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Abstract  

The present work deals with the free vibration analysis of a cracked beam with multiple 

transverse cracks using finite element method. In this analysis, an „overall additional flexibility 

matrix‟, instead of the „local additional flexibility matrix‟ is added to the flexibility matrix of the 

corresponding intact beam element to obtain the total flexibility matrix, and from there the result 

is compared with previous studies. The natural frequencies of free vibration of the beam with 

multiple cracks are computed. It is observed that with increase in number of cracks the natural 

frequencies decreases. The effect of cracks is more pronounced when the cracks are near to the 

fixed end than free end. The natural frequency decreases with increase in relative crack depth. 
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Introduction  

For  the  last  several  years,  a  considerable  amount  of  research work has been undertaken  to  

investigate  the  faults  in structures.  It  has  been  observed  that most  of  the  structural 

members  fail  due  to  the  presence  of  cracks. The cracks are developed mainly due to fatigue 

loading. Therefore the  detection of cracks  is an  important aspect of  structural design. A crack 

that occurs in a structural element causes some local variation in its stiffness, which affects the 

dynamic behavior of  the element and  the whole structure  to a considerable degree. The  

frequencies  of  natural  vibration,  amplitudes of forced vibration, and areas of dynamic stability 

change due to the existence of  such cracks. An analysis of  these changes makes  it  possible  to  

identify  the magnitude  and  location  of the crack. This  information enables one to determine 

the degree of sustainability of the structural element and the whole structure. In this study, the 

presence of transverse and open crack in the structure has been considered. Also the crack depth 

This crack introduces new boundary conditions for the structure at the crack location. These 

boundary conditions are derived from the strain energy equation using Castigliano‟s theorem. 

Presence of crack also reduces the stiffness of the structure which has been derived from the 

stiffness matrix. For dynamic behaviors of beam with a transverse crack,Timoshenko beam 

theory with modified boundary conditions have been used to find out the theoretical expressions 

for the natural frequencies and the modes for the beam. For all the theoretical expressions as 

derived for dynamic characteristics of structure with a crack, respective numerical analysis was 

taken up with suitable numerical models with the help of the computer programme. 
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Literature review: 

A.D. Dimarogonas  
i
 :The  fact  that  a  crack  or  local  defect  affects  the  dynamic  response  of 

a  structural member was  known  long  ago.  The  first  attempts  to  quantify  local  defects were  

by  Kirmsher and  A.D. Dimarogonas, Thomson.  The  effect of a  notch  on  the  structure  

flexibility was  simulated by  a  local  bending moment or  reduced  section, with magnitudes 

which were  estimated by experimentation. The  analysis  of  the  local  flexibility of a  cracked  

region  of structural  element was  quantified in  the  1950s  by  Irwin,  Bueckner, Westmann  

and  Yang  by  relating  local  flexibility to  the  crack  stress  intensity  factor  (SIF).  Based  on  

this  principle,  a  method  was  developed  for the  computation  of  the  SIF  based  on  the  local  

bending  stiffness  (the  inverse  of  the  local  flexibility)  of  a  cracked  prismatic  beam,  

determined  experimentally. Liebowitz and  co-workers utilized existing  results  from  fracture 

mechanics  to  calculate  the  local  flexibility of a  beam  of rectangular  cross-section  b x  h 

with  a  transverse  surface  crack  of uniform depth  a. Using  the  fracture  mechanics  relations  

between  the  strain  energy  release  rate  and  stress intensity  factor  and  the  Castigliano  

theorem,  they  computed  the  cracked  region  local  flexibility,for plane  strain,  as: 

C = M/ΔØ= (6πh/bEI) F1(s),                                                                  

Where h is the height, b=the width of the rectangular cross-section, EI= the flexural rigidity,  

 s = a/h, a = crack depth and 

 Fl(s) = 1.86s 
2
 - 3.95s 

3
 + 16.37s 

4
 + 37.22s 

5
 + 76.81s 

6 
+ 126.9s

 7
 + 172.5s 

8
 - 144s 

9
 + 66.6s

 l0
. 

Fine-mesh  finite element  techniques  were  used  to  compute  local  flexibilities by Gudmunson  

,  Rauch, Chen  and Wang, Haisty  et  al.,  and  Krawczuk, Ostachowicz, Schmalhorst, and  Qian  

et  al. A  local  flexibility will  reduce  the  stiffness of  a  structural  member,  thus  reducing  its  

natural frequency.  Dimarogonas has  noticed  that  eq.  (1)  suggests  that  for  small  crack  

depth  the local  flexibility Ac  is  proportional  to  (a/h)
2
.  Since  this  flexibility  is  added  to  
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the  flexibility c  of the  uncracked member,  the  total  flexibility will be  C  =  c  +  Ac and  the  

corresponding  stiffness  

K  =  1/C   

The most  popular  parameter  applied  in  identification methods  is  change  in  natural  frequen-  

cies  of  structure  caused  by  the  crack.  It  is  due  to  the  fact  that  estimates  of  the  natural  

frequencies  can  be obtained  from measurement  of the  vibration  at  only  one  point  on  the  

structure.  The drawback,  that  escaped  the  attention  of most  investigators,  is  that  the  

change  of  natural  frequency  due  to  the  crack  is  proportional  to  the  square  of  the  relative  

crack  depth  or  for  redundant  systems,  as  shown  by Dimarogonas,  thus  insignificant  for 

most  practical  identification needs.  The  identification  problem  was  discussed  by Chang  and  

Petroski,  Kozlow and Shatoff.  It  was  formally  introduced  for  cracked  beams  by Chondros 

and  Chondros and  Dimarogonas, who  developed nomograms  for  the  calculation  of the  crack  

depth  for different  beams  and  locations  of  the  crack  (assumed  known).  Adams  et  al.  have  

developed an  experimental  technique  to  estimate  the  location  and  depth  of  the  crack  from  

changes  in  the natural  frequencies.  Cawley and  Adams  and  Anifantis  et  al. further  

expanded  the spectral  method  for  identification  of  defects  in  beams  and  frames  by  

analyzing  the  changes  in the  vibration  frequency  spectrum.  Yuen  presented  a  systematic  

study  of  the  relationship between damage  location  and  size,  and  the  changes  in  the  

eigenvalues  and  eigenvectors of a  cantilever  beam.  Anifantis  et  al. and  Rizos  and  co-

workers developed  an  identification  technique  for  location  and  magnitude  of  the  crack  in  

a  cantilever  beam  with  a rectangular  cross-section  having  a  transverse  surface  crack  on  

the  basis  of more  than  one  natural  frequency  change. 
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M Kisa et al 
ii
:The vibrational characteristics of a cracked Timoshenko beam are analysed. The 

study integrates the finite element method and component mode synthesis. The beam divided 

into two components related by a flexibility matrix which incorporates the interaction forces. 

These forces can be derived from fracture mechanics theory as the inverse of the compliance 

matrix calculated using stress intensity factors and strain energy release rate expressions. Each 

substructure is modelled by Timoshenko beam finite elements with two nodes and 3 degrees-of-

freedom (axial, transverse and rotation) at each node.] 

 

E. I. SHIFRIN 
iii

:A new technique is proposed for calculating natural frequencies of a vibrating 

beam with an arbitrary finite number of transverse open cracks.The main feature of this method 

is related to decreasing the dimension of the matrix involved in the calculation, so that reduced 

computation time is required for evaluating natural frequencies compared to alternative methods 

which also make use of a continuous model of the beam.] 

 

N. T. KHIEM et al 
iv

: A new method for natural frequency analysis of beam with an arbitrary 

number of cracks is developed on the bases of the transfer matrix method and rotational spring 

model of crack. The resulted frequency equation of a multiple cracked beam is general with 

respect to the boundary conditions including the more realistic (elastic) end supports and can be 

constructed analytically by using symbolic codes. The procedure proposed is advanced by 

elimination of numerical computation of the high order determinant so that the computer 

time for calculating natural frequencies in consequence is significantly reduced. Numerical 

computation has been carried out to investigate the effect of each crack, the number of 

cracks and boundary conditions on the natural frequencies of a beam. 
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D.Y. Zheng et al  
v
: The natural frequencies and mode shapes of a cracked beam are obtained 

using the finite element method. An „overall additional flexibility matrix‟, instead of the „local 

additional flexibility matrix‟, is added to the flexibility matrix of the corresponding intact beam 

element to obtain the total flexibility matrix, and therefore the stiffness matrix. Compared with 

analytical results, the new stiffness matrix obtained using the overall additional flexibility matrix 

can give more accurate natural frequencies than those resulted from using the local additional 

flexibility matrix.In addition, the authors constructed a shape function that can perfectly satisfy 

the local flexibility conditions at the crack locations, which can give more accurate vibration 

modes. 
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Theory and Formulation: 

The equation of motion for vibration of beam under load „P‟ in the form of matrix  is written[ii] 

as 

                                          (1) 

Where, = Consistent mass matrix 

               = Bending stiffness matrix of the beam 

              = Geometric stiffness matrix                                              

The above equation for free vibration can be written as , 

                                                (2) 

Above equation represents an eigen value problem and the solution for the equation is square of 

the natural frequency given by the equation[v], 

                                                  (3) 

Stiffness matrix for cracked beam element 

The stiffness matrix of a cracked beam is obtained by taking the inverse of total flexibility 

matrix. This is the most convenient method to obtain the stiffness matrix of a cracked beam 

element. To find out the total flexibility matrix, the additional flexibility matrix due to the 

existence of the crack is added to the original flexibility matrix of the intact beam. 

a) The original stiffness matrix for the intact beam 

 In the present analysis two noded beam elements with two degree of freedom (deflection                     

and slope) per node is considered. 
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                                    (4)                               

 

b) Stiffness matrix for cracked beam 

The Fig.1 shows a typical cracked beam element with a rectangular cross section of 

breadth „b‟ and depth „h‟ with a crack of depth „a‟. The left hand side end node „i’ is 

assumed to be fixed, while the right hand side end node „j’ is subjected to shearing 

force P1 and bending moment P2. The corresponding generalized displacements are 

denoted as q1 and q2. 

Lc = Distance between the right hand side end node j and the crack location 

Le = Length of the beam element 

A = Cross-sectional area of the beam 

 

According to Zheng [i], the additional strain energy due to existence of crack can be expressed as  

                                                                            (5)         

                       Where,  G = the strain energy release rate and AC = the effective cracked area 

Le 

Lc 

i j a 

x 

x 

y 

P2 (q2) 

P1 (q1) 

Figure 1.a typical cracked beam element subjected to shearing force and bending moment[v] 
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                                     (6)                                          

    Where,  E' = E   for plane stress 

          = E/1-υ
2
 for plane strain 

  k = 1+ υ 

  KI, KII and KIII = stress intensity factors for opening, sliding and tearing type cracks respectively. 

 Neglecting effect of axial force and for open cracks, Eq.7 can be written as 

                                                                           (7)                     

                    The expressions for stress intensity factors from earlier studies are given by, 

 

 

 

               where, 

                                          s=  

 

 

FI(s) and FII(s) are correction factors for stress intensive factors. 

From definition, the elements of the overall additional flexibility matrix Cij can be expressed 

as 
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Substituting the values, 

 

Substituting ,i j (1, 2) values, we get 

 

 

 

Now, the overall flexibility matrix Covl is given by,  

 

 

Flexibility matrix Cintact of the intact beam element 

 

 

Total flexibility matrix Ctot of the cracked beam element 

Ctotal =  Cintact +  Covl 

 

c) Stiffness matrix Kc of a cracked beam element: 

From the equilibrium conditions as shown in Fig.2, 
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Where the transformation matrix is,  

 

 

Hence the stiffness matrix Kc of a cracked beam element can be obtained as 

 =  

Where L is the transformation matrix for equilibrium condition. Similarly standard procedure is carried 

out to find mass and geometric matrix. 

In this study we have considered the change in mass matrix and geometric matrix to negligible for cracks. 

Hence the mass matrix  of a cracked beam for a flexural beam  is 

 

 

 

 

Θ2(θ2) 

Le 

1 2 
a 

V1 (v1) V2 (v2) 

Θ1(θ1) 

Lc x 

Figure 2.: typical cracked beam element subject to shearing force and bending moment (under the 
conventional fem coordinate system[v] 
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Numerical results and discussion: 

Quantitative results on the effects of various parameters on the vibration of beams with crack are 

presented. The results are studied as: 

 Convergence study 

 Comparison with previous studies(with Shiffrin et al) 

 Numerical Results 

Convergence study: 

For more accuracy, the convergence study for the beam has been done. Based on finite element 

method, more the number of elements more is the accuracy. Fig.4.1.1 shows that, for 16 

elements the variation of frequency is very small. So, in this study we have considered 16 

elements.  

 

                    

Figure 3.convergence graph 

 

 



25 
 

Comparison with previous studies: 

The Finite element analysis is carried out for free vibration of cracked beams for various 

positions of crack and crack depths considered by Shifrin et al.[iii]. The beam under analysis has 

the following properties   :   length l=0.8m, rectangular cross-section with width b=0.02 m and 

height h=0.02m, a first crack with position x1=0.12m and depth a1=2mm, a second crack with 

variable position from the fixed end and a depth of 2, 4 and 6mm. The ratio between the first 

natural frequencies of cracked and uncracked beam is shown in Table 4.1.1 with the results of 

Shifrin et al. [iii]. The values are interpolated using graph analysis software (DigitizeIt_win) 

from reference [iii]. It is clear that there exists an fair agreement between the results obtained 

from present FEM with previous studies. 

 

Table 1. comparison with previous study 

Location 

 of 2
nd

  

crack 

Rcd=0.1 Rcd=0.2 Rcd=0.3 

Present  

analysis 

Shiffrin 

 et al. 

Present  

analysis 

Shiffrin 

 et al. 

Present  

analysis 

Shiffrin  

et al. 

0.05 0.9926 0.994 0.971 0.984 0.937 0.968 

0.1 0.9931 0.994 0.974 0.987 0.943 0.974 

0.2 0.9945 0.995 0.979 0.990 0.953 0.981 

0.4 0.9961 0.997 0.985 0.996 0.967 0.994 

0.5 0.9965 0.997 0.986 0.997 0.969 0.997 

0.6 0.9967 0.997 0.987 0.997 0.971 0.997 

0.7 0.9967 0.997 0.987 0.997 0.972 0.997 
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Numerical results 

The study is then carried out for vibration of a cantilever beams with crack. For this, the 

geometry and material properties of the cantilever beam are: 

Breath of the beam                     = 0.2 m Depth of the beam                      = 0.2 m 

Length of the beam                    = 0.3 m Unit Weight                                = 7850 

kg/m
3
 

Elastic modulus of the beam      = 206×10
9
 

N/m
2
 

Poisson‟s Ratio                           = 0.28 

 

For this analysis a first crack position is fixed at a distance of x1 = 0.2L from fixed end with 

relative crack depth 0.2 and a second crack is introduced with variable position from clamped 

end. The variation of first natural frequency of vibration with location of crack (y = 0.2L to 0.8L) 

for different relative crack depth (rcd = 0.2 to 0.8) is shown in fig.4.  The variations of natural 

frequencies as expected are decreasing with increase in crack depth. However this change is 

more rapidly decreasing for the cracks nearing the fixed end and increasing relative crack depth. 

 

Figure 4.A cantilevered beam with two cracks while the location of the second crack is variable[v] 
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Figure 5. 1st crack at 0.2L and 2nd crack at 0.4L 

Table 2  Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.4L  and        (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1109.420 7002.155 19189.509 36090.066 1070.025 6635.329 18728.847 35342.695 

0.4 1019.229 6990.063 18778.448 34291.589 157.33 1052.283 2933.367 5289.872 

0.6 835.511 6959.644 18009.794 31885.769 818.362 6561.114 17830.787 30390.389 

0.8 498.174 6862.588 16887.142 29761.758 494.481 6445.204 16848.079 27912.302 

 

Table 3 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.4L  and          (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 968.545 5938.337 17979.244 34148.400 682.170 4924.462 17079.105 32643.702 

0.4 907.037 5874.453 17825.272 31622.827 659.962 4752.896 17028.707 29890.084 

0.6 770.514 5747.644 17474.801 28149.518 602.083 4394.725 16897.604 25959.584 

0.8 483.401 5533.906 16754.174 25092.371 432.835 3780.012 16520.989 22273.905 



28 
 

 

Figure 6 1st   crack at 0.2L and 2nd crack at 0.6L 

Table 4 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.6L  and        (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 118.333 6957.218 19091.298 36325.231 1026.198 6946.476 18632.847 34749.021 

0.4 1107.852 6451.81 18396.611 36023.811 1018.118 6435.557 17949.232 34574.545 

0.6 1076.339 5417.672 17349.957 35504.908 993.663 5383.025 16926.403 34251.048 

0.8 933.5324 3672.165 16263.18 34676.481 879.247 3577.650 15877.464 33617.112 

 

Table 5 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.6L  and     (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 839.297 6918.93 17803.504 32602.316 498.972 6827.927 16636.382 30640.065 

0.4 834.896 6400.222 17143.674 32529.988 498.053 6312.921 15993.393 30597.556 

0.6 821.422 5318.004 16166.407 32369.993 495.199 5212.307 15050.063 30488.817 

0.8 754.727 3406.698 15183.893 31918.321 480.025 3176.007 14124.85 30114.544 



29 
 

 

Figure 7  1st crack at 0.2L and 2nd crack at 0.8L 

Table 6 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.8L  and     (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1121.028 7096.268 18994.459 35302.425 1028.272 7086.686 18575.278 33739.885 

0.4 1120.202 6976.376 17883.456 32969.180 1027.638 6966.291 17566.02 31525.896 

0.6 1117.621 6605.562 15372.778 29914.573 1025.66 6593.648 15209.343 28562.637 

0.8 1103.338 5040.085 11634.452 27654.645 1014.723 5018.758 11579.916 26364.886 

 

Table 7 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.8L  and     (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 840.423 7060.597 17804.597 31616.063 499.206 6967.304 16697.154 29699.505 

0.4 840.08 6939.952 16963.460 29501.711 499.136 6850.597 16037.116 27644.306 

0.6 839.014 6565.910 14883.461 26574.713 498.916 6486.867 14299.703 24648.01 

0.8 833.127 4979.606 11459.953 24395.117 497.706 4917.438 11160.509 22355.266 
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Figure 8 1st crack at 0.4L and 2nd crack is at 0.2L 

Table 8 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.2L  and        (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1109.948 7013.684 19114.003 36193.503 1023.407 7008.414 18615.168 34463.490 

0.4 1067.908 6675.271 18554.864 35648.632 990.192 6663.687 18203.683 33581.760 

0.6 961.029 6026.508 17652.612 34702.384 903.329 5983.609 17483.908 32142.834 

0.8 668.503 5071.795 16553.582 33196.760 648.401 4931.835 16508.286 30409.979 

 

Table 9 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.2L  and     (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 844.256 6993.546 17703.665 32192.644 507.719 6937.349 16466.903 30238.081 

0.4 825.339 6637.503 17505.311 30770.579 503.524 6570.004 16430.053 28316.286 

0.6 773.142 5895.539 17098.595 28498.811 491.002 5738.792 16333.044 25193.895 

0.8 595.367 4624.632 16388.814 26145.086 435.057 4045.017 16043.069 21911.861 
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Figure 9 1st crack at 0.4L and 2nd crack is at 0.6L 

Table 10 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.6  and      (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1136.546 6834.331 19046.067 36904.639 1094.251 6505.831 18493.421 36283.612 

0.4 1125.492 6367.061 18283.455 36565.844 1084.262 6128.721 17580.721 36054.285 

0.6 1092.322 5391.987 17121.531 35983.49 1054.238 5291.962 16154.415 35629.833 

0.8 943.282 3703.117 15908.454 35092.934 918.056 3701.752 14645.967 34893.577 

 

Table 11 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.6L  and  (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 986.281 5875.120 17607.825 35246.039 688.134 4946.037 16580.037 33793.785 

0.4 978.761 5643.042 16432.017 35141.997 685.446 4862.281 15105.633 33764.76 

0.6 956.051 5064.822 14502.785 34925.473 677.201 4614.782 12510.88 33693.547 

0.8 850.348 3697.967 12367.385 34445.437 635.841 3685.199 9273.710 33463.669 
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Figure 10 1st crack is at 0.4L and 2nd crack is at 0.8L 

Table 12 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.8L  and   (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2  Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1139.391 6961.855 18951.113 35932.668 1096.821 6606.359 18448.218 35423.026 

0.4 1138.516 6852.517 17781.28 33640.328 1096.027 6521.036 17255.668 33376.304 

0.6 1135.785 6511.913 15185.116 30601.791 1093.55 6250.75 14616.664 30519.744 

0.8 1120.676 5025.793 11351.68 28306.163 1079.863 4964.833 10632.177 28255.921 

 

Table 13 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.8L  and  (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 988.213 5934.143 17652.21 34557.814 688.822 4966.039 16733.711 33251.921 

0.4 987.610 5883.853 16437.310 32879.089 688.603 4947.060 15530.707 31890.494 

0.6 985.731 5720.945 13744.922 30313.395 687.921 4884.693 12828.680 29615.224 

0.8 975.370 4814.383 9454.010 28104.155 684.173 4469.645 8120.348 27482.568 
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Figure 11 1st crack is at 0.6L and 2nd crack is at 0.2L 

Table 14 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.2L  and   (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1120.352 6947.579 19094.132 36176.031 1035.283 6943.632 18403.930 34771.562 

0.4 1107.332 6421.413 18604.449 35353.261 1024.998 6418.012 17888.699 34140.394 

0.6 1068.656 5380.207 17823.856 33979.123 994.207 5363.590 17084.964 33034.212 

0.8 902.588 3709.700 16887.103 31792.062 857.335 3630.209 16169.214 31044.195 

 

Table 15 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.2L  and      (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 857.493 6933.816 17218.892 32976.421 518.506 6901.823 15769.105 31466.228 

0.4 851.638 6409.880 16668.379 32553.345 517.209 6385.020 15180.018 31187.507 

0.6 833.858 5331.148 15836.590 31750.227 513.192 5277.346 14319.155 30601.309 

0.8 749.443 3475.416 14956.429 30002.380 492.221 3241.657 13475.333 29045.479 
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Figure 12 1st crack at 0.6L and 2nd crack is at 0.4L 

Table 16 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.4L  and     (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1137.030 6819.830 19135.111 36727.744 1097.360 6466.389 18688.387 35883.849 

0.4 1124.701 6343.506 18493.129 36180.358 1086.137 6085.723 17904.635 35528.968 

0.6 1087.929 5367.160 17485.780 35238.064 1052.608 5256.357 16635.167 34850.113 

0.8 927.107 3719.617 16362.817 33752.491 904.538 3717.102 15204.141 33594.058 

 

Table 17 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.4L  and     (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 994.762 5792.346 17958.393 34546.176 702.678 4807.474 17106.294 32999.911 

0.4 986.163 5564.488 16913.555 34400.376 699.480 4731.695 15736.444 32964.313 

0.6 960.338 5005.458 15117.524 34070.409 689.704 4510.949 13189.642 32864.020 

0.8 843.172 3710.467 12987.947 33228.498 641.540 3690.298 9753.141 32464.323 
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Figure 13 1st crack is at 0.6L and 2nd crack is at 0.8L 

Table 18 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.8  and     (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2  Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1149.051 6916.746 18908.733 35925.787 1137.673 6421.853 18284.867 35413.425 

0.4 1148.155 6805.522 17859.786 33276.542 1136.789 6332.129 17478.482 32306.314 

0.6 1145.357 6462.179 15411.362 29828.642 1134.031 6056.093 15362.105 28145.435 

0.8 1129.872 4993.301 11580.974 27330.341 1118.779 4832.355 11408.67 25207.934 

 

Table 19 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.8L  and     (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1103.544 5408.619 17318.118 34585.281 950.606 3698.825 16278.717 33521.520 

0.4 1102.701 5356.601 16831.224 30812.661 949.977 3686.771 16042.659 29245.631 

0.6 1100.070 5196.374 15259.230 25543.753 948.018 3649.207 15064.315 22901.247 

0.8 1085.560 4429.314 11014.194 21969.240 937.292 3447.395 10272.353 18766.913 
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Figure 14 1st crack is at 0.8L and 2nd crack is at 0.2L 

Table 20 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.2L  and (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1124.907 7072.907 18760.626 35394.475 1042.588 7061.067 18027.293 33944.205 

0.4 1123.306 6878.252 17421.790 33408.644 1041.313 6870.418 16836.125 31892.163 

0.6 1118.282 6314.429 14912.753 31095.443 1037.314 6311.982 14524.271 29473.198 

0.8 1090.650 4472.858 11962.381 29311.955 1015.310 4461.474 11721.499 27638.060 

 

 Table 21   Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.2L  and   (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 868.281 7038.706 16773.578 32144.117 529.031 6997.276 15273.218 30687.593 

0.4 867.546 6854.522 15800.366 29967.849 528.865 6823.595 14500.944 28380.584 

0.6 865.238 6306.811 13810.568 27330.120 528.344 6294.374 12850.982 25474.221 

0.8 852.530 4439.864 11273.742 25338.788 525.474 4407.551 10644.652 23232.748 
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Figure 15 1st crack is at 0.8L and 2nd crack is at 0.4L 

Table 22 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.4L  and  (a/h) = 0.2,0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1140.933 6928.700 18941.994 35774.906 1103.529 6521.105 18613.276 34731.822 

0.4 1139.549 6776.031 17589.449 33821.108 1102.255 6404.291 17188.966 33075.845 

0.6 1135.216 6318.492 14944.803 31443.120 1098.267 6045.407 14400.034 31007.344 

0.8 111.332 4639.933 11614.127 29592.166 1076.311 4588.002 10807.672 29355.516 

 

Table 23 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.4L  and (a/h) = 0.6,0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1005.589 5759.712 18076.419 33167.664 718.502 4678.040 17457.290 31562.207 

0.4 1004.585 5693.955 16550.173 31924.955 718.106 4656.154 15844.318 30670.487 

0.6 1001.446 5484.844 13550.602 30309.917 716.866 4584.721 12655.304 29470.793 

0.8 984.205 4456.893 9464.282 28959.691 710.070 4137.517 7896.581 28417.912 
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 Figure 16 1st crack at 0.8L and 2nd crack is at 0.6L 

Table 24 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.6L   and  (a/h) = 0.2, 0.4 

Position 

of 2
nd

 

crack 

Rcd=0.2 Rcd=0.4 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1149.338 6915.574 18826.858 36030.228 1139.178 6432.722 18091.497 35715.396 

0.4 1148.199 6782.074 17713.723 33564.813 1138.052 6323.637 17259.644 32799.471 

0.6 1144.636 6378.350 15280.591 30435.191 1134.532 5994.672 15209.208 28872.410 

0.8 1124.949 4801.208 11760.833 28094.325 1115.103 4660.127 11632.111 25937.208 

 

Table 25 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.6L   and (a/h) = 0.6, 0.8 

Position 

of 2
nd

 

crack 

Rcd=0.6 Rcd=0.8 

W1 W2 W3 W4 W1 W2 W3 W4 

0.2 1108.522 5425.273 16974.576 35196.129 967.434 3678.510 15829.892 34639.075 

0.4 1107.440 5360.876 16502.249 31562.286 966.598 3663.723 15625.681 30221.902 

0.6 1104.061 5165.780 15064.449 26297.192 963.992 3617.986 14824.06 23546.172 

0.8 1085.456 4301.390 11319.374 22384.519 949.759 3382.109 10639.044 18617.629 
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Conclusions: 

1. The frequencies of vibration of cracked beams decrease with increase of crack depth for crack at 

any particular location due to reduction of stiffness. 

2. The effect of crack is more pronounced near the fixed end than at far free end. 

3. The first natural frequency of free vibration decreases with increase in number of cracks. 

4. The natural frequency decreases with increase in relative crack depth. 
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