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Abstract

Web Services have gained considerable attention over the last few years. This is due to

increase in use of the Internet which results in increased web traffic. Web servers find

applications in E-commerce and Video-on-Demand(VOD) systems which have resulted

in speedy growth of the web traffic. Therefore the concept of load balancer aimed to dis-

tribute the tasks to different Web Servers to reduce response times was introduced. Each

request was assigned a Web Server decided by the load balancer in such a way that tasks

were uniformly distributed among the available servers. Server selection algorithms are

aimed to meet the QoS for interactive VoD.This thesis attempts to analyze the perfor-

mance of FCFS, Randomized, Genetic algorithms and Heuristics algorithms for selecting

server to meet the VoD requirement . Performance of these algorithms have been simu-

lated with parameters like makespan and average resource utilization for different server

models. This thesis presents an efficient heuristic called Ga-max-min for distributing

the load among different servers. Heuristics like min-min and max-min are also applied

to heterogeneous server farms and the result is compared with the proposed heuristic for

VOD Servers. Ga-max-min was found to provide lower makespan and higher resource

utilization than the genetic algorithm.Extensive simulations have been carried out by the

simulator designed using MATLAB R2010a.
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1 Introduction

1.1 Introduction

Web server is a program that provides content like web pages over the world wide web.

The simultaneous open connections to the web server are generally limited. Thus the

waiting time becomes high when the number of requests to the web server is large result-

ing in DOS (Denial of Service) attack. An effective solution to this problem is the use of

multiple servers known as clustered Web Servers or a server farm. Multimedia communi-

cations require continuous service, i.e. read, process and transfer the information should

be done with minimum delay which is vastly improved if we use a server farm.

The performance of a server farm depends on the type of routing, server capacity and

scheduling policies used. The server capacity can be homogeneous or heterogeneous. In

case of homogeneous systems, each of the servers in the server farm are of equal capac-

ity and the request is processed by the server having the least number of tasks in the

queue, i.e. Join the shortest queue policy[3].Heterogeneous systems scores over homo-

geneous systems if tasks are of different sizes. Heterogeneous systems can also include

task-specific systems, i.e. for more computation oriented tasks we can use an array pro-

cessor.

Load Balancing Policy consists of load index policy, information collection policy, task

location and task transfer policy. In our approach we assume that the nature of task

coming to the web server is known beforehand. Load index policy keeps track of the

number of tasks in the queue and information collection policy has the knowledge about

the type of tasks coming to the server farm and the nature of web traffic distribution.

This can be done by checking the server log file and obtain information like average page

views, busy times, visit duration and the most requested page by the customer. Task

transfer policy decides whether the task has to be serviced in the local servers or sent

to other servers located remotely. Our main focus is on the task location policy which

describes scheduling algorithm for the various tasks. We also assume an infinite capacity

front end dispatcher which assigns the tasks to various servers.

In this paper we examine the different scheduling algorithms, First come first serve, ran-
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dom and genetic algorithm. The metric for comparing different algorithms is makespan.

Makespan is defined as the maximum time taken to complete all the tasks given to the

dispatcher or load balancer. An advantage for using genetic approach is that there is no

need to set any threshold values on the number of tasks or utilization of the server. The

server load can be represented by the following equation[21]

Bandwidth = Average Daily Visitors x Average Page Views x Average Page

Size x 31 x Fudge Factor (1)

If people are allowed to download files from the site, the bandwidth calculation becomes:

Bandwidth= [(Average Daily Visitors x Average Page Views x Average Page

Size) + (Average Daily File Downloads x Average File Size)] x 31 x Fudge

Factor (2)

• Average Daily Visitors - The number of people expected to visit a site, on

average, each day. It may vary significantly on the basis of how a site is marketed.

• Average Page Views It represents the average number of web pages visited by

a person.

• Average Page Size It shows the average size of the web pages, expressed in

kilobytes(KB)

• Average Daily File Downloads - The number of downloads expected to occur

from a site.It depends on number of visitors and average downloads per visitor.

• Average File Size - Average size of files that are downloadable from the site.

• Fudge Factor - A number greater than 1. A fudge factor of 1.5 implies that the

estimate is off by 50Usually, bandwidth is offered in terms of Gigabytes (GB) per

month. Hence the entire formula is multiplied by 31.
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We then focus on a particular application of web servers: Video on Demand. VOD

servers are different from normal web servers because they demand a consistent and

higher data rate. They find applications in Video Conference (VC), IP telephony, Mul-

timedia Mail, Multimedia Mall, Digital Libraries [9]. The demand for on demand video

services have increased significantly in the recent years and is expected to rise further

due to advancement in technology to meet the high Qos required by VOD applications.

In fact, commercial VoD services with complete video cassette recorder (VCR) functions

have appeared. However, owing to ever increasing user demands, when the user access

rates increase, several issues need to be tackled, e.g., high block rate, long startup delay,

service interruption, frame losing[.The Qos as desired by the users are generally sub-

jective in nature. So they must be mapped to an appropriate objective (quantitative)

parameter so that we get a technically correct application.

1.2 Distributed multimedia requirements

This section briefly discusses the platforms and technologies requirements for distributed

multimedia applications and finally highlights on the specific requirements of VoD service

.The requirements [9,20] are summarized as follows:

(i) Application Programming Interfaces: We need portable user interfaces, smart agents

and conference management.

(ii) Audio Quality: Using conventional speaker phones (usually half duplex) with fullmo-

tion video, the result is disturbing; the participants can see another persons lips moving

but cannot hear them .A full-duplex echo canceling speaker phone is a good choice.

(iii) Video Quality: Quality is often inadequate, and it is much less than the broadcast

quality. Parallax-free viewing (i.e. direct eye contact) and proper face lighting, along

with NTSC image quality, are preferred. Full-size faces as opposed to talking heads are

preferred. Higher quality cameras could be used as a tradeoff to compensate for blinding

the user with extra light.

(iv)Multimedia Object Technology: A database should now include audio, video and other

media objects. Standard software with object data bases cannot meet large-scale VoD
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requirements due to performance, real time constraints and object output controls.

(v) Multimedia bridging: Although some manufacturers have Multipoint Control Unit

(MCU) for conference bridging on the market, the costs are still prohibitive for a small

time provider of services.

(vi) Standards: Many of the industry providers are overzealous when they set high levels

of expectation for quick deployment and successful penetration of applications. Simply

investing in digitizing video and audio information is not the solution when there are

multiple standards and proprietary methods that exist and compete with each other.

Open standards give buyers a choice of vendors, offers a promise of compatibility, and

gives an assurance that equipment will not quickly become obsolete. For manufacturers,

this customer confidence means a larger market, leading to larger volumes, lower prices,

and a greater variety of available products.

(vii) Asynchronous Transfer Mode (ATM): ATM technology provides fast packet trans-

port and switching and multiplexing of packets. It supports synchronous and isochronous

media, large bandwidth, flexible dynamic bandwidth, and supports standards. It sup-

ports speeds from OC-3( 155.50 Mbps) to OC-12(622.08Mbps) speeds.

(viii) Hardware: There is need for a single VLSI chip for compression, decompression,

CPU, Asynchronous Transfer Mode (ATM) segmentation and reassemble. Storage tech-

nology needs revitalization in improving the speeds and be able to have mass storage.

Development of Super dense optical storage from Sony and Philips, Toshiba and Time

Warner is useful.

(ix) Cable Modems: More than 30 million US households have PCs at home. Broad-

band CATV networks pass more than 90transport multimedia traffic by upgrading to

hybrid fiber coax architectures. The key benefit of cable modems is that they are ten to

hundred times faster than dial-up modems or ISDN. CATV is universally available and

inexpensive. Companies such as Lucent Technologies, GI, ADC, NewBridge, Zenith and

LANcity are developing cable modems.

(x) Loop and access sub-network: The ADSL technology is promising as it can deliver

up to 6 Mbps using the currently available copper. The other technologies could be

Switched Digital Video (SDV) and Multipoint Microwave Distribution System (MMDS).
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Multimedia systems will impact computer systems, storage memory in terms of capacity,

access time and transfer rate, interconnections (for example, bus bandwidth), processing

power (as software codecs have to be processed), operating system, and network band-

width. VOD could take up 173Mbps (i.e. 30frames/second x (480 x 525) pixels/frame

x 24 bits/pixel) while video conferencing can take up to 69.6 Mbps (i.e. 30 frames per

sec x (288 x 352) pixels/frame x 24 bits/pixel). Technological advancement in digital

electronics and fiber optic communications are making more functions economical and

simpler to use. The other contributing factor is the application software that is easy, and

it should compel the user to continue using it. Creating multimedia applications that are

easy and interesting requires inspiration and perspiration. Creating such an application

will result in millions of users contributing to the final product. Now talking on the

requirements of VOD service, it is characterized by asymmetric information flow as real-

time signaling information transmitted to the head-end is less than what is transmitted

to the set top box. A VOD database of compressed video requires standards such as

MPEG-2. At a video rate of 3 Mbps, an average two-hour movie can occupy 2.7 GB in

disk storage. A video server with 500 on-line titles would therefore need 1.35 terabytes

of storage. Many video server manufacturers have chosen ATM to transport audio and

video at 2.5 GBps. A significant requirement on video server is that its output data. rate

should be 400 MB/s, and its storage will be 1.5TB of on-line disk capacity with 6TB

of off-line archival tape. Some of the broad band transport requirements on One-way

end-to-end delay, End-to-End delay jitter, differential delay, response time, Intra-media

synchronization and Inter-media synchronization need to be satisfied.

1.3 Literature Review

Server Selection, Load balancing and scheduling issues have been studied quite exten-

sively in the past. Most notable of the server selection algorithms [16] are the closest

server algorithm that selects server based on the proximity to the client, optimized closest

server algorithm that chooses the closest server among the free channels, Register all al-

gorithm where the clients request is added to the queue of all the servers and Maximum-
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MFQ-rank-first algorithm which computes the rank at the various server queues and

assigns the request to the server having the best rank. There is also a minimum expected

cost algorithm which based on parameters like latency and bandwidth computes the

server with the minimum cost and a merging aware minimum expected cost algorithm

which allocates server on the ability of the server to merge.

In light of the load balancing problems, Haight(1958), Halfin(1985), and Kingman(1961)

are among the many people that studied join the shortest queue policy using two parallel

servers with infinite buffer size. Gupta et al.[3] analyzed the join the shortest queue

policy on processor sharing server farms. They used a single queue approximation and

investigated the sensitivity of the queuing model to variations. Niyato et al. [4] studied

load balancing for Internet video and audio server. They studied and compared vari-

ous algorithms like Adaptive bidding, Diffusion and State change broadcast along with

traditional round-robin and random algorithms. Wang et al. studied load balancing in

heterogeneous systems, first considering two servers with different service rates and then

extending their observations to multiple servers. This involved multiple thresholds set-

ting which was done by heuristic methods. Ciardo et al. [6] devised a strategy for task

allocation in web servers based on size distributions of the requested documents. Zhang

et al.[2]analyzed the central load balancing model ,derived average response time and the

rejection rate and compared three different routing policies.

The retrieval schemes for VOD can be classified into two categories, a) Disk level re-

trieval schemes[9.] which focuses on synchronizing and efficiently using the data between

different storage devices and b)server level retrieval schemes[9.] which deliver data to

the client whenever the need arise. Our approach is based on the server level. Similar

requests can be batched or the server can be replicated [16] to achieve low latency and

thus serve a higher number of requests. Server replication comes with an additional cost

of installing new servers. Beyond a certain number of servers, further increase will only

lead to more installation cost without improving the Qos like throughput, speedup etc.

As shown in Figure 1 if the number of servers increases above 95-105 range then the

makespan doesnt decrease further.
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Figure 1: Depicting the makespan vs number of processors/servers.

1.4 Motivation

VOD networks followed centralized architecture in the early days. But with increase in

number of requests the trend has shifted to distributed architecture for VOD networks.

As the number of requests increases the number of servers required to cater to those

request increases which adds to additional cost. If by some heuristics or means, we can

efficiently allocate the tasks to the different available servers such that it optimizes the

value of a metric like makespan and throughput, then the customer requirements can be

met in a better manner.

VOD is a relatively new concept. Many of the existing load balancing algo-

rithms hasnt been applied to VOD systems. Further, the need of proper server selection

is necessary for maintaining high data rate (eg. 1.5Mbps for MPEG video) and mini-

mizing the cost of service. The objective of this paper is twofold. Firstly to analyze the

existing algorithms and heuristics in the context of VOD based systems, and secondly to

analyze the performance of the proposed heuristic for two metrics namely makespan and

Average resource utilization.
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1.5 Problem statement

Let there be a task set T consisting of n(T1 T2... Tn) tasks and let there be m servers.

The basic problem is where to map a task Ti among the m possible servers. This is

done by the server selection strategy. The tasks should be allocated in such a way that

after allocation of all the n tasks among the m servers, the performance metric should

be optimized.

Many such algorithms have been proposed in the past. Generally the cost is

measured as the major metric for server selection. But there are other factors like server

load, response time that also impact the quality of service in a big way. There are various

metrics available for comparing the server selection algorithms. Depending on the task

set a particular metric or metrics are of more significance than others. It is not always

advisable to allocate tasks according to a particular selection strategy if that strategy

gives optimized solution for a single metric but can give undesirable results when eval-

uated against some other metric. So we need to decide which scheme gives the best

performance for which metric and in doing that we are able to infer a scheme or a frame-

work of schemes that is suitable for a particular nature of task.

1.6 Approaches to the problem

There are various approaches to solve the problem of server selection. Basically the

algorithms on the basis of load balancing of server can be divided into two classes-

traditional and heuristic methods. Some of the well known traditional algorithms are

First Come First Serve(FCFS), Random and Genetic algorithms. Among the heuristic

methods, the most commonly used are min-min and max-min.

The heuristics algorithms are not suitable for large data sets while the traditional

Genetic algorithms are known to perform well for large data sets. So an approach should

be used that involves dynamic selection of an algorithm based on the nature of the tasks

at hand. This can be collected in a framework. The main switch to which all the request

comes allocates the best possible algorithm according to the nature of the task set.
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1.7 Thesis layout

The rest of the thesis is organized as follows. Section 2.2 of chapter 2 describes about the

system model for a web server in general and VOD servers in specific and the sequence

of activities for a VOD connection and retrieval. Section 2.3 suggests the various metrics

used for comparison of performance of different algorithms. Section 2.4 compares various

existing algorithms like First come first serve, Random and Genetic algorithms on the ba-

sis of Makespan. It also compares other heuristics like Min-min, Max-min and weighted

mean time scheduling. Section 3.2 gives the description of genetic algorithm used and

section 3.3 describes the max min algorithm. The proposed Ga-max-min algorithm is

described in section 3.5. which uses Makespan and Average Resource utilization as a

metric for comparison. Finally Chapter 4 concludes the result obtained in chapter 3 and

future work is listed in chapter 5.
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Chapter 2

Video-On-Demand Model And

Performance Metric
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2 Video-On-Demand: Model And Performance Met-

ric

2.1 Introduction

Video on Demand servers are gaining popularity in the last few years and as a result of

which it has been increasingly studied in the last few years. There are innumerable server

selection strategies to optimize performance parameters of a VOD server. All these are

designed keeping in view the architecture where it is implemented. A particular strategy

with same input may give different output if applied to a different architecture. So the

choice of network becomes extremely important.

Traditionally two broad types of network exist. Centralized and Distributed. A

centralized architecture consists of a common server which serves all the requests. But

as the number of request increases the load on central server increases and it becomes a

single point for failure. On the other hand the load is distributed across many servers,

on the basis of certain parameters like nature of movie, frequency of access, popularity

etc. The distributed system is useful as compared to centralized system in three major

aspects[9].

1) Good scalability At any point, the system can cater to a higher number of requests

by increasing the number of servers.

2) High availabilityThe system can provide service even if some of the servers fail or are

under maintenance.

3) Competitive performance-to-price ratio The distributed server configuration is adopted

by a commercial VOD system called iTV system.

The distributed architecture is suitable for our problem statement as a centralized archi-

tecture doesnt demand the need for load balancing but is unsuitable for high number of

tasks. The detailed server architecture is presented in the following sections.
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2.2 System Architecture

The adapted Figure 2[17] depicts the prevalent 3-tier architecture for web servers. The

main components are a set of web servers, a set of database server nodes and a switch

which executes the logic for server selection. It can divide the tasks into classes on basis

of quality metric like burst time,etc. The Front end servers are designed to deliver the

static pages mostly and in case of any query from the client the appropriate database

server is connected. The routing and firewall switch ensures authorization and authenti-

cation and forbids any unintended user from accessing the files on the servers.

Figure 2: Depicting the 3 tier architecture for web servers.

A VOD system can be considered as a specific web server model where the database

servers are replaced by the VOD servers. The Web servers serve the same purpose of

delivering static content and some video content if present in the local cache. The system

consists of 3 components [9,11]: the ”set-top box” at the client’s site, the distribution

network, and the server. As with other networked systems, VOD can be designed as

17



centralized multimedia systems or distributed multimedia systems. A centralized VOD

system places processing servers and media archives in a single site as a central node. Re-

quests from clients are processed at the central node, and videos demanded are delivered

through the network to the client sites. Centralized VOD systems are simple to manage,

but they usually suffer from poor scalability, long network delay, and low throughput.

The performance of centralized VOD systems can be improved if local servers are added.

These local servers are also assumed to contain the most popular media.

The system architecture of a Video On Demand system basically consists of three major

parts[11]: a client, a network, and a server. Each part can be subdivided further into

components and interfaces. Figure 3 depicts the communication between clients and

servers.

Figure 3: Communications Between Clients and Servers.

VOD system from the clients point of view is a simple operation. The user makes a

selection from a list of available videos and the video is delivered to the user within the

accepted Qos limits. Most networks use proxy servers or replicas to minimize delay .This

is done by a process called request routing which directs the request to a particular web

server on the basis of certain metrics. According to [7,8],there are 4 kinds of architecture

for VOD networks[refer fig 4] a)Centralized, all the requests from the clients are handled

at the original server, b)proxy based servers that are located close to the user end to re-

duce the load on the original server by caching, c) Content delivery networks, the servers

are deployed close to the edge of the network to serve a fraction of clients request and d)

hybrid, is basically a peer to peer approach.
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Figure 4: Depicting 4 kinds of architecture for VOD networks.
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In our proposed solution we use a distributed architecture where the request first comes

to a front end server from the client and after successfully passing through the authenti-

cation phase the video list is displayed in the web page and if the requested video is found

in the page then the video is delivered to the client through local caching else it goes

to a VOD server decided by the server selection strategy which then sends the desired

video to the client. The arrival rate follows a Poisson distribution because that is the

common mode of distribution for most of the internet traffic. The tasks are also assumed

to have zero inter dependency among them. We neglect the different cost parameters

and our sole focus is based on server selection keeping other parameters fixed. The detail

sequence diagram for the centralized system is shown in the figure 5 The figure also shows

different VCR functions like play pause,etc .

File Access models

This is useful during the video caching where the cache content is determined by the

popularity or the hit ratio of the multimedia file. As time progresses, the cache content

needs to be updated so that the cache contains the most popular video files. Previous

studies have followed the Zipfs Law to calculate the popularity of the video files[12-14]. In

Zipf-like distributions, the access frequency for a file of popularity rank i is equal to C/ia,

where C is a normalization constant and a(a>0) is the distribution parameter[8].The file

usage patterns like which category of videos are accessed at which point of time during

a day can also be analyzed and the cache be maintained accordingly.

2.3 VOD metrics

Many different metrics are used to evaluate the performance of a VOD server. They

can be classified as Technology based and user based[9]. We have used Makespan and

Resource utilization as two metrics for comparing algorithms. Makespan indirectly refers

to the Response time of the system as a certain response time of say 0.5 sec implies

that the requests should complete execution within 0.5 sec which suggests the makespan

should not exceed 0.5 sec.

Resource utilization suggests what fraction of the total time a server is working. For a
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Figure 5: Depicting sequence diagram for a VOD connection and retrieval
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single server

Ru=(Amount of time a server is idle)/Total time

While for a server system, the average resource utilization is the average of the individual

resource utilizations.

Figure 6: Technology based Qos characteristics

2.3.1 Makespan

Makespan is defined as the largest completion time of all the tasks in the system. In thw

VOD scenario, it is an indicator of the response time.For example, if the makespan of a
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Figure 7: user based Qos characteristics
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group of tasks exceeds a certain threshold then the tasks are not allowed as the response

time Qos is not met.

2.3.2 Average Resource Utilization

Average Resource utilization for a system is defined as the average of the resource uti-

lization r of various servers.

For a single server, utilization is given by

Resource utilization ( Ru) = (Amount of time a server is idle)/Total time

(3)

2.4 Existing algorithms

As described above the existing algorithms can be further divided into Traditional and

Heuristic based algorithms. Traditional ones include First come first serve ,Random and

genetic algorithms. There are another class of algorithms called the heuristic algorithms

which comprises of min-min, max-min and weighted mean time scheduling [18]. These

heuristics are applicable for heterogeneous task systems where we have servers of different

capacity. This appears in an Expected Time Completion( ETC) matrix.The traditional

heuristics have been compared with weighted mean time scheduling heuristic as suggested

in [weighted] and the results are noted.

2.4.1 First Come First Serve:

This is a simple scheduling policy used in various load balancing servers. Whichever re-

quest comes first is served first irrespective of any other criteria. This algorithm though

simple to implement has serious limitations. For e.g if a process with a high burst time

is followed by a sequence of processes with low burst time then the latter has to wait for

a long period of time to complete its execution. The response time for these processes is

far greater than their burst times. So these processes undergo starvation.
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2.4.2 Genetic Approach

The genetic approach doesn’t refer to any predefined algorithm rather it refers to an

algorithm framework. Different algorithm can take different amount of time for finding

a solution to the problem. But all these approaches essentially comprises of 5 Steps-

initialization,evaluation of firness function, selection, crossover and mutation. The details

of the genetic algorithm are presented in the next chapter

2.4.3 Random

This is another scheduling policy where the tasks are distributed randomly to the avail-

able processors. If the distribution is truly random, then the random outweighs other

algorithms in the long run. The figure below shows a comparative analysis of the 3 algo-

rithms for load balancing.

Figure 8: Comparative study of FCFS, GA and Random algorithms

Inferences

• FCFS graph is always higher than Random or GA which implies FCFS is the worst

algorithm in terms of makespan.
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• For a large number or servers, Random algorithms provide the best result, i.e the

least makespan.

2.4.4 Heuristic methods

This consists of two phases [18,19]. First we choose a fixed arbitrary order and then for

each task we choose the server with the minimum burst time.

In the second phase, the task with the minimum burst time among the group chosen is

phase 1 is selected and assigned the corresponding server and the ETC matrix is updated

with new completion times for the remaining tasks while the chosen task is deleted from

the matrix. Completion time is given by the equation

CT(i,j)= ET(i,j)+ r(j)

Where rj is the ready time of machine j, i.e the time taken by the machine to complete

all its pending tasks from the moment the task i is assigned to machine j. The maximum

time to complete all the tasks is represented by the makespan.

Max-Min

This algorithm is similar to min-min except in the second phase the task with the maxi-

mum completion time is mapped first. This algorithm is known to provide better resource

utilization than the Min-min algorithm.

Weighted mean time scheduling

The algorithm is adopted as described in [weighted] where the weighted sum of expected

time is used. The weights are proportional to the servers capacity.

In our simulation setup, we used a task graph that consisted of 200X50 ETC matrix,

i.e 200 tasks were assigned to be distributed to 50 heterogeneous servers. The result of

comparison of the various algorithms for the given task graph are shown in fig 9 and 10
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Figure 9: Comparative study of traditional algorithms on the basis of makespan

Inference

• The makespan is the highest for first come first serve and lowest for GA.

Figure 10: Comparative study of heuristics algorithms on the basis of makespan

Inference

• WMTS performs better in random taskset as compared to Max-Min and Min-Min.
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2.5 Conclusion

A centralized architecture has a single video server, which becomes a bottleneck if the

number of requests being processed by it increases. Such problem is handled efficiently by

a distributed system. The widely used 3 tier architecture is widely used for web servers.

For VOD servers other architectures like proxy Content Delivery Network(CDN) and

Hybrid can be used. Different existing algorithms can be compared using average re-

source utilization and makespan as the metric on these architectures and the results are

in coherence with the results derived from other work. But the effectiveness of these

algorithms decreases as the size of task set increases. So a method to enhance the effec-

tiveness of these algorithms has been proposed in the upcoming sections and the results

obtained are compared with the existing algorithms.
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Chapter 3

Heuristic Server Selection

Strategies
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3 Heuristic Server Selection Strategies

3.1 Introduction

Server selection is a problem of assigning a task Ti from a set of n tasks to the m avail-

able servers such that a performance metric is optimized. The need for server selection

arises in case of a distributed system architecture. Choosing a good strategy is important

because of the following reasons

1) It can reduce the overall cost of maintenance of the system.

2) It can reduce the response time of the system, thereby increasing customer satisfac-

tion.

3) It can efficiently distribute the load among various servers and thus reduces the chance

of breakdown of a particular system due to server overloading.

4) It can provide robustness and easy scalability to the system.

So selecting a good strategy is of paramount importance. But each of the existing algo-

rithms do not apply well to all the scenarios as discussed in the previous chapter.

3.2 Genetic algorithm

Some of the existing algorithms are

1. First come first serve

2. Genetic

3. Random

The genetic algorithm is an optimization technique that has it base on the basis of nat-

ural selection. A GA consits of candidates or population which evolve based on some

predefined rules such that each evolution produces a better population(i.e population

which minimizes the cost function).

Some of the advantages of GA are
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• It optimizes both continuous and discrete variables.

• It simultaneously searches from a wide sampling space.

• It is well suited for parallel computing.

• It optimizes complex cost functions quite well(there are several local minimas) and

produces the global minima.

• It provides a list of optimal solutions not the single best optimum solution.

• Encoding the variables are easy when they are represented in terms of genes.

GA works in the following steps

• Initialization: An initial population of random fitness values is generated here.

• Evaluation of fitness function: This function decides which are the genes to be

propagated to the next generations.

• Selection: The unfit strings are removed and the other strings are selected for the

following phases of GA.

• Crossover: This operation is done in order to find a local minimum.

• Mutation: This operation is done in order to switch to another local minimum in

the search space. This is the power of GA that guarantees a global minimum value

among the search space.

A. Initialization

First, in this step we represent the problem in GA format. It consists of two phases[1]

• String representation

• Initial Population
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String representation

All the search nodes are in the search space are represented by unique strings, so choice

of strings for GA representation is important. There are many popular presentations like

binary, natural number representation etc. We have taken natural number representation

of strings in this thesis.

In this thesis we are selecting tasks from a task graph. As the search space is large we

apply the GA to a smaller number of tasks and find the near optimal allocation. For this

we have taken a sliding window technique. The window size is fixed and tasks are taken

from the main task graph to this window and accordingly GA is applied to this window.

We have fixed the task graph and taken only the indices of tasks to the window not the

actual burst time values (Refer to Fig 11)

Figure 11: Depicting the task graph along with the window size to be used.

So the string representation becomes easy, for e.g. the initial contents of the window

becomes the initial gene to be operated and all the operations are performed with respect

to the actual burst time of the tasks not the indices. A separate Index is maintained in

order to locate which task goes to which processor (Refer Fig 12) .

It clearly shows which task is mapped to which processor e.g. task 6 is mapped to

Processor 2

Initial population

All the tasks, indexes of which are present inside the window become the initial population

and population size is same as window size. Then each of the tasks are taken from window

and randomly allotted to any processor, corresponding mapping is stored in the string

and the index. Here we have taken no. of strings inside the population same as the no.
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Figure 12: Depicting the allocation of tasks to the available processors.

of processors. E.g. in the above example our initial population will contain 4 strings

each of which will be showing a different mapping to the processors.

B. Evaluation of Fitness Function

The objective function or fitness function is the most important aspect of any of the

optimization problem. Depending up on the fitness function the solutions are accepted

or rejected. Designing the fitness function for the GA allocation is more important as

it reduces the search space drastically. So in a less number of iterations we can reach

nearly optimal solution. Parameters affecting fitness of GA are

• Makespan

• CPU Utilization

• No. of processors

Makespan

The first objective of the GA algorithm is to minimize the makespan. Makespan is the

largest completion time of all the tasks in the system. Based on the above example

makespan is calculated as follows (Refer Fig. 13).

Burst times are taken from the actual task graph and indices are taken from the strings

of populations. This is the makespan for one of the four strings present in the population.

In this thesis we are allocating the new tasks only after all the tasks represented in the

window are executed successfully , hence we assume zero initial loads on the processors

and makespan is calculated based on the current active load only.
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Figure 13: Calculating the make span.

CPU Utilization

This is another useful parameter as it decides whether the load is properly balanced

across all the processors or not. High average processor utilization implies that load

is balanced properly. Individual utilization of processors are calculated by the formula

given by Eq.1.

Utilization (P) = Completion (P) / Makespan (1)

Where P denotes the processor for which utilization is being calculated. So the utilization

for the previous example is calculated as follows.

Utilization (P1) = 12/54 = 0.2222

Utilization (P2) = 47/54 = 0.8704

Utilization (P3) = 16/54 = 0.2963

Utilization (P4) = 54/54 = 1.0000

Then dividing all the individual utilization by the sum of the utilization gives the average

CPU utilization.

Average CPU Utilization = (0.2222+0.8704+0.2963+1.0000)/4 = 0.6

Number of Processors

This is another deciding factor for the fitness. We can say that if number of processors

will be high then the fitness will be reduced as we are calculating fitness per processor.

Hence the combined fitness function is given by Eq. 2.

Fitness= (1/makespan)x (average utilization)x(1/no.of processors) (2)
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C. Selection

The selection procedure followed in this thesis is purely based on the probability of the

fitness values of the strings. After calculating the fitness values of each strings probability

of each string is calculated by the ratio of fitness value to the sum of fitness value. As

better strings have better fitness values the chances of these strings for the survival to

the next generations will be more hence the strings having greater fitness values will rep-

resent high probability. We have set the limit for this probability. i.e. the strings having

probability value less than 0.2 will be rejected for the next generations. The fitness and

the probability values are thus calculated (Refer Figure 14).

As per our strategy string1 and string 4 are rejected for the next generations.

Figure 14: depicting the fitness value and probability of various strings

D. Crossover

The crossover technique that we have followed in this thesis is PMX Crossover. PMX

Crossover is a genetic algorithm operator. For some problems it offers better performance

than most other crossover techniques. Basically, parent1 donates a random swath genetic

material and corresponding swath from the other parent is sprinkled about in the child.

Once that is done, the remaining alleles are copied directly to the child. Randomly select

a swath of alleles from parent1 and copy them directly to child. Note the indexes of

segment. Looking in the same segment positions in parent2, select each value that hasnt

already been copied to the child .For each of these values:

Note the index of this value in Parent 2. Locate the value V, from Parent 1 in the same

position.
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Locate this same value in parent2.

If the index of this value in Parent 2 is part of the original swath, go to step1 using this

value.

If the position isnt part of the original swath insert that value into the child at this

position.

Copy any remaining positions from parent2 to child.

PMX Example:

Parent1: 8 4 7 6 5 1 9 10 2 3

Parent2: 3 10 1 6 4 9 5 7 8 2

Child 1: - - - 6 5 1 9 10 - -

• We copy a random swath containing consecutive alleles from Parent1 to Child.

• 4 is the first value in the swath of parent 2 that isnt in the child. We identify

5 as the value in the same position in parent 1.We locate the value 5 in parent 2

and notice that it is still in the swath. So we go back to step one with 5 as the value.

• Repeating step 1 once again we see that 9 is in the same position in parent 1 and

we locate 9 in parent 2. it is also in the swath, so we repeat step 1 once more with

9 as the value.

• Repeating step 1 we see that 1 is in the same position in parent 1 and we locate 1

in parent 2 in the 3rd position .Finally we have obtained a position in the child for

value 4 from step.

Parent1: 8 4 7 6 5 1 9 10 2 3

Parent2: 3 10 1 6 4 9 5 7 8 2

Child1: - - 4 6 5 1 9 10 - -
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• 7 is the next value in the swath in parent 2 that isnt already include in child. So

we check the same index in parent 1 and see 10 in that position. Now we check

for 10 in parent 2 and find it in 2nd position. Since second position is not part of

swath, we have found a home for value 7.

Parent1: 8 4 7 6 5 1 9 10 2 3

Parent2: 3 10 1 6 4 9 5 7 8 2

Child1: - 7 4 6 5 1 9 10 - -

• Now we have considered all the swath values, so everything else from parent2 drops

down to the child.

Parent1: 8 4 7 6 5 1 9 10 2 3

Parent2: 3 10 1 6 4 9 5 7 8 2

Child1: 3 7 4 6 5 1 9 10 8 2

The same procedure can be repeated again to obtain the second child only the parents

are swapped. The crossover is done on the existing strings of the population to prepare

the next generation strings. Crossover operations guarantee to give a local minimum

value from the search space.

E. Mutation

This is the operation that guarantees a global minimum from the set of the local mini-

mas. This operator brings diversity in the search space so that solutions can be picked

from different regions of the solution space. Generally mutation will be done less as it

fluctuates through out the search space. If we allow 10 generations then crossover will

be done all times but mutation is done only 2 times which represents the less operations

of mutation in GA. In this thesis we have followed swap mutation procedure in which we

take randomly two strings which are different from each other and swap the values at a

randomly generated position.

Instead of waiting GA to converge we allow it to run for 10 generations and after that

the fittest string is taken for task allocation.
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Window updation

After generation of the fittest allocation the window is shifted to next set of task indexes

from the task graph and the same procedure is repeated once again. As we are following

a deterministic approach i.e. length of task graph is known prior to the invoking of GA

there may be a case when tasks will fall short of window size. At that scenario we simply

allocate them using FCFS policy.

3.3 Max-Min

There are another class of algorithms called the heuristic algorithms which comprises of

min-min, max-min and weighted mean time scheduling [18]. These heuristics are appli-

cable for heterogeneous task systems where we have servers of different capacity. This

appears in an Expected Time Completion( ETC) matrix.

Max-min

This consists of two phases [18,19]. First we choose a fixed arbitrary order and then for

each task we choose the server with the minimum burst time.

In the second phase, the task with the maximum burst time among the group chosen is

phase 1 is selected and assigned the corresponding serverand the ETC matrix is updated

with new completion times for the remaining tasks while the chosen task is deleted from

the matrix. Completion time is given by the equation

CT(i,j)= ET(i,j)+ r(j)

Where rj is the ready time of machine j, i.e the time taken by the machine to complete

all its pending tasks from the moment the task i is assigned to machine j. The maximum

time to complete all the tasks is represented by the makespan.

38



3.4 The proposed Solution- Ga-Max-min Algorithm

This algorithm merges the genetic algorithm and the max-min algorithm. This results in

the enhancement of the performance of the genetic algorithm. So this kind of algorithm

can be used where the number of tasks is very large.

Ga-Max-min algorithm

1) For all tasks i in the task set

2) Divide the tasks into classes on basis of burst time or previous history

3) Send the tasks to the appropriate queue

4) Apply different selection algorithms as applicable to the different queues

5) Makespan=Calculatemakespan(Task set)

6) Resource utilization =Calculate resource utilization (Task set)

7) End

The task set is divided into classes based on burst time or previous history. Then

for each queue Resource utilization and makespan is calculated by the calculate resource

utilization() an d calculate makespan() functions. Both these functions take task set as

the input.

In our simulation setup, we used a task graph that consisted of 200X50 ETC matrix, i.e

200 tasks were assigned to be distributed to 50 heterogeneous servers.
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Figure 15: Comparative study of GA and GA-max-min algorithm on the basis of

makespan

Inference

• The composite algorithm GA-max-min performs better than GA.

3.5 Average resource utilization

Average Resource utilization for a system is defined as the average of the resource uti-

lization of various servers.

Resource utilization ( Ru) = (Amount of time a server is idle)/Total time
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Figure 16: Comparative study of various algorithms on the basis of Average Resource

utilization .

Inferences

• The resource utilization is highest for Max-min and lowest for Genetic algorithm

which shows that max-min uses the resources in a more efficient way.

• The composite algorithm GA-max-min helps enhance the performance of GA by

improving the resource utilization from 0.28 to 0.59.
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Figure 17: Comparative study of Ga and Ga max min over resource utilization and no

of processors

Inferences GA-Max-min is more efficient at utilizing resources than GA for upto

50-70 number of processors after which the two algorithms produce similar results.
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Figure 18: Comparing GA and Ga-max-min over resource utilization when no of tasks

varies.
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Inferences

As the number of tasks increases, the composite algorithm provides better resource uti-

lization than the original GA algorithm. So the proposed solution will generally yield

better result for large amount of tasks where other algorithms do not give good results.

For tasks greater than 200 and processors greater than 50,the composite algorithm out-

performs Genetic algorithm.

3.6 Conclusion

This chapter essentially describes the two best algorithms for large set of tasks-GA and

max-min. GA was found to be providing the lowest makespan which was due to the

learning and rejection of the unfit candidates while the algorithm progressed. Max-min

was found to be efficient in utilizing the resources well. So a combination of GA and

max-min known as Ga-max-min was proposed aimed at taking advantage of both the

algorithms. The proposed solution worked well for large number of tasks. In fact the

graph shows that the when the number of task is low, then there is not much difference

between Ga and the proposed Ga-max-min. But significant increase occurs in resource

utilization as the number of task increases. Such algorithms can be combined to produce

an algorithm framework which can deploy various selection strategies dynamically as the

request arrival rate varies.
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4 Conclusion

4.1 Conclusion

In this thesis we compared the various server selection algorithms like FCFS, Random,

Min-min on the basis of makespan and Average resource utilization. We also combined

two heuristics Genetic algorithm and max min to get a new heuristic GA-max-min. We

chose Genetic algorithm as one component of the combined heuristic as it was feasible

to apply genetic algorithms for large data sets and the max min algorithm as another

component as it provides the best resource utilization. The new heuristic had interme-

diate values for both resource utilization and makespan. For unpredictable nature of

the tasks genetic algorithms works best as the system learns about the nature through

GA and thus utilization is sometimes low. The combined heuristic can, thus be used to

enhance the Average resource utilization of the Genetic algorithm and it also decreases

the makespan that the genetic algorithm produces.
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5 Future work

5.1 Future Work

The thesis analyzed the performance of various server selection algorithms based on two

performance metric, Average resource utilization and makespan. In future other pa-

rameters like scalability, throughput can be used to analyze the performance of these

algorithms. Different weights can be assigned to different metrics. Based on the scenario

and the nature of tasks, the weights to the different metrics can be adjusted. For example

in a scenario where response time is the most important criteria like the video on demand

system, makespan can be given the maximum weight. Basing on the weights different

algorithms can work well for different circumstances. The algorithm which has the best

weighted value can be used for t server selection Further a complete algorithm framework

can be formed by combining various algorithms as an extension of Ga-max-min which

caters to varying nature of the tasks and the switch can dynamically change algorithms

as the request rate varies. Real time data can be collected on the performance of the

algorithm framework with real data and can be compared with the simulation results.

The algorithm framework can be fine-tuned from these real life observations through

some soft computing measures like Learning Automata and Neural networks.
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