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ABSTRACT 

 

Dynamic Power Flow Controller (DPFC) provides steady-state and dynamic power flow control 

for power lines and is considered as a Flexible AC Transmission System (FACTS) controller. 

This paper deals with control of a standard DPFC using a Discrete Event System model. The 

Supervisory Control of DES has been used to implement Modular supervisors for the DPFC. 

Despite the fact that the SCT is well consolidated, with a large number of publications focusing 

on the theoretical aspects, the industrial application is unknown. It is mainly due to the 

complexity of the theory. The numbers of states and events to be controlled are very large even 

for the seemingly simple systems. In recent years, a model for modular approach to the 

Supervisory Control for performing the formal synthesis of Supervisors has been 

proposed.   Programmable Logic Controllers are used for the physical implementation of the 

controllers. Some problems in physical realization of Supervisors in PLCs are dealt with. 

 

Keywords: Discrete Event Systems, Dynamic Power Flow controllers, Programmable Logic 

Controllers  
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CHAPTER 1

 

                                             Introduction 

1.1 Definition and Brief Review 

 

         Programmable logic controllers have been used extensively in industrial control 

applications since their advent in the 70s.  The programming of logic controllers has been done 

majorly by the knowledge of the programmer and no formal methods are used. Hence, the task of 

writing the code becomes a difficult one with the efficiency of the code varying from 

programmer to programmer. The ladder logic structure of coding PLCs makes it difficult to 

realize higher level concepts such as function calls and looping. The discrete event based 

modeling of systems provides a suitable sequential structure to the programming of PLCs.  

    Many control problems in the industry, especially manufacturing processes, can be dealt as 

Discrete Event problems. The DES based modeling and Supervisory Control of a manufacturing 

cell is already dealt with in [1]. Hence, in our paper, we deal with another problem, that is, 

Supervisory Control of a Dynamic Power Flow Controller using the same approach as in [2]. The 

Supervisory Control Theory (SCT) was proposed first by Ramadge and Wonham [3]. In this 

paper, they introduce the concept of Supervisors and how a feedback system is established for 

the control of a DES. Although, SCT has gained critical acclaim in the academic sector, 

industrial applications have been minimal. This is mainly due to the fact that the number of states 

in the Supervisor increases exponentially and is so larger that the physical realization becomes 

impossible. A modular approach was suggested by Max and Vieira [4].   According to this 
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approach, instead of a single monolithic supervisor, a number of decentralized supervisors are 

used which work synchronously to achieve the same control action as the monolithic 

supervisor.    

 The physical implementations of the supervisors are somewhat complicated due the 

“bridge between the asynchronous DES world and synchronous PLC world” [5]. The DES 

modeling assumes the events to occur spontaneously at any random instant. But, the PLC follows 

a synchronous system of scan cycles. Some problems with physical implementation of 

supervisors are dealt with in [5], [6], [7]. In [5] , Fabian and Hellgren discuss some problems 

such as causality, inexact synchronization and avalanche effect. They discuss some possible 

solutions to t above problems which are to some extent implemented in our work. For physical 

implementation of the supervisors, they define a concept called interleave insensitivity and Malik 

[6] proposes an algorithm to verify if a supervisor satisfies this condition.  Although all these 

problems have been discussed effective solutions are still open to research. Max and Vieira [4] 

suggest some methods while programming to overcome some of the problems discussed. They 

define a three level architecture which contains the Modular supervisors at the top, the product 

systems in the next level and the related operational procedures in the lowest level. They also use 

some auxiliary variables in the code to make sure the supervisors are not updated in the next 

cycles before the output is changed.  Our work uses all these methods to implement the modular 

supervisors for a DPFC. 
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1.2 Research Objectives 

 

As discussed earlier the SCT, although it has earned much acclaim in the academic sector, does 

not have much industrial applications as of yet. Hence, the major objective of our research is: 

 to model a Discrete Event System, in our case a Dynamic Power Flow Controller. 

 to develop supervisors to the system using SCT with a modular approach. 

 to simulate the supervisors and the system to test proper functioning. 

 automatic code generation for a PLC using ides2st. 

 to address some implementation problems of SCT and suggest solutions. 

Our work mainly aims at proving that the complete automation of the SCT based controller 

design process in possible in the future. By this paper, we hope to spread the advantages of SCT 

based modelling to conventional methods and finally aid the process of utilization of SCT in 

industrial control applications. 

 

 

 

 

 

 

 

 

 

 



4 
 

CHAPTER 2

 

                                            Literature Review 

 Earlier Discrete-Event Systems were sufficiently simple that intuitive and ad-hoc 

solutions were sufficient. But, due to the increasing complexity of man-made systems, has taken 

such systems to such a level that formal methods for analysis and design are required. One of the 

first papers on the formal methods for control of discrete event systems were by Ramadge and 

Wonham [3]. The main advantage of the model is  that  it separates  the concept of  open loop  

dynamics (plant)  from  the  feedback  control, and thus permits the formulation and solution  of 

a variety of control  synthesis problems. After the initiative by them, many other researchers 

developed the theory to include concepts like controllability, observability, aggregation, and 

modular, decentralized, and hierarchical control. But, what the researches had not considered 

was the implementation of SCT.  

 In 1992, Balemi [8] proposed an interpretation of supervisory control theory from an 

input/output perspective. The plant was modeled as an input/output process accepting commands 

as inputs, and producing as outputs some messages regarding changes that occurred in the 

system. A controller controlling the system was described in a similar way, accepting the outputs 

of the plant, and in turn producing commands. Under these semantics both the controller and the 

plant formed the “generating” process in the closed-loop systems. This was in contrast to the 

original framework of Ramadge and Wonham where the plant alone was the “generator”. Balemi 

also dealt with some problems of communication delay between the plant and the supervisor. 

Using this scheme a control environment for a Rapid Thermal Multiprocessor (RTM) had been 
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implemented at the Center for Integrated Systems at Stanford University. The environment 

provided both manual and automatic control. 

 Although the SCT attained critical acclaim in academia, its industrial applications were 

unknown. Fabian and Hellgren [5] in 1996, suggested that the main reason for this was the 

discrepancy between the abstract supervisor and its physical implementation. This is specifically 

noticeable when the implementation is supposed to be based on programmable logic controllers 

(PLCs), as is the case with many manufacturing systems. The asynchronous event-driven nature 

of the supervisor is not straightforwardly implemented in the synchronous signal-based PLC. 

They dealt with some problems in physical implementation of supervisors like simultaneity of 

events, inexact synchronization, causality and choice with examples. Malik [6] also dealt with 

problems like determinism and suggested some solutions. 

 In 2002 Max and Cury [1] attempted the modular supervisory control of a manufacturing 

cell. They suggest a three level structure for the PLC implementation of the supervisors. Again in 

2006 [4], they improved their structure and proposed a Sequential Flow Chart based algorithm 

for developing the PLC code. In 2009 Max and Silva [2], developed the control scheme for a 

factory manufacturing cell using the methods in [4] and they also used an automatic code 

generator for the PLC code part. This was a real step forward in the automation of the controller 

implementation process. Further, the tools TCT and IDES developed by Wonham [9] and Rudie 

[10] respectively greatly aided to the ease of design process. 
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CHAPTER 3 

 

                                                         Theory 

3.1 Discrete Event Systems    

A system is one of those primitive concepts whose understanding is best left to intuition. 

The IEEE Standard Dictionary of Electrical and Electronic Terms defines a system as a 

combination of components that act together to perform a function not possible with any of the 

individual parts. There are two salient points in this definition; firstly the system contains 

interacting components. Secondly, they perform specific functions. Systems can be classified 

into varies types on the basis of various criteria such as Static and Dynamic Systems, Time-

varying and Time-invariant Systems, Linear and Nonlinear Systems, Continuous-State and 

Discrete-State Systems, Time-driven and Event-driven System, Deterministic and Stochastic 

Systems, Discrete-time and Continuous-time Systems. 

When the state space of a system is naturally described by a discrete set like {0, 1, 2,...}, 

and state transitions are only observed at discrete points in time, we associate these state 

transitions with “events” and talk about a “discrete event system” [9]. An event should be 

thought of as occurring instantaneously causing a transition from one state to another. An event 

may be identified with a specific action taken (e.g., somebody presses a button). It may be 

viewed as a spontaneous occurrence dictated by nature (e.g., a computer goes down for whatever 

reason too complicated to figure out). Or it may be the result of several conditions which are 

suddenly all met.  
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Definition. A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its 

state evolution depends entirely on the occurrence of asynchronous discrete events over time.  

 One of the formal ways to study the logical behavior of DES is based on the theories of 

languages and automata. The starting point is the fact that any DES has an underlying event set E 

associated with it. The set E is thought of as the “alphabet” of a language and event sequences 

are thought of as “words” in that language.  

For real systems, E is finite. A sequence of events taken out of this alphabet forms a “word” or 

“string”. A string consisting of no events is called the empty string and is denoted by ε. The 

length of a string is the number of events contained in it, counting multiple occurrences of the 

same event. If s is a string, its length is denoted by |s|. By convention, the length of the empty 

string ε is taken to be zero. 

 

Language 

A language defined over an event set E is a set of finite-length strings formed from events 

in E. As an example, let E = {a, b, g} be the set of events. A language may be defined as for this 

event set, L1= {ε, a, abb} 

Operations on Languages: 

The usual set operations, such as union, intersection, difference, and complement with 

respect to E∗, are applicable to languages since languages are sets. In addition, there are some 

more operations defined: 

Concatenation: 

Let La,Lb ⊆ E∗,  
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then LaLb := {s ∈ E∗:(s = sasb) and (sa ∈ La) and (sb ∈ Lb)} 

In words, a string is in LaLb if it can be written as the concatenation of a string in La with a string 

in Lb. 

Prefix-closure: 

Let L ⊆ E∗,  

then L := {s ∈ E∗:(∃t ∈ E∗)[st ∈ L]} 

In words, the prefix closure of L is the language denoted by L and consisting of all the prefixes of 

all the strings in L. In general, L ⊆   is said to be prefix-closed if L =  . Thus language L is 

prefix-closed if any prefix of any string in L is also an element of  . 

 

Formal Definition of a DES 

A discrete Event System maybe define by a Deterministic automaton denoted by G, is a six-tuple 

G =(X,E, f, Γ,x0,Xm) 

where: 

X is the set of states 

E is the finite set of events associated with G 

f : X × E → X is the transition function: f(x, e)= y means that there is a transition labeled by 

event e from state x to state y; in general, f is a partial function on its domain.  

Γ: X → 2
E
 is the active event function (or feasible event function); Γ(x)is the set of all events e 

for which f(x, e) is defined and it is called the active event set (or feasible event set) of G at x.  

x0 is the initial state. 

Xm ⊆ X is the set of marked states.    
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The automaton G operates as follows. It starts in the initial state x0 and upon the occurrence of an 

event e ∈ Γ(x0) ⊆ E it will make a transition to state f(x0,e) ∈ X. This process then continues 

based on the transitions for which f is defined. 

 

Languages generated and marked 

The language generated by G =(X,E, f, Γ,x0,Xm)is 

          ∈   ∗                      

The language marked by G is 

           ∈               ∈       

Blocking 

Automaton G is said to be blocking if 

            

where the set inclusion is proper, and non-blocking when 

            

 

Unary Operations 

Now let‟s consider operations that alter the state transition diagram of an automaton. The 

event set E remains unchanged. 

Accessible Part 

 From the definitions of L(G)and Lm(G), we can delete from G all the states that are not 

accessible or reachable from x0 by some string in L(G), without affecting the languages 

generated and marked by G. When a state is “deleted”, all the transitions that are attached to that 

state are also deleted. 
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 Ac(G):=(Xac,E,fac,x0,Xac,m) where 

Ac stands for accessible part of G. 

Xac = {x ∈ X :(∃s ∈ E∗ )[f(x0,s)= x]} 

Xac,m = Xm ∩ Xac 

fac = f|Xac×E→Xac 

The notation f|Xac×E→Xac means that „f‟ is restricted to the smaller domain of the accessible 

states Xac. 

Clearly, the Ac operation has no effect on L(G)and Lm(G). Thus, without loss of generality, an 

automaton is accessible, that is, G = Ac(G). 

Co-accessible Part 

 A state x of G is said to be co-accessible to Xm, or simply co-accessible, if there is a path 

in the state transition diagram of G from state x to a marked state. The operation of deleting all 

the states of G that are not coaccessible is denoted by CoAc(G), where CoAc stands for taking 

the “coaccessible” part. 

CoAc(G):=(Xcoac,E,fcoac,x0,coac,Xm)  

Where 

Xcoac = {x ∈ X :(∃s ∈ E∗ )[f(x, s) ∈ Xm]} 

x0,coac = x0 if x0 ∈ Xcoac  

undefined otherwise 

fcoac = f|Xcoac×E→Xcoac 

 

The CoAc operation may shrink L(G), since it may involve deleting states that are accessible 

from x0; however, the CoAc operation does not affect Lm(G), since a deleted state cannot be on 
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any path from x0 to Xm. If G = CoAc(G), then G is said to be coaccessible; in this case, L(G)= 

Lm(G). 

Coaccessibility is closely related to the concept of blocking; since an automaton is said to be 

blocking if L(G) = Lm(G). Therefore, blocking necessarily means that Lm(G) is a proper subset of 

L(G) and consequently there are accessible states that are not coaccessible. 

If the CoAc operation results in Xcoac = ∅ (this would happen if Xm = ∅ for instance), an empty 

automaton is obtained.  

 

Trim Operation 

An automaton that is both accessible and coaccessible is said to be trim. Trim operation is 

defined to be 

Trim(G):= CoAc[Ac(G)] = Ac[CoAc(G)] 

where the commutativity of Ac and CoAc is easily verified. 

 

Projection and Inverse Projection 

Let G have event set E. Consider Es   E. The projections of L(G)and Lm(G)from E∗ to E∗
s , 

Ps[L(G)] and Ps[Lm(G)], can be implemented on G by replacing all transition labels in E \ Es by ε. 

The result is a nondeterministic automaton that generates and marks the desired language.  

 

Composition Operations 

Two operations on automata are defined: product, denoted by ×, and parallel composition, 

denoted by ||. Parallel composition is often called synchronous composition and product is 
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sometimes called completely synchronous composition. These operations model two forms of 

joint behavior of a set of automata that operate concurrently.  

 

Product 

The product of G1 and G2 is the automaton 

G1 × G2 := Ac(X1 × X2,E1 ∪ E2,f, Γ1×2, (x01,x02),Xm1 × Xm2) 

where 

              {
                         ∈                 

                                         
      

and thus Γ1×2(x1,x2)=Γ1(x1) ∩ Γ2(x2).  

 

Properties of product 

1. Product is commutative up to a reordering of the state components in composed states. 

2. Product is associative i.e.G1 × G2 × G3 = (G1 × G2) × G3 = G1 × (G2 × G3) 

 

Parallel Composition  

The parallel composition of G1 and G2 is the automaton 

G1 || G2 = Ac(X1 × X2,E1 ∪ E2,f, Γ1||2, (x01,x02),Xm1 × Xm2) 

where 

             

{
 

 
                         ∈                 

                  ∈             

(           )     ∈           

                  

 

and thus Γ1||2 (x1 ,x2 )=[Γ1 (x1 ) ∩ Γ 2(x2 )] ∪ [Γ1 (x1 ) \ E ] ∪ [Γ2 (x2 ) \ E ]. 
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 Properties of parallel composition: 

1. The set inclusion 

      Pi[L(G1||G2)] ⊆L(Gi), for i =1, 2 

The same result holds for the marked language. The coupling of the two automata by common 

events may prevent some of the strings in their individual generated languages to occur, due to 

the constraints imposed in the definition of parallel composition regarding these common events. 

2. Parallel composition is commutative up to a reordering of the state components in composed 

states. 

3. It is associative: 

                            

 

3.2 Supervisory Control Theory 

 Consider a DES modeled by a pair of languages, L and Lm , where L is the set of all 

strings that the DES can generate and Lm ⊆ L is the language of marked strings that is used to 

represent the completion of some operations or tasks; the definition of Lm is a modeling issue.  

L and Lm are defined over the event set E. L is always prefix-closed, that is, L =  , while 

Lm need not be prefix-closed. Assume that L and Lm are the languages generated and marked by 

automaton 

G = (X, E, f, Γ, x0 , Xm ) 

where X need not be finite; that is, 

                                 L(G) =              Lm (G) = Lm 
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Fig 3.2.1 

A supervisor S is to be attached to interact with G in a feedback manner as depicted in the Fig 

3.2.1.  

The event set E can be divided into two sets 

                                          E = Ec ∪ Euc 

Where 

Ec is the set of controllable events: these are the events that can be disabled by supervisor S. 

Euc is the set of uncontrollable events: these events cannot be disabled by supervisor S. 

 There are many reasons why an event would be modeled as uncontrollable: it is 

inherently unpreventable, it cannot be prevented due to hardware or actuation limitations, or it is 

modeled as uncontrollable by choice, as for example when the event has high priority and thus 

should not be disabled or when the event represents the tick of a clock. 

    Assuming that all the events in E executed by G are observed by supervisor S, in  

Fig. 3.2.1, s is the string of all events executed so far by G and s is entirely seen by S. The 

control paradigm is as follows. The transition function of G can be controlled by S 

in the sense that the controllable events of G can be dynamically enabled or disabled by S.  



15 
 

Formally, a supervisor S is a function from the language generated by G to the power set 

of E: 

                                                       

For each s ∈ L(G) generated so far by G (under the control of S), 

                                     S(s) ∩ Γ(f (x0 , s)) 

is the set of enabled events that G can execute at its current state f (x0 , s). In other words, 

G cannot execute an event that is in its current active event set, Γ(f (x0 , s)), if that event is not 

also contained in S(s). In view of the partition of E into controllable and uncontrollable events, 

we could say that supervisor S is admissible if for all s ∈ L(G) 

                                  Euc ∩ Γ(f (x0 , s)) ⊆ S(s) 

which means that S is not allowed to ever disable a feasible uncontrollable event.  

Languages generated and marked by S/G 

The language generated by S/G is defined recursively as follows: 

1. ε ∈ L(S/G) 

2. [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ S(s))] ⇔ [sσ ∈ L(S/G)] . 

The language marked by S/G is defined as follows: 

                              Lm (S/G) := L(S/G) ∩ Lm (G) 

Clearly, L(S/G) ⊆ L(G) and it is prefix-closed by definition. As for Lm (S/G), it consists 

exactly of the marked strings of G that survive under the control of S. Overall, we have the set 

inclusions 

                      ∅ ⊆ Lm (S/G) ⊆ Lm (S/G) ⊆ L(S/G) ⊆ L(G) 

 The empty string ε is always in L(S/G) since it is always contained in L(G); here, we 

have excluded the degenerate case where G is the empty automaton. Thus, when we adjoin S to 
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G, G is to start in its initial state at which time its possible first transition will be constrained by 

the control action S(ε). 

 To Prevent a supervisor from being blocking(live block/ dead block), we define a 

blocking and non-blocking supervisor as follows- 

 

Blocking in controlled system 

The DES S/G is blocking if 

                                 L(S/G) = Lm (S/G) 

and non-blocking when 

                                 L(S/G) = Lm (S/G) 

 Since the blocking properties of S/G are as much the result of S as of the structure 

of G, supervisor S controlling DES G is blocking if S/G is blocking, and supervisor S is non-

blocking if S/G is non-blocking. 

 Modeling of Specifications as Automata 

  In most of the cases, the construction of the automaton that generates/marks the 

applicable language requirement, say La, is preceded by the construction of a simple automaton 

that captures the essence of the natural language specification. Let  this automaton be Hspec . We 

then combine Hspec with G, using either product or parallel composition, as appropriate, to obtain 

Ha where 

                                         L(Ha ) = La 

In the case of several natural language specifications, there will be many Hspec,i , i = 1, . . . , n, 

that will be combined with G. 
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  The choice of product or parallel composition to compose Hspec with G is based on the 

events that appear in the transition diagram of Hspec and on how we wish to define the 

event set of Hspec : 

 If the events that can be executed in G but do not appear in the transition diagram of Hspec 

are irrelevant to the specification that Hspec implements, then we use parallel composition 

and define the event set of Hspec to be those events that appear in its transition diagram.  

 On the other hand, if the events that can be executed in G but do not appear in the 

transition diagram of Hspec are absent from Hspec because they should not happen in the 

admissible behavior La, then product composition operation is used. Equivalently, 

parallel composition can still be used provided the event set of Hspec is defined carefully 

and includes the events that should be permanently disabled. 

In most cases, all the states of Hspec will be marked so that marking in Ha will be solely 

determined by G. 

 

Illegal States 

    If a specification identifies certain states of G as illegal, then it suffices to delete these 

states from G, that is, remove these states and all the transitions attached to them, and 

then do the Ac operation to obtain Ha such that L(Ha ) = La . If the specification also 

requires non-blocking behavior after the illegal states have been removed, then we do the 

Trim operation instead of the Ac operation and obtain Ha such that Lm (Ha ) = Lam and 

L(Ha ) = Lam  
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Controllability Theorem 

 Consider DES G = (X, E, f, Γ, x0 ) where Euc ⊆ E is the set of uncontrollable events. Let 

K ⊆ L(G), where K = ∅. Then there exists supervisor S such that L(S/G) = K if and 

only if 

                                   KEuc ∩ L(G) ⊆ K 

This condition on K is called the controllability condition. 

 

Controllability 

Let K and M =   be languages over event set E. Let Euc be a designated subset of E. K 

is said to be controllable with respect to M and Euc if 

                                         KEuc ∩ M ⊆ K 

By definition, controllability is a property of the prefix-closure of a language. Thus K is 

controllable if and only if K is controllable. The language expression for the controllability 

condition can be rewritten as follows: 

for all s ∈ K, for all e ∈ Euc , se ∈ M ⇒ se ∈ K 

 

3.3 Dynamic Power Flow Controller 

 A Dynamic Power Flow Controller is used in power flow control in transmission lines 

and is considered a Flexible AC Transmission (FACTS) device. A DPFC consists of a PST 

(Phase Shifting Transformer) and series of TSCs (Thyristor Switched Capacitor). We will not 

discuss the working principle of the PST and TSC in detail, but it is important to note that due to 

their inherent large time constants, PST does not provide very good dynamic control. Hence, 
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TSC which have very quick response are used for dynamic control and as PST provide a better 

steady-state response, they are used for static control. Hence, our control modeling should first 

take care of switching the TSC and then the PST. We will discuss the features of a standard 

DPFC for flow control as in [10]. We wish to model the same DPFC specifications as in [10]. 

The DPFC consists of: 

 a conventional 115-MW (mechanically-switched) Phase-Shifting Transformer (PST) that 

can inject a quadrature voltage up to  Vp=0.26pu, with 19 steps of 2-kV, and 

consequently introduces a maximum of 15° phase-shift, which can inject a lead/lag 

quadrature-phase voltage.  

 a three-module series-connected multi-module Thyristor-Switched Capacitor (TSC) with 

reactance of  XC1=4Ω, XC2=8Ω and  XC3=12Ω, which provides seven steps 

corresponding to XCeq = 0, 4, 8, 12, 16, 20 and 24Ω. TSC can insert series capacitive 

reactance in 7 discrete steps to adjust the line series reactance. 

 a 2×25-MVAr shunt-connected Mechanically-Switched Capacitor (MSC) at bus j to 

supply the required reactive power. 

 

Fig.3.3.1 One-Line diagram of system 
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The TSC consists of three capacitors, which using the thyristors, give 7 combinations. We can 

regulate the reactive power by switching between these combinations. When an increase in 

power supply is demanded, the effective capacitance must be increased so that the reactive 

power increases. When power supply has to be decreased, a combination is chosen such that the 

effective capacitance is lowered.  

  The PST regulates the power supply in 19 steps. These tap-steps must be 

increased for an increase in power supply and decreased for decreasing power supply. When 

power supply has to be either lowered or increased, the TSC is switched to meet the 

requirements. As the PST tap-steps are increased/decreased, corresponding action is taken in the 

TSC so that the power supply is maintained at a constant level. In the ideal case, the power 

supply is at such a value that the TSC is in the default position. This is to ensure that a sudden 

change in demand is met with quickly. 

 The TSC and PST regulate power supply on the event of occurrence of certain signals 

from the powermeter. Moreover, the switching of the TSC and PST between different levels has 

to be controlled. Hence a Discrete Event System model is apt to describe the system accurately. 

 

3.4 Programmable Logic Controllers 

 A programmable logic controller, commonly known as PLC, is a solid state, digital, 

industrial computer. It was invented in order to replace the sequential relay circuits which are 

mainly used for machine control. Applications of PLCs in automation are in the field of sequence 

control, motion control, process control, data management, and communication. Majority of the 

PLC applications are still utilized in machine control, material handling, sequence control 

applications; but on the other hand the number of process control applications that make use of 
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Execute program  

Diagnostics 
communications 

Update output 

Read inputs 

PLC are also in the rise. Apart from performing basic functions like sequential operation, timing 

and counting, PLCs can perform arithmetic operations as well. PLCs also have special modules 

for analog control functions like P, PI PID positioning control. PLCs can provide information on 

alarm limit detection, alarm messages, machine malfunction, production summary, machine 

status, etc. Intelligent modules with onboard microprocessors are also available. 

 

Operation of a PLC 

 

 

 

 

 

  

Fig. 3.4.1 

Figure3.4.1 shows the steps in PLC operation cycle. During program execution, the processor 

reads all the inputs, and according to control application program energizes or de-energizes the 

outputs. Once all the logic has been solved, the processor will update all the outputs. The process 

of reading the inputs, executing the control application program, and updating the output is 

known as scan. During a scan operation, the processor also performs housekeeping tasks. 

 The inputs to the PLC are sampled by processor and the contents are stored in memory. 

Control program is executed. The input values stored in memory are used in control logic 

calculations to determine the values of outputs. The outputs are then updated. The cycle 

consisting of reading of inputs, executing the control program, and actuating the outputs is 
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referred to as „scan‟, and the time taken to perform scan is called „scan time‟. The speed at which 

PLC scans the memory depends on clock speed of CPU. The time to scan a program depends on 

the following parameters- 

 Scan rate 

 Length of the program 

 Types of functions used in the program 

 Faster scan time implies the inputs and outputs are updated frequently. Due to advanced 

technique of ASIC within the microcomputer for specific functions, scan times of different 

PLCs have reduced greatly. 

Relay Logic and Ladder Logic 

 A relay is a simple device that uses a magnetic field to control a switch. When a voltage 

is applied to the input coil, the resulting current creates magnetic field. The magnetic field pulls a 

metal switch towards it and the contacts touch, closing the switch. The contact that closes when 

the coil is energized is called normally open (NO). The normally closed (NC) contacts close 

when the input coil is not energized and open when the input coil is energized. 

 The Ladder logic in the PLC is actually a computer Program that the user can enter and 

change. The ladder diagram language is basically a symbolic set of instructions used to create the 

controller program. These symbols are arranged to obtain the desired control logic that is to be 

entered into the memory of the PLC. A ladder diagram consists of individual rungs just like a 

real ladder. A line showing an input or several inputs and an output is known as a rung.  

Ladder logic programing is a graphical representation of the program designed to look like relay 

logic. The many similarities between the ladder diagrams used to program PLCs and the relay 

ladder logic formerly used to control industrial systems eased the transition from hardwired relay 
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systems to PLC-based systems. The ability to monitor PLC logic in ladder diagram format also 

made troubleshooting easier for those already familiar with relay -based control systems.  

 

Fig 3.4.2 

 

3.5 Problems in PLC Implementation of Supervisors 

 

 At first it may seem easy to implement the supervisors in a PLC. It looks like merely a 

matter of making the PLC behave as a state machine. But, there are a number of problems in 

implementing the supervisors in sequential, synchronous device like a PLC. The straight forward 

way to represent a Supervisor is to assign variables to each state and event and represent the 

event transitions with a logical AND between the state and the even variables. After the 

transition, the next state is set and the previous state is reset. Problems like initialization and 

many-to-one transitions are easily solved, but there are a number of more intricate problems. 

1. Avalanche Effect 

 Signals always exist with different values, but events only exist momentarily. The events 

could be associated with rising edges of the signals. The rising edge can be detected in two scan 

cycles, i.e. if the event was low in the previous cycle and high in the current one, a rising edge 
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has occurred. But, associating events with rising and falling edges may lead to the avalanche 

effect. 

 The avalanche effect makes the program skip an arbitrary number of states during the 

same scan cycle. This is a result of the sequential execution of the program. This effect can be 

undone in some cases as in [5] using particular case by reversing the order of the code. But, in 

more complex FSMs, it might not be possible to perceive the order correctly. Also, if there are 

more than one states skipped, this solution might not work. We have used some techniques to 

resolve this like using auxiliary variables which will be discussed in detail in Chapter 5. 

 

2. Simultaneity of events 

 Another problem while moving from event-based world to signal based world is 

simultaneity. Events are assumed to not to occur simultaneously, but signals on the other hand 

can very well occur simultaneously. We can guarantee the non-overlapping of events if we could 

detect the rising edges when they occurred. But, this is not possible due to the cyclic execution of 

the PLC. If the rising edges of the two events occur within the same scan cycle of the PLC, the 

two simultaneous events are detected. This problem cannot be remedied by programming, since 

it is the problem with the synchronous nature of the PLC, whereas the state machine implies an 

asynchronous execution. To remedy this, the supervisor should be such that it should depend on 

the different interleavings of the same events. 

Interleave Insensitivity  

A supervisor S is interleave insensitive with respect to a plant P and a sub-alphabet Σ
‟∈ Σp if for 

s1, s2 ∈ (Σp-Σ
‟ 
)* and σ‟∈ Σ‟. 

ss1s2σ‟∈ L(P||S) ═> s(s1|||s2)σ‟ ⊆ L(P||S) 
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This definition means that after any interleavings of the strings s1 and s2, the control decision is 

same. Typically,  Σ‟ represents the events generated by the supervisor and (Σp-Σ
‟ 
)* represents 

the events generated by the plant. Since all interleavings lead to the same decision, the 

supervisors need only one of them and hence supervisor reduction is possible. 

 But, in general in real systems supervisors are not interleave insensitive. The order of the 

events is important. Hence the problem of simultaneity will exist in general. 

3. Choice 

 The supervisor generated by the SCT is generally required to be minimally restrictive; 

that is, it allows the plant the greatest possible freedom while still upholding the specification. 

However, when the controller generates some events only one of the possible events must be 

generated.  Generating several may be contradictory and catastrophic. In that case, the supervisor 

and the plant are entirely out of synch and there is no longer any guarantee that the supervisor, as 

implemented, can control the system satisfactorily. To resolve this problem the implementation 

must simultaneously choose and transit; and only a single event must be chosen. If the choice is 

not explicitly made by the implementor, the PLC itself will make the choice, determined by the 

ordering of the rungs.  

4. Inexact synchronization 

When a PLC executes the program, the plant is not observed, i.e. inputs are not being read. The 

scan cycle is assumed to be short in comparison to the plant response time. But, this is not 

always the case. A signal may occur in the plant while the execution of the program. The 

supervisor can have knowledge of commands and events that have occurred so far. Hence, if an 

signal occurs during the scan cycle it may lead to synchronization problems. Balemi [8] 

introduced the concept of delay insensitive languages. 
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A language K is said to be delay insensitive if, for s ∈ K,  σc ∈ Σs,   σu ∈ Σp,  sσp, sσu ∈   ̅̅̅ ⇒ 

sσuσc,  sσcσu ∈   ̅̅̅.  

Σs denotes the events generated by the supervisor while Σp are the events generated by the plant. 

 This definition captures delays in one direction only; from the plant to the supervisor. We 

can always control the plant so that only a single command is generated between the responses. 

The supervisor generates the command, and then waits for the responses. With a PLC 

implementation, this is natural, since the delay is due to the cyclic execution of the PLC. There 

are typically no delays in the direction from PLC to plant, since all communication is achieved 

through digital I/O.  

 Also, the definition concerns only delays of length one. This is assumed by Balemi [8] in 

order to simplify the problem. The delay is due to something happening in the plant while the 

PLC is executing its program. The next scan cycle, though, starts with an update of the signals, 

and thus, the event is seen, assuming that the scan cycle time is short compared with the time 

constants of the plant. Hence, the assumption is generally valid. 

 

We had briefly discussed dome problems in PLC execution of supervisors. All these problems 

are discussed in detail with examples in [5] . Readers should go through [5] if they want some 

examples to help better understanding of the concepts. 
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CHAPTER 4 

 

                                             Modeling 

 

 

 

 

 

 

 

 

                                                                                

 The DPFC can be thought of as being the composition of individual Power meter, TSC 

and PST plants. In addition, there can be two control systems, Control System 1and Control 

System 2. These blocks control the interaction between Power-meter & TSC and TSC and PST 

respectively.  It is this interpretation of the DPFC that is used for modeling the supervisors.  

The modeling for the DPFC is done using generators in accordance with Ramadge and Wonham 

[3] .The automata for these generators are represented graphically by state transition diagrams. In 

these diagrams, all vertices (circles) represent a state, and concentric circles indicate a marked 

state. The transition labels indicate the event that causes the transition. The generators for the 

plants were designed in the graphical form. The modeling tool TCT [11] was used as an aid.  

The physical behavior of the Power-meter, TSC and PST plants were modeled separately as 

Control 

System 2 

PST Power 
meter 

TSC 

Control 
System 1 

Vi Vo 

Fig.4.1. Block doagram of the modular supervisors  
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PWRMTR, TSC_P & PST_P and the interaction between the plants were not taken into account 

for this step. The desired behavior of the system, taking into account their interactions, was also 

modeled as TSC_SPEC, PST_SPEC, CONTROL_SYSTEM_1_SPEC and 

CONSTROL_SYSTEM_SPEC. These automatons were developed using TCT. The following 

events were used as triggers for initiating transitions in the discrete event systems. Events labeled 

with even numbers are uncontrollable events, and events labelled with odd numbers are 

controllable events- 

1. Powermeter 

Event  Event label 

Power meter initialized 11 

Report decrease in power demanded 10 

Report normal situation 12 

Report increase in power demanded 14 

2. TSC 

Event Event label 

Capacitor decrease command 31 

Capacitor decrease successful 32 

Capacitor increase command 33 

Capacitor increase successful 34 
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Capacitor decrease/increase failed 30 

3. PST  

Event Event Label 

Tap down command 41 

Tap down successful 42 

Tap up command 43 

Tap up successful 44 

Tap up/down failed 40 

 

 The control requirements being that if there was a increase in power demanded by 

powermeter (evnt_14), then the TSC is switched first i.e. evt_33 is enabled by the supervisor ( 

but actually the supervisor disables all other controllable events other than evt_33). Then, if a 

normal situation is reported, the TSC is brought back and the PST is tapped up to maintain power 

at that level. And if a decrease in power is demanded the TSC is switched down first then, in the 

next cycle, the PST is tapped down and the TSC is brought back to position. If a failure event 

(evt_30, evt_40) occurs then Manual mode is switched on.  The TSC is always brought back to 

state 0 for better range of dynamic control. 
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The state diagrams for these plants were generated using TCT. 

 

Fig.4.2. Generators of PLANTS GPWRMTR, powermeter (left), GTSC,TSC (middle) and GPST, PST 

(right) 

  

Fig.4.3. Specification for PST EPST 

 

Fig.4.4. Specification for TSC ETSC 
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  Fig.4.5. Specification for CS2 ECS2 

 

Fig.4.6. Specification for CS1 ECS1 
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 The DES PWRMTR has two states. 0 is a marked state that represents the initial state. 1 

represents the state where the meter has to report a increase, decrease or constant supply. 

TSC_P has three states. 0 is a marked state and represents the condition where no action has to 

be taken. 1 represents the action of decreasing capacitance. 2 represents the action of increasing 

capacitance. 

 The DES PST_P has three states. 0 is a marked state and represents the condition where 

no action has to be taken. 1 represents the shift-down of taps, thereby decreasing supply. 2 

represents the shift-up of taps, thereby increasing supply. The DES TSC_SPEC has 7 states to 

represent the 7 different combinations of the capacitors. State 0 represents the mean capacitance 

and is the marked state. States 1, 2 and 3 represent successive decrements of capacitance (and 

therefore power). States 4, 5 and 6 represent successive increments of capacitance (and therefore 

power).The DES PST_SPEC has nineteen states which correspond to the 19 different tap 

positions. State 0 is the mean tap position and is a marked state. States 1-9 represent the lower 

tap positions (decrease in supply). States 10-18 represent the upper tap positions (increase in 

supply).The DES PLANT1 has 5 states. 

 In order to obtain a comprehensive behavioral model that contains information about the 

plant as well as the desired behavior, we take a parallel composition of the plant and the 

corresponding specification. By taking a parallel composition, we are taking a union of the event 

sets of the plants and specification. Hence, we have a comprehensive model. 

In order to find the plant of a sub-system, the generators of the plants that constitute the sub-

system are composed together to form the generators for the local plants/sub-system. The local 

plants for TSC and PST do not have any other plants in them; hence the generators for PST and 

TSC remain the same. But, the local plants CS1 and CS2 are the combination of different plants. 
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Gcs1 = Gpwrmtr || Gtsc 

Gcs2 = Gtsc || Gpst 

The behavioral models for the local plants are then found as 

Elocx = Glocx || Ex 

Hence, the behavioral model for TSC is E1=TSC_P||TSC_SPEC. For PST it is 

PST_P||PST_SPEC. For Control System 1 it is Gcs1||PLANT1. For Control System 2 it is 

Gcs2||PLANT. 

These models specify the required behavior of the plant. Next step is the generation of 

supervisors working in a feedback architecture which will restrict the plant to the required 

behavior. 

 

The supervisors for the local plants were generated and their numbers of states were reduced 

using TCT. 

Fig.4.7. Supervisor Control System 1 
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Fig4.8. Supervisor TSC 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.9. Supervisor Control System 2 
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Fig.4.10.Supervisor PST 
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CHAPTER 5

 

                                            Automatic Code generation and 

Simulation 

As discussed in Chapter 4, the generators of the plant, their corresponding specifications and 

their Supervisors have been generatored. We have designed modular supervisors having 

CS1 = states 39, transitions 64 

TSC = states 19, transitions 36 

CS2 = states 20, trnasitions 36 

PST = states 55, transitions 108. 

 

 Although the total number of states and transitions have drastically reduced in 

comparison to the monolithic solution (states 4983, transitions 10525), it is still high. The 

supervisor reduction using TCT also did not help much. But if we look at the supervisor state 

diagrams for TSC , CS2 and PST we can see that a pattern of the same transitions occur after 

some states transitions. Hence, these can be reduced to less number of states and a counter can be 

added to count the occurance of the next similar loop in the supervisors [10]. 
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Fig.5.1. Reduced Supervisor for CS2                                    Fig.5.2. Reduced Supervisor for TSC 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.3. Reduced Supervisor for PST 

  

 From the above state diagrams it can be seen that if from state 6 event 31 is enabled or 

from state 4 event 33 is enabled then, the transition to state 0 occurs. A counter is initialized and 

incremented each time to keep track of these transitions. Similarly, for PST a counter is assigned 

for transitions from states 4 and 5. The counters are UP-DOWN counters and for TSC and CS2 

supervisors they can count +3 and for PST they can count +9.  
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 After the supervisor reduction, the models of the plants, specifications and the reduced 

supervisors were imported to IDES3. IDES [12] is a tool with GUI to design DES and perform 

the major operations on them. We used TCT to model the generators since we found the usage 

easier and more functionality in TCT. The models were imported to the IDES to as the software 

ides2st, the automatic code generator we used only detects IDES models. The tool ides2st [2] 

converts the supervisors and the plant models into PLC structured text code. 

   

 
Fig.5.4. ides2st code generation 
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 It assigns a variable to every supervisor state and event. According to 

ides2St, when an event takes place its event variable is set and remains like that until the 

supervisor is updated. Ides2st uses an auxiliary variable evt_blk to make sure that only one 

transition occurs in each cycle. This deals with the problem of avalanche effect and inexact 

synchronization.  It doesn‟t mean that those subsequent transitions will be ignored by the 

program, but it will be postponed. Their variables are set, but they just run in a convenient state 

at the supervisors.  

 The program is divided into two Function Blocks, one for the supervisors and the other 

for the product system. The operational procedure level is not generated by ides2st and is left to 

the programmer. The supervisor level further consists of two subdivisions. First, the FSM of the 

supervisors are dealt. The second part contains the disabling De_[event] of the controllable 

events by the supervisor. If De_[event] is set the supervisor will prevent the event from occurring 

at a certain state. The product system level is also divided into two parts. The first has the 

uncontrollable event code as uncontrollable events must be updated before the controllable ones. 

The second contains the controllable events code. Thus before any controllable event can be 

triggered the code will check if there is any uncontrollable event‟s bit set. If so, the local plant 

FSM is updated and sets the response event variable e_[event] to update  the supervisor. Were it 

not, and the local plant is in a state where a controllable event is not disabled,  the variable 

e_[event] bit  is set which means a command  is sent  to start a subroutine and  to update  the 

supervisor after this local plant does. 
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Fig.5.5. ides2st code dumping to check transition list 

 

The above figure shows the Dump feature in ides2st. This feature shows all the states and the 

transitions according to the ST code. From the transition list, the correctness of the code can be 

checked even before actually applying it on the system.  
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Simulation 

  After generating the code using ides2st we added the extra bit of code for the operational 

procedures, the synchronization of the supervisors and the counters to the ST code. Simatic Step 

7 was used to compile the scl source file to generate the statement list file (stl). PLCsim was used 

to simulate the compiled code.  

 

 

 

       I0.0 = e_10 

       I0.1=e_30 

       I0.2=e_32 

 

 

 

 

 

 

 

 

    Fig.5.6.PLCsim simulation 

 

 

Q0.0=e_11 

Q0.1=e_31 

Q0.2=e_33 
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CHAPTER 6

 

Results and Discussions 

 The modeling of a DPFC using discrete event system approach is logical from the fact 

that the DPFC has a discrete switching nature. Solving the problem using conventional methods 

would have been confusing and difficult. The modular approach adopted resulted in supervisors 

with very less number of states making physical implementation possible. Compared to the 

monolithic solution which had 4983 states [10], the highest number of states a modular 

supervisor had was 39 which was Control System 1. Generating the supervisors using SCT gave 

us a formal method to write the PLC code as the PLC code could be directly generated from the 

supervisor state machines.  

 Compared to [10], the extra modular supervisor we had introduced reduces the code 

length as we can see that the CS2 have repetitive states for which a counter can be used. The 

automatic code generation using ides2st simplified the PLC code part further. It saved us a lot of 

time and effort. Also, by automatic code generation we could be sure that there were no typing 

errors. Also by checking the models and remodeling time and again we obtained an optimum 

solution and could be sure that there were no errors in the modeling part. We have also addressed 

some problems regarding the PLC implementation of supervisors. The code generator provides 

solutions to some of the problems like avalanche effect and inexact synchronization. The rising 

edge of signals was detected to avoid taking the signal into consideration in two consecutive 

scans even if the signal hadn‟t changed. 
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 Finally we conclude that the supervisors were optimum, non-conflicting and could 

control the plant efficiently. This approach can be used for any plant following the discrete event 

nature. Hence our work can be taken as an initiative to prove that industrial application of SCT is 

possible. Software for complete automation of modeling and code generation could be developed 

in the future to simplify the process further. 
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