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ABSTRACT

In this thesis we have calculated the density of state for an ordered and disordered
model system using the Green’s function technique and the recursion method. We
have considered a model of binary disordered system. The recursion parameters are
calculated by transforming the Hamiltonian into a tridiagonal Hamiltonian. The
infinite continued fraction size is truncated after 8th step.
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1 INTRODUCTION TO DISORDERED SYSTEM

1.1 ORDER AND DISORDER [1]

Order and disorder are rather complex concepts with various and sometimes con-
trary exceptions and shades and this makes it somewhat difficult to give them a
generally valid definition. The dictionary defines order as the arrangement of ob-
jects in position, or of events in time or, more generally, the manner in which one
thing succeeds another .
Rather than the general definition of order we are more interested in a series of
criteria that can be used in Physics and in particular in analysing the structure of
condensed matter, and that can possibly include objects in Nature and in art that
give the observer the feeling of order.
First of all it is common to consider order and regularity as equivalent, namely that
they belong to the same category and refer to objects in that category. In actual fact
the idea that something is regular is geometric and is based on the idea that one or
more geometric elements are repeated, whereas order is probabilistic and hinges on
the idea of singleness in that a given macroscopic structure corresponds to a single
microscopic configuration. Structures may be ordered but not necessarily regular.
An example is Eschers covering of a flat surface in his xylography called Path of
Life II another example is given by the proteins which have a single configuration
(ordered) with an irregular structure.
Crystals are ordered and regular since they can be obtained by periodical trans-
lation of an elementary (geometric) cell in space. Excluding the trivial case of a
vacuum, crystals constitute the highest degree of three-dimensional order that can
be achieved. In a crystal an assembly of innumerable particles (atoms or molecules)
is packed in a regular structure along lines in space and on planes in a geometric
lattice in order to obtain the highest density possible. With exception to vibra-
tional motion the atoms have a fixed position and are temporarily invariable. As
such, from a rheological point of view a crystal is a solid. Crystal structures do
not change when they undergo lattice translations, rotations about axes of different
order or reflections in various planes and combinations of reflections and rotations.
The concept of disorder is intuitive and, to some extent, primitive. As such, since it
is closely connected to the concept of casual it may be defined independently only in
a specific context. It is easier to define disorder as a state of absence of, or departure
from, the condition of order. The immediate consequence of this approach is that
we have to give a better definition of perfect order. From this we have to be able to
recognise how much more or less departure from the condition of order is achievable.
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1.2 TYPES OF DISORDERED SYSTEMS

In general, there are various types of disorderedness in a system. But the most
widespread sort of disorder is short-range disorder due to localised defects (point
and line defects) such as vacancies, di-vacancies, interstitials, substitutional impu-
rity atoms, F centres, dislocations. Apart from the atoms in the core of the defect,
the first neighbour atoms of the defect, too, are not to be found on their ideal lattice
sites. Many properties of materials with a technological interest are the outcome of
the presence and mutual interaction of these kinds of imperfection.
At a temperature T = 0 K, in those systems with chemical or orientational disorder,
both molecular and involving atomic spins, perfect order sets, whereas disorder is
prevalent at temperatures above the pertinent critical temperature, Tc.
Disorderedness in a system can be broadly classified into two categories

1. Cellular disorder [1]

2. Topological disorder [1]

CELLULAR DISORDER

Cellular disorder is the kind of disorder can be described with reference to a particle
placed on an ideal lattice site of a solid. The properties involved are intrinsic, as
in the case of spin direction and chemical composition, or pertain to the presence
or absence of defects at low or moderate concentration or, as in the case of thermal
motion.

TOPOLOGICAL DISORDER

Unlike a crystal with some degree of disorder, a microscopic sample of an amor-
phous liquid, or a solid with no defined crystal lattice, is characterized by topolog-
ical disorder. This is the outcome of a relevant property in a liquid, such as the
absence of translational atomic motion. In these kinds of system we must consider
the distribution of the relative positions of the molecules.

Furthermore, if the material is a mixture or an alloy of X and Y then it will also have
chemical disorder. The preferential attraction of an X atom for atoms (Y ) of the
other kind leads to the formation of structural units characterised by well defined
geometrical shapes, sizes and structures (often based on tetrahedral packing) with
partial Chemical Short Range Order. In the very same way, topologically disordered
structures may display complete order regarding the spin orientation, as can be seen
in saturated amorphous ferromagnetic materials.
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1.3 BINARY ALLOYS

A homogeneous mixture or solid solution of two metals is called as BINARY AL-
LOY. It refers to a disordered system. Here the disorderedness is due to the chemical
disorder. Hence, it is under the cellular disorderedness.
Effective cluster interactions (ECI’s) are calculated from electronic tight-binding
Hamiltonians of random binary systems.
The main intention here is to predict the density of state (DOS) of the Binary al-
loy(disordered system). Again in order to calculate the Density Of State, we need to
find out the Green’s function and also we should have knowledge about Recursion
method to calculate density of state (DOS) of binary.
First We will discuss about Green’s Function and after that we will study something
about Recursion method.

2 GREEN’S FUNCTION [2]

2.1 DEFINITION AND BASIC PROPERTIES

Green’s function can be defined as solution of inhomogeneous differential equation
of the type

[Z − L(r)]G(r, r′; z) = δ(r − r′) (1)

Z is a complex variable with λ ≡ Re[Z]
and S ≡ Im[Z]
L(r) is a time independent, linear, hermitian differential operator that possesses a
complete set of eigenvalue functions Φn(r) , i.e.

L(r) = λΦn(r) (2)

Φn can be considered as orthonormal i.e.
∫

Φ∗
n(r)Φm(r)dr = δnm (3)

Again completeness of a set Φn(r) i.e.

ΣΦn(r)Φ
∗
n(r

′) = δ(r − r′) (4)

Any well behaved function ψ can be written as a linear combination of Φns i.e.

ψ(r) = ΣcnΦn(r) (5)

If |Φn〉is the complete orthonormal set of eigenfunctions of L(r) and λn is the set of
the corresponding eigenvalues, then we can have,

G = (z − L)−1 = (Σ|Φn〉〈Φn|)/(z − λn) (6)
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Where,z 6= λn Here L(r) is the time independent differential operator.
From equation (1) we can conclude that, the Green’s function can be uniquely
defined if and only if z 6= λn. If z coincides with any of the discrete eigenvalues
of L(r), then the Green’s function value G (z) does not exist. From the principles
of complex variables we can say from equation (1) that, G (z) has simple poles at
the position of the discrete eigenvalues or otherwise we can say that, the poles of G
(z) give the discrete eigenvalues of L. if z = λn,where λn belongs to the continuous
spectrum of L and G (z) is not well defined. So in this case we can choose the
limiting procedure in order to find out the value of green’s function. Since, we know
that G(λ) cannot have exact value, so we can write,

lim
δ→0

G(λ± iδ) (7)

Here the side limits, that is the values of G for δ → 0+

are different from each other. Thus, this type of continuous spectrum produces a
branch cut in G(z) along part(s) of the real z-axis.
For λ belonging to such a spectrum we define two Green’s functions as follows:

G+(λ) ≡ lim
δ→0+

G(λ+ iδ) (8)

G−(λ) ≡ lim
δ→0+

G(λ− iδ) (9)

For infinite disordered systems, part of the continuous spectrum may give rise to
the so-called natural boundary, i.e., a singular line. Because L is hermitian, all its
eigenvalues are real; hence, the singularities of G(z) are on the real z-axis.
with similar definitions for the corresponding operators G+(λ), G−(λ),one can easily
say that

G−(λ) = [G+(λ)]∗ (10)

which suggests that one side limit is complex conjugate of the other one. From this
we can explain that both the side limits have the same real values but opposite
imaginary values.

Re[G−(λ)] = Re[G+(λ)] (11)

But
Im[G−(λ)] = −Im[G+(λ)] (12)

2.2 TYPES OF GREEN’S FUNCTION

Basically, Green’s function is divided into two categories

1. Time independent

2. Time dependent
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TIME INDEPENDENT GREEN’S FUNCTION

Time independent Green’s function can be explained as

[Z − L(r)]G(r, r′; z) = δ(r − r′) (13)

Z is a complex variable with λ ≡ Re[Z]
and S ≡ Im[Z]
L(r) is a time independent, linear, hermitian differential operator.

TIME DEPENDENT GREEN’S FUNCTION

For Time dependent Green’s function, two cases arises

1. First order time dependent Green’s function

2. Second order time dependent Green’s function

The Green’s function G(r, r′, t − t′) for the first order case is defined as the
solution of

[
i

c

∂

∂t
− L(r)]g(r, r′, t− t′) = (r − r′)(t− t′) (14)

Here, L(r) is linear hermitian operator. The Green’s functionG(r, r′, t − t′) for the
second order case is defined as the solution of

[− 1

c2
∂2

∂t2
− L(r)]g(r, r′, t− t′) = (r − r′)(t− t′) (15)

Here, we will emphasize on Time independent Green’s function.

2.3 USE OF TIME INDEPENDENT GREEN’S FUNCTION

Obtain information about the homogeneous equation corresponding to the equation
(1), i.e., about the eigenvalues and eigenfunctions of L. Thus the position of the
poles of G(z) give the discrete eigenvalues of L, and the residues at these poles
provide information about the corresponding eigenfunctions. The branch cuts (or
the natural boundaries, if any) give the location of the continuous spectrum, and
the discontinuity across the branch cut gives the density of states

N(λ) = ∓1

π
ImG±(λ) (16)

Hence, the most common and useful application of green’s function is that after
finding the value of green’s function of a particular system, then we can easily find
out the density of states of that particular system.Again from density of state we
can predict the electronic behaviour of that particular system.
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2.4 PHYSICAL SIGNIFICANCES OF G

The singularities of G(z) vs. z are on the real z-axis. They can be used as follows:

1. The position of the poles of G(z) coincide with the discrete eigenenergies cor-
responding to H, and vice versa.

2. The residue at each pole En of G(r, r′; z) equals Σφi(r)φ
∗
i (r

′), where the sum-
mation runs over the fndegenerate eigenstates corresponding to the discrete
eigenenergy En.

3. The degeneracy fn can be found by integrating the residue (Res) of the diag-
onal matrix element G(r, r;En) over r, i.e.,

fn =

∫

drRes[G(r, r;En)] = Tr(Res[G(En)]) (17)

For a non degenerate eigenstate,fn = 1, and consequently

φi(r)φ
∗
i (r

′) = Res[G(r, r′;En)] (18)

| φi(r) |=
√

| Res[G(r, r;En)] | (19)

4. The branch cuts ofG(z) along the real z-axis coincide with the continuous spec-
trum of H(Hamiltonian operator), and vice versa. [We assume that the con-
tinuous spectrum of H(Hamiltonian operator) consists of extended (or propa-
gating) eigenstates].

5. The density of states per unit volume %(r, E) is given by

(%(r;E)) = ∓1

π
Im[G±(r, r;E)] (20)

6. The density of states N(E) is given by integrating (%(r;E)) over r, i.e.,

N(E) =

∫

dr(%(r;E)) = ∓1

π
TrIm[G±(r, r;E)]. (21)

Knowledge of G(z) ≡ (z−H)−1 permits us to obtain the discrete eigenenergies, the
corresponding eigenfunctions, and the density of states in the continuous parts of
the spectrum of H. Knowledge of Green’s function allows us to calculate the time
development of the wave function.
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For the simple case where H = H0 ≡ p2/2m , we obtain the density of states per
unit volume (area or length) as follows:

%0(E) = θ(E)
m3/2

√
2π2~3

√
E For 3D

= θ(E)
m

2π~2
For 2D

= θ(E)
m1/2

√
2π~

1√
E

For 1D (22)

The behaviour of %0(E) near the boundary of the spectrum (E = 0) depends strongly
on the dimensionality. The behaviour of %(E) around an energy E0 determines the
analytical structure of G(E) around E0. Thus, continuity of %(E) (as in the 3-d
case) implies continuity of G(E); discontinuity of %(E) (as in the 2-d case) implies a
logarithmic singularity in G(E); and divergence of %(E) (as in the 1-d case) implies
divergence of G(E) with the same critical exponent.
We calculated also the density of states for a free particle of mass m obeying the
KleinGordon equation. In the particular case where m = 0, we have the wave
equation, which implies an energymomentum relation of the form E = ~c|k| and for
which the density of states per unit volume (area or length) is

%(E) = θ(E)
E2

2π2~3c3
For 3D

= θ(E)
E

2π~2c2
For 2D

= θ(E)
1

π~c
For 1D (23)

3 GREEN’S FUNCTION AND PERTURBATION

THEORY

Here, we have to find out the eigenvalues and eigenfunctions of a Hamiltonian H,
which can be decomposed as

H = H0 +H1 (24)

where H0 is such that its eigenvalues and eigenfunctions can be easily determined.
This problem was solved by

1. Calculating G0(z) corresponding to H0;

2. Expressing G(z) in terms of G0(z) andH1, where G(z) is the Green’s function
associated with H; and
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3. Extracting from G(z) information about the eigenvalues and eigenfunctions of
H.

Information about the eigenvalues and eigenfunctions of H are extracted as follows:

1. The poles of T (z) and G(z) give the discrete eigenenergies of H.

2. The residue of G(z) [or T (z)] at each pole determines the corresponding eigen-
function (if it is non degenerate).

3. The eigenfunction(s) of H associated with E belonging to the continuous spec-
trum of H is (are) given by

| ψ±(E)〉 =| Φ(E)〉 +G±
0 (E)T

±(E) | Φ(E)〉 (25)

=| Φ(E)〉+G±(E)H1 | Φ(E)〉 (26)

where Φ(E) is any eigenfunction of H0 corresponding to the same eigenvalue
E. In most physical applications the solution | ψ−(E)〉 is excluded on physical
grounds.

4. The discontinuity of G(z) across the branch cut gives the density of states.

Here T(z) is defined as the t-matrix,

T (z) = H1 +H1G0(z)H1 +H1G0(z)H1G0(z)H1 + ..... (27)

4 RECURSION METHOD [3]

There are various calculational techniques in condensed matter theory, which are
used to detect the different properties of matters.
Calculational techniques in condensed matter theory is divided into two parts

1. Universal tool

2. Precession instruments

4.1 UNIVERSAL TOOLS

These are the general methods for the calculations of observable quantities of inter-
est in condensed matter physics. These are the general methods for the calculations
of dynamic co-relation function, which is applicable to arbitrarily selected model
system. It can not yield exact results on wide territory of application.
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4.2 PRECESSION TOOLS

These are the collection of the special methods. These are designed for the exact
solution of particular problems. Mean field theory may be required as a special
method, for the solution of certain model systems with long range interaction. Spin
wave theory derives its legitimacy from those special situations in which anhar-
monicities can be ignored in magnetic excitation. Various limitations are also there
in order to solve any system using the methods described above .
These limitations are categorised into two parts

1. Extrinsic limitations

2. Intrinsic limitations

EXTRINSIC LIMITATION

These limitations are found in these following methods, such as

1. Computer simulations

2. Green’s function methods

3. Recursion methods or finite size studies
etc...

These limitations are set by the amount of calculational effort or computational
power invested in them.

INTRINSIC LIMITATIONS

These types of limitations are found in the following methods, such as

1. Mean field theory

2. Linear spin-wave theory

3. The random phase approximation

4. n-pole approximation(within framework of recursion method)

These limitations are in-built and can not be overcome within their own respective
scopes. There are two types of simplifications, which may bring an exact solution
within reach.
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1. Simplification due to a spherical type of interaction between the degree’s of
freedom. The free-particle limit or special types of infinite-range interaction
are examples.

2. Simplification due to a special state of a model system, which otherwise ex-
hibits general behaviour. A typical example is the ordered ground state of the
Heisenberg’s ferromagnet.

In general this method can be written as

bn+1un+1 = Hun − anun − bnun+1 (28)

Here, H is the Hamiltonian. an, bn are the recursion parameters . Un are the states
for n=1,2,3 . n is the number of shells in the chain model. Chain model of a two
dimensional square lattice is taken here.

Physics (such as charge densities and magnetic moments) is contained in the
local density of state. This is stable under small changes of system . Local den-
sity is related to Green’s function. By integrating the local densities of states upto
the Fermi-level, one can calculate the total weight on one atom and the magnetic
moment in spin polarised system. It is desirable to calculate the Green’s function
directly without first calculating eigenfunctions using the local density of states.
There are broadly two types of situations regarding the periodicity of solids, such
as

1. First is where an essential lack of periodicity exists : Surfaces and interfaces,
random alloys, amorphous materials, defects in solids, liquids, metals, spin
glasses, molecules, clusters and micro-crystallites etc...

2. In the second type of situation one may have perfect crystal symmetry.

It is desirable to calculate the Green’s function directly without first calculating
the eigenfunction, using the local density of states. at a perfect surface one looses
the periodicity perpendicular to the surface, retaining a two dimensional periodicity.
Again that two dimensional periodicity is also lost at an adsorbed atom.
There basic principle that make recursion method very useful.

1. The structure of the method is already incorporates as much of the right
physics as possible.

2. In a large system such as all solid state physics, one is always overwhelmed
with too much of information, in principle an infinite amount. One does not
want all the eigenstates and all the eigenvalues. Although one uses clusters
with N equals to a thousands or more atoms one only recurses about 20 times
to obtain a very good representation of the local density of state.
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3. One has an unlimited freedom to choose the starting vector u0 to suit one’s
problem.

4.3 RECURSIVE SOLUTION OF SCHROEDINGER’S

EQUATION [4]

The method gives a convergent sequence of bounded approximates to the solution
of Schroedinger’s equation and other linear Hamiltonian equations.
In order to solve the large or infinite strong coupling case, the Recursion method
is used. i n condensed system, where we want to understand the relation between
various ground states and their excitations, the Recursion method is used and it
gives the appropriate way to proceed.
Other approaches to infinite strong coupling has a firm mathematical basis and
provides bounds for approximations to many quantities. It is harder to find cases
of weak coupling. Correlation between electrons is greatest, where there are many
configurations with nearly the same energy, the strong coupling case.
For atoms and molecules, the strong coupling is still finite, though involving more
degrees of freedom than in the mean field approximation.

1. Firstly, the time independent Schroedinger’s equation and it’s solution by
means of the resolvent are introduced.

2. Then, the starting state, what properties it must possess and how it relates to
the physics under investigation.

3. A description of the method and it’s relation to the mathematical moment
problem, computational aspects of the method and termination should be
discussed.

4. The various physical quantities which can be calculated from recursion method
are observed.

5. Lastly, some trends in development of the method are solved.

STARTING STATE

Each quantum problem has two parts ,

1. Hamiltonian (H) specifies the laws of motion

2. Starting state u0 specifies that, which kind of motion are resolvent to the
problem.
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The choice of u0 reduces the problem from that of calculating all of the resolvent
operator i.e. R(E) to that of calculating only the state R(E)u0. In order to apply
the recursion method u0 must also have the property that the nth moment,

un = u†0Hnu0 (29)

is finite for all n.
The subspace R(E)u0 is called as smallest invariant subspace containing u0. Again,
being much smaller than the full space of states, this subspace has no degeneracy.
This non-degeneracy is an important point in running the Recursion method to solve
the problem. This non-degeneracy is an exact property of H and u0. On symmetry
grounds the space swept out by R(E)u0 is compatible with semi-infinite model with
a single position co-ordinate.

RECURSION

Here, the recursion method has reduced the general Hamiltonian to hopping be-
tween discrete states on a semi-infinite chain model. Now, from this Hamiltonian
we can see how parameters,an and bn+1 affect the behaviour. Large b’s means the
system diffuses rapidly along the chain. While, large changes in a’s are like barrier
to this quantum diffusion.

5 MODEL IN ORDER TO FIND OUT THE DOS

Here, in the binary alloy case the atoms are arranged like a chain model in 2d square
lattice. DOS of binary alloy can be calculated in two steps

Step-1

Calculation of green’s function using recursion method.

Step-2

Finding DOS using the green’s function.

5.1 STEP-1

Various shells and the recursion parameters of any binary alloy can be found out
from the recursive equation

|n+ 1} = H|n} − αn|n} − βn|n− 1} (30)

16



|1} = |1〉, the first shell
|2} = |2〉+ |3〉+ |4〉+ |5〉, the second shell

and so on ....
n = 0, 1, 2, 3......

The Hamiltonian(H) is calculated from the tight binding model, which is given
by,

H = Σl|l〉εl〈l|+ Σlm|l〉Vlm〈m| (31)

where each state |l〉 is an atomic like orbital centred at the site l; the sites l form
a lattice. Such Hamiltonians are very important in solid-state physics. Here we
calculate the Green’s functions associated with the TBH for various simple lattices.

We need to take the initial state |1} = |1〉

Assumption here is that all the states are orthonormal to each other. Hence,
using the recursive formula the recursive parameters can be calculated. It has been
observed that after 8th shell, the values of parameters are converged to zero.

Both the recursion parameters can be found out from the relations given below

αn =
{n | H | n}
{n | n} (32)

β2
n =

{n | n}
{n− 1 | n− 1} (33)

We can find the value of Green’s function in the following form

G(ω2 + iδ) =
1

(ω2 + iδ)− α1 −
β2
2

(ω2 + iδ)− α2 −
β2
3

...
β2
r

(ω2 + iδ)− αr − Σ

(34)

Here,

Σ =
β2
∞

(ω2 + iδ)− α∞ − Σ
(35)

is the terminating value of the equation that is the last term we take and δ is a very
small quantity that tends to zero.
Hence, here the calculation of Green’s function is done.
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5.2 STEP-2

After the calculation of Green’s function, using the following equation we can easily
find out the values for the density of state(DOS).

N(ω) = lim
δ→0

∓1

π
Im〈G±(ω2 + iδ)〉 (36)

6 PLOT FOR DENSITY OF STATE

6.1 CASE-I

For, the ordered system there is only one electronic energy for a particular type
of atoms. The energy is given by ε and the interaction potential between the two
atoms is V. Now, using the above two steps we can find out the density of state for
an ordered system. Putting different values of ω , we can find different values for
density of state N(ω). The behaviour is plotted below
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6.2 CASE-II

If the binary alloy is made up of two types of atoms A and B. The electronic energy
of atom A and atom B are let εA and εB respectively. The interaction potential
between the two atoms is V (say), which is assumed to be as constant here. From
tight binding model we can find out the Hamiltonian(H).
Again, from step 2 we can find out the density of state for a binary alloy (disordered
system). Putting different values of ω , we can find different values for density of
state N(ω). The behaviour is plotted below
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7 CONCLUSION

The DOS of a system describes the number of states per interval of energy at each
energy level that are available to be occupied. A high DOS at a specific energy
level means that there are many states available for occupation. A DOS of zero
means that no states can be occupied at that energy level. Hence, DOS calculation
is necessary in order to study the electronic properties of a disorder system.
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