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Abstract

The present work deals with the free vibration analysis of a cracked beam with multiple
transverse cracks using finite element method. In this analysis, an ‘overall additional flexibility
matrix’, instead of the ‘local additional flexibility matrix’ is added to the flexibility matrix of the
corresponding intact beam element to obtain the total flexibility matrix, and from there the result
is compared with previous studies. The natural frequencies of free vibration of the beam with
multiple cracks are computed. It is observed that with increase in number of cracks the natural
frequencies decreases. The effect of cracks is more pronounced when the cracks are near to the

fixed end than free end. The natural frequency decreases with increase in relative crack depth.
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INTRODUCTION
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Introduction
For the last several years, a considerable amount of research work has been undertaken to

investigate the faults in structures. It has been observed that most of the structural
members fail due to the presence of cracks. The cracks are developed mainly due to fatigue
loading. Therefore the detection of cracks is an important aspect of structural design. A crack
that occurs in a structural element causes some local variation in its stiffness, which affects the
dynamic behavior of the element and the whole structure to a considerable degree. The
frequencies of natural vibration, amplitudes of forced vibration, and areas of dynamic stability
change due to the existence of such cracks. An analysis of these changes makes it possible to
identify the magnitude and location of the crack. This information enables one to determine
the degree of sustainability of the structural element and the whole structure. In this study, the
presence of transverse and open crack in the structure has been considered. Also the crack depth
This crack introduces new boundary conditions for the structure at the crack location. These
boundary conditions are derived from the strain energy equation using Castigliano’s theorem.
Presence of crack also reduces the stiffness of the structure which has been derived from the
stiffness matrix. For dynamic behaviors of beam with a transverse crack,Timoshenko beam
theory with modified boundary conditions have been used to find out the theoretical expressions
for the natural frequencies and the modes for the beam. For all the theoretical expressions as
derived for dynamic characteristics of structure with a crack, respective numerical analysis was

taken up with suitable numerical models with the help of the computer programme.
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Literature review: .
A.D. Dimarogonas ' :The fact that a crack or local defect affects the dynamic response of

a structural member was known long ago. The first attempts to quantify local defects were
by Kirmsher and A.D. Dimarogonas, Thomson. The effect of a notch on the structure
flexibility was simulated by a local bending moment or reduced section, with magnitudes
which were estimated by experimentation. The analysis of the local flexibility of a cracked
region of structural element was quantified in the 1950s by Irwin, Bueckner, Westmann
and Yang by relating local flexibility to the crack stress intensity factor (SIF). Based on
this principle, a method was developed for the computation of the SIF based on the local
bending stiffness (the inverse of the local flexibility) of a cracked prismatic beam,
determined experimentally. Liebowitz and co-workers utilized existing results from fracture
mechanics to calculate the local flexibility of a beam of rectangular cross-section b x h
with a transverse surface crack of uniform depth a. Using the fracture mechanics relations
between the strain energy release rate and stress intensity factor and the Castigliano

theorem, they computed the cracked region local flexibility,for plane strain, as:

C = M/AQ= (6zh/bEI) F1(s),

Where h is the height, b=the width of the rectangular cross-section, El= the flexural rigidity,

s = a/h, a = crack depth and

Fi(s) = 1.865 % - 3.955 > + 16.37s * + 37.225 5 + 76.815 ° + 126.9s ' + 172.55 & - 1445 ° + 66.65 °.
Fine-mesh finite element techniques were used to compute local flexibilities by Gudmunson
, Rauch, Chen and Wang, Haisty et al., and Krawczuk, Ostachowicz, Schmalhorst, and Qian
et al. A local flexibility will reduce the stiffness of a structural member, thus reducing its
natural frequency. Dimarogonas has noticed that eq. (1) suggests that for small crack

depth the local flexibility Ac is proportional to (a/h). Since this flexibility is added to

13



the flexibility ¢ of the uncracked member, the total flexibility willbe C = ¢ + Acand the
corresponding stiffness

K =1/C

The most popular parameter applied in identification methods is change in natural frequen-
cies of structure caused by the crack. It is due to the fact that estimates of the natural
frequencies can be obtained from measurement of the vibration at only one point on the
structure. The drawback, that escaped the attention of most investigators, is that the
change of natural frequency due to the crack is proportional to the square of the relative
crack depth or for redundant systems, as shown by Dimarogonas, thus insignificant for
most practical identification needs. The identification problem was discussed by Chang and
Petroski, Kozlow and Shatoff. It was formally introduced for cracked beams by Chondros
and Chondros and Dimarogonas, who developed nomograms for the calculation of the crack
depth for different beams and locations of the crack (assumed known). Adams et al. have
developed an experimental technique to estimate the location and depth of the crack from
changes in the natural frequencies. Cawley and Adams and Anifantis et al. further
expanded the spectral method for identification of defects in beams and frames by
analyzing the changes in the vibration frequency spectrum. Yuen presented a systematic
study of the relationship between damage location and size, and the changes in the
eigenvalues and eigenvectors of a cantilever beam. Anifantis et al. and Rizos and co-
workers developed an identification technique for location and magnitude of the crack in
a cantilever beam with arectangular cross-section having a transverse surface crack on

the basis of more than one natural frequency change.

14



M Kisa et al ":The vibrational characteristics of a cracked Timoshenko beam are analysed. The
study integrates the finite element method and component mode synthesis. The beam divided
into two components related by a flexibility matrix which incorporates the interaction forces.
These forces can be derived from fracture mechanics theory as the inverse of the compliance
matrix calculated using stress intensity factors and strain energy release rate expressions. Each
substructure is modelled by Timoshenko beam finite elements with two nodes and 3 degrees-of-

freedom (axial, transverse and rotation) at each node.]

E. I. SHIFRIN ":A new technique is proposed for calculating natural frequencies of a vibrating
beam with an arbitrary finite number of transverse open cracks.The main feature of this method
is related to decreasing the dimension of the matrix involved in the calculation, so that reduced
computation time is required for evaluating natural frequencies compared to alternative methods

which also make use of a continuous model of the beam.]

N. T. KHIEM et al : A new method for natural frequency analysis of beam with an arbitrary
number of cracks is developed on the bases of the transfer matrix method and rotational spring
model of crack. The resulted frequency equation of a multiple cracked beam is general with
respect to the boundary conditions including the more realistic (elastic) end supports and can be
constructed analytically by using symbolic codes. The procedure proposed is advanced by
elimination of numerical computation of the high order determinant so that the computer

time for calculating natural frequencies in consequence is significantly reduced. Numerical
computation has been carried out to investigate the effect of each crack, the number of

cracks and boundary conditions on the natural frequencies of a beam.

15



D.Y. Zheng et al ": The natural frequencies and mode shapes of a cracked beam are obtained
using the finite element method. An ‘overall additional flexibility matrix’, instead of the ‘local
additional flexibility matrix’, is added to the flexibility matrix of the corresponding intact beam
element to obtain the total flexibility matrix, and therefore the stiffness matrix. Compared with
analytical results, the new stiffness matrix obtained using the overall additional flexibility matrix
can give more accurate natural frequencies than those resulted from using the local additional
flexibility matrix.In addition, the authors constructed a shape function that can perfectly satisfy
the local flexibility conditions at the crack locations, which can give more accurate vibration

modes.

16
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Theory and Formulation:
The equation of motion for vibration of beam under load ‘P’ in the form of matrix is written[ii]

as
(M1} + | (K] - P&, || @} = 0 (1)
Where, [M]= Consistent mass matrix
[K]= Bending stiffness matrix of the beam
| K,]= Geometric stiffness matrix

The above equation for free vibration can be written as ,
[M]Gi) + [K] {u} =0 2)

Above equation represents an eigen value problem and the solution for the equation is square of

the natural frequency given by the equation[v],
[K] — (w,)*[M]=0 3)
Stiffness matrix for cracked beam element
The stiffness matrix of a cracked beam is obtained by taking the inverse of total flexibility
matrix. This is the most convenient method to obtain the stiffness matrix of a cracked beam

element. To find out the total flexibility matrix, the additional flexibility matrix due to the

existence of the crack is added to the original flexibility matrix of the intact beam.

a) The original stiffness matrix for the intact beam
In the present analysis two noded beam elements with two degree of freedom (deflection

and slope) per node is considered.

18



= | 6L 41> —6L  2L°
Ke=— (4)
L
—-12 —-6L 12  —6L
6L 21 —6L  4L°

b) Stiffness matrix for cracked beam

The Fig.1 shows a typical cracked beam element with a rectangular cross section of
breadth ‘b’ and depth ‘h’ with a crack of depth ‘a’. The left hand side end node ‘i’ is
assumed to be fixed, while the right hand side end node ‘j’ is subjected to shearing
force P; and bending moment P,. The corresponding generalized displacements are

denoted as g; and q,.

L. = Distance between the right hand side end node j and the crack location

Le = Length of the beam element

A = Cross-sectional area of the beam

y | P:(q4)

Le P> (q2)

Figure 1.a typical cracked beam element subjected to shearing force and bending moment[v]

According to Zheng [i], the additional strain energy due to existence of crack can be expressed as

n= [, Gda, (5)

Where, G = the strain energy release rate and Ac = the effective cracked area

19



1 2 p 7 e 3 7
G = o[ Kp)™ + (Znoy K )™ +R(Z 521 Ky )] (6)
Where, E'=E for plane stress
= E/1-0° for plane strain
k=1+v

Ki, Ky and Ky, = stress intensity factors for opening, sliding and tearing type cracks respectively.

Neglecting effect of axial force and for open cracks, Eq.7 can be written as

G = [(Kfi + Kp)* + Kﬂiz] (7)

1
=

The expressions for stress intensity factors from earlier studies are given by,

6P L — ¢
n = “ﬂfﬂ(ﬂ)

6P, “E F, (i)

2= pp2V h
F: = f
Kp = bhﬁﬁf Fiy (E)
where,
s=&/h
4
r - = (75/,) [0-923 +0.199 (1 — sin(75/,))
/ =
1‘| (ﬂs&) ms[ﬂs&}
1.122 — 0.561s + 0.085s% + 0.180 53
Fir(s) = —
v1—=
Fi(s) and Fy(s) are correction factors for stress intensive factors.
From definition, the elements of the overall additional flexibility matrix C;; can be expressed
as
dd, a:m

E C

.. =
77 3p, 8PP,

20



Substituting the values,

bh? h bh?

b &7 6P, L% — &\ 6P, —
‘o= E‘BFEH%J- { v Fl(_)+ Ve A

Substituting i, j (1, 2) values, we get

" rd rd
2w |36L_° (& R
C,,= — c szxcix-I-JxF:xdx
11 Eb hZ -L 1 (] 0 I (:]
c ?ZTILGJE Fﬂ[::]dx c
b = — xF, " lx =0,
O EBR? ), T 4
il
c 72 JE Fﬂ[]dx
70 = — xFy T lx
> Ebh?), 1

Now, the overall flexibility matrix Coy is given by,

—_ Cll C12:|
CDF: a |:C21 CEZ

Flexibility matrix Cintact Of the intact beam element

LEH L'E2
c _|3E1 2EI
tntact LE: LE
2EI EI
Total flexibility matrix Cyo of the cracked beam element
Ciotal = Cintact + Coul
. +C L’ +C
e —|3E1 % 2E1 T
total 2 L
] g
+ Cﬂ —— + Cﬂﬂ
2E1 T EIT#

c) Stiffness matrix K. of a cracked beam element:
From the equilibrium conditions as shown in Fig.2,

(

¢

h

I

-
&

bh

—
k129 Fh(

¢

h

"

)

&
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" 0, ¥V, 0)T=[L1(V, ©,)7
Where the transformation matrix is,

Vl (Vl) Vz (Vz)
L.

\ |
g
1 _Viai 2>92(92)
©.(6,

Le

Figure 2.: typical cracked beam element subject to shearing force and bending moment (under the
conventional fem coordinate system[v]

-1 0
-L, -1
L=| "=
1 0
0o 1

Hence the stiffness matrix K. of a cracked beam element can be obtained as
K_=Lc LT

Where L is the transformation matrix for equilibrium condition. Similarly standard procedure is carried

out to find mass and geometric matrix.
In this study we have considered the change in mass matrix and geometric matrix to negligible for cracks.

Hence the mass matrix M, of a cracked beam for a flexural beam is

156 22L 54 —13L
pAL| 22L 417 13L  —3L°
Me = —
420 54 13L 156  —22L

—13L —3L* —22L 412

22



Chapter 4

RESULT AND DISCUSSION
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Numerical results and discussion:
Quantitative results on the effects of various parameters on the vibration of beams with crack are

presented. The results are studied as:

e Convergence study
e Comparison with previous studies(with Shiffrin et al)

e Numerical Results

Convergence study:
For more accuracy, the convergence study for the beam has been done. Based on finite element

method, more the number of elements more is the accuracy. Fig.4.1.1 shows that, for 16
elements the variation of frequency is very small. So, in this study we have considered 16

elements.

1050
1045
1040
1035
1030 .\

1025

1020 \ —4—Seriesl

1015 == Series2
1010

1005
1000 . . . .
2 4 8 16

Firstfrequency (rad/sec)

No of elements

Figure 3.convergence graph
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Comparison with previous studies:
The Finite element analysis is carried out for free vibration of cracked beams for various

positions of crack and crack depths considered by Shifrin et al.[iii]. The beam under analysis has

the following properties

length 1=0.8m, rectangular cross-section with width b=0.02 m and

height h=0.02m, a first crack with position x1=0.12m and depth al=2mm, a second crack with

variable position from the fixed end and a depth of 2, 4 and 6mm. The ratio between the first

natural frequencies of cracked and uncracked beam is shown in Table 4.1.1 with the results of

Shifrin et al. [iii]. The values are interpolated using graph analysis software (Digitizelt_win)

from reference [iii]. It is clear that there exists an fair agreement between the results obtained

from present FEM with previous studies.

Table 1. comparison with previous study

Location Rcd=0.1 Rcd=0.2 Rcd=0.3

of 2" Present | Shiffrin | Present | Shiffrin | Present | Shiffrin
crack analysis | etal. analysis | etal. analysis | et al.
0.05 0.9926 | 0.994 0.971 0.984 0.937 0.968
0.1 0.9931 | 0.994 0.974 0.987 0.943 0.974
0.2 0.9945 | 0.995 0.979 0.990 0.953 0.981
0.4 0.9961 | 0.997 0.985 0.996 0.967 0.994
0.5 0.9965 | 0.997 0.986 0.997 0.969 0.997
0.6 0.9967 | 0.997 0.987 0.997 0.971 0.997
0.7 0.9967 | 0.997 0.987 0.997 0.972 0.997

25



Numerical results

The study is then carried out for vibration of a cantilever beams with crack. For this, the

geometry and material properties of the cantilever beam are:

Breath of the beam =0.2m Depth of the beam =0.2m

Length of the beam =0.3m Unit Weight =7850
kg/m?

Elastzic modulus of the beam = 206x10° Poisson’s Ratio =0.28

N/m

For this analysis a first crack position is fixed at a distance of x1 = 0.2L from fixed end with
relative crack depth 0.2 and a second crack is introduced with variable position from clamped
end. The variation of first natural frequency of vibration with location of crack (y = 0.2L to 0.8L)
for different relative crack depth (rcd = 0.2 to 0.8) is shown in fig.4. The variations of natural
frequencies as expected are decreasing with increase in crack depth. However this change is

more rapidly decreasing for the cracks nearing the fixed end and increasing relative crack depth.

X2 (variable)

A

Xel

i ||ﬂ'1 X

Figure 4.A cantilevered beam with two cracks while the location of the second crack is variable[v]
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Figure 5. 1st crack at 0.2L and 2nd crack at 0.4L

Table 2 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.4L and (a/h)=0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2" w1 W2 w3 w4 wi W2 w3 w4
crack
0.2 1109.420 | 7002.155 | 19189.509 | 36090.066 | 1070.025 | 6635.329 | 18728.847 | 35342.695
0.4 1019.229 | 6990.063 | 18778.448 | 34291.589 | 157.33 | 1052.283 | 2933.367 | 5289.872
0.6 835.511 | 6959.644 | 18009.794 | 31885.769 | 818.362 | 6561.114 | 17830.787 | 30390.389
0.8 498.174 | 6862.588 | 16887.142 | 29761.758 | 494.481 | 6445.204 | 16848.079 | 27912.302
Table 3 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.4L and (a/h) =0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" wi W2 w3 w4 w1 W2 w3 w4
crack
0.2 968.545 | 5938.337 | 17979.244 | 34148.400 | 682.170 | 4924.462 | 17079.105 | 32643.702
0.4 907.037 | 5874.453 | 17825.272 | 31622.827 | 659.962 | 4752.896 | 17028.707 | 29890.084
0.6 770.514 | 5747.644 | 17474.801 | 28149.518 | 602.083 | 4394.725 | 16897.604 | 25959.584
0.8 483.401 | 5533.906 | 16754.174 | 25092.371 | 432.835 | 3780.012 | 16520.989 | 22273.905
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Figure 6 1st crack at 0.2L and 2nd crack at 0.6L

Table 4 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.6L and (a/h)=0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2 w1 W2 w3 w4 wi W2 w3 w4
crack
0.2 118.333 | 6957.218 | 19091.298 | 36325.231 | 1026.198 | 6946.476 | 18632.847 | 34749.021
0.4 1107.852 | 6451.81 | 18396.611 | 36023.811 | 1018.118 | 6435.557 | 17949.232 | 34574.545
0.6 1076.339 | 5417.672 | 17349.957 | 35504.908 | 993.663 | 5383.025 | 16926.403 | 34251.048
0.8 933.5324 | 3672.165 | 16263.18 | 34676.481 | 879.247 | 3577.650 | 15877.464 | 33617.112
Table 5 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.6L and (a/h) = 0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack
0.2 839.297 | 6918.93 | 17803.504 | 32602.316 | 498.972 | 6827.927 | 16636.382 | 30640.065
0.4 834.896 | 6400.222 | 17143.674 | 32529.988 | 498.053 | 6312.921 | 15993.393 | 30597.556
0.6 821.422 | 5318.004 | 16166.407 | 32369.993 | 495.199 | 5212.307 | 15050.063 | 30488.817
0.8 754.727 | 3406.698 | 15183.893 | 31918.321 | 480.025 | 3176.007 | 14124.85 30114.544
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Figure 7 1st crack at 0.2L and 2nd crack at 0.8L

Table 6 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.8L and (a/h) =0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2 w1 W2 w3 w4 wi W2 w3 w4
crack
0.2 1121.028 | 7096.268 | 18994.459 | 35302.425 | 1028.272 | 7086.686 | 18575.278 | 33739.885
0.4 1120.202 | 6976.376 | 17883.456 | 32969.180 | 1027.638 | 6966.291 | 17566.02 | 31525.896
0.6 1117.621 | 6605.562 | 15372.778 | 29914.573 | 1025.66 | 6593.648 | 15209.343 | 28562.637
0.8 1103.338 | 5040.085 | 11634.452 | 27654.645 | 1014.723 | 5018.758 | 11579.916 | 26364.886
Table 7 Variation of excitation frequency in (rad/sec) for x1 = 0.2L and x2=0.8L and (a/h) =0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack
0.2 840.423 | 7060.597 | 17804.597 | 31616.063 | 499.206 | 6967.304 | 16697.154 | 29699.505
0.4 840.08 | 6939.952 | 16963.460 | 29501.711 | 499.136 | 6850.597 | 16037.116 | 27644.306
0.6 839.014 | 6565.910 | 14883.461 | 26574.713 | 498.916 | 6486.867 | 14299.703 | 24648.01
0.8 833.127 | 4979.606 | 11459.953 | 24395.117 | 497.706 | 4917.438 | 11160.509 | 22355.266
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Figure 8 1st crack at 0.4L and 2nd crack is at 0.2L
Table 8 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.2L and (a/h) =0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2™ w1 W2 w3 W4 wi W2 w3 W4
crack
0.2 1109.948 | 7013.684 | 19114.003 | 36193.503 | 1023.407 | 7008.414 | 18615.168 | 34463.490
0.4 1067.908 | 6675.271 | 18554.864 | 35648.632 | 990.192 | 6663.687 | 18203.683 | 33581.760
0.6 961.029 | 6026.508 | 17652.612 | 34702.384 | 903.329 | 5983.609 | 17483.908 | 32142.834
0.8 668.503 | 5071.795 | 16553.582 | 33196.760 | 648.401 | 4931.835 | 16508.286 | 30409.979
Table 9 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.2L and (a/h) =0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" wi W2 w3 w4 w1 W2 w3 w4
crack
0.2 844.256 | 6993.546 | 17703.665 | 32192.644 | 507.719 | 6937.349 | 16466.903 | 30238.081
0.4 825.339 | 6637.503 | 17505.311 | 30770.579 | 503.524 | 6570.004 | 16430.053 | 28316.286
0.6 773.142 | 5895.539 | 17098.595 | 28498.811 | 491.002 | 5738.792 | 16333.044 | 25193.895
0.8 595.367 | 4624.632 | 16388.814 | 26145.086 | 435.057 | 4045.017 | 16043.069 | 21911.861
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Figure 9 1st crack at 0.4L and 2nd crack is at 0.6L

Table 10 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.6 and (a/h)=0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2 w1 W2 w3 w4 wi W2 w3 w4
crack
0.2 1136.546 | 6834.331 | 19046.067 | 36904.639 | 1094.251 | 6505.831 | 18493.421 | 36283.612
0.4 1125.492 | 6367.061 | 18283.455 | 36565.844 | 1084.262 | 6128.721 | 17580.721 | 36054.285
0.6 1092.322 | 5391.987 | 17121.531 | 35983.49 | 1054.238 | 5291.962 | 16154.415 | 35629.833
0.8 943.282 | 3703.117 | 15908.454 | 35092.934 | 918.056 | 3701.752 | 14645.967 | 34893.577
Table 11 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.6L and (a/h) = 0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack
0.2 986.281 | 5875.120 | 17607.825 | 35246.039 | 688.134 | 4946.037 | 16580.037 | 33793.785
0.4 978.761 | 5643.042 | 16432.017 | 35141.997 | 685.446 | 4862.281 | 15105.633 33764.76
0.6 956.051 | 5064.822 | 14502.785 | 34925.473 | 677.201 | 4614.782 | 12510.88 33693.547
0.8 850.348 | 3697.967 | 12367.385 | 34445.437 | 635.841 | 3685.199 | 9273.710 33463.669
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Figure 10 1st crack is at 0.4L and 2nd crack is at 0.8L

Table 12 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.8L and (a/h) =0.2,0.4

Position Rcd=0.2 Rcd=0.4

of 2" w1 W2 w3 w4 wi W2 w3 w4
crack

0.2 1139.391 | 6961.855 | 18951.113 | 35932.668 | 1096.821 | 6606.359 | 18448.218 | 35423.026
0.4 1138.516 | 6852.517 | 17781.28 | 33640.328 | 1096.027 | 6521.036 | 17255.668 | 33376.304
0.6 1135.785 | 6511.913 | 15185.116 | 30601.791 | 1093.55 | 6250.75 | 14616.664 | 30519.744
0.8 1120.676 | 5025.793 | 11351.68 | 28306.163 | 1079.863 | 4964.833 | 10632.177 | 28255.921
Table 13 Variation of excitation frequency in (rad/sec) for x1 = 0.4L and x2=0.8L and (a/h) = 0.6,0.8

Position Rcd=0.6 Rcd=0.8

of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack

0.2 088.213 | 5934.143 | 17652.21 | 34557.814 | 688.822 | 4966.039 | 16733.711 | 33251.921
0.4 987.610 | 5883.853 | 16437.310 | 32879.089 | 688.603 | 4947.060 | 15530.707 | 31890.494
0.6 985.731 | 5720.945 | 13744.922 | 30313.395 | 687.921 | 4884.693 | 12828.680 | 29615.224
0.8 975.370 | 4814.383 | 9454.010 | 28104.155 | 684.173 | 4469.645 | 8120.348 | 27482.568
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Figure 11 1st crack is at 0.6L and 2nd crack is at 0.2L

Table 14 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.2L and (a/h)=0.2,0.4

Position Rcd=0.2 Rcd=0.4

of 2" W1 W2 W3 W4 w1 W2 w3 w4
crack

0.2 1120.352 | 6947.579 | 19094.132 | 36176.031 | 1035.283 | 6943.632 | 18403.930 | 34771.562
0.4 1107.332 | 6421.413 | 18604.449 | 35353.261 | 1024.998 | 6418.012 | 17888.699 | 34140.394
0.6 1068.656 | 5380.207 | 17823.856 | 33979.123 | 994.207 | 5363.590 | 17084.964 | 33034.212
0.8 902.588 | 3709.700 | 16887.103 | 31792.062 | 857.335 | 3630.209 | 16169.214 | 31044.195
Table 15 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.2L and (a/h) =0.6,0.8

Position Rcd=0.6 Rcd=0.8

of 2" W1 W2 W3 W4 w1 W2 w3 w4
crack

0.2 857.493 | 6933.816 | 17218.892 | 32976.421 | 518.506 | 6901.823 | 15769.105 | 31466.228
0.4 851.638 | 6409.880 | 16668.379 | 32553.345 | 517.209 | 6385.020 | 15180.018 | 31187.507
0.6 833.858 | 5331.148 | 15836.590 | 31750.227 | 513.192 | 5277.346 | 14319.155 | 30601.309
0.8 749.443 | 3475.416 | 14956.429 | 30002.380 | 492.221 | 3241.657 | 13475.333 | 29045.479
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Figure 12 1st crack at 0.6L and 2nd crack is at 0.4L
Table 16 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.4L and (a/h) =0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2™ w1 W2 w3 W4 wi W2 w3 W4
crack
0.2 1137.030 | 6819.830 | 19135.111 | 36727.744 | 1097.360 | 6466.389 | 18688.387 | 35883.849
0.4 1124.701 | 6343.506 | 18493.129 | 36180.358 | 1086.137 | 6085.723 | 17904.635 | 35528.968
0.6 1087.929 | 5367.160 | 17485.780 | 35238.064 | 1052.608 | 5256.357 | 16635.167 | 34850.113
0.8 927.107 | 3719.617 | 16362.817 | 33752.491 | 904.538 | 3717.102 | 15204.141 | 33594.058
Table 17 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.4L and (a/h) =0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack
0.2 994.762 | 5792.346 | 17958.393 | 34546.176 | 702.678 | 4807.474 | 17106.294 | 32999.911
0.4 986.163 | 5564.488 | 16913.555 | 34400.376 | 699.480 | 4731.695 | 15736.444 | 32964.313
0.6 960.338 | 5005.458 | 15117.524 | 34070.409 | 689.704 | 4510.949 | 13189.642 | 32864.020
0.8 843.172 | 3710.467 | 12987.947 | 33228.498 | 641.540 | 3690.298 | 9753.141 32464.323
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Figure 13 1st crack is at 0.6L and 2nd crack is at 0.8L
Table 18 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.8 and (a/h) =0.2,0.4
Position Rcd=0.2 Rcd=0.4
of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack
0.2 1149.051 | 6916.746 | 18908.733 | 35925.787 | 1137.673 | 6421.853 | 18284.867 | 35413.425
0.4 1148.155 | 6805.522 | 17859.786 | 33276.542 | 1136.789 | 6332.129 | 17478.482 | 32306.314
0.6 1145.357 | 6462.179 | 15411.362 | 29828.642 | 1134.031 | 6056.093 | 15362.105 | 28145.435
0.8 1129.872 | 4993.301 | 11580.974 | 27330.341 | 1118.779 | 4832.355 | 11408.67 | 25207.934
Table 19 Variation of excitation frequency in (rad/sec) for x1 = 0.6L and x2=0.8L and (a/h)=0.6,0.8
Position Rcd=0.6 Rcd=0.8
of 2" w1 W2 w3 w4 w1 W2 w3 w4
crack
0.2 1103.544 | 5408.619 | 17318.118 | 34585.281 | 950.606 | 3698.825 | 16278.717 | 33521.520
0.4 1102.701 | 5356.601 | 16831.224 | 30812.661 | 949.977 | 3686.771 | 16042.659 | 29245.631
0.6 1100.070 | 5196.374 | 15259.230 | 25543.753 | 948.018 | 3649.207 | 15064.315 | 22901.247
0.8 1085.560 | 4429.314 | 11014.194 | 21969.240 | 937.292 | 3447.395 | 10272.353 | 18766.913
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Figure 14 1st crack is at 0.8L and 2nd crack is at 0.2L

Table 20 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.2L and (a/h) =0.2,0.4

Position Rcd=0.2 Rcd=0.4

of 2™ w1 W2 w3 W4 wi W2 w3 W4
crack

0.2 1124.907 | 7072.907 | 18760.626 | 35394.475 | 1042.588 | 7061.067 | 18027.293 | 33944.205
0.4 1123.306 | 6878.252 | 17421.790 | 33408.644 | 1041.313 | 6870.418 | 16836.125 | 31892.163
0.6 1118.282 | 6314.429 | 14912.753 | 31095.443 | 1037.314 | 6311.982 | 14524.271 | 29473.198
0.8 1090.650 | 4472.858 | 11962.381 | 29311.955 | 1015.310 | 4461.474 | 11721.499 | 27638.060
Table 21 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.2L and (a/h)=0.6,0.8

Position Rcd=0.6 Rcd=0.8

of 2" W1 W2 W3 W4 W1 W2 W3 W4
crack

0.2 868.281 | 7038.706 | 16773.578 | 32144.117 | 529.031 | 6997.276 | 15273.218 | 30687.593
0.4 867.546 | 6854.522 | 15800.366 | 29967.849 | 528.865 | 6823.595 | 14500.944 | 28380.584
0.6 865.238 | 6306.811 | 13810.568 | 27330.120 | 528.344 | 6294.374 | 12850.982 | 25474.221
0.8 852.530 | 4439.864 | 11273.742 | 25338.788 | 525.474 | 4407.551 | 10644.652 | 23232.748
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Figure 15 1st crack is at 0.8L and 2nd crack is at 0.4L

Table 22 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.4L and (a/h) =0.2,0.4

Position Rcd=0.2 Rcd=0.8

of 2" W1 W2 W3 W4 w1 W2 W3 W4
crack

0.2 1140.933 | 6928.700 | 18941.994 | 35774.906 | 1103.529 | 6521.105 | 18613.276 | 34731.822
0.4 1139.549 | 6776.031 | 17589.449 | 33821.108 | 1102.255 | 6404.291 | 17188.966 | 33075.845
0.6 1135.216 | 6318.492 | 14944.803 | 31443.120 | 1098.267 | 6045.407 | 14400.034 | 31007.344
0.8 111.332 | 4639.933 | 11614.127 | 29592.166 | 1076.311 | 4588.002 | 10807.672 | 29355.516
Table 23 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.4L and (a/h) = 0.6,0.8

Position Rcd=0.6 Rcd=0.8

of 2" w1 W2 W3 W4 w1 W2 W3 W4
crack

0.2 1005.589 | 5759.712 | 18076.419 | 33167.664 | 718.502 | 4678.040 | 17457.290 | 31562.207
0.4 1004.585 | 5693.955 | 16550.173 | 31924.955 | 718.106 | 4656.154 | 15844.318 | 30670.487
0.6 1001.446 | 5484.844 | 13550.602 | 30309.917 | 716.866 | 4584.721 | 12655.304 | 29470.793
0.8 984.205 | 4456.893 | 9464.282 | 28959.691 | 710.070 | 4137.517 | 7896.581 | 28417.912
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Figure 16 1st crack at 0.8L and 2nd crack is at 0.6L

Table 24 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.6L and (a/h) =0.2, 0.4

Position Rcd=0.2 Rcd=0.4

of 2" w1 W2 W3 W4 A W2 W3 W4
crack

0.2 1149.338 | 6915.574 | 18826.858 | 36030.228 | 1139.178 | 6432.722 | 18091.497 | 35715.396
0.4 1148.199 | 6782.074 | 17713.723 | 33564.813 | 1138.052 | 6323.637 | 17259.644 | 32799.471
0.6 1144.636 | 6378.350 | 15280.591 | 30435.191 | 1134.532 | 5994.672 | 15209.208 | 28872.410
0.8 1124.949 | 4801.208 | 11760.833 | 28094.325 | 1115.103 | 4660.127 | 11632.111 | 25937.208
Table 25 Variation of excitation frequency in (rad/sec) for x1 = 0.8L and x2=0.6L and (a/h) = 0.6, 0.8

Position Rcd=0.6 Rcd=0.8

of 2" A W2 W3 W4 w1 W2 w3 w4
crack

0.2 1108.522 | 5425.273 | 16974.576 | 35196.129 | 967.434 | 3678.510 | 15829.892 | 34639.075
0.4 1107.440 | 5360.876 | 16502.249 | 31562.286 | 966.598 | 3663.723 | 15625.681 | 30221.902
0.6 1104.061 | 5165.780 | 15064.449 | 26297.192 | 963.992 | 3617.986 | 14824.06 | 23546.172
0.8 1085.456 | 4301.390 | 11319.374 | 22384.519 | 949.759 | 3382.109 | 10639.044 | 18617.629
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Conclusions:
1. The frequencies of vibration of cracked beams decrease with increase of crack depth for crack at

any particular location due to reduction of stiffness.
2. The effect of crack is more pronounced near the fixed end than at far free end.
3. The first natural frequency of free vibration decreases with increase in number of cracks.

4. The natural frequency decreases with increase in relative crack depth.

39



REFERNCES

' ANDREW D. DIMAROGONAS, Vibration Of Cracked Structures: A State Of The Art
Review, Engineering Fracture Mechanics Vol. 55, No. 5, pp. 831-857, 1996

"M KISA et al, Free Vibration Analysis Of Cracked Beams By A Combination Of finite
Elements And Component Mode Synthesis Methods, Computers and Structures 67 (1998) 215-
223

' E. 1. SHIFRIN et al, Natural Frequencies Of A Beam With An Arbitrary Number Of Cracks,
Journal of Sound and Vibration (1999) 222(3), 409-423

V'N. T. KHIEM et al., A Simplified Method For Natural Frequency Analysis Of A Multiple
Cracked Beam, Journal of Sound and vibration (2001) 245(4), 737-751

Y D.Y. ZHENG, Free Vibration Analysis Of A Cracked Beam By finite Element Method, Journal

of Sound and Vibration 273 (2004) 457-475

40



