

TUNING OF PID CONTROLLER BY BIOINSPIRED
TECHNIQUES

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

 Bachelor of Technology in

Electronics and Instrumentation Engineering

 By

BISWAJIT JENA(107EI002)

SAGAR KUMAR (107EI008)

Department of Electronics & Communication Engineering

National Institute of Technology ,Rourkela

 2011

TUNING OF PID CONTROLLER BY BIOINSPIRED
TECHNIQUES

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology in

Electronics and Instrumentation Engineering

Under the Guidance of

Prof. U.C.PATI

 By

BISWAJIT JENA(107EI002)

SAGAR KUMAR (107EI008)

Department of Electronics & Communication Engineering

National Institute of Technology ,Rourkela

 2011

National Institute of Technology

Rourkela

CERTIFICATE
This is to certify that the thesis entitled “TUNING OF PID CONTROLLER BY BIOINSPIRED
TECHNIQUES”, submitted by Mr BISWAJIT JENA(107EI002) and Mr SAGAR KUMAR
(107EI008) in partial fulfillment of the requirements for the award of Bachelor of Technology
Degree in ‘ELECTRONICS & INSTRUMENTATION’ Engineering at the National Institute of
Technology (NIT), Rourkela is an authentic work carried out by him under my supervision. To the
best of my knowledge, the matter embodied in the thesis has not been submitted to any other
university / institute for the award of any Degree or Diploma.

Date: Prof. U.C.PATI

Department of Electronics and Communication Engg.

National Institute of Technology, Rourkela

Rourkela-769008

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude and sincere thanks to my respected

supervisor Prof. U.C.PATI for the guidance, insight, and support that he has provided throughout

the course of this work. The present work would never have been possible without his vital inputs

and mentoring.

I would like to thank all my friends, faculty members and staff of the Department of Electronics and

Communication Engineering, N.I.T Rourkela for their extreme help throughout my course of study

at this institute.

 SAGAR KUMAR (107EI008)

 BISWAJIT JENA(107EI002)

 CONTENTS

Introduction 1

PID Tuning 3

Soft Computing under Artificial Intelligence: 6

Matlab Basics for the Implementation of Project 7

Problem Statement of the Project 8

Step Response of the Raw Plant Using LTI Viewer 9

Derivation of Closed Loop Transfer Function 10

Concept of Fittness Function for the Design 11

PARTICLE SWARM OPTIMIZATION 13

Algorithm for PSO 14

 Program for PSO

 The Program for the Simulation Plot

 PSO based simulation and results

 Simulation and results

Bacterial Foraging Optimization 22

 Algorithm for BFO

 Program for BFO

 The Program for the Simulation Plot

 BFO based simulation and results

CONCLUSION

Introduction

PID

Pid is a feedback based controller which gets the error value and calculates the

output based on the characteristics of th

simple and gives good result.

Pid is used in aclosed loop .it has three elements P ,I ,D. Every parameter has gain by which

we control the contribution.

PID Alogorithm:

where

Pout: Proportional term of output

Kp: Proportional gain, a tuning parameter

Ki: Integral gain, a tuning parameter

Kd: Derivative gain, a tuning parameter

e: Error = SP − PV

1

is a feedback based controller which gets the error value and calculates the

output based on the characteristics of th.e error.it is very widely used in plants as it is

has three elements P ,I ,D. Every parameter has gain by which

: Proportional gain, a tuning parameter

: Integral gain, a tuning parameter

tuning parameter

is a feedback based controller which gets the error value and calculates the

.it is very widely used in plants as it is

has three elements P ,I ,D. Every parameter has gain by which

t: Time or instantaneous time (the present)

Proportional term

The proportional term makes a change to the output that is proportional to the current error

value. The proportional response can be adjusted by multiplying t

called the proportional gain.

The proportional term is given by:

Derivative term

The derivative of the process error is calculated by determining the slope of the error over

time and multiplying this rate of change by the derivative gain

contribution of the derivative term to the overall control action is terme

Kd.

The derivative term is given by:

Integral term

The contribution from the integral term is proportional to both the magnitude of the error and

the duration of the error. The integral

over time and gives the accumulated offset that should have been corrected previously. The

accumulated error is then multiplied by the integral gain (

output.

The integral term is given by:

2

: Time or instantaneous time (the present)

The proportional term makes a change to the output that is proportional to the current error

value. The proportional response can be adjusted by multiplying the error by a constant

The proportional term is given by:

The derivative of the process error is calculated by determining the slope of the error over

time and multiplying this rate of change by the derivative gain Kd. The magnitude of the

contribution of the derivative term to the overall control action is termed the derivative gain,

The contribution from the integral term is proportional to both the magnitude of the error and

integral in a PID controller is the sum of the instant

over time and gives the accumulated offset that should have been corrected previously. The

accumulated error is then multiplied by the integral gain (Ki) and added to the controller

The proportional term makes a change to the output that is proportional to the current error

he error by a constant Kp,

The derivative of the process error is calculated by determining the slope of the error over

. The magnitude of the

d the derivative gain,

The contribution from the integral term is proportional to both the magnitude of the error and

in a PID controller is the sum of the instantaneous error

over time and gives the accumulated offset that should have been corrected previously. The

) and added to the controller

3

PID Tuning :

Performance of PID depends on the gain parameters. so we need to adjust them .Different

methods are used

i)open loop method

ii)close loop method

Open Loop Method

Here we apply a step to the process and get the response like as shown in the graph and get

the deadtime ,reaction rate and process gain..

Put the controller in manual mode

Wait until the process value (Y) is stable and not changing

Step the output of the PID controller - The step must be big enough to see a

significant change in the process value. A rule of thumb is the signal to noise

ratio should be greater than 5.

Collect data and plot as shown below.

Repeat making the step in the opposite direction.

K = the process gain=change in process value /change in manipulated value

4

Getting results:

ii)close loop method

 Ziegler–Nichols method

Another tuning method is formally known as the Ziegler Nichols method, by John G. Ziegler

and Nathaniel B. Nichols in the 1944. As in the method above, the Ki and Kd gains are first

set to zero. The P gain is increased until it reaches the ultimate gain, Ku, at which the output

of the loop starts to oscillate. Ku and the oscillation period Pu are used to set the gains as

shown:

The main advantage of the closed-loop tuning method is that it considers the dynamics of all

system components and therefore gives accurate results at the load where the test is

performed. Another advantage is that the readings of Ku and Pu are easy to read and the

period of oscillation can be accurately read even if the measurement is noisy.

The disadvantages of the closed-loop tuning method are that when tuning unknown

processes, the amplitudes of undampened oscillations can become excessive (unsafe) and the

test can take a long time to perform. One can see that when tuning a slow process (period of

oscillation of over an hour),it can take a long time before a state of sustained, undampened

oscillation is achieved through this trial-and-error technique. For these reasons, other tuning

5

techniques have also been developed and some of them are described below.First, it is

essentially trial-and-error methods,since several values of gain must be tested before the

ultimate gain. Second, while one loop is being tested in this manner, its output may affect

several other loops, thus possibly upsetting an entire unit.

PID Tuning Based on Frequency Response

First give the plant inputs with different frequency and get the frequency response In most

processes, both the amplitude ratio and the phaseangle will decrease with increasing

frequencies. Assumingthat the combined phase and amplitude ratio decreases withfrequency

when the process and the controller frequencyresponses are combined, the following general

stability ruleapplies: A control system will be unstable if the open-loop frequency response

has an amplitude ratio that is larger than one when the phase lag is 180 degrees.To provide

proper tuning, a margin of safety in the gainand phase is desired. Tuning constants are

therefore adjusted to result in the highest gain at all frequencies and yet achieve a certain

margin of safety or stability. This is best accomplished using computer software. A graph

shows frequency response as :

6

Soft Computing under Artificial Intelligence:

Intelligence is the ability to acquire,understand and apply knowledge; or the

ability to exercise thought and reason.It embodies all the knowledge both

conscious and unconscious,which we acquire through study and

experience,highly refined sight and sound perception,

thought,imagination,ability to converse,read,write and recall facts,express and

feel emotions,and much more.

Artificial Intelligence deals with the study and creation of computer systems

that exhibit some form of intelligence: systems that can learn new concepts and

tasks,systems that can reason and draw conclusions about the world around

us,systems that can understand a natural language or perceive and comprehend a

visual scene,and systems that perform other feats that require human

intelligence.

The motivation of AI technology is to make computers behave more like

humans in solving problems.AI is fundamentally different from general

programming.Soft computing is a tool of artificial intelligencewhich differs

from hard computing in that,unlike hard computing,it is tolerant of

imprecision,uncertainty, partial truth and approximation.In effect,the role model

of soft computing is the human mind.

The project work is based on exploiting the two efficient swarm intelligence

based evolutionary soft computational technique viz. Particle Swarm

Optimization (PSO) and Bacterial Foraging Optimization (BFO) to design a

PID controller for a low damping plant.

7

Matlab Basics for the Implementation of Project

LTI VIEWER :-

LTI Viewer is a software package inbuilt in matlab which can produce
following information regarding a transfer function:-

-Step Response.

-Impulse Response.

-Bode Plot.

-Nyquist Plot.

-Nichols Chart.

-Pole-Zero Plot.

As the project is objected with transient and steady state response of a low
damping plant, we have focused mainly upon the step response through LTI
viewer. Steps to use LTI Viewer for any transfer function :-

-We use “ltiview” command to open the LTI Viewer in a program.

-After running the program we have to use the import function from the file
window.

-We select the transfer function whose plot we have to trace from the work file
and we choose the “stepinfo”.

-We get the plot and then we can point peakovershoot,settling time,rise time etc.
from the characteristic menu of the graph.

Transfer Function Basics in Matlab:-

To represent a system transfer function and play with its different parameters
they have to be coded in a suitable format in matlab. A function ‘tf’ is used for
that. For example:-

A transfer function T1(s)=(S2 +3*S +5)/(S5 +5*S4 +3.75*S3 +21*S2 +3*S +1)
can be represented as T1 = tf([1 3 5],[1 5 3.75 21 3 1])

8

Problem Statement of the Project

The project is objected to design a PID controller for a low damping plant.The
low damping plants are the higher order plants which exhibits sluggish
behaviour.This means that the plant has large settling time,large peak overshoot
which are undesirable for better performance. Here we have selected a model
transfer function of a low damping raw plant as follows:-

T(s) = (25.2*S2 +21.2*S +3)/(S5 + 16.58*S4 + 25.41*S3 +17.18*S2+11.70*S+1)

For the plant model the transfer function is as follows:-

T1=([25.2 21.2 3],[1 16.58 25.41 17.18 11.70 1])

The parameters can be obtained as follows:-

S=Stepinfo{T1,’RiseTimelimits’,[0.1, 0.9]}

The above command returns:-

S=

 RiseTime : 2.1972 sec

 Settling Time : 33.513 sec

 Overshoot : 7.1023

 Peak : 3.2131

 Peak Time : 4.1789 sec

The step response of the raw plant obtained using the LTI Viewer is as shown in
the attached graph

9

Step Response of the Raw Plant Using LTI Viewer

10

Derivation of Closed Loop Transfer Function for the Plant Model
Tuned with the PID Controller

The plant model can be figured as :-

The open loop transfer function of the model :-

 T(s) = (25.2*S2 + 21.2*S +3)/(S5+16.58*S4 +25.41*S3 +17.18*S2 +11.70*S+1)

Contribution of PID:-

PID(S) =(kD*S2 +kI +kp*S)/S

So, the overall transfer function of the controlled model:-

C(S)/R(S) = PID(S)*T(S)/(1+PID(S)*T(S)) =

(25.2*kD*S4)+(21.2*kD+21.5*kP)*S3 + (25.2*kI+21.2*kp+3*kD)*S2

 + (21.2*kI +3*kp)*S +3*KI

 --

 S6 + 16.5*S5 + (25.41 +25.2*kD)*S4 + (17.18 +21.2*kD +25.2*kP)*S3
+ (11.70 + 25.2*kI +21.2*kP + 3*kD)*S2 + (21.2*kI +3*kp +1)*S + 3*kI

11

Concept of Fittness Function for the Design

For our case of design,we had to tune all the three parameters of PID such that it
gives the best output results or in other words we have to optimize all the
parameters of the PID for best results.Here we define a three dimensional
search space in which all the three dimensions represent three different
parameters of the PID. Each particular point in the search space represent a
particular combination of [KP KI KD] for which a particular response is obtained
The performance of the point or the combination of PID parameters is
determined by a fitness function or the cost function.This fitness function
consists of several component functions which are the performance index of the
design.The point in the search space is the best point for which the fitness
function attains an optimal value.

For the case of our design,we have taken four component functions to define
fittness function.The fittness function is a function of steady state error, peak
overshoot, rise time and settling time.However the contribution of these
component functions towards the original fittness function is determined by a
scale factor that depends upon the choice of the designer.For this design the best
point is the point where the fitness function has the minimal value.

The choosen fitness function is:-

 F = (1-exp(-β)) (MP +ESS) + (exp(-β))(TS - Tr)

 Where F:- Fittness function

 MP :- Peak Overshoot

 TS :- Settling Time

 Tr :- Rise Time

 β:-Scaling Factor(Depends upon the choice of designer)

For our case of design we have taken the scaling factor β = 1.

In the matlab library we have defined a fitness function which has PID
parameters as input values and it returns the fitness value of the PID based
controlled model as its output. It has the format:-

 Function [F] = fitness(KD KP KI)

12

Fittness function in matlab :-

function F= tightnes(kd,kp,ki)
T1=tf([25.2*kd 21.2*kd+25.2*kp
25.2*ki+21.2*kp+3*kd21.2*ki+3*kp 3*ki],[1 16.58 25.41+25.2*kd
17.18+21.2*kd+25.2*kp 11.70+25.2*ki+21.2*kp+3*kd .
21.2*ki+3*kp+1 3*ki]);
S=stepinfo(T1,'RiseTimeLimits',[0.1 0.9]);
tr=S.RiseTime;
ts=S.SettlingTime;
Mp=S.Overshoot;
Ess=1/(1+dcgain(T1));
F=(1-exp(-0.5))*(Mp+Ess)+exp(-0.5)*(ts-tr);

We have used this fitness function for the performance evaluation of different
combination of PID parameters reflected by the points in the three dimensional
search space.

13

 PARTICLE SWARM OPTIMIZATION

Introduction:-

James Kennedy an American Social Psychologist along with Russell C.
Eberhart innovated a new evolutionary computational technique termed as
Particle Swarm Optimization in 1995.The approach is suitable for solving
nonlinear problem.The approach is based on the swarm behavior such as birds
finding food by flocking. A basic variant of the PSO algorithm works by having
a population (called a swarm) of candidate solution (called particles). These
particles are moved around in the search-space according to a few simple
formulae. The movements of the particles are guided by their own best known
position in the search-space as well as the entire swarm's best known position.
When improved positions are being discovered these will then come to guide
the movements of the swarm. The process is repeated and by doing so it is
hoped, but not guaranteed, that a satisfactory solution will eventually be
discovered.Here in this technique a set of particles are put in d-dimensional
search space with randomly choosing velocity and position.The initial position
of the particle is taken as the best position for the start and then the velocity of
the particle is updated based on the experience of other particles of the
swarming population.

Algorithm for PSO :-

-The ith particle in the swarm is represented as

 Xi = (xi1 , xi2, xi3,..................xid) in the d-dimensional space.

-The best previous positions of the ith particle is represented as: Pbest =
(Pbesti,1 ,Pbesti,2 ,Pbesti,3..........Pbesti,d)

-The index of the best particle among the group is Gbestd.

-Velocity of the ith particle is represented as Vi = (Vi,1 Vi,2 Vi,3.......... Vi,d).

-The updated velocity and the distance from Pbestid to Gbesti,d is given as ;
Vi,m

t+1 = W*Vi,m
t +C1*rand()*(Pbesti,m – Xi,m

t) + C2*rand()*(Gbestm – Xi,m
t)

- Xi,m
(t+1) = Xi,m

(t) +Vi,m
(t+1)

 For i=1,2,3.......n.

14

m = 1,2,3.....d.

where,

n:- Number of particles in the group.

d:- dimension index.

t:- Pointer of iteration.

Vi,m
(t) :- Velocity of particle at iteration i.

W:- Inertia weight factor.

C1 , C2 :- Acceleration Constant.

rand() :- Random number between 0 and 1.

Xi,d
(t) :- Current position of the particle ‘i’ at iteration.

Pbesti :- Best previous position of the ith particle.

Gbest:- Best particle among all the particle in the swarming population.

Algorithmic Approach for the Specified Design :-

In our case, we cast the PID controller design problem in PSO framework as
given.We consider the three dimensional search space. KP , KI and KD are the
three dimensions.We consider the fitness function based on time domain
characteristics for adaptation.We set the number of adaptation iterations based
on expected parameters and time of computation.

A Small Illustration of Program :-

-Initially we fixed the values of PSO algorithm constants as :

 Inertia weight factor W = 0.3

 Acceleration constants C1 , C2 = 1.5

-As we have to optimize three parameters, namely KP ,KD ,KI of the controller,
we have to search for their optimal value in the three dimensional search space,
so we randomly initialized a swarm of population “100” in the three
dimensional search space with [Xi,1 Xi,2 Xi,3] and [Vi1 Vi2 Vi3] as initial position

15

and velocity.

-Calculated the initial fitness function of each point and the point with minimum
fitness function is displayed as gbest (initial value of global best optima) and the
optimal fitness function as fbest1(Initial best fitness function).

-Runned the program with the PSO algorithm with thousands (or even more
numbers) of iterations and the program returned final optimal value of fitness
function as “fbest” and final global optimum point as “Gbest”.

Program for PSO:

clc

close all

c1=1.5;

c2=1.5;

for i=1:50

 for j=1:3

 X(i,j)=i*rand;

 V(i,j)=i*rand;

 Pbest(i,j)=X(i,j);

 end

end

for i=50:100

 for j=1:3

 X(i,j)=0.5*i*rand;

 V(i,j)=0.5*i*rand;

 Pbest(i,j)=X(i,j);

 end

end

16

for i=1:100

 kd=X(i,1);

 kp=X(i,2);

 ki=X(i,3);

 F(i,1)=tightnes(kd,kp,ki);

end

k=1;

m=1;

fbest=F(1,1);

while m<100

 if fbest>F(m,1)

 fbest=F(m,1);

 k=m;

 end

 m=m+1;

end

k1=k;

fbest1=fbest;

Gbest=[X(k,1) X(k,2) X(k,3)]

gbest=Gbest;

k1

fbest1

gbest

for M=1:50

17

 for i=1:100

 for j=1:3

 V(i,j)=0.5*(100-i)*V(i,j)+c1*rand*(Pbest(i,j)-
X(i,j))+c2*rand*(Gbest(1,j)-X(i,j));

 X(i,j)=X(i,j)+V(i,j);

 end

 kd1=X(i,1);

 kp1=X(i,2);

 ki1=X(i,3);

 kd=Pbest(i,1);

 kp=Pbest(i,2);

 ki=Pbest(i,3);

 L=tightnes(kd,kp,ki);

 P=tightnes(kd1,kp1,ki1);

 if P<L

 Pbest(i,1)=X(i,1);

 Pbest(i,2)=X(i,2);

 Pbest(i,3)=X(i,3);

 end

 end

 for i=1:100

 kd=Pbest(i,1);

 kp=Pbest(i,2);

 ki=Pbest(i,3);

 F(i,1)=tightnes(kd,kp,ki);

18

 end

 m=1;

 k=1;

 while m<100

 if fbest>F(m,1)

 fbest=F(m,1);

 k=m;

 end

 m=m+1;

 end

 Gbest=[Pbest(k,1) Pbest(k,2) Pbest(k,3)];

end

k

fbest

19

The Program for the Simulation Plot

This program is to obtain the step response of various optimized systems with
optimal [KD KP KI] values

clc
close all
kd=input('enter the value of kd');
kp=input('enter the value of kp');
ki=input('enter the value of ki');
T1=tf([25.2*kd 21.2*kd+25.2*kp 25.2*ki+21.2*kp+3*kd 21.2*ki+3*KP
3*ki],[1 16.58 25.41+25.2*kd 17.18+21.2*kd+25.2*kp
11.70+25.2*ki+21.2*kp+3*kd 21.2*ki+3*kp+1 3*ki]);
ltiview

20

PSO based simulation and results

Fittness function of the open loop transfer function of the raw plant :

 T(s) = (25.2*S2 + 21.2*S +3)/(S5+16.58*S4 +25.41*S3 +17.18*S2 +11.70*S+1)

F(Raw Plant) = 22.3066

In our simulations using PSO algorithm, we have varied the number of
iterations and kept the population of the swarm constant at 200.We present a
comparative study of the performance of the initial global best position out of
randomly initialized swarm particles to the performance of the final global best
position which comes after the application of “particle swarm optimization”
algorithm.

The result in the tabular format:

NUMBER OF
ITERATIONS

OPTIMAL BEST
FITNESS FUNCTION

OPTIMAL BEST
POINT

 100 2.4148 [0.711 0.678 0.247]
 200 2.3973 [0.132 0.747 0.355]
 300 2.3950 [0.972 0.767 0.292]
 400 2.4703 [1.019 0.912 0.463]
 500 2.399 [0.849 0.714 0.249]
 600 2.4104 [1.0345 0.787 0.299]
 700 2.402 [1.405 0.7937 0.285]
 800 1.5531 [0.696 0.812 0.134]
 900 1.0407 [1.039 0.424 0.662]
 1000 0.5835 [4.12 1.8055 2.616]

 SIMULATION RESULTS WITH DIFFERENT NUMBER OF
` ITERATIONS

 “M” represents the number of iterations

 THE OPTIMAL DESIGN

21

SIMULATION RESULTS WITH DIFFERENT NUMBER OF
` ITERATIONS

“M” represents the number of iterations

THE OPTIMAL DESIGN

SIMULATION RESULTS WITH DIFFERENT NUMBER OF

22

 Bacterial Foraging Optimization

Introduction :

Based on the research of foraging behaviour of E.colli bacteria Kevin
M.Passino and Liu exploited a variety of bacterial foraging and swarming
behaviour, discussing how to connect social foraging process with distributed
non-gradient optimization.In the bacterial foraging optimization process four
motile behaviours are mimicked:-

1)Chemotaxis:

A chemotactic step can be defined as a tumble followed by a tumble or a tumble
followed by a run lifetime.To represent a tumble a unit length random direction,
�(j), is generated ; this will be used to define the direction of movement after a
tumble. In particular

�i(j+1,k,l) = �i(j,k,l) + C(i)*�(j) ,

Where �i(j,k,l) represents the ith bacterium at jth chemotactic, kth reproductive
and lth elimination and dispersal step.C(i) is the size of the step taken in the
random direction specified by a tumble(run length unit).

2)Swarming:

E.Colli cellscan cooperatively self organize into highly structured colonies with
elevated environmental adaptability using an intricate communication
mechanism.Overall, cells provide an attraction signal to each other so they
swarm together.The mathematical representation for swarming can be
represented by

Jcc(θ,P(j,k,l)) =Ji
cc(θ,θi(j,k,l)) =∑[Dattract * exp(-Wattract *∑(θm -θi

m)2)]

 +∑[Hrepellant * exp(-Wrepellant *∑ (θm -θi
m)2)]

Where Jcc(θ,P(j,k,l)) is the cost function value to be added to the actual cost
function to be minimized to present a time varying cost function,S is the total
number of bacteria ,P is the number of parameters to be optimized which are
present in each bacterium and Dattract ,Wattract ,hrepellant ,Wrepellant are different
coefficients that should be properly choosen.

23

3)Reproduction:

The least healthier bacteria die and the other each healthier bacteria split into
two new bacteria each placed in the same location.

4) Elimination and Dispersal :

It is possible that in the local environment, the lives of a population of bacteria
changes either gradually(eg, via consumption of nutrients) or suddenly due to
some other influence.Events can occur that all the bacteria in aregion are killed
or a group is dispersed into a new part of the environment.They have the effect
of possibly destroying the chemotactic progress, but they have also the effect of
assisting the chemotactic process, since dispersal may place bacteria near good
food sources.From a board perspective, elimination and disprsal are parts of the
population level long distance motile behaviour.

Algorithm for Bacterial Foraging Optimization Based Design:

The searching procedures of the proposed BF-PID controller is as follows:-

Step 1)

Initiallize parameters S ,D , N S,NC ,Nre Ned ,Ped ,� ,C(i), Dattract ,Wattract, Hrepellant

and Wrepellant, where

S: Number of bacteria to be used for searching the total region.

D: Number of parameters to be optimized.

NS: Swimming length after which tumbling of bacteria will be done in a
chemotactic step.

Nre: Maximum number of reproductions to be undertaken.

Ned: Maximum number of elimination-dispersal events to be imposed over the
bacteria.

Ped: Probability with which the elimination-dispersal will continue.

�:The location of each bacterium whichis specified by random numberson [0,1]

C(i): This is chemotactic step size assumed constant for our design.

24

Step 2)

Elimination-Dispersal loop : l=l+1

Step 3)

Reproduction loop : k = k+1

Step 4)

Chemotaxis loop : j = j + 1

a)For i = 1,2,3,4..........S, take a chemotactic step for i as bacterium follows.

b)Compute J(i,j,k,l), let J(i,j,k,l) = J(i,j,k,l) + JCC(�i (j,k,l),P(j,k,l)) (i.e. add on
the cell-to-cell attractant effect to the nutrient concentration).

c)Let JLast = J(i,j,k,l) to save this value since we may find a better cost via run.

d) Tumble : Generate a random number vector �(i) € RP with each element
� m(i) , m= 1,2,3,.........D, a random number on [-1,1].

e)Move : Let

�i(j+1,k,l) = �i (j,k,l) + C(i)* �(i)/(sqrt(�T (i)* �(i))).

This results in a step of size C(i) in the direction of the tumble for bacterium i.

f) Compute J(i,j,k,l), and then let J(i,j,kl) = J(i,j,k,l) + JCC(�(j,k,l),P(j,k,l))

g) Swim : note that we use an approximation since we decide swimming
behaviour of each cell as if the bacteria numbered {1,2,.......,i} have
moved and {i+1,i+2,i+3......S} have not; this much is simpler to simulate
than simultaneous decisions about swimming and tumbling by all the
bacteria at the same time:

 - Let m = 0 (counter for swim length).

 - While m<NS (if have not climbed down too long)

 .Let m= m+1

 .If J(i,j,k,l) < JLast (if doing better), let

 JLast = J(i,j+1,k,l) and let

 �i(j+1,k,l) = �i(j,k,l) + C(i)* �(i)/(sqrt(�T (i)* �(i)))

25

and use this �i(j+1,k,l) to compute the new J(i,j+1,k,l) as we did in f).

.Else, let m = NS, this is the end of the while statement.

h) Go to next bacterium (i+1) if ‘i’ is not equal to S(i.e, go to (b)) to process the
next bacterium.

Step 5)

If j < NC go to step 3. In this case , continue chemotaxis , since the life of the
bacteria is not over.

Step 6)

Reproduction:

a)For a given k and l,and for each i = 1,2,3,4.......S, let Ji
Health = ∑ J(i,j,k,l) be

the healt of bacterium (a measure of how many nutrients it got over its
lifetime and how successful it was at avoiding noxious substances). Sort
bacteria on chemotactic parameters C(i) in order of increasing cost JHealth

(higher cost means lower health).

b)The Sr bacteria with highest JHealth values die and the other Sr bacteria with the
best values split and the copies that are made are placed at the same
location as their parent.

Step 7)

If k<Nre , go to step 2. In this case, we have not reached the number of specified
reproduction steps, so we start the next generation in the next chemotactic
step.

Step 8)

Elimination-Dispersal : For i = 1,2,3,4.......S, with probability Ped , eliminate and
disperse each bacterium (this keeps the number of bacteria in the
swarming population constant). To do this, if we eliminate a bacterium,
simply disperse one into a random location in the optimization domain.

Step 9)

If l < Ned , then go to step 1, otherwise end

26

Program for BFO:

clc

close all

s=99;

P=0.25;

Nc=4;

Nre=6;

Ned=2;

Ns=3;

Datt=0.05;

Watt=0.02;

Hrep=0.05;

Wrep=0.05;

for i=1:s

 for n=1:3

 q(i,n)=rand;

 end

end

for l=1:Ned

 for i=1:s

 for n=1:3

 R(i,n)=rand;

 if(R(i,n)<P)

 q(i,n)=R(i,n);

27

 end

 end

 end

 for i=1:s

 sum=0;

 for m=1:s

 st=0;

 for n=1:3

 st=st+(q(i,n)-q(m,n))*(q(i,n)-q(m,n));

 end

 sum=sum+(-Datt)*exp((-Watt)*st)+(Hrep)*exp((-Wrep)*st);

 end

 Kd=q(i,1);

 Kp=q(i,2);

 Ki=q(i,3);

 F(i,1)=tightnes(Kd,Kp,Ki);

 J(i,1)=F(i,1)+ sum;

 end

 for k=1:Nre

 for i=1:s

 H(1,i)=J(i,1);

 c=rand;

 for j=2:Nc+1

 sum=0;

28

 for n=1:3

 vec(1,n)=rand;

 sum = sum + vec(1,n)*vec(1,n);

 end

 abs= sqrt(sum);

 for n=1:3

 q(i,n)=q(i,n)+ c*vec(1,n)/abs;

 end

 sum=0;

 for m=1:s

 st=0;

 for n=1:3

 st=st+(q(i,n)-q(m,n))*(q(i,n)-q(m,n));

 end

 sum=sum+(-Datt)*exp((-Watt)*st)+Hrep*exp((-Wrep)*st);

 end

 Kd=q(i,1);

 Kp=q(i,2);

 Ki=q(i,3);

 F(i,1)=tightnes(Kd,Kp,Ki);

 J(i,j)=F(i,1)+sum;

 for count=1:Ns

 for n=1:3

 a(1,n)=q(i,n);

29

 end

 for n=1:3

 q(i,n)=q(i,n)+c*vec(1,n)/abs;

 end

 sum=0;

 for m=1:s

 st=0;

 for n=1:3

 st=st+(q(i,n)-q(m,n))*(q(i,n)-q(m,n));

 end

 sum=sum+(-Datt)*exp((-Watt)*st)+Hrep*exp((-
Wrep)*st);

 end

 Kd=q(i,1);

 Kp=q(i,2);

 Ki=q(i,3);

 F(i,1)=tightnes(Kd,Kp,Ki);

 sum=sum+F(i,1);

 if(sum<J(i,j))

 J(i,j)=sum;

 else

 for n=1:3

 q(i,n)=a(1,n);

 end

 end

30

 end

 H(1,i)=H(1,i)+J(i,j);

 end

 end

 for i=1:s

 HD(1,i)=H(1,i);

 end

 for i=1:s-1

 for j=i+1:s

 if(H(1,j)<H(1,i))

 t=H(1,i);

 H(1,i)=H(1,j);

 H(1,j)=t;

 end

 end

 end

 for i=1:s

 for m=1:s

 if((H(1,i)-HD(1,m))==0)

 for n=1:3

 q(i,n)=q(m,n);

 end

 end

 end

31

 end

 sr=(s+1)/2;

 for i=1:sr-1

 for n=1:3

 q(sr+i,n)=q(sr-i,n);

 end

 end

 end

end

for i=1:s

 Kd=q(i,1);

 Kp=q(i,2);

 Ki=q(i,3);

 F(1,i)=tightnes(Kd,Kp,Ki);

end

j=0;

fbest=F(1,1);

for i=1:s

 if(fbest<F(1,i))

 F(1,i)=fbest;

 j=i;

 end

end

fbest

32

Kd=q(j,1)

Kp=q(j,2)

Ki=q(j,3)

BFO based simulations and results:

Just as in the case of previous design of PID controller with PSO, here also we
have designed the PID controller for the same low damping plant using BFO
algorithm.

The open loop transfer function of the raw plant :

T(s) = (25.2*S2 + 21.2*S +3)/(S5+16.58*S4 +25.41*S3 +17.18*S2 +11.70*S+1)

F(raw plant) = 22.3066

In our simulations using BFO algorithm,we have varied the swarm population
from 100 to 1000 keeping other constraints fixed.We present a study of the
performance of designs with different values of swarming population.

The result in tabular format:

SWARMING
POPULATION

FINAL OPTIMAL
FITNESS FUNCTION

FINAL BEST
OPTIMAL
POINT[KD,KP,KI]

 100 11.5042 [19.354 11.422 14.576]
 200 9.4437 [8.751 12.55 11.1589]
 300 9.2013 [10.831 10.41 13.22]
 400 8.7138 [12.30 10.23 9.77]
 500 8.6759 [14.29 8.748 12.5363]
 600 7.6163 [19.64 17.94 7.629]
 700 6.4021 [9.0734 8.1502 7.3855]
 800 5.9524 [12.11 22.029 20.7385]
 900 5.6177 [9.0314 6.2261 9.2851]
 1000 5.1379 [10.19 4.8509 9.4878]

SIMULATION RESULTS WITH DIFFERENT NUMBERS OF
. SWARMING POPULATION

 THE OPTIMAL DESIGN WITH BEST RESULT

33

SIMULATION RESULTS WITH DIFFERENT NUMBERS OF
SWARMING POPULATION

THE OPTIMAL DESIGN WITH BEST RESULT

SIMULATION RESULTS WITH DIFFERENT NUMBERS OF

THE OPTIMAL DESIGN WITH BEST RESULT

34

CONCLUSION:

According to the analysis done on the basis of results obtained, we have landed
to a conclusion that for the design of a PID controller for the low damping plant
Particle Swarm Optimization technique gives a better result than Bacterial
Foraging Optimization technique.In the case of PSO implementation we have
varied the number of iterations that means the number of steps to be taken by
the swarming particles in the search space.The results obtained indicate that as
the number of iterations went on increasing the performance of the system also
went on improving.We have varied the number of iterations from 100 to 1000
and the best performance was obtained with 1000 number of iterations.

While implementing Bacterial Foraging Optimization technique for the design,
we have varied the swarming population from 100 to 1000 keeping all the other
constraints fixed.As the result we observed that as the swarming population
went on increasing the performance of the system also went on improving.The
best result was obtained with the swarming population of 1000.

A comparative study of both the algorithms for the specified design shows that
the best fitness function obtained with the PSO algorithm was 0.5835 and the
best fitness function obtained with the BFO algorithm was 5.1379 indicating
that PSO technique is performing better than the BFO technique for the
specified design.

A Concluding Remark:

Undoubtedly the bio inspired evolutionary computational techniques have
increased the human reach in the field of Artificial Intelligence Technology and
we are surfacing up with better and efficient design solutions,but still the best is
yet to come.Right now with these probability and randomness based
technologies we cannot claim that we can trace the whole optimization domain.
Moreover, we cannot always guarantee that the algorithm is not going to be
trapped at local optima.So we conclude with the positive hope that in near
future we will have best technologies of Artificial Intelligence which will sort
out all the above mentioned shortcomings of contemporary technologies.

35

 REFERENCE

[1] Anandanatarajan R., Chidambaram M. and Jayasingh T.,
“Limitations of a PI controller for a first-order nonlinear process with
dead time”, ISA Transactions, Vol. 45,

[2] Åström K.J., “Automatic Tuning of PID Controller”, Instrument
Society of America, Research Triangle Park, 1995

[3] Åström K.J. and Hägglund T., “Automatic tuning of simple
regulators with specification on phase and amplitude margins”,
Automatica, Vol. 20, pp. 645-651, 1984

[4] Åström K., and Hägglund T., “PID controllers: Theory, Design
and Tuning”, ISA, Research Triangle Park, NC, 1995

[5] Åström K., and Hägglund T., “Revisiting the Ziegler-Nichols Step
Response method for PID control ”, Journal of Process Control, Vol.
14, pp. 635-650, 2004

36

