
DYNAMIC FORWARD SLICING

A thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Amit Kumar Panda
(Roll no. 107cs014)

and

Praveen Kumar
(Roll no. 107cs028)

Under the guidance of :

Prof. D. P. Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Orissa, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

National Institute of Technology
Rourkela

Certificate

This is to certify that the project entitled, ‘Forward Dynamic Slicing of Ob-

ject Oriented Programs’ submitted by Amit Kumar Panda and Praveen Ku-

mar is an authentic work carried out by them under my supervision and guidance

for the partial fulfillment of the requirements for the award of Bachelor of Tech-

nology Degree in Computer Science and Engineering at National Institute

of Technology, Rourkela.

To the best of my knowledge, the matter embodied in the project has not been sub-

mitted to any other University / Institute for the award of any Degree or Diploma.

Date - 7/5/2011

Rourkela

(Prof. D. P. Mohapatra)

Dept. of Computer Science and Engineering

3

Abstract

Program slicing is a very important part of program development and maintenance .

It is used for a number of applications such as program debugging, reverse engineering,

software testing, software maintenance, etc. It is a programmers most important tool

for debugging. We have come a long way since Weiser first introduced the concept

of slicing. Initially, static slices were used but now mainly dynamic slices are being

used. Programmers worldwide are busy trying to develop better and more efficient

slicing techniques. In this paper we have proposed a new precise forward dynamic

slicing algorithm.Our algorithm is based on marking and unmarking the stable and

unstable edges in the PDG according to their execution. We have calculated slices by

using intermediate representation in the form of program dependency graph(PDG).

We have intoduced modified notions of stable and unstable edges and used them to

draw MPDG(Modified Program Dependency Graph). We have tested our algorithm

by taking two sample programs. Our research has been confined to simple C and

C++ programs.

4

Acknowledgments

We express our profound gratitude and indebtedness to Prof. D. P. Mohapatra,

Department of Computer Science and Engineering, NIT, Rourkela for introducing

the present topic and for their inspiring intellectual guidance, constructive criticism

and valuable suggestion throughout the project work. We truely value his esteemed

motivation and guidance from beginning to end of the thesis. It would not have been

possible on our part to complete the thesis without his priceless advises and assistance.

Date - 7/5/2011

Rourkela

Amit Kumar Panda

Praveen Kumar

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Objective . 10

2 Basic Concepts 11

2.1 Slices and types of Slices . 11

2.2 Dependency . 12

2.3 Visualisation of Slices . 12

3 Review of related work 15

4 Slicing Algorithms 21

4.1 Terms and Definations Used . 21

4.2 Proposed Algorithm . 21

5 Conclusion and Future Work 39

5.1 Conclusion . 39

5.1.1 Comparision with Other Algorithms 39

5.2 Future Work . 39

6 References 41

5

6 CONTENTS

List of Figures

2.1 PDG of Example . 13

3.1 PDG of the Example . 18

4.1 PDG of Example 1 . 23

4.2 MPDG of Example 1 . 24

4.3 MPDG of Example 1 after 1st iteration 24

4.4 MPDG of Example 1 after 1st iteration for <2,b> 25

4.5 MPDG of Example 1 after 2nd iteration 26

4.6 MPDG of Example 1 after 2nd iteration for <2,b> 27

4.7 PDG of Example 2 . 32

4.8 MPDG of Example 2 . 33

4.9 MPDG of Example 2 after 1st iteration 34

4.10 MPDG of Example 2 after 1st iteration for <7,x> 35

4.11 MPDG of Example 2 after 2nd iteration 36

4.12 MPDG of Example 2 after 2nd iteration for <7,x> 37

7

8 LIST OF FIGURES

Chapter 1

Introduction

Program slicing means reducing the given program to a minimal number of statements

with respect to a given criteria which is the variable and the number of statement in

the program. Program slicing is used for a large number of computer applications such

as debugging, maintenance, testing, etc. For calculating slices various graph visual-

izations are used which are called intermediate representation such as CFG(control

flow graph) , PDG(programd dependency graph) etc. Slicing is of various types such

as static slicing, dynamic slicing, forward slicing, backward slicing. A large numbler

of algorithms for calculating slices have been proposed . However , this is a recently

opened stream so all the work has been in its early stages . So , the present algorithms

have a lot of drawbacks such as they dont cover all types of programs, consume a lot

of space and time, can get into non-responsive state, etc. The efficiency of a algorithm

can be computed in terms of space and time complexity and the range of program it

covers. Also, the accuracy of the algorithm is very much important. [1]

1.1 Motivation

Program slices are used for a number of computer applications such as program test-

ing, debugging, etc. These slices are indispensable for development of programs.

Hence, programmers all over the world are striving to develop efficient, better and

speedy slicing techniques.

9

10 CHAPTER 1. INTRODUCTION

1.2 Objective

Keeping above mentioned objective in mind, we are trying to develop a new algorithm

to find precise forward dynamic slices in an efficient and faster way. We do so by

developing an intermediate representation in the form of Program Dependence Graph

and its modified forms.

Chapter 2

Basic Concepts

We explain some basic terms and definations related to slicing in the following sections.

2.1 Slices and types of Slices

The input elements for a slice are the line of code and the variable w.r.t which the

slice is to be computed. It is represented as <S,V>. A slice is the minimal program

that is effected by the given criterion.[1]

Types of Slices:

(1)Static Slice: The slice which is computed for a general set of variables

are called static slices i.e, static slices are the slices for the whole range of

values of the variables involved in the program.[1]

(2)Dynamic Slice: The slice which is computed for a given set of val-

ues are called dynamic slices i.e, these are very specific. Thus these are

very short compared to static slices. Nowadays, dynamic slices are used

because these are easier to construct , faster to execute and pinpoint the

errors in the program.[1]

(3)Precise Dynamic Slice: A precise dynamic slice is a dynamic slice, which

contains the least amount of statements possible, for the given criterion[9].

11

12 CHAPTER 2. BASIC CONCEPTS

(4)Forward Dynamic Slice : When we are given a particular slicing cri-

terion then the slice which shows which statements and variables will be

affected by the given criterion is known as Forward Dynamic Slice.[1]

(5)Backward Dynamic Slice: When we are given a particular slicing crite-

rion then slice which shows which statements and variables have affected

the given criterion is known as Backward Dynamic Slices.[1]

2.2 Dependency

Each statement of a code is dependent on other statement in some way ,

this is known as dependency.Basically, it is of two types:

(1)Data Dependency: When a statement or a variable is dependent on

some other statement for some data it is known as data dependency.[1][2][10]

(2)Control Dependency: When the execution of a statement is depen-

dent on some other statement it is called as control dependency.[10]

2.3 Visualisation of Slices

Visualisation of slices is a very efficient technique of understanding and

developing slices. It is done in following ways:

(1)Control Flow Graph : It is simple representation of control flows and

thus the flow in which statements are executed.

(2)Program Dependence Graph: It is representation of the various de-

pendencies among the statements of a program. Wediscuss PDG with

following example program:

1.int a,b;

2.3. VISUALISATION OF SLICES 13

2.b=5;

3.if(a>b)

4.a = a + 1;

5.while(a>b) do

6.a = a - 1;

else

7.write(a);

PDG for the program is as follows:

Figure 2.1: PDG of Example

14 CHAPTER 2. BASIC CONCEPTS

Chapter 3

Review of related work

Weiser[12] first introduced the idea of slicing. He introduced the idea of

static slicing.He used control flow graph to compute slices. The major

disadvantage of his approach was that each slice was computed from be-

ginning i.e, during computation of slices nothing was saved or stored for

future use. Then Ottenstein and Ottenstein[15] introduced the idea of

PDG(program dependency graph) and used it to compute intraprocedural

slices.This was a major breakthrough in the field of slicing. Horwitz[4]

took this idea further to SDG (System Dependency Graph) and computed

interprocedural slices. Then Korel and Laski[14] introduced the concept

of dynamic slices. This was another important leap for slicing. They how-

ever used Weiser CFG for computing slices. The method used by Korel

and Laski becomes useless when there are loops in the program.For the

first time Agrawal and Horgan[16] used dependence graphs to compute

dynamic slices. They also introduced the idea of precise dynamic slices

and proposed DDG(Dynamic Dependency Graph) for computing precise

dynamic slices. In this a new node is created for each executed node and

its associated nodes .Mund[9][10] et. proposed the concept of stable and

unstable edges and use them to create dynamic slices. They further im-

proved their algorithm and proposed a edge marking unmarking algorithm

and also node marking and unmarking algorithm. They proved that their

algorithms are better than others in terms of precision , time complex-

ity and space complexity. Most of these algorithms calculate backward

15

16 CHAPTER 3. REVIEW OF RELATED WORK

slices. Much of the literature on program slicing is concerned with im-

proving the algorithms of slicing keeping in mind reducion of the size of

the slice and improvment the efficiency of computation. All the works

focus on computation of precise dependence information and the accuracy

of the computed slices. The approach of Weiser[12] for intraprocedural

static slicing worked on iteratively solving data-flow equations represent-

ing influences between statements. Weiser[12] used the control flow graph

(CFG) as the intermediate representation for his static slicing algorithm.

Later Weiser presented an algorithm, which has two phases for computing

inter-procedural slices. Ottenstein and Ottenstein presented a linear time

solution for intraprocedural static slicing focusing on graph reachability in

the program dependence graph (PDG). Horwitz et al. extended the repre-

sentation by PDG to system dependence graph (SDG) for inter-procedural

static slicing. Hwang et al. presented an inter-procedural static slicing al-

gorithm which is based on replacing the recursive calls by instances of the

body of the procedure.

Korel and Laski[14] extended Weisers static slicing algorithm to the dy-

namic slicing cases. They computed dynamic slices by using data-flow

equations. This method needs O(N) space to store the history of the exe-

cutions, and O(N squared) space to store the dynamic flows of data, where

N is the number of statements. Note that N is unbound for program con-

taining loops.

Agrawal and Horgan[16] were the first to present algorithms for finding dy-

namic program slices using PDG. They first used PDG as the intermediate

representation and marked the nodes of this graph as the corresponding

parts of the program are executed for a given input set. The algorithm of

Ottenstein and Ottenstein[15] for static slicing is applied to the subgraphs

of the PDG to compute the dynamic slices induced by the marked nodes.

This approach is very much imprecise because it does not consider the

situations where there exists an edge in the PDG from a marked node u

to a marked node v but the definition at v is not used at u.We show this

kind of imprecision through an example. Consider the following program:

17

.

Integer m,a,I,b,x,y,z;

1. read(m);

2. a=0;

3. i=1;

4. b=2;

5. while(i<=m) do

6. read(x);

7. if (x<=0) then

8. y=x +5;

else

9. y= x-5;

10. z= y+4;

11. if (z>0) then

12. a= a+z;

else

13 b=a+5;

14. i=i+1;

Endwhile

15. write(a);

16. write(b);

Let us draw the PDG of above program.

18 CHAPTER 3. REVIEW OF RELATED WORK

.

Figure 3.1: PDG of the Example

19

.

Let the input m = 2, and x in the first and second iterations be 0 and 2,

respectively. In first iteration of the while loop, the statement 8 defines a

value for y. In second iteration of the loop, the statement 9 here defines a

value of y without using its previous value, and the previous definition of y

is destroyed. Therefore, the dynamic slices for the slicing criterion<10,z>

in the second iteration of the while loop here it should contain the state-

ment 9 and it should not contain the statement 8. Let us find the dynamic

slice using first approach of Agrawal and Horgan[16]. We mark the node

8 in first iteration of the loop and node 9 in the second. As the node 10

has two outgoing dependence edges to the nodes 8 and 9 in the PDG, the

statements 8 and 9 get included in the slice, which is very much imprecise.

The second approach of Agrawal and Horgan[16] marks the edges of the

PDG as and when the corresponding dependence arise during program

execution. The dynamic slice is computed by applying the static slicing

algorithm of Ottenstein and Ottenstein[15] and traversing the PDG only

along all the edges which are marked. This approach finds accurate dy-

namic slices of programs having no loops. Whenever the loops are present,

the slices may include more statements than those which are actually nec-

essary, because this approach does not consider the fact that execution of

the same statements at different iterations of a loop may be (transitively)

dependent on different sets of statements. Agrawal and Horgan[16] pointed

out that their second approach for computing dynamic slices produces re-

sults identical to that produced by the algorithm of Korel and Laski. Note

that the PDG of a program having n number of statements requires only

O(n squared) space. So, the space requirement of Agrawal and Horgans

second algorithm is O(n squared). But the algorithm of Korel and Laski

may use unbounded space in worst case.

The disadvantages of the second approach by Agrawal and Horgan moti-

vated their third approach: construct a dynamic dependence graph(DDG)

creating a new node for each occurrence of a statement in the execution

20 CHAPTER 3. REVIEW OF RELATED WORK

history along with the associated dependence edges. The negativeness of

using the DDG is that the total number of nodes equals to the number of

statements executed which may not be bounded for programs having loops.

In their fourth approach ,Agrawal and Horgan[16] proposed to reduce

the number of nodes present in the DDG by merging the nodes whose tran-

sitive dependences map to the same set of statements. Alternatively, a new

node is introduced only if it can create a new dynamic slice. This check

adds to run-time overhead. This reduced graph is called the reduced dy-

namic dependence graph(RDDG). The size of this RDDG is proportional

to the number of dynamic slices that may arise.. The number of slices of

the program is O(2 raise to n) in the worst case(where n is the number

of statements).

Chapter 4

Slicing Algorithms

Here we propose a precise forward dynamic slicing algorithm: Intermediate

Representation Used: Program Dependency graph(PDG) and Modified

Program Dependency Graph(MPDG)

4.1 Terms and Definations Used

(1)Unstable edge:

(a)All conditional control dependency edges are unstable.

(b)If S is some statement of a program P then an outgoing dependency

edge(Si,S), in the PDG of P is said to be unstable if there exists an out-

going dependency edge(Sm,S) or a self loop (S,S) with Si not equal to Sm

such that Sl and Sm both define same variable.[9]

(2)Stable edge:All other edges are stable edges.[9]

4.2 Proposed Algorithm

Step 1: Construct PDG (Program Dependency Graph) of the program.

Step 2: Construct MPDG(Modified Program Depenedency Graph) of the

program which contains only stable and unstable edges according to their

definitions.

21

22 CHAPTER 4. SLICING ALGORITHMS

Step 3:Mark all the stable edges and unmark all the unstable edges before

running the program. Also unmark all the unstable edges before each it-

eration of a conditional loop to compute the slices for that iteration.

Step 4: Now execute the program . Mark the unstable edges according to

their most recently used definition.

Step 5:Now if there are two or more nodes forming a cycle of dependency

combine those nodes and form a single node. Now, all incoming edges to

the individual nodes are directed towards this new combined node and all

outgoing edges from each node will be shown as outgoing edges from new

node.Do this for all the cyclic dependencies arising. Also remove all the

self loops. Do this after each time program is executed.

Step 6: Compute slices for the desired node using algo compSlice(node n)

compSlice(node n)

{

Set dslice=NULL

If node n is not traversed

Mark node n as traversed

For each outgoing dependency edge

Add the node m to dslice

And for each such node m do compSlice(node m)

}

Example program 1:

integer a,b,c;

1.read(a)

2.b = 1

3.c = 4

4.while(b <= a) do

5. if((b mod 2) > 0) then

6. c = c + 9

4.2. PROPOSED ALGORITHM 23

else

7. c = 10

8.write(c)

9.b = b + 1

endwhile

figure:

Figure 4.1: PDG of Example 1

24 CHAPTER 4. SLICING ALGORITHMS

Figure 4.2: MPDG of Example 1

Figure 4.3: MPDG of Example 1 after 1st iteration

First Iteration: <2,b>= 2,4,5,6,8,9

i.e, slices for 2. b=1 ::

integer a,b,c;

1.read(a)

2.b = 1

3.c = 4

4.2. PROPOSED ALGORITHM 25

4.while(b <= a) do

5. if((b mod 2) > 0) then

6. c = c + 9

else

7. c = 10

8.write(c)

9.b = b + 1

endwhile

Figure 4.4: MPDG of Example 1 after 1st iteration for <2,b>

<5,b>=5,6,8

i.e, slices for 5. if(b mod 2)>0) then ::

5. if(b mod 2)>0) then

6. c=c+9

8. write(c)

Now we look forward to the second iteration.

Second Iteration:

26 CHAPTER 4. SLICING ALGORITHMS

Figure 4.5: MPDG of Example 1 after 2nd iteration

<3,c> = 3

<4,b>=4,5,7,8,9

i.e, slices for 4. while(b<=a) do::

4. while(b<=a) do

5. if(b mod 2)>0) then

7. c=10

8. write(c)

9.b=b+1

Again slices for <2,b>=2,4,5,8,7,9.

i.e.

integer a,b,c;

1.read(a)

2.b = 1

3.c = 4

4.while(b <= a) do

5. if((b mod 2) > 0) then

6. c = c + 9

else

7. c = 10

4.2. PROPOSED ALGORITHM 27

8.write(c)

9.b = b + 1

endwhile

Figure 4.6: MPDG of Example 1 after 2nd iteration for <2,b>

28 CHAPTER 4. SLICING ALGORITHMS

Example program 2:

integer m,a,i,b,x,y,z;

1.read(m);

2.a = 0;

3.i = 1;

4.b = 2;

5.while(i <= m) do

6.read(x);

7.if(x <= 0) then

8.y = x + 5;

else

9.y= x - 5;

10.z= y + 4;

11.if(z>0) then

12.a= a + z;

else

13.b= a + 5;

14.i= i + 1;

endwhile

15.write(a);

16.write(b);

Precise Dynamic forward Slices for m=2

Now lets analyse the calculation of dynamic slices step by step. Lets choose

the slicing criteria as <7,x>. Now for first iteration x=-6 , hence, statement

7 will be executed and statement 8 will not be executed. Therefore, the

unstable edge(7,8) will be marked and the unstable edge (7,9) will not be

marked as shown in the MPDG after first iteration. Further, statement 10

4.2. PROPOSED ALGORITHM 29

uses the value of y defined at statement 8. Hence, the edge (8,10) will be

marked and edge(9,10) will not be marked. Now the value of z becomes

>0 therefore statement 12 will be executed and statement 13 will not be

executed and so they will be marked and unmarked respectively. The

first iteration completes after statement 14. Now looking at the MPDG

after first iteration and applying our compSlice(node n) algorithem we can

easily find out the slices. We start at the node 7 , it has one outgoing

edge(7,8) (remember we have to take into account only stable edges and

marked unstable edges) .Thus, statement 8 is added to the dslice. Now ,

start at 8 , it has also only one outgoing edge(8,10) thus 10 is added to

dslice. Similarly, (10,11) , (11,12) are traversed and added to dslice.Thus ,

finally we get dslice<7,x> = 7,8,10,11,12 For second iteration we have x=7

so statement 9 will be executed and statement 8 will not be executed and

so they will be marked and remain unmarked respectively. Now statement

10 will use value of y defined at 9 so edge(9,10) will be marked. Similarly,

(11,12) will be marked. Now , statement 15 will also be executed and it

will use value of a defined at 12 hence edge(12,15) will be marked. Thus,

we get final dslices<7,x> = 7,9,10,11,12,15

After first iteration for x=-6

<7,x> = 7,8,10,11,12,14

integer m,a,i,b,x,y,z;

1.read(m);

2.a = 0;

3.i = 1;

4.b = 2;

5.while(i <= m) do

6.read(x);

7.if(x <= 0) then

8.y = x + 5;

else

9.y= x - 5;

30 CHAPTER 4. SLICING ALGORITHMS

10.z= y + 4;

11.if(z>0) then

12.a= a + z;

else

13.b= a + 5;

14.i= i + 1;

endwhile

15.write(a);

16.write(b);

<5,m> = 5,6,7,8,10,11,12,14

i.e, slices for 5.while(i <= m) do(in figure 4.9)

5.while(i <= m) do

6.read(x);

7.if(x <= 0) then

8.y = x + 10.z= y + 4;

11.if(z>0) then

12.a= a + z;

14.i= i + 1;

similarly <11,z>=11,12

After second iteration for x=7

<7,x> = 7,9,10,11,12,15

i.e, slices for 7.if(x <= 0) then

integer m,a,i,b,x,y,z;

1.read(m);

2.a = 0;

4.2. PROPOSED ALGORITHM 31

3.i = 1;

4.b = 2;

5.while(i <= m) do

6.read(x);

7.if(x <= 0) then

8.y = x + 5;

else

9.y= x - 5;

10.z= y + 4;

11.if(z>0) then

12.a= a + z;

else

13.b= a + 5;

14.i= i + 1;

endwhile

15.write(a);

16.write(b);

similarly, <5,m> = 5,6,7,9,10,12,15

<11,z>= 11,12, 15

32 CHAPTER 4. SLICING ALGORITHMS

.

Figure 4.7: PDG of Example 2

4.2. PROPOSED ALGORITHM 33

.

Figure 4.8: MPDG of Example 2

34 CHAPTER 4. SLICING ALGORITHMS

.

Figure 4.9: MPDG of Example 2 after 1st iteration

4.2. PROPOSED ALGORITHM 35

.

Figure 4.10: MPDG of Example 2 after 1st iteration for <7,x>

36 CHAPTER 4. SLICING ALGORITHMS

.

Figure 4.11: MPDG of Example 2 after 2nd iteration

4.2. PROPOSED ALGORITHM 37

.

Figure 4.12: MPDG of Example 2 after 2nd iteration for <7,x>

38 CHAPTER 4. SLICING ALGORITHMS

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We defined stable and unstable edges for precise forward dynamic slices.

We empirically verified our precise forward dynamic slicing algorithm on

two sample programs and presented a few prcised dynamic slices. We

used intermediate representation in the form of PDG(Program Depen-

dency Graph) and its modified form(MPDG).

5.1.1 Comparision with Other Algorithms

1.Most of the present algorithms such as algorithms proposed by Agrawal

and Horgan[16]”Don’t compute precise dynamic slices”, but we have com-

puted precise forward dynamic slices.

2.Most of the algorithms such as algorithm proposed by Ottenstein and

Ottenstein reaches a non-responsive state when there are loops in the PDG

we have overcome that drawback also.

5.2 Future Work

Since there are large number of unstable edges and we have to draw modi-

fied PDG, the algorithm consume a lot of space and time. Thus , there is a

lot of scope for further development w.r.t space and time complexity.Our

39

40 CHAPTER 5. CONCLUSION AND FUTURE WORK

proposed algorithm can be extended further to work on object oriented

features in Java and C++.

Chapter 6

References

1.Loren Larcen and Mary Jean Harrold , ”Slicing Object Oriented Soft-

ware”, page 495 - 505 (1996).

2.David W Binkley and Keith Brian Gallagher, ”Program Slicing”, Ad-

vances in Computers Volume 43, page 1-45, (1996).

3.H.Agrawal Slicing programs with jump statements.In Preceedings of

SIGPLAN94 Conference on programming language design and implemen-

tation, pages 60-73 (1994).

4.S. Bates and S. Horwitz. Incremental program testing using program

dependence graphs. In Proceedings of the Twentieth ACM Symposium

on Principles of Programming Languages , pages 384-396(1993).

5.J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-

dence graph and its use in optimization. ACM Transactions on Program-

ming Languages and Systems , volume-9,Issue-3,pages 319-349,(1987).

6.K. B. Gallagher and J. R. Lyle Using program slicing in software mainte-

nance IEEE Transactions onSoftware Engineering, volume-17,Issue-8,pages

751-761(1991).

7.Hemant D. Pande and Barbara G. Ryder Static type determination for

C++,Proceedings of the 6th conference on USENIX Sixth C++ Technical

Conference - volume 6,page 5-5(1994).

8.Jian-jun Zhao Dynamic Slicing of Object Oriented ProgrammingWuhan

University Journal Of Natural Sciences volume-6,Issues 1-2,pages 391-

397(2001).

41

42 CHAPTER 6. REFERENCES

9.G. B. Mund, R. Mall, S. Sarkar ”An efficient dynamic program slicing

technique”,Department of Computer Science and Engineering,IIT Kharag-

pur,Information and Software Technology(44), pages 123-132(2002).

10.G. B. Mund, R. Mall, S. Sarkar ”Computation of intraprocedural dy-

namic program slices”,Department of Computer Science and Engineer-

ing,IIT Kharagpur,Information and Software Technology(45), pages 123-

132(2003).

11.J. A. Dallal ”An Efficient Algorithm for Computing all Program For-

ward Static Slices”, World Academy of Science, Engineering and Technol-

ogy(16)(2006).

12.M. Weiser, ”Programmers use slices when debugging”,Communication

of the ACM 25(7),pages 446-452(1982). 13.M. Weiser,”Program Slicing”

IEEE Transactions on Software Engineering 10(4), pages 352-357 (1984).

14.B. Korel, S. Laski ”Dynamic Program Slicing”, Information Processing

letters,29(3),pages 155-163(1988).

15.K Ottenstein and L. Ottenstein ”the Program Dependence Graph in

Software Development Environment”,Procedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symphosium on Practical Software Development en-

vironments, SIGPLAN Notices, pages 177-184(1984).

16.H. Agrawal and J. Horgan”Dynamic Program Slicing”,Proceedings of

ACM SIGPLAN 90 conference on Programming Language Design and

Implementation, SIGPLAN Notices analysis and verification(6),pages 246-

256(1990).

	Introduction
	Motivation
	Objective

	Basic Concepts
	Slices and types of Slices
	Dependency
	Visualisation of Slices

	Review of related work
	Slicing Algorithms
	Terms and Definations Used
	Proposed Algorithm

	Conclusion and Future Work
	Conclusion
	Comparision with Other Algorithms

	Future Work

	References

