementing the supervisors in sequential, synchronous device like a PLC. The straight forward

way to represent a Supervisor is to assign variables to each state and event and represent the

event transitions with a logical AND between the state and the even variables. After the

transition, the next state is set and the previous state is reset. Problems like initialization and

many-to-one transitions are easily solved, but there are a number of more intricate problems.

1. Avalanche Effect

 Signals always exist with different values, but events only exist momentarily. The events

could be associated with rising edges of the signals. The rising edge can be detected in two scan

cycles, i.e. if the event was low in the previous cycle and high in the current one, a rising edge

24

has occurred. But, associating events with rising and falling edges may lead to the avalanche

effect.

 The avalanche effect makes the program skip an arbitrary number of states during the

same scan cycle. This is a result of the sequential execution of the program. This effect can be

undone in some cases as in [5] using particular case by reversing the order of the code. But, in

more complex FSMs, it might not be possible to perceive the order correctly. Also, if there are

more than one states skipped, this solution might not work. We have used some techniques to

resolve this like using auxiliary variables which will be discussed in detail in Chapter 5.

2. Simultaneity of events

 Another problem while moving from event-based world to signal based world is

simultaneity. Events are assumed to not to occur simultaneously, but signals on the other hand

can very well occur simultaneously. We can guarantee the non-overlapping of events if we could

detect the rising edges when they occurred. But, this is not possible due to the cyclic execution of

the PLC. If the rising edges of the two events occur within the same scan cycle of the PLC, the

two simultaneous events are detected. This problem cannot be remedied by programming, since

it is the problem with the synchronous nature of the PLC, whereas the state machine implies an

asynchronous execution. To remedy this, the supervisor should be such that it should depend on

the different interleavings of the same events.

Interleave Insensitivity

A supervisor S is interleave insensitive with respect to a plant P and a sub-alphabet Σ
‟∈ Σp if for

s1, s2 ∈ (Σp-Σ
‟
)* and σ‟∈ Σ‟.

ss1s2σ‟∈ L(P||S) ═> s(s1|||s2)σ‟ ⊆ L(P||S)

25

This definition means that after any interleavings of the strings s1 and s2, the control decision is

same. Typically, Σ‟ represents the events generated by the supervisor and (Σp-Σ
‟
)* represents

the events generated by the plant. Since all interleavings lead to the same decision, the

supervisors need only one of them and hence supervisor reduction is possible.

 But, in general in real systems supervisors are not interleave insensitive. The order of the

events is important. Hence the problem of simultaneity will exist in general.

3. Choice

 The supervisor generated by the SCT is generally required to be minimally restrictive;

that is, it allows the plant the greatest possible freedom while still upholding the specification.

However, when the controller generates some events only one of the possible events must be

generated. Generating several may be contradictory and catastrophic. In that case, the supervisor

and the plant are entirely out of synch and there is no longer any guarantee that the supervisor, as

implemented, can control the system satisfactorily. To resolve this problem the implementation

must simultaneously choose and transit; and only a single event must be chosen. If the choice is

not explicitly made by the implementor, the PLC itself will make the choice, determined by the

ordering of the rungs.

4. Inexact synchronization

When a PLC executes the program, the plant is not observed, i.e. inputs are not being read. The

scan cycle is assumed to be short in comparison to the plant response time. But, this is not

always the case. A signal may occur in the plant while the execution of the program. The

supervisor can have knowledge of commands and events that have occurred so far. Hence, if an

signal occurs during the scan cycle it may lead to synchronization problems. Balemi [8]

introduced the concept of delay insensitive languages.

26

A language K is said to be delay insensitive if, for s ∈ K, σc ∈ Σs, σu ∈ Σp, sσp, sσu ∈ ̅̅̅ ⇒

sσuσc, sσcσu ∈ ̅̅̅.

Σs denotes the events generated by the supervisor while Σp are the events generated by the plant.

 This definition captures delays in one direction only; from the plant to the supervisor. We

can always control the plant so that only a single command is generated between the responses.

The supervisor generates the command, and then waits for the responses. With a PLC

implementation, this is natural, since the delay is due to the cyclic execution of the PLC. There

are typically no delays in the direction from PLC to plant, since all communication is achieved

through digital I/O.

 Also, the definition concerns only delays of length one. This is assumed by Balemi [8] in

order to simplify the problem. The delay is due to something happening in the plant while the

PLC is executing its program. The next scan cycle, though, starts with an update of the signals,

and thus, the event is seen, assuming that the scan cycle time is short compared with the time

constants of the plant. Hence, the assumption is generally valid.

We had briefly discussed dome problems in PLC execution of supervisors. All these problems

are discussed in detail with examples in [5] . Readers should go through [5] if they want some

examples to help better understanding of the concepts.

27

CHAPTER 4

 Modeling

 The DPFC can be thought of as being the composition of individual Power meter, TSC

and PST plants. In addition, there can be two control systems, Control System 1and Control

System 2. These blocks control the interaction between Power-meter & TSC and TSC and PST

respectively. It is this interpretation of the DPFC that is used for modeling the supervisors.

The modeling for the DPFC is done using generators in accordance with Ramadge and Wonham

[3] .The automata for these generators are represented graphically by state transition diagrams. In

these diagrams, all vertices (circles) represent a state, and concentric circles indicate a marked

state. The transition labels indicate the event that causes the transition. The generators for the

plants were designed in the graphical form. The modeling tool TCT [11] was used as an aid.

The physical behavior of the Power-meter, TSC and PST plants were modeled separately as

Control

System 2

PST Power
meter

TSC

Control
System 1

Vi Vo

Fig.4.1. Block doagram of the modular supervisors

28

PWRMTR, TSC_P & PST_P and the interaction between the plants were not taken into account

for this step. The desired behavior of the system, taking into account their interactions, was also

modeled as TSC_SPEC, PST_SPEC, CONTROL_SYSTEM_1_SPEC and

CONSTROL_SYSTEM_SPEC. These automatons were developed using TCT. The following

events were used as triggers for initiating transitions in the discrete event systems. Events labeled

with even numbers are uncontrollable events, and events labelled with odd numbers are

controllable events-

1. Powermeter

Event Event label

Power meter initialized 11

Report decrease in power demanded 10

Report normal situation 12

Report increase in power demanded 14

2. TSC

Event Event label

Capacitor decrease command 31

Capacitor decrease successful 32

Capacitor increase command 33

Capacitor increase successful 34

29

Capacitor decrease/increase failed 30

3. PST

Event Event Label

Tap down command 41

Tap down successful 42

Tap up command 43

Tap up successful 44

Tap up/down failed 40

 The control requirements being that if there was a increase in power demanded by

powermeter (evnt_14), then the TSC is switched first i.e. evt_33 is enabled by the supervisor (

but actually the supervisor disables all other controllable events other than evt_33). Then, if a

normal situation is reported, the TSC is brought back and the PST is tapped up to maintain power

at that level. And if a decrease in power is demanded the TSC is switched down first then, in the

next cycle, the PST is tapped down and the TSC is brought back to position. If a failure event

(evt_30, evt_40) occurs then Manual mode is switched on. The TSC is always brought back to

state 0 for better range of dynamic control.

30

The state diagrams for these plants were generated using TCT.

Fig.4.2. Generators of PLANTS GPWRMTR, powermeter (left), GTSC,TSC (middle) and GPST, PST

(right)

Fig.4.3. Specification for PST EPST

Fig.4.4. Specification for TSC ETSC

31

 Fig.4.5. Specification for CS2 ECS2

Fig.4.6. Specification for CS1 ECS1

32

 The DES PWRMTR has two states. 0 is a marked state that represents the initial state. 1

represents the state where the meter has to report a increase, decrease or constant supply.

TSC_P has three states. 0 is a marked state and represents the condition where no action has to

be taken. 1 represents the action of decreasing capacitance. 2 represents the action of increasing

capacitance.

 The DES PST_P has three states. 0 is a marked state and represents the condition where

no action has to be taken. 1 represents the shift-down of taps, thereby decreasing supply. 2

represents the shift-up of taps, thereby increasing supply. The DES TSC_SPEC has 7 states to

represent the 7 different combinations of the capacitors. State 0 represents the mean capacitance

and is the marked state. States 1, 2 and 3 represent successive decrements of capacitance (and

therefore power). States 4, 5 and 6 represent successive increments of capacitance (and therefore

power).The DES PST_SPEC has nineteen states which correspond to the 19 different tap

positions. State 0 is the mean tap position and is a marked state. States 1-9 represent the lower

tap positions (decrease in supply). States 10-18 represent the upper tap positions (increase in

supply).The DES PLANT1 has 5 states.

 In order to obtain a comprehensive behavioral model that contains information about the

plant as well as the desired behavior, we take a parallel composition of the plant and the

corresponding specification. By taking a parallel composition, we are taking a union of the event

sets of the plants and specification. Hence, we have a comprehensive model.

In order to find the plant of a sub-system, the generators of the plants that constitute the sub-

system are composed together to form the generators for the local plants/sub-system. The local

plants for TSC and PST do not have any other plants in them; hence the generators for PST and

TSC remain the same. But, the local plants CS1 and CS2 are the combination of different plants.

33

Gcs1 = Gpwrmtr || Gtsc

Gcs2 = Gtsc || Gpst

The behavioral models for the local plants are then found as

Elocx = Glocx || Ex

Hence, the behavioral model for TSC is E1=TSC_P||TSC_SPEC. For PST it is

PST_P||PST_SPEC. For Control System 1 it is Gcs1||PLANT1. For Control System 2 it is

Gcs2||PLANT.

These models specify the required behavior of the plant. Next step is the generation of

supervisors working in a feedback architecture which will restrict the plant to the required

behavior.

The supervisors for the local plants were generated and their numbers of states were reduced

using TCT.

Fig.4.7. Supervisor Control System 1

34

Fig4.8. Supervisor TSC

Fig.4.9. Supervisor Control System 2

35

Fig.4.10.Supervisor PST

36

CHAPTER 5

 Automatic Code generation and

Simulation

As discussed in Chapter 4, the generators of the plant, their corresponding specifications and

their Supervisors have been generatored. We have designed modular supervisors having

CS1 = states 39, transitions 64

TSC = states 19, transitions 36

CS2 = states 20, trnasitions 36

PST = states 55, transitions 108.

 Although the total number of states and transitions have drastically reduced in

comparison to the monolithic solution (states 4983, transitions 10525), it is still high. The

supervisor reduction using TCT also did not help much. But if we look at the supervisor state

diagrams for TSC , CS2 and PST we can see that a pattern of the same transitions occur after

some states transitions. Hence, these can be reduced to less number of states and a counter can be

added to count the occurance of the next similar loop in the supervisors [10].

37

Fig.5.1. Reduced Supervisor for CS2 Fig.5.2. Reduced Supervisor for TSC

Fig.5.3. Reduced Supervisor for PST

 From the above state diagrams it can be seen that if from state 6 event 31 is enabled or

from state 4 event 33 is enabled then, the transition to state 0 occurs. A counter is initialized and

incremented each time to keep track of these transitions. Similarly, for PST a counter is assigned

for transitions from states 4 and 5. The counters are UP-DOWN counters and for TSC and CS2

supervisors they can count +3 and for PST they can count +9.

38

 After the supervisor reduction, the models of the plants, specifications and the reduced

supervisors were imported to IDES3. IDES [12] is a tool with GUI to design DES and perform

the major operations on them. We used TCT to model the generators since we found the usage

easier and more functionality in TCT. The models were imported to the IDES to as the software

ides2st, the automatic code generator we used only detects IDES models. The tool ides2st [2]

converts the supervisors and the plant models into PLC structured text code.

Fig.5.4. ides2st code generation

39

 It assigns a variable to every supervisor state and event. According to

ides2St, when an event takes place its event variable is set and remains like that until the

supervisor is updated. Ides2st uses an auxiliary variable evt_blk to make sure that only one

transition occurs in each cycle. This deals with the problem of avalanche effect and inexact

synchronization. It doesn‟t mean that those subsequent transitions will be ignored by the

program, but it will be postponed. Their variables are set, but they just run in a convenient state

at the supervisors.

 The program is divided into two Function Blocks, one for the supervisors and the other

for the product system. The operational procedure level is not generated by ides2st and is left to

the programmer. The supervisor level further consists of two subdivisions. First, the FSM of the

supervisors are dealt. The second part contains the disabling De_[event] of the controllable

events by the supervisor. If De_[event] is set the supervisor will prevent the event from occurring

at a certain state. The product system level is also divided into two parts. The first has the

uncontrollable event code as uncontrollable events must be updated before the controllable ones.

The second contains the controllable events code. Thus before any controllable event can be

triggered the code will check if there is any uncontrollable event‟s bit set. If so, the local plant

FSM is updated and sets the response event variable e_[event] to update the supervisor. Were it

not, and the local plant is in a state where a controllable event is not disabled, the variable

e_[event] bit is set which means a command is sent to start a subroutine and to update the

supervisor after this local plant does.

40

Fig.5.5. ides2st code dumping to check transition list

The above figure shows the Dump feature in ides2st. This feature shows all the states and the

transitions according to the ST code. From the transition list, the correctness of the code can be

checked even before actually applying it on the system.

41

Simulation

 After generating the code using ides2st we added the extra bit of code for the operational

procedures, the synchronization of the supervisors and the counters to the ST code. Simatic Step

7 was used to compile the scl source file to generate the statement list file (stl). PLCsim was used

to simulate the compiled code.

 I0.0 = e_10

 I0.1=e_30

 I0.2=e_32

 Fig.5.6.PLCsim simulation

Q0.0=e_11

Q0.1=e_31

Q0.2=e_33

42

CHAPTER 6

Results and Discussions

 The modeling of a DPFC using discrete event system approach is logical from the fact

that the DPFC has a discrete switching nature. Solving the problem using conventional methods

would have been confusing and difficult. The modular approach adopted resulted in supervisors

with very less number of states making physical implementation possible. Compared to the

monolithic solution which had 4983 states [10], the highest number of states a modular

supervisor had was 39 which was Control System 1. Generating the supervisors using SCT gave

us a formal method to write the PLC code as the PLC code could be directly generated from the

supervisor state machines.

 Compared to [10], the extra modular supervisor we had introduced reduces the code

length as we can see that the CS2 have repetitive states for which a counter can be used. The

automatic code generation using ides2st simplified the PLC code part further. It saved us a lot of

time and effort. Also, by automatic code generation we could be sure that there were no typing

errors. Also by checking the models and remodeling time and again we obtained an optimum

solution and could be sure that there were no errors in the modeling part. We have also addressed

some problems regarding the PLC implementation of supervisors. The code generator provides

solutions to some of the problems like avalanche effect and inexact synchronization. The rising

edge of signals was detected to avoid taking the signal into consideration in two consecutive

scans even if the signal hadn‟t changed.

43

 Finally we conclude that the supervisors were optimum, non-conflicting and could

control the plant efficiently. This approach can be used for any plant following the discrete event

nature. Hence our work can be taken as an initiative to prove that industrial application of SCT is

possible. Software for complete automation of modeling and code generation could be developed

in the future to simplify the process further.

44

REFERENCES

[1] Queiroz M.H. and Cury J.E.R. Synthesis and Implementation of Local Modular Supervisory

Control for a Manufacturing Cell,in Proceedings of the 6th International Workshop on

Discrete Event Systems, Zaragoza, Spain,(2002): pp. 377-382.

[2] Queiroz M.H and Silva Y.G. Formal Synthesis, simulation and automatic code generation of

a Factory Manufacturing Cell,in 20th International Congress of Mechanical Engineering,

Gramado, Brazil,(2009).

[3] Ramadge P.J.G and Wonham W.M. The Control Of Discrete Event Systems, Proceedings of

IEEE,77-1(1989): pp. 81-98.

[4] Vieira A.D and Cury J.E.R and Qeiroz M.H. A Model for PLC Implementation of

Supervisory Control of Discrete Event Systems , IEEE(2006).

[5] Fabian M. and Hellgran A. PLC-based Implementation of Supervisory Control for Discrete

Event Systems,in Proceedings of the 37th IEEE Conference on Decision & Control, Tampa,

Florida, USA,(1998).

[6] Malik P., Generating Controllers from Discrete-Event Models, in Proceedings of Summer

School in Modelling and Verification Processes (MOVEP), Cassez F. et al., Eds., 2002, pp.

337-342.

[7] Dietrich P., Malik R., Wonham W.M., and and Brandin B., Implementation Considerations

in Supervisory Control, in Synthesis and Control of Discrete Event Systems.: Kluwer

45

Academic Publishers, 2002, pp. 185-201.

[8] Balemi S. "Control of Discrete Event Systems: Theory and Application," Swiss Federal

Institute of Technology, Switzerland, PhD Thesis 1992.

[9] Cassandras C.G. and Lafortune S., Introduction to Discrete Event Systems New York, USA:

Springer, 2008.

[10] Afzalian A. and Noorbakhsh M. and Nabavi S.A. PLC Implementation of Decentralized

Supervisory ,in 17th IEEE International Conference on Control Applications, San Antonio,

Texas, USA,(2008).

[11] Feng L. and Wonham W.M. TCT: A computational Tool for Supervisory Control

Synthesis,in Proceedings of 8th International Workshop on Discrete Event Systems, Ann

Harbor, USA,(2006): pp. 388-389.

[12] Rudie K. The Integrated Discrete-Event System Tool,in Proceedings of 8th International

Workshop on Discrete-Event Systems, Ann Harbor, USA,(2006): pp. 394-395.

[13] Afzalian A., Nabavi Niaki S.A., and Irani R. and Wonham W.M. Discrete-Event Systems

Supervisory Control for a Dynamic Flow Controller, IEEE Transactions on Power

Delivery,24-1(2009).

[14] Brandin B.A. The Real-time Supervisory Control of an Experimental Manufacturing Cell ,

IEEE Transactions on Robitics and Automation,12-1(1996): pp. 1-14.

