
LOAD BALANCING IN CLOUD
COMPUTING SYSTEMS

Thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Technology
in

Computer Science and Engineering

by

Ram Prasad Padhy (107CS046)
P Goutam Prasad Rao (107CS039)

Department of Computer Science and Engineering
National Institute of Technology, Rourkela

Rourkela-769 008, Orissa, India
May, 2011.

LOAD BALANCING IN CLOUD
COMPUTING SYSTEMS

Thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Technology
in

Computer Science and Engineering

by

Ram Prasad Padhy (107CS046)
P Goutam Prasad Rao (107CS039)

under the guidance of

Dr. Pabitra Mohan Khilar

Department of Computer Science and Engineering
National Institute of Technology, Rourkela

Rourkela-769 008, Orissa, India
May, 2011.

ii

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769 008, Orissa, India

Certificate

This is to certify that the work in this thesis Report entitled ”Load Balancing in Cloud

computing systems” submitted by Ram Prasad Padhy(107CS046) and P Goutam Prasad

Rao(107CS039) has been carried out under my supervision in partial fulfillment of the

requirements for the degree of Bachelor of Technology in Computer Science during session

2010-2011 in the department of Computer Science and Engineering, National Institute of

Technology, Rourkela, and this work has not been submitted for any degree or academic

award elsewhere.

Place: NIT, Rourkela Dr. Pabitra Mohan Khilar

Date: 09/05/11 Assistant Professor

Department of CSE

NIT Rourkela

iii

ACKNOWLEDGEMENT

First of all we would like to express our profound sense of gratitude towards our

guide Dr. Pabitra Mohan Khilar, Asst. Professor, Department of Computer Science and

Engineering, for his able guidance, support and encouragement throughout the period this

work was carried out. His readiness for consultation at all times, his educative comments,

his concern and assistance even with practical things have been invaluable.

We would also like to convey our sincerest gratitude and indebtedness to our entire

faculty members and staff of the Department of Computer Science and Engineering, NIT

Rourkela, who bestowed their efforts and guidance at appropriate times without which it

would have been very difficult on our part to finish the project work. A vote of thanks to

our fellow students for their friendly co-operation and suggestions.

Ram Prasad Padhy(107CS046)

P Goutam Prasad Rao(107CS039)

iv

Abstract

”Cloud computing” is a term, which involves virtualization, distributed comput-

ing, networking, software and web services. A cloud consists of several elements such

as clients, datacenter and distributed servers. It includes fault tolerance, high availabil-

ity, scalability, flexibility, reduced overhead for users, reduced cost of ownership, on

demand services etc.

Central to these issues lies the establishment of an effective load balancing al-

gorithm. The load can be CPU load, memory capacity, delay or network load. Load

balancing is the process of distributing the load among various nodes of a distributed

system to improve both resource utilization and job response time while also avoiding

a situation where some of the nodes are heavily loaded while other nodes are idle or

doing very little work. Load balancing ensures that all the processor in the system or

every node in the network does approximately the equal amount of work at any instant

of time. This technique can be sender initiated, receiver initiated or symmetric type

(combination of sender initiated and receiver initiated types).

Our objective is to develop an effective load balancing algorithm using Divisi-

ble load scheduling theorm to maximize or minimize different performance parameters

(throughput, latency for example) for the clouds of different sizes (virtual topology de-

pending on the application requirement).

v

Contents

1 Introduction 2

1.1 Introduction . 2

1.2 Thesis Motivation . 3

1.3 Objectives . 3

1.4 Thesis Organization . 3

1.5 Conclusion . 4

2 Cloud Computing 6

2.1 Introduction . 6

2.2 Cloud Components . 6

2.2.1 Clients . 7

2.2.2 Datacenter . 7

2.2.3 Distributed Servers . 7

2.3 Type of Clouds . 7

2.4 Virtualization . 8

2.4.1 Full Virtualization . 8

2.4.2 Paravirtualization . 9

2.5 Services provided by Cloud computing . 10

2.5.1 Software as a Service (SaaS) . 10

2.5.2 Platform as a Service (PaaS) . 11

2.5.3 Hardware as a Service (HaaS) . 12

2.6 Conclusion . 13

3 Load Balancing 15

3.1 Introduction . 15

3.2 Goals of Load balancing . 15

3.3 Types of Load balancing algorithms . 15

3.4 Dynamic Load balancing algorithm . 16

3.5 Policies or Strategies in dynamic load balancing 17

vi

3.6 Conclusion . 18

4 Distributed Load Balancing for the Clouds 20

4.1 Introduction . 20

4.2 Honeybee Foraging Algorithm . 20

4.3 Biased Random Sampling . 22

4.4 Active Clustering . 23

4.5 Conclusion . 23

5 Proposed Work 25

5.1 Introduction . 25

5.2 Description . 26

5.3 Conclusion . 26

6 Divisible Load Scheduling Theory in Clouds 28

6.1 Introduction . 28

6.2 System Model . 29

6.2.1 Parameters, Notation and Definitions 29

6.3 Measurement and Reporting Time . 30

6.3.1 When Measurement starts Simultaneously and Reporting is done

sequentially . 30

6.3.2 When the Measurement starts Simultaneously and Reporting ends

Simultaneously . 34

6.4 Conclusion . 37

7 Performance Evaluation 39

7.1 Introduction . 39

7.2 When Measurement starts Simultaneously and Reporting is done sequentially 39

7.3 When the Measurement starts Simultaneously and Reporting ends Simul-

taneously . 41

7.4 Conclusion . 42

vii

8 Conclusion and Future Work 44

8.1 Conclusion . 44

8.2 Future Work . 45

viii

List of Figures

1 A cloud is used in network diagrams to depict the Internet (adopted from [1]). 2

2 Three components make up a cloud computing solution(adopted from [1]). . 6

3 Full Virtualization (adopted from [1]). 8

4 Paravirtualization (adopted from [1]). 9

5 Software as a service (SaaS) (adopted from [1]) 10

6 Platform as a service (PaaS) (adopted from [1]) 12

7 Hardware as a service (HaaS) (adopted from [1]) 13

8 Interaction among components of a dynamic load balancing algorithm (adopted

from [4]) . 18

9 Algorithm used in Honey bee technique (adopted from [7]) 21

10 Server Allocations by Foraging in Honey bee technique (adopted from [7]) . 21

11 State Diagram . 25

12 A cloud showing different topologies . 26

13 K no. of master computers each joing N no. of slave computers in single

level Tree network (STAR Topology) . 29

14 Timing diagram for single level tree network with a master computer and

N slaves which report sequentially(adopted from [9]) 31

15 Timing diagram for a master computer and N slaves with simultaneous re-

porting termination (adopted from [9]) . 35

16 Measurement/report time versus number of slaves corresponding to master

and variable inverse link speed b for single level tree network with master

and sequential reporting time. 40

17 Measurement/report time versus number of slaves corresponding to master

and variable inverse measuring speed a for single level tree network with

master and sequential reporting time. 40

18 Measurement/report time versus number of slaves under a master and vari-

able inverse link speed b for single level tree network with master 41

ix

19 Measurement/report time versus number of slaves under a master and vari-

able inverse measuring speed a for single level tree network with master . . 42

20 Comparison of Measurement/report time versus number of slaves under a

single master under the same conditions of link speed and measurement

speed for both cases of reporting . 45

x

Introduction

Introduction

Thesis Motivation

Objectives

Thesis Organization

1. Introduction

1 Introduction

1.1 Introduction

Cloud computing is an on demand service in which shared resources, information, software

and other devices are provided according to the clients requirement at specific time. Its a

term which is generally used in case of Internet. The whole Internet can be viewed as a

cloud. Capital and operational costs can be cut using cloud computing.

Figure 1: A cloud is used in network diagrams to depict the Internet (adopted from [1]).

Load balancing in cloud computing systems is really a challenge now. Always a dis-

tributed solution is required. Because it is not always practically feasible or cost efficient to

maintain one or more idle services just as to fulfill the required demands. Jobs cant be as-

signed to appropriate servers and clients individually for efficient load balancing as cloud is

a very complex structure and components are present throughout a wide spread area. Here

some uncertainty is attached while jobs are assigned.

This paper considers some of the methods of load balancing in large scale Cloud

systems. Our aim is to provide an evaluation and comparative study of these approaches,

2

1.2 Thesis Motivation

demonstrating different distributed algorithms for load balancing and to improve the differ-

ent performance parameters like throughput, latency etc. for the clouds of different sizes.

As the whole Internet can be viewed as a cloud of many connection-less and connection-

oriented services, thus concept of load balancing in Wireless sensor networks (WSN) pro-

posed in [9] can also be applied to cloud computing systems as WSN is analogous to a

cloud having no. of master computers (Servers) and no. of slave computers (Clients) joined

in a complex structure. A comparative study of different algorithms has been carried out

using divisible load scheduling theory proposed in [9].

1.2 Thesis Motivation

Cloud computing is a vast concept. Many of the algorithms for load balancing in cloud

computing have been proposed. Some of those algorithms have been overviewed in this

thesis. The whole Internet can be considered as a cloud of many connection less and con-

nection oriented services. So the divisible load scheduling theory for Wire less networks

described in [9] can also be applied for clouds. The performance of various algorithms have

been studied and compared.

1.3 Objectives

1. To study the performance of some of the existing load balancing algorithms

2. To design and develop the concept of load balancing using Divisible Load Scheduling

Theory (DLT) for the clouds of different sizes

3. To evalute the performance of the proposed scheme using analytical studies proposed

in [9] and using MATLAB

1.4 Thesis Organization

The rest of the thesis is organised as follows:

Chapter 1 gives a brief introduction of the concepts used in the thesis, its contents,

objectives and the related work done in the particular domain.

3

1.5 Conclusion

Chapter 2 gives an overall idea of cloud computing, its components, functionalities

and services provided by the cloud.

Chapter 3 describes the concept of load balancing in distributed systems, its goals,

different types and different policies used.

Chapter 4 we studied different load balancing algorithms which are applicable to

clouds of different sizes.

Chapter 5 presents our proposed work i.e the divisible load scheduling theorm for

clouds of different sizes.

Chapter 6 gives the system model description, overview of divisible load scheduling

theory(DLT), and different approaches under DLT that can be applied to clouds.

Chapter 7 describes the simulation results of different approaches and their compar-

ison.

Chapter 8 presents the conclusion about the work done in this thesis

Chapter 9 gives the summary of the whole thesis

1.5 Conclusion

This chapter gives a brief idea about Cloud Computing and load balancing. It also

gives an overall idea about tha objectives, motivation and organisation of this thesis.

4

Cloud Computing

Cloud Components

Type of Clouds

Virtualization

Services provided by Cloud computing

2. Cloud Computing

2 Cloud Computing

2.1 Introduction

In case of Cloud computing services can be used from diverse and widespread re-

sources, rather than remote servers or local machines. There is no standard definition of

Cloud computing. Generally it consists of a bunch of distributed servers known as mas-

ters, providing demanded services and resources to different clients known as clients in a

network with scalability and reliability of datacenter. The distributed computers provide

on-demand services. Services may be of software resources (e.g. Software as a Service,

SaaS) or physical resources (e.g. Platform as a Service, PaaS) or hardware/infrastructure

(e.g. Hardware as a Service, HaaS or Infrastructure as a Service, IaaS). Amazon EC2

(Amazon Elastic Compute Cloud) is an example of cloud computing services [2]..

2.2 Cloud Components

A Cloud system consists of 3 major components such as clients, datacenter, and

distributed servers. Each element has a definite purpose and plays a specific role.

Figure 2: Three components make up a cloud computing solution(adopted from [1]).

6

2.3 Type of Clouds

2.2.1 Clients

End users interact with the clients to manage information related to the cloud. Clients

generally fall into three categories as given in [1]:

• Mobile: Windows Mobile Smartphone, smartphones, like a Blackberry, or an iPhone.

• Thin: They don’t do any computation work. They only dispaly the information.

Servers do all the works for them. Thin clients don’t have any internal memory.

• Thick: These use different browsers like IE or mozilla Firefox or Google Chrome to

connect to the Internet cloud.

Now-a-days thin clients are more popular as compared to other clients because of

their low price, security, low consuption of power, less noise, easily replaceble and re-

pairable etc.

2.2.2 Datacenter

Datacenter is nothing but a collection of servers hosting different applications. A end

user connects to the datacenter to subscribe different applications. A datacenter may exist

at a large distance from the clients.

Now-a-days a concept called virtualisation is used to install a software that allow

multiple instances of virtual server applications.

2.2.3 Distributed Servers

Distributed servers are the parts of a cloud which are present throughout the Internet

hosting different applications. But while using the application from the cloud, the user will

feel that he is using this application from its own machine.

2.3 Type of Clouds

Based on the domain or environment in which clouds are used, clouds can be divided

into 3 catagories :

7

2.4 Virtualization

• Public Clouds

• Private Clouds

• Hybrid Clouds (combination of bothe private and public clouds)

2.4 Virtualization

It is a very usefull concept in context of cloud systems. Virtualisation means ”some-

thing which isn’t real”, but gives all the facilities of a real. It is the software implementation

of a computer which will execute different programs like a real machine.

Virtualisation is related to cloud, because using virtualisation an end user can use dif-

ferent services of a cloud. The remote datacenter will provide different services in a fully

or partial virtualised manner.

2 types of virtualization are found in case of clouds as given in [1] :

• Full virtualization

• Paravirtualization

2.4.1 Full Virtualization

In case of full virtualisation a complete installation of one machine is done on the

another machine. It will result in a virtual machine which which will have all the softwares

that are present in the actual server.

Figure 3: Full Virtualization (adopted from [1]).

8

2.4 Virtualization

Here the remote datacenter delivers the services in a fully virtualised manner. Full

virtualization has been successful for several purposes as pointed out in [1]:

• Sharing a computer system among multiple users

• Isolating users from each other and from the control program

• Emulating hardware on another machine

2.4.2 Paravirtualization

In paravitualisation, the hardware allows multiple operating systems to run on single

machine by efficient use of system resources such as memory and processor. e.g. VMware

software. Here all the services are not fully available, rather the services are provided

partially.

Figure 4: Paravirtualization (adopted from [1]).

Paravirtualization has the following advantages as given in [1]:

• Disaster recovery: In the event of a system failure, guest instances are moved to

another hardware until the machine is repaired or replaced.

• Migration: As the hardware can be replaced easily, hence migrating or moving the

different parts of a new machine is faster and eiasier.

• Capacity management: In a virtalised environment, it is easier and faster to add

more hard drive capacity and processing power. As the system parts or hardwares

can be moved or replaced or repaired easily, capacity management is simple and

eaiser.

9

2.5 Services provided by Cloud computing

2.5 Services provided by Cloud computing

Service means different types of applications provided by different servers across the

cloud. It is generally given as ”as a service”. Services in a cloud are of 3 types as given in

[1] :

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Hardware as a Service (HaaS) or Infrastructure as a Service (IaaS)

2.5.1 Software as a Service (SaaS)

In SaaS, the user uses different software applications from different servers through

the Internet. The user uses the software as it is without any change and do not need to make

lots of changes or doen’t require integration to other systems. The provider does all the

upgrades and patching while keeping the infrastructure running [2].

Figure 5: Software as a service (SaaS) (adopted from [1])

The client will have to pay for the time he uses the software. The software that does a

simple task without any need to interact with other systems makes it an ideal candidate for

Software as a Service. Customer who isn’t inclined to perform software development but

needs high-powered applications can also be benefitted from SaaS.

Some of these applications include (taken from [1]):

10

2.5 Services provided by Cloud computing

• Customer resource management (CRM)

• Video conferencing

• IT service management

• Accounting

• Web analytics

• Web content management

Benefits:The biggest benefit of SaaS is costing less money than buying the whole appli-

cation. The service provider generally offers cheaper and more reliable applications as

compared to the organisation [1]. Some other benefits include (given in [1]): Familiarity

with the Internet, Better marketing, Smaller staff, reliability of the Internet, data Security,

More bandwidth etc.

Obstacles:

• SaaS isn’t of any help when the organisation has a very specific computational need

that doesn’t match to the SaaS services

• While making the contract with a new vendor, there may be a problem. Because the

old vendor may charge the moving fee. Thus it will increase the unnecessary costs.

• SaaS faces challenges from the availability of cheaper hardwares and open source

applications.

2.5.2 Platform as a Service (PaaS)

PaaS provides all the resources that are required for building applications and services

completely from the Internet, without downloading or installing a software [1].

PaaS services are software design, development, testing, deployment, and hosting.

Other services can be team collaboration, database integration, web service integration,

data security, storage and versioning etc.

11

2.5 Services provided by Cloud computing

Figure 6: Platform as a service (PaaS) (adopted from [1])

Downfall (taken from [1]):

• lack of portability among different providers.

• if the service provider is out of business, the user’s applications, data will be lost.

2.5.3 Hardware as a Service (HaaS)

It is also known as Infrastructure as a Service (IaaS). It offers the hardware as a service

to a organisation so that it can put anything into the hardware according to its will [1].

HaaS allows the user to “rent” resources (taken from [1]) as

• Server space

• Network equipment

• Memory

• CPU cycles

• Storage space

12

2.6 Conclusion

Figure 7: Hardware as a service (HaaS) (adopted from [1])

Cloud computing provides a Service Oriented Architecture (SOA) and Internet

of Services (IoS) type applications, including fault tolerance, high scalability, availability,

flexibility, reduced information technology overhead for the user, reduced cost of owner-

ship, on demand services etc. Central to these issues lies the establishment of an effective

load balancing algorithm.

2.6 Conclusion

This chapter gives a general idea about the basic concepts of cloud computing along

with the services provided by cloud computing systems.

13

Load Balancing

Goals of Load balancing

Types of Load balancing algorithms

Dynamic Load balancing algorithm

Policies or Strategies in dynamic load balancing

3. Load Balancing

3 Load Balancing

3.1 Introduction

It is a process of reassigning the total load to the individual nodes of the collective

system to make resource utilization effective and to improve the response time of the job,

simultaneously removing a condition in which some of the nodes are over loaded while

some others are under loaded. A load balancing algorithm which is dynamic in nature does

not consider the previous state or behavior of the system, that is, it depends on the present

behavior of the system. The important things to consider while developing such algorithm

are : estimation of load, comparison of load, stability of different system, performance of

system, interaction between the nodes, nature of work to be transferred, selecting of nodes

and many other ones [4] . This load considered can be in terms of CPU load, amount of

memory used, delay or Network load.

3.2 Goals of Load balancing

As given in [4], the goals of load balancing are :

• To improve the performance substantially

• To have a backup plan in case the system fails even partially

• To maintain the system stability

• To accommodate future modification in the system

3.3 Types of Load balancing algorithms

Depending on who initiated the process, load balancing algorithms can be of three

catagories as given in [4]:

• Sender Initiated: If the load balancing algorithm is initialised by the sender

• Receiver Initiated: If the load balancing algorithm is initiated by the receiver

15

3.4 Dynamic Load balancing algorithm

• Symmetric: It is the combination of both sender initiated and receiver initiated

Depending on the current state of the system, load balancing algorithms can be di-

vided into 2 catagories as given in [4]:

• Static: It doesnt depend on the current state of the system. Prior knowledge of the

system is needed

• Dynamic: Decisions on load balancing are based on current state of the system. No

prior knowledge is needed. So it is better than static approach.

Here we will discuss on various dynamic load balancing algorithms for the clouds of

different sizes.

3.4 Dynamic Load balancing algorithm

In a distributed system, dynamic load balancing can be done in two different ways:

distributed and non-distributed. In the distributed one, the dynamic load balancing algo-

rithm is executed by all nodes present in the system and the task of load balancing is shared

among them. The interaction among nodes to achieve load balancing can take two forms:

cooperative and non-cooperative [4]. In the first one, the nodes work side-by-side to achieve

a common objective, for example, to improve the overall response time, etc. In the second

form, each node works independently toward a goal local to it, for example, to improve

the response time of a local task. Dynamic load balancing algorithms of distributed nature,

usually generate more messages than the non-distributed ones because, each of the nodes

in the system needs to interact with every other node. A benefit, of this is that even if one

or more nodes in the system fail, it will not cause the total load balancing process to halt, it

instead would effect the system performance to some extent. Distributed dynamic load bal-

ancing can introduce immense stress on a system in which each node needs to interchange

status information with every other node in the system. It is more advantageous when most

of the nodes act individually with very few interactions with others.

16

3.5 Policies or Strategies in dynamic load balancing

In non-distributed type, either one node or a group of nodes do the task of load

balancing. Non-distributed dynamic load balancing algorithms can take two forms: cen-

tralized and semi-distributed. In the first form, the load balancing algorithm is executed

only by a single node in the whole system: the central node. This node is solely responsible

for load balancing of the whole system. The other nodes interact only with the central node.

In semi-distributed form, nodes of the system are partitioned into clusters, where the load

balancing in each cluster is of centralized form. A central node is elected in each cluster

by appropriate election technique which takes care of load balancing within that cluster.

Hence, the load balancing of the whole system is done via the central nodes of each cluster

[4].

Centralized dynamic load balancing takes fewer messages to reach a decision, as the

number of overall interactions in the system decreases drastically as compared to the semi-

distributed case. However, centralized algorithms can cause a bottleneck in the system at

the central node and also the load balancing process is rendered useless once the central

node crashes. Therefore, this algorithm is most suited for networks with small size.

3.5 Policies or Strategies in dynamic load balancing

There are 4 policies [4]:

• Transfer Policy: The part of the dynamic load balancing algorithm which selects

a job for transferring from a local node to a remote node is reffered to as Transfer

policy or Transfer strategy.

• Selection Policy: It specifies the processors involved in the load exchange (processor

matching)

• Location Policy: The part of the load balancing algorithm which selects a destination

node for a transferred task is reffered to as location policy or Location strategy.

• Information Policy: The part of the dynamic load balancing algorithm responsible

for collecting information about the nodes in the system is reffered to as Information

policy or Information strategy.

17

3.6 Conclusion

Figure 8: Interaction among components of a dynamic load balancing algorithm (adopted
from [4])

3.6 Conclusion

This chapter explains the concept of load balancing, types of load balancing algo-

rithms, general idea about dynamic load balancing algorithms and the different policies

that can be used in it.

18

Distributed Load Balancing for the Clouds

Honeybee Foraging Algorithm

Biased Random Sampling

Active Clustering

4. Distributed Load Balancing for the Clouds

4 Distributed Load Balancing for the Clouds

4.1 Introduction

In complex and large systems, there is a tremendous need for load balancing. For

simplifying load balancing globally (e.g. in a cloud), one thing which can be done is,

employing techniques would act at the components of the clouds in such a way that the

load of the whole cloud is balanced. For this purpose, we are discussing three types of

solutions which can be applied to a distributed system [7]: honeybee foraging algorithm, a

biased random sampling on a random walk procedure and Active Clustering.

4.2 Honeybee Foraging Algorithm

This algorithm is derived from the behavior of honey bees for finding and reaping

food. There is a class of bees called the forager bees which forage for food sources, upon

finding one, they come back to the beehive to advertise this using a dance called waggle

dance. The display of this dance, gives the idea of the quality or quantity of food and also its

distance from the beehive. Scout bees then follow the foragers to the location of food and

then began to reap it. They then return to the beehive and do a waggle dance, which gives

an idea of how much food is left and hence results in more exploitation or abandonment of

the food source.

In case of load balancing, as the webservers demand increases or decreases, the ser-

vices are assigned dynamically to regulate the changing demands of the user. The servers

are grouped under virtual servers (VS), each VS having its own virtual service queues. Each

server processing a request from its queue calculates a profit or reward, which is analogous

to the quality that the bees show in their waggle dance. One measure of this reward can be

the amount of time that the CPU spends on the processing of a request. The dance floor in

case of honey bees is analogous to an advert board here. This board is also used to advertise

the profit of the entire colony.

Each of the servers takes the role of either a forager or a scout. The server after

processing a request can post their profit on the advert boards with a probability of pr. A

20

4.2 Honeybee Foraging Algorithm

server can choose a queue of a VS by a probability of px showing forage/explore behavior,

or it can check for advertisements (see dance) and serve it, thus showing scout behavior. A

server serving a request, calculates its profit and compare it with the colony profit and then

sets its px. If this profit was high, then the server stays at the current virtual server; posting

an advertisement for it by probability pr. If it was low, then the server returns to the forage

or scout behavior.

Figure 9: Algorithm used in Honey bee technique (adopted from [7])

Figure 10: Server Allocations by Foraging in Honey bee technique (adopted from [7])

21

4.3 Biased Random Sampling

4.3 Biased Random Sampling

Here a virtual graph is constructed, with the connectivity of each node (a server is

treated as a node) representing the load on the server. Each server is symbolized as a node

in the graph, with each indegree directed to the free resources of the server.

Regarding job execution and completion,

• Whenever a node does or executes a job, it deletes an incoming edge, which indicates

reduction in the availability of free resource.

• After completion of a job, the node creates an incoming edge, which indicates an

increase in the availability of free resource.

The addition and deletion of processes is done by the process of random sampling.

The walk starts at any one node and at every step a neighbor is chosen randomly. The

last node is selected for allocation for load. Alternatively, another method can be used for

selection of a node for load allocation, that being selecting a node based on certain criteria

like computing efficiency, etc. Yet another method can be selecting that node for load

allocation which is underloaded i.e. having highest in degree. If b is the walk length, then,

as b increases, the efficiency of load allocation increases. We define a threshold value of b,

which is generally equal to log n experimentally.

A node upon receiving a job, will execute it only if its current walk length is equal

to or greater than the threshold value. Else, the walk length of the job under consideration

is incremented and another neighbor node is selected randomly. When, a job is executed

by a node then in the graph, an incoming edge of that node is deleted. After completion of

the job, an edge is created from the node initiating the load allocation process to the node

which was executing the job.

Finally what we get is a directed graph. The load balancing scheme used here is fully

decentralized, thus making it apt for large network systems like that in a cloud.

22

4.4 Active Clustering

4.4 Active Clustering

Active Clustering works on the principle of grouping similar nodes together and

working on these groups. The process involved is:

• A node initiates the process and selects another node called the matchmaker node

from its neighbors satisfying the criteria that it should be of a different type than the

former one.

• The so called matchmaker node then forms a connection between a neighbor of it

which is of the same type as the initial node.

• The matchmaker node then detaches the connection between itself and the initial

node.

The above set of processes is followed iteratively.

4.5 Conclusion

This chapter gives an overall description of various distributed load balancing algo-

rithms that can be used in case of clouds.

23

Proposed Work

5. Proposed Work

5 Proposed Work

5.1 Introduction

The time required for completing a task with in one process is very high. So the task

is divided into no. of sub-tasks and each sub-task is given one one job. Let the task S is di-

vided into no. of sub-tasks S1,S2,S3...Sn. Out of these some are executed sequentially and

some are executed parallely. So the total time period for completing the task decreases and

hence the performance increases. These sub-tasks can be represented in a graph structure

known as state diagram. An example is given below.

Figure 11: State Diagram

S1 is executed first. S2,S3,S4 and S5 can be executed parallely during the same time

slice. S18 requires the execution of S6 and S7 both, but S19 requires the execution of S8

and so on for all the sub tasks as shown in the state diagram. Our aim is to execute these

tasks in different nodes of a distributed network so that the performance can be enhanced.

25

5.2 Description

5.2 Description

The distributed network may follow different topologies. The tasks are distributed

over the whole network. One topological network connects with the other through a gate-

way. One of the physiacal topologies forming a cloud is shown in the diagram12.

This distributed network is a cloud, because some of the nodes are Mobile clients,

some of them are Thin and some are Thick clients. Some of them are treated as masters and

some are treated as slaves. There are one or more datacenters distributed among the various

nodes, which keeps track of various computational details. Our aim is to apply the Divisible

Load Scheduling Theory(DLT) proposed in [9] for the clouds of different sizes and analyze

different performance parameters for different algorithms under DLT and compare them.

Figure 12: A cloud showing different topologies

5.3 Conclusion

This chapter explains our proposed work.

26

Divisible Load Scheduling Theory in Clouds

System Model

Measurement and Reporting Time

6. Divisible Load Scheduling Theory in Clouds

6 Divisible Load Scheduling Theory in Clouds

6.1 Introduction

Divisible load scheduling theory (DLT) in case of clouds is an optimal division of

loads among a number of master computers, slave computers and their communication

links. Our objective is to obtain a mimimal partition of the processing load of a cloud con-

nected via different communication links such that the entire load can be distributed and

processed in the shortest possible amount of time [9].

The whole Internet can be viewed as a cloud of many connection-less and connection-

oriented services. The concept of load balancing in Wireless sensor netwoks (WSN) pro-

posed in [9] can also be applied to clouds as WSN is analogous to a cloud having no. of

master computers (Servers) and no. of slave computers(Clients).

The slave computers are assumed to have a certain measurement capacity. We as-

sume that computation will be done by the master computers, once all the measured data is

gathered from corresponding slave computers. Only the measurement and communication

times of the slave computers are considered and the computation time of the slave comput-

ers is neglected. Here we consider both heterogeneous and homogeneous clouds. That is

the cloud elements may possess different measurement capacities, and communication link

speeds or the same measurement capacities, and communication link speeds. One slave

computer may be connected to one or more master computers at a certain instant of time.

In DLT in case of clouds, an arbitrarily divisible load without having any previous

relations is divided and first distributed among the various master computers (for simplicity

here the load is divided equally betwwen the master computers) and the each master com-

puter distributes the load among the corresponding slave computers so that the entire load

can be processed in shortest possible amount of time. An important reason for using DLT

is its flexibility, tractability, data parallelism, computational difficulties[9].

28

6.2 System Model

6.2 System Model

The cloud that we have considered here is a single level tree (star) topology consisting

of K no. of master computers and each communicating N no. of slave computers as shown

in Fig 13.

Figure 13: K no. of master computers each joing N no. of slave computers in single level
Tree network (STAR Topology)

It is assumed that the total load considered here is of the arbitrarily divisible kind that can be

partitioned into fractions of loads to be assigned to all the master and slave computers in the

cloud. In this case each master computer first assigns a load share to be measured to each of

the corresponding N slave computers and then receives the measured data from each slave.

Each slave then begins to measure its share of the load once the measurement instructions

from the respective master have been completely received by each slave. We also assume

that computation time is negligible compared with communication and measurement time.

6.2.1 Parameters, Notation and Definitions

βki The fraction of load that is assigned to a slave i by master k.

aki A constant that is inversely proportional to the measuring speed of slave i in the

cloud.

bki A constant that is inversely proportional to the communication speed of link i in the

cloud.

Tms Measurement intensity constant. This is the time it takes the ith slave to measure

the entire load when aki = 1. The entire assigned measurement load can be measured on the

29

6.3 Measurement and Reporting Time

ith slave in time akiTms.

Tcm Communication intensity constant. This is the time it takes to transmit all of the

measurement load over a link when bki = 1. The entire load can be transmitted over the ith

link in time bkiTcm.

Tki The total time that elapses between the beginning of the scheduling process at t =0

and the time when slaver i completes its reporting to the maste k, i =0,1,... ,N. This includes,

in addition to measurement time, reporting time and idle time.

Tfk This is the time when the last slave of the master k finishes reporting (finish time or

make-span).

Tfk = max(Tk1 ,Tk2,Tk3, ...,TkN).

Tf This is the time when the last master receives the measurement from its last slave.

Tf = max(Tf1,Tf2,Tf3, ...,TfN).

Some of the above used parameters and notations are taken from [9]. These param-

eters were already used for finding closed form equations for load balancing for Wireless

Sensor Networks(WSN) in [9].

6.3 Measurement and Reporting Time

6.3.1 When Measurement starts Simultaneously and Reporting is done sequentially

Initially when time t = 0, all the slaves are idle and the master computers start to

communicate with the first slave of the corresponding slaves in the cloud. By time t = t1,

each slave will receive its instructions for measurement from the corresponding master as

shown in fig 14. It is assumed that after measurements are made, only one slave will report

back to the root master at a time (or we can say only a single link exists between them).

The slaves here receive a fraction of load from their corresponding master sequen-

tially and the computation will start after each slave completely receives its load share.

30

6.3 Measurement and Reporting Time

Figure 14: Timing diagram for single level tree network with a master computer and N
slaves which report sequentially(adopted from [9])

Let us consider the first master computer and its corresponding group of slaves. From the

definition of Tki , we can write

T11 = t1 +β11a11Tms +β11b11Tcm (1)

T12 = t1 +β12a12Tms +β12b12Tcm (2)

.

.

.

T1N = t1 +β1Na1NTms +β1Nb1NTcm (3)

31

6.3 Measurement and Reporting Time

The total measurement load originating at all the master computers is assumed to be

normalized to a unit load. Thus each master computer will handle (1/K) load. So

β11 +β12 +β13 + ...+β1N−1 +β1N = 1/K (4)

Based on the timing diagram, we can write

β11a11Tms = β12a12Tms +β12b12Tcm (5)

β12a12Tms = β13a13Tms +β13b13Tcm (6)

.

.

.

β1N−2a1N−2Tms = β1N−1a1N−1Tms +β1N−1b1N−1Tcm (7)

β1N−1a1N−1Tms = β1Na1NTms +β1Nb1NTcm (8)

A general expression for the above set of equations is

β1i = s1iβ1i−1 (9)

where s1i = a1i−1Tms/(a1iTms +b1iTcm)andi = 2,3, ...,N. The above recursive equation for

β1i can be rewritten in terms of β11 only as

β1i =
i

∏
j=2

s1 jβ11 (10)

Now using the above sets of equations and the normalization equation, one can solve

for β11 as

β11 +
N

∑
i=2

i

∏
j=2

s1 jβ11 = 1/K (11)

32

6.3 Measurement and Reporting Time

So β11 can be written as

β11 =
1

K(1+∑
N
i=2 ∏

i
j=2 s1 j)

(12)

Putting in eq-(10),

β1i =
∏

i
j=2 s1 j

K(1+∑
N
i=2 ∏

i
j=2 s1 j)

(13)

where i =2,3,4,... ,N.

The minimum measuring and reporting time of the network will then be given as

Tf1 = t1 +
(a11Tms +b11Tcm)

K(1+∑
N
i=2 ∏

i
j=2 s1 j)

(14)

Similarly we can obtain the generalised equation for master computer r as

Tfr = t1 +
(ar1Tms +br1Tcm)

K(1+∑
N
i=2 ∏

i
j=2 sr j)

(15)

In case of homogeneous networks (same measurement capacities and link speeds),

we can write

s11 = s12 = s13 = ...= s1N−1 = s1

a11 = a12 = a13 = ...= a1N = a1

b11 = b12 = b13 = ...= b1N = b1

So, eq-(5) becomes

β11(1+ s1 + s2
1 + ...+ sN−2

1 + sN−1
1) = 1/K (16)

where s1 = a1Tms/(a1Tms +b1Tcm).

Simplifying the above equation,

β11 =
1− s1

K(1− sN
1)

(17)

The master computer 1 will use the value of β11 to obtain the amount of data that

has to be measured by the rest of the N-1 slaves corresponding to it by using the following

33

6.3 Measurement and Reporting Time

equation :

β1i = β11si−1
1 (18)

where i =2,3,4,... ,N.

The minimum measuring and reporting time of the homogeneous network will then

be given as

Tf1 = t1 +
(a1Tms +b1Tcm)(1− s1)

K(1− sN
1)

. (19)

This measurement and reporting time of the network approaches t1 +(b1Tcm)/K as

N approaches infinity. So the reporting time supresses the measurement time when the no.

of slaves to a corresponding master approaches infinty. Similarly we can obtain the above

expression for rest of the master computers.

6.3.2 When the Measurement starts Simultaneously and Reporting ends Simultane-

ously

Here each of N slave computers corresponding to a master computer in the cloud fin-

ish reporting at the same time. The cloud will have the same report finishing time for each

slave corresponding to a master. That is each slave has a separate channel to its master as

shown in the timing diagram of the network.

In this case the slaves receive their share of load from the master concurrently and

start computation after completely receiving their share of load. Each slave begins to mea-

sure its share of the load at the moment when all finish receiving their measurement instruc-

tions from the corresponding master. From the definition of Tki , we can write

T11 = t1 +β11a11Tms +β11b11Tcm (20)

T12 = t1 +β12a12Tms +β12b12Tcm (21)

.

.

.

34

6.3 Measurement and Reporting Time

Figure 15: Timing diagram for a master computer and N slaves with simultaneous reporting
termination (adopted from [9])

T1N = t1 +β1Na1NTms +β1Nb1NTcm (22)

The total measurement load originating at all the master computers is assumed to be

normalized to a unit load. Thus each master computer will handle (1/K) load. So

β11 +β12 +β13 + ...+β1N−1 +β1N = 1/K (23)

In this case since all processors stop reporting at the same time, we have T11 = T12 =

T13 = ...= T1N .

Based on the timing diagram, we can write for master computer 1 and its slaves,

β11r11 = β12r12 (24)

β12r12 = β13r13 (25)

35

6.3 Measurement and Reporting Time

.

.

.

β1N−2r1N−2 = β1N−1r1N−1 (26)

β1N−1r1N−1 = β1N r1N (27)

where r1i = a1iTms +b1iTcm, i =1,2,... ,N.

Puuting the above equations in eq.-(24),

β11 =
1

K(1+ r11 ∑
N
i=2

1
r1i
)

(28)

So we can write β1i as

β1i =

1
r1i

K(∑N
i=1

1
r1i
)

(29)

From the above expression, it can be easily seen that the share of each slave cor-

responding to its master will entirely depend on the combined speed of the measurement

and communication of that slave. The minimum measurement and reporting time of the

network will then be given as

Tf1 = T11 = t1 +
(a11Tms +b11Tcm)

1
r11

K(∑N
i=1

1
r1i
)

(30)

Similarly for the master computer p, the generalised equation will be

Tfp = T1p = t1 +
(ap1Tms +bp1Tcm)

1
rp1

K(∑N
i=1

1
rpi
)

(31)

For the case of a homogeneous network, each slave corresponding to a master in the

network shares the load equally. That is, β1i =1/(KN), for i =1,2,3,... ,N. So, the minimum

36

6.4 Conclusion

measuring and reporting time of the network will be

Tf1 = t1 +
a1Tms +b1Tcm

KN
(32)

Similarly we can obtain the above expression for rest of the master computers.

6.4 Conclusion

This chapter describes the concept of divisible load scheduling theory and how it

can be applied in case of clouds. It also explains the proposed system model, the various

notations used and analysis of measurement and reporting time for the two cases that we

have considered.

37

Performance Evaluation

When Measurement starts Simultaneously and Reporting is done sequentially

When the Measurement starts Simultaneously and Reporting ends Simultaneously

7. Performance Evaluation

7 Performance Evaluation

7.1 Introduction

Here we consider the following two cases. In the first case the measurement and re-

porting time is plotted against the number of slaves corresponding to a master, where the

link speed b is varied and measurement speed a is fixed. In the second case, the measure-

ment and reporting time is plotted against the number of slaves corresponding to master,

where link speed b is fixed and measurement speed a is varied.

7.2 When Measurement starts Simultaneously and Reporting is done

sequentially

In Fig. 16, the measurement/report time is plotted against the number of homoge-

neous slaves corresponding to a master when the value of the communication speed b is

varied from 0 to 1 at an interval of 0.3 and the value of measurement speed a is fixed to be

1.5. In all cases Tcm =1 and Tms = 1. From the figure we can infer that the faster the commu-

nication speed, the smaller the measurement/report time and the measurement/report time

levels off after a certain number of slaves for each performance curve. No. of master com-

puters in the cloud doesn’t have significant contribution to the measurement/report time of

a single master.

Fig. 17 shows for the case when the inverse measuring speed a is varied from 1 to

2 at an interval of 0.3 and the inverse link speed b is fixed to be 0.2. The result confirms that

the measurement time approaches b1Tcm, which in this case is 0.2, as N approaches infinity.

39

7.2 When Measurement starts Simultaneously and Reporting is done sequentially

Figure 16: Measurement/report time versus number of slaves corresponding to master and
variable inverse link speed b for single level tree network with master and sequential re-
porting time.

Figure 17: Measurement/report time versus number of slaves corresponding to master and
variable inverse measuring speed a for single level tree network with master and sequential
reporting time.

40

7.3 When the Measurement starts Simultaneously and Reporting ends Simultaneously

7.3 When the Measurement starts Simultaneously and Reporting ends

Simultaneously

In Fig. 18, the measurement/report time is plotted against the number of slaves cor-

responding to a master for the simultaneous measurement start simultaneous reporting ter-

mination case. The value the inverse link speed b is varied from 0 to 1 at an interval of 0.3

while the inverse measuring speed a is fixed to be 1.5. In this case the minimum finish time

decreases as the number of slaves under a master in the network is increased. This assumes

that the communication speed is fast enough to distribute the load to all the slaves under a

master.

Figure 18: Measurement/report time versus number of slaves under a master and variable
inverse link speed b for single level tree network with master

41

7.4 Conclusion

Figure 19: Measurement/report time versus number of slaves under a master and variable
inverse measuring speed a for single level tree network with master

Fig. 19 shows for the case when the inverse measuring speed a is varied from 1

to 2 at an interval of 0.3 and the inverse link speed b is fixed to be 0.2.

7.4 Conclusion

This chapter evalutes the performance of the two cases that we have considered in

this paper. It also shows the simulation results that we have got.

42

Conclusion and Future Work

Conclusion

Future Work

8. Conclusion and Future Work

8 Conclusion and Future Work

8.1 Conclusion

Figure 20 shows the comparision between the measurement/reporting time of both

the approaches for the same no. of slave computers corresponding to the same master. Here

the inverse link speed b is taken as 1 and the inverse measurement speed a is 0.5 for both the

cases. Number of master computers is taken to be constant equal to 50. The plot shows that

the measurement/reporting time is smaller in case of simultaneous reporting as compared to

sequential reporting. It is because in case of sequential reporing, some of the slaves recieve

almost zero load from its master. Number of effective slaves in this case is less as compared

to the simultaneous reporting case. Hence with increase in no. of slaves with respect to a

master, the finishing time remains almost same in case of sequential reprting whereas in

case of simultaneous reporting, the finishing time decreases for the increase in no. of slaves

corresponding to a single master. The grpah shows that the finishing time can be improved

by increasing the number of slaves under a master computer in a cloud only to some extent

before saturation in case of sequential measurement and sequential reporting strategy. But

finishing time can be decreased significantly in case of simultaneous measurement start and

simultaneous reporting termination by increasing the no. of slaves under a single master

computer.

Till now we have discussed on basic concepts of Cloud Computing and Load balanc-

ing and studied some existing load balancing algorithms, which can be applied to clouds.

In addition to that, the closed-form solutions for minimum measurement and reporting time

for single level tree networks with different load balancing strategies were also studied.

The performance of these strategies with respect to the timing and the effect of link and

measurement speed was studied. A comparison is also made between different strategies.

44

8.2 Future Work

Figure 20: Comparison of Measurement/report time versus number of slaves under a single
master under the same conditions of link speed and measurement speed for both cases of
reporting

8.2 Future Work

Cloud Computing is a vast concept and load balancing plays a very important role in

case of Clouds. There is a huge scope of improvement in this area. We have discussed only

two divisible load scheduling algorithms that can be applied to clouds, but there are still

other approaches that can be applied to balance the load in clouds. The performance of the

given algorithms can also be increased by varying different parameters.

45

REFERENCES REFERENCES

References

[1] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Cloud Computing A Practical Ap-

proach, TATA McGRAW-HILL Edition 2010.

[2] Martin Randles, David Lamb, A. Taleb-Bendiab, A Comparative Study into Distributed

Load Balancing Algorithms for Cloud Computing, 2010 IEEE 24th International Con-

ference on Advanced Information Networking and Applications Workshops.

[3] Mladen A. Vouk, Cloud Computing Issues, Research and Implementations, Proceed-

ings of the ITI 2008 30th Int. Conf. on Information Technology Interfaces, 2008, June

23-26.

[4] Ali M. Alakeel, A Guide to Dynamic Load Balancing in Distributed Computer Sys-

tems, IJCSNS International Journal of Computer Science and Network Security,

VOL.10 No.6, June 2010.

[5] http://www-03.ibm.com/press/us/en/pressrelease/22613.wss

[6] http://www.amazon.com/gp/browse.html?node=201590011

[7] Martin Randles, Enas Odat, David Lamb, Osama Abu- Rahmeh and A. Taleb-Bendiab,

”A Comparative Experiment in Distributed Load Balancing”, 2009 Second Interna-

tional Conference on Developments in eSystems Engineering.

[8] Peter S. Pacheco, ”Parallel Programming with MPI”, Morgan Kaufmann Publishers

Edition 2008

[9] Mequanint Moges, Thomas G.Robertazzi, ”Wireless Sensor Networks: Scheduling for

Measurement and Data Reporting”, August 31, 2005

46

