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Abstract

Bandwidth allocation is a vital issue in the emerging MPLS technology in the area of

computer networking. There is need to ensure an efficient and congestion free traffic

through suitable bandwidth allocation. Though some algorithms exist to address

this issue, it is felt that more optimized algorithms can be beneficial. “Weighted

Max-Min congestion control algorithm” [1] by Marty and Ali, proposed a basis of

congestion control. The “Weighted Proportional fair rate allocation algorithm”[2]

and“Adaptive Bandwidth Allocation Algorithm”[3] addressed the issue of congestion

control in MPLS networks. The above approaches used the concept of predefined

weights to the LSPs which means that bandwidth is allocated according to some

presumptions. This may lead to some amount of unused bandwidth and a situation

may arise where bandwidth is allocated to an LSP which doesnt utilize it fully but

there exists another LSP which falls short of its current bandwidth requirement.

To account for the changing bandwidth needs and also the current datarate of the

LSPs, this paper proposes a framework for fair bandwidth allocation to the LSPs in

a more optimized manner. In addition to the algorithm, we include a simulation of

a static bandwidth allocation approach using RSVP-TE with MPLS in OMNET++

IDE integrated with INET framework. We compare the parameter of queue length

for all interfaces of all LSRs in the network and for a particular interface at different

datarate values. We show from our observations that with increasing datarate, the

average queue length gradually decreases.
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Chapter 1

INTRODUCTION

Multiprotocol Label Switching (MPLS) is an emerging technology in the area of com-

puter networking. It has vital applications in telecommunication networks, optical

switching networks and Virtual Private Networks (VPN)[11]. It makes use of labels

to create virtual links for data transmission between network nodes. It is a packet

switching technology having features of circuit switching due to the introduction of

the virtual channels using labels. The connection oriented feature makes the trans-

mission faster through speeding up of the address lookup during routing. Nowadays,

IP backbones are made MPLS-capable to make use of this feature[11].

The packets of various network protocols are similarly treated in the MPLS networks.

Every packet entering the MPLS cloud is encapsulated into an MPLS packet with an

additional header containing the label. However for packets already supporting the

virtual circuits, e.g. Asynchronous Transmission Mode (ATM), the label is included

in the Layer-2 header. In fact, MPLS is an advancement over the earlier used net-

working technologies viz. ATM and Frame Relay[11]. MPLS is conceptualized based

on the benefits (e.g. connection-oriented services) and weaknesses (e.g. high overhead

cost) of ATM.

OSI model places MPLS layer between Data Link Layer and Network Layer[5].

9
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Figure 1.1: MPLS Layer in OSI Model

1.1 Structure of an MPLS Cloud

An MPLS cloud consists of various routers that support MPLS and are known as Label

Switching Routers (LSRs)[5]. The LSRs which are in the periphery of the MPLS cloud

are called Edge LSRs or Label Edge Routers(LERs) and must be capable of accepting

packets from all types of networks. The end-to-end virtual path that is set up with

the use of labels is known as LSP(Label switched path)[11]. An LSP starts at the

ingress node and terminates at the egress node passing through several intermediate

routers.

1.2 Forwarding Equivalence Class(FEC)

An FEC is a method for categorizing packets based on parameters like destination

address, source address, TCP/UPD port, class of service or application used[5]. De-

pending on the FEC(Forwarding Equivalence Class) a packet belongs to, the labels

are assigned. A label is a short identifier used to define a path (LSP) within an MPLS

network for different FECs[5]. It can be designated by an integer or string. This type
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Figure 1.2: Structure of MPLS Cloud

of classification makes it easy to make forwarding decisions as all packets belonging

to the same FEC are forwarded on the same LSP. The assignment of labels based on

the classification is done at the LERs.

For example, we can take all packets with destination address as 138.120.6/24-xxxx

to belong to one FEC named‘A’. All packets destined for the above set of addresses

are sent over the same LSP, designated by the outgoing label and outgoing interface

in the forwarding table.

1.3 Forwarding Table of an LSR/LER

The LER forwarding table has fields viz. source address, destination address, FEC

name, incoming interface, incoming label, outgoing label and outgoing interface[5].

The incoming label field in LERs may be set to NULL in cases where the packet has

just entered the MPLS cloud through the LER.

This is the structure of the Forwarding table with the most important fields high-

Figure 1.3: LSR Forwarding Table
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lighted.

1.4 MPLS Header

As mentioned in [7], the structure of MPLS header in MPLS packet has the following

structure.

Figure 1.4: MPLS Header format

Label stores the actual value of the label

CoS Class of service applied to the packet which helps in deciding the priority of the

packet while forwarding or discarding the packet or queuing it.

S Stack field which is set for the end of label stack[5]

TTL provides IP TTL functionality

1.5 Working of a simple MPLS network

An edge LSR inserts an MPLS label to the header of an incoming packet depending

on what FEC class the packet belongs to. At every intermediate LSR for an LSP, the

incoming interface and interface incoming label are matched in the forwarding table.

The outgoing label in the corresponding entry then either replaces the older label in

the packet header or is simply pushed into the header to form a label stack. The

outgoing interface in the same entry determines which outgoing line the packet has to

follow to reach its destination through the chosen LSP[5]. At the packets destination

node which happens to be an LER, the label or the stack of labels are popped out

and the header is removed. Here, the original packet that entered the MPLS cloud is

recovered and is sent to the destination network. Hence, within the MPLS network,
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the original packet header is not examined. The packet remains intact within the

MPLS cloud. Also, the FEC field of the forwarding table is used only at the LERs to

determine the corresponding LSP. It has no function in the intermediate routers.

Figure 1.5: Packet Forwarding in MPLS Network

1.6 Weight of an LSP

Several LSPs can be used to connect a pair of network nodes. These LSPs are as-

signed weights which determine the priority of the LSP. Data transmission between

two nodes first follows the LSP with highest weight. On failure of this LSP, the trans-

mission follows the LSPs in the decreasing order of their weights[8].
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Chapter 2

PROBLEM STATEMENT AND

EARLIER APPROACHES

Here, we take up the issue of bandwidth allocation in an MPLS network. The problem

statement goes as follows:

In an MPLS network, how can dynamic information about available resources be

passed among routers, that will help in the allocation of traffic to the LSPs so that

each node knows where the traffic must be forwarded next to avoid congestion paths.

In the MPLS network, several LSPs may share the same link as shown in the following

figure. LSP1 and LSP2 share the link AB, while LSP3 and LSP2 share the link CE.The

capacity of the link has to be fairly distributed among the LSPs so that each of them

may be used at any point of time. Theoretically, an LSP having the higher weight

should be given a greater share of link capacity because it is likely to be used prior to

other alternatives. A fair bandwidth allocation strategy in [1 ] and [2] was proposed

earlier where the capacity is distributed in proportion of the weight carried by an

LSP. This strategy conforms to the theoretical requirement.

The Weighted proportional fair rate allocation algorithm proposed in [2] makes

use of the above mentioned fair bandwidth allocation strategy and a two-way feedback

control mechanism to control the inflow of data at the ingress router. The algorithm

intelligently calculates the amount of bandwidth to be permitted into the MPLS net-

work for each LSP.

The One-way Feedback control based adaptive bandwidth allocation algorithm, in [3]

15



16 CHAPTER 2. PROBLEM STATEMENT AND EARLIER APPROACHES

Figure 2.1: Multiple LSPs sharing a single link

suggests a mechanism by which the ingress router knows how much bandwidth is to

be allowed to each LSP passing through it to avoid congestion. It is dynamic but

will show the most effective result only when all the LSPs are in use simultaneously.

When only a few of them are in use, some bandwidth may be wasted while other

LSPs may require more. To avoid this, we may allow the deviation from this collision

free kind of smechanism and permit more traffic if bandwidth is available. The above

algorithm may be combined with the AIMD technique in MPLS as in [10] to add the

benefits of the two. Here it is assumed that bandwidth allocation is made on demand

and not statically.



Chapter 3

LITERATURE REVIEW

3.1 Generalized MPLS

Generalized multiprotocol label switching as described in [5], which is also called Mul-

tiprotocol Lambda switching is a multi-purpose control plane technique that supports

not only packet switching but also time, wavelength and space domain switching. Gen-

erally in connection-less networks packet forwarding is performed in an independent

manner at each router present in the network and relies on the destination address

carried in the packet. This packet forwarding technique only supports multi-point to

point path abstraction. However, recently additional functionality has been added to

IP routing architecture and protocols under the umbrella of MPLS. One of the main

aspects of MPLS is the addition of point to point path abstraction. This is done by

the concept of label switched paths(LSP).The connectivity abstraction supports con-

straint based routing which in turn is the basis for Generalised Multiprotocol Label

Switching[5].

One of the applications of MPLS is constraint based routing, which is often used to

compute paths that satisfy certain requirements to a set of constraints. Constraint

based routing is used for Traffic Engineering and Fast Reroute. MPLS constraint-

based routing allows nodes to exchange information not only about network topology,

but also about availability of resources and administrative constraints. This infor-

mation is used as the input to any constraint-based path computation program that

computes paths on the above mentioned parameters. After finding an appropriate

path signaling protocols such as Resource Reservation Protocol with Traffic Engineer-

17
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ing (RSVP-TE) is used to initiate a label forwarding system across the path. Recent

improvements have been done to enable using MPLS constraint based routing in op-

tical cross connects. This is an important step in the integration of optical network

and data architectures. Use of MPLS as the basis for establishment of connections

and a common control plane helps addressing several issues in network evolution.

Firstly, network operations and management are simplified by using a common con-

trol plane, which ultimately reduces operational costs. Secondly, a common control

plane provides a huge range of deployment scenarios. This allows us to choose the

peer or overlay deployment models to be based and modeled on business and engi-

neering considerations, instead of being restricted by stratification of sub-networks

into technology domains. Also, development of a common control plane minimizes

the risks generated with protocol development and reduces the time needed to market

for enhanced optical switching equipment[5].

Some additional features have been added to GMPLS to manage some of the draw-

backs in MPLS control plane. These include inability to manage connection in a

bidirectional manner in one request and lack of mechanisms to protect bandwidth

which could be used for low-priority traffic. In the MPLS framework a link or node

failure could only be handled locally or across the nodes of the path, however in the

GMPLS framework additional functionalities, such as ability to report to a predefined

alarm centre in case of a failure which impacts service connections, have been added.

Enhancements to Signaling

In GMPLS, we need similar devices as start and end points of LSPs. MPLS is designed

to ensure that the data plane is logically distinct from the control plane. GMPLS

extends this to incorporate the data plane being physically distinct from the control

plane. GMPLS is an example of a scalable, generalized, and manageable architecture.

Hierarchical LSP Setup

GMPLS uses the concept of hierarchical LSPs. This uses the concept of tunneling.

Here, a new LSP is tunneled inside a pre-existing higher order LSP, such that the pre-

existing link acts as a link along the new LSP path. Hence, lower order LSPs often
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trigger the formation of higher order ones. The responsibility for creating higher order

LSPs and aggregating lower order ones is on the nodes at the border of the two regions

involved.

Bi-direction LSP Setup

Many optical networking service providers require bidirectional LSPs. GMPLS sup-

ports bi-directional LSPs. It is taken for granted that both sides have the same traffic

engineering requirments. There is an initiator and terminator node. The initiator

node refers to the source node and the terminator node refers to the destination

node. In GMPLS there is only one initiator and terminator node. In MPLS , since we

can only set up unidirectional connections, to set up a virtual bidirectional connection,

two unidirectional connections are set up in opposite directions. Thus, there are two

initiator and terminator nodes each. This method however has a lot of disadvantages

compared to the bidirectional LSP concept in the GMPLS framework paradigm.

GMPLS will be an integral part of the next generation of optical and data networks.

It forms the important link between IP and photonic layer. The functionality provided

by GMPLS allows the operators to scale applications well beyond current limitations

in the network field. GMPLS provides signaling capabilities which will allow providers

to build high capacity architecture which will allow fast provisioning of connection

services. Also, the restoration capabilities of GMPLS will enable efficient addressing

of network survivability.
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3.2 Creating Label Switched Paths in MPLS net-

work

3.2.1 Constraint Based Routing

Constraint based routing [4] finds paths which are subject to various constraints such

as bandwidth allocation and administrative policies. Since it considers more than just

network topology while finding a path, constraint based routing might find a longer

but less loaded path as compared to a shortest path which is heavily loaded. Network

traffic is therefore distributed more evenly.

Consider the example given below. Here, the shortest path exists between routers A

and B. However, since the reservable bandwidth on the shortest path is only 35 Mbps

for an LSP of 50 Mbps, we select the Router A-B-C path.

Figure 3.1: Constraint Based Routing

Constraint based routing can be of two types - offline mode and online mode. In

the online mode routers may compute paths at any instant of time while in the offline

mode routers compute paths only periodically.

3.2.2 Enhanced Link State IGPs

For the constraint based routing to be able to compute LSP paths based on con-

straints, an enhanced link state IGP as given in [4] can be used to send link attributes

along with the usual link state information. An example of a link attribute is reserv-



3.2. CREATING LABEL SWITCHED PATHS IN MPLS NETWORK 21

able bandwidth.

Compared to a normal IGP, an enhanced link state IGP floods information at more

frequent intervals. This is because a normal IGP floods information only when there

is a change in topology. However, even without any change in topology, an enhanced

link state IGP floods information due to change in link attributes such as reserv-

able bandwidth. However there should be a trade off to prevent excessive flooding.

Thus only when there is a significant change in bandwidth(above a certain predefined

threshold) flooding occurs.

The enhanced IGP then builds the LSRs forwarding table[4].
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3.3 Bandwidth allocation in MPLS networks

Different bandwidth allocation strategies are categorized as follows:

3.3.1 STATIC METHODS

a) The crudest way to divide link capacity between LSPs is to distribute them equally.

The bandwidth hence allocated is simply the maximum reservable bandwidth for a

link divided by the number of LSPs passing through it which means equal allocation

of bandwidth to LSPs irrespective of their requirement i.e. if 3 LSPs pass through a

link with maximum capacity of 90Mbps, each LSP passing through it is given a share

of 30 Mbps. High chances of wastage or under-utilization of bandwidth exist with

this approach .

It is simple but does not take into consideration the priority of the LSPs. Hence, it is

an unfair allocation of bandwidth. b) A better approach is to divide the link capacity

by taking a weighted average. So an LSP gets a fraction of the capacity in proportion

to the bandwidth it requests for. This is also known as fair bandwidth allocation [2].

Let multiple LSPs pass through a link with link capacity C. LSP I requests for band-

width w(i).

So according to the fair bandwidth allocation,

R(i) = w(i) * C/(w(1)+w(2)+.+w(n))

Where R(i) is called the optimum bandwidth for LSP I and n is the number of LSPs

passing through the specified link[2].

The static methods are not adaptable to changes in network configurations or

network traffic. The ever increasing traffic and users poses a requirement to optimize

the limited resources as per current usage and other factors.

3.3.2 DYNAMIC METHODS

Several algorithms have been proposed to address the fairness issue with dynamism

taken into account. The one-way feedback control based congestion control algorithm
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[3] proposed earlier is based on the Weighted Proportional Fair Rate Allocation Algo-

rithm (WPFRAA) proposed in [2]. In this section, we summarize the working of the

WPFRA algorithm and then the one-way feedback based algorithm. Our framework

is based on the these two approaches clubbed with an approach similar to that of

AIMD(Additive Increase/Multiplicative Decrease) used for congestion control [10]. It

is described in the next section.

a) Weighted Proportional Fair Rate Allocation Mechanism

This mechanism as proposed in [2] involves four different functions viz. measurement,

calculation, notification, enforcement. Each of these four phases is described here.

Measurement is carried out at the core routers. The traffic at a core router is mea-

sured here. This aids to the calculation phase of the mechanism.

Next comes the calculation phase. The quantity calculated here is the optimum

bandwidth allocation to each LSP passing through the router in the forward direction

i.e. in the direction of ingress node to the egress router. Each of the LSPs in the

network is assigned a weight value. The following equation is used for the calculation:

Where C is the link capacity, i is the LSP index unique to each LSP and n is the

total number of ‘active’ LSPs passing through the link. Traffic analysis is done to

know the status of traffic flow through the network and hence calculate the value of

n. This value of ‘ri’ is then operated with the actual traffic flow and a smoothening

factor to get ‘rf’.

Notification is the next phase. The ingress node sends out a control packet along

each LSP originating at it. The control packet includes an Explicit Rate(ER) field

[1] that is initialized to a very high value. When the control packet reaches a core

router, the rf value is compared with the existing ER in the packet. The minimum of

the two values becomes the new ER of the packet which is then sent out on the same

LSP. So at each step, the minimum value of the available bandwidth is written into
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the ER field of the packet. When the packet reaches the egress router it is returned

back to the ingress node without any further modifications along the path.

The last of all phases is enforcementṪhe ingress router now has the explicit rate val-

ues of each LSP passing through it. A leaky-bucket algorithm is implemented at the

ingress node whereby the amount of traffic entering the MPLS network is restricted

to the corresponding ER values. This avoids any sort of congestion along the path,

which could have occurred if more bandwidth would have been allowed in and couldnt

be handled by the network.

For the notification to reach the ingress router, the control packet has to make a

round trip around the MPLS network. The overhead involved in the round trip is

substantially reduced in the one-way feedback based congestion control mechanism

proposed in [3].
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b) ADAPTIVE BANDWIDTH ALLOCATION

This algorithm [3] is based on the WPFRA mechanism given in [2] with a modification

that the round trip of the control packet in the notification process is replaced by a

one- way feedback control. It is used to lessen the convergence time for bandwidth

allocation. It bases itself on the fact that the path in an LSP in MPLS is reversible

because of the use of labels. As an incoming label is mapped onto an outgoing label

through the information in the forwarding table, the reverse mapping is also possible

because of the one-to-one correspondence between the labels. The reverse mapping

is stored in a table known as Inverse Label Mapping (ILM) table. This way an LSP

can be retraced starting at the egress node in the reverse direction.

The working of Adaptive Bandwidth Allocation is summarized in the following steps:

1. At an interval, known as Measurement Interval(MI), the core routers measure

the instantaneous traffic and calculate the optimum bandwidth.

2. Another interval, known as Notification Interval(NI), triggers the egress router for

every LSP to send a control packet along the reverse path with ER field initialized.

3. At each core router along the path, the ER value is updated as in WPFRA mech-

anism

4. The final ER values are with each edge router. A leaky bucket algorithm is used

to filter traffic with the ER values set as policing parameters.
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Chapter 4

A FRAMEWORK FOR

OPTIMIZED BANDWIDTH

ALLOCATION

There are a few terms which need to be defined before we start with the framework.

They include weight of an LSP, priority of data traffic and status of an LSP.

Weight as explained before, is the priority assigned to the LSPs between two nodes

as given in [8]. A route with higher weight is preferred over other routes. The priority

assigned to the LSPs is the bandwidth it requests from the MPLS network. If be-

tween two pairs of network nodes there are several LSPs, the one with more requested

bandwidth has a greater priority and is assigned more bandwidth compared to others

during any fair bandwidth allocation strategy.

Priority of data traffic indicates the type of data being transmitted. Data with

higher priority is not allowed to compromise on the bandwidth allocated to it. It will

be elaborated later.

We consider three types of status of an LSP: up, down and active[8]. An ‘up’ route

is one which is capable of carrying traffic but is not being used currently possibly

because some other route with higher weight is available. An ‘active’ route is one

which is currently being used for data transmission. An active path is by default an
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‘up’ route. But an up route may not be active. We consider this difference in our

framework. A ‘down’ LSP is one that is unable to carry traffic for some reason but

has been defined in the forwarding tables.

In the previous approaches, the optimum bandwidths were calculated for the ‘ac-

tive’ LSPs. Our framework takes into account all ‘up’ LSPs for optimum bandwidth

calculation.

4.1 A proposal for effective bandwidth allocation

Our project aims at finding a new technique or improving an existing technique for

efficient dynamic bandwidth allocation and efficient notification mechanisms. So to

start with, we took reference of the above algorithm and identified the factor that

could restrict the network performance when it was used. We, then, tried to find a

tentative solution to the issue which is presented here. These type of algorithms fall

under the category of OPEN LOOP Problems that include deciding when to accept

new traffic, deciding when to discard packets and which ones, and making scheduling

decisions at various points in the network.

We describe the scenario using a problem as below.

We assume the network as given below.

Figure 4.1: An MPLS network with four LSPs defined.
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The following table gives the values of some parameters for the four LSPs in the

network.

The value for current data rate is determined by observing the data traffic in the

LSPs over an interval and finding the average data rate through the path.

Let capacity of link CD be 60.

Case:

m=1,3 : active, m=4 : up

By WFPRAA, the share of capacity of link CD reserved for m=1 i.e. the optimum

bandwidth of LSP1 (OB at CD,1)

OB at CD,1 = 60 * 20/(20+30) =24

OB at CD,3 = 60 * 30/(20+30) =36

By adaptive bandwidth allocation algorithm, let the ER values be

ER(LSP1) = 20

ER(LSP3) = 32

Free bandwidth(CD)=8
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This is the amount of capacity of link CD reserved for LSP1 and LSP3 respec-

tively. The rest is free to be reserved by other LSPs demanding bandwidth.

As we can see, the current data rate for the LSPs is lower than the allocated band-

width. So part of the allocated bandwidth is unused. It is wise to free the unused

bandwidth to be used by other LSPs wanting to be active or requesting more band-

width. So, we reduce the bandwidth allocated from the ER values to the current data

rate values. The rest is added to the Free bandwidth parameter of the link.

So, bandwidth allocated to LSP1=10

and to LSP2 = 15

Free bandwidth(CD)=35

Now, for any new LSP, bandwidth can be allocated from the above Free bandwidth(CD).
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ALGORITHM IN DETAIL

There are a few terms we consider for an LSP.

Weight : Average requested bandwidth of an LSP as in [1]

Requested bandwidth : Instantaneously requested bandwidth.

Current Data Rate : the actual transmission rate measured over an interval as

defined in [1].

This algorithm is based on the fact that the current data rate could be lesser or

more than the allocated bandwidth. Bandwidth is allocated through the ER values,

which depend on the weight of the LSP which is an average value and may not always

indicate the actual values. This algorithm makes up for the flaws in the assumption

of the weight.

The steps followed:

1. Allocate bandwidth as per the WPFRA algorithm which results in a fair band-

width allocation to all active LSPs based on the weights associated with them.

2. Current Data Rate of LSPs is calculated and compared with the allocated ones.

Accordingly the allocation is adjusted to free any unused bandwidth. This freed band-

width is added to a parameter, free bandwidth and least free bandwidth of each node

and each ingress node for an LSP, respectively.

3. At intervals, a function called reset free bandwidth makes up for any changes to

the links of the LSP.
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4. The free bandwidth is used to allocate more bandwidth to the LSPs wanting to

become active or whose bandwidth allocation is lesser that the requested bandwidth.

Here, we cover a few cases which may be merged together in their description:

- When a new LSP becomes active and requests bandwidth

- When an LSP gets deactivated

- When the current data rate is lesser/more than the allocated bandwidth.

- When changes occur at Notification Interval

- When the requested bandwidth is more than the allocated bandwidth.

We also cover some issues like,

- How often should the nodes be notified.

- How to notify every ingress node.

- What information is to be passed on to the ingress router.

5.1 Changes to Control Packet

Along with the ER values, each core router has information about the free bandwidth

available with each of its outgoing paths. The control packet carries information

about the minimum of free bandwidths that are available along all links through an

LSP which is the maximum free bandwidth that can be allocated to new LSPs.

5.2 CASE : New LSP becomes active

If free bandwidth <weight

{

Rest allocations remain same

ER new= weight

Reset free bandwidth()

}
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Else if free bandwidth <weight

{

If Calculated ER >free bandwidth

{

Reallocate bandwidth as per the newly calculated ER values

Reset free bandwidth()

}

Else

{

ER new= free bandwidth

Rest allocations remain same

Reset free bandwidth()

}

}

5.3 CASE : An LSP gets deactivated

Allocated bandwidth of an LSP is freed. The same quantity is added to the free b/w

for the corresponding links passing through the LSP. A packet initiates at the LSPs

egress router whose task is to add to the actual free bandwidth along the path in the

reverse direction. Reset free bandwidth is then called to make changes to all LSPs

sharing any link with this LSP.

Let us take two LSPs sharing a link AB. If LSP1 deactivates, a message is sent in

the forward direction with a purpose to notify all nodes regarding the change. Message

starts at the ingress of LSP1, adding free bandwidth to the actual free bandwidth

parameter for link 1-A. Since this is going to be deactivated, the least free bandwidth

of the LSP parameter at 1 is set to (its previous value + the freed bandwidth)

As message reaches ‘A’, and the above modifications are made, changes are notified

to the LSP2 nodes because they share the link A-B. The new message for notification

starts in the forward direction of LSP so that, it reaches the egress node and waits
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Figure 5.1: A network of two LSPs sharing a link to demonstrate LSP deactivation

till the deactivation information is distributed to all nodes. After this is done, the

Reset free bandwidth starts for all LSPs whose egress router got the message.

At the end of the interval, every LSP and node which had a potential change are

updated of the new free bandwidth.

5.4 CASE : Changing bandwidth allocation

Activation and deactivation of LSPs are not too frequent. But there can be frequent

variations in the current data rate of an LSP.

Reallocation Measurement Interval (RMI): Current rate for each LSP is measured at

the ingress node over an interval.

Reallocation Notification Interval (RNI):

if (allocated bandwidth >current rate)

{

reduce allocated bandwidth to (current rate + threshold)

new free bandwidth = free bandwidth + reduced bandwidth allocated

}

5.5 FUNCTION : Reset free bandwidth()

At ingress node for one of the LSPs:

After receiving the message and the new free size for the link, it is compared with the

(free bandwidth) ER value.
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Every router has two values for free bandwidth of LSPi passing through it :

- The actual free bandwidth of the link

- The least of all free bandwidths of all the link upto that link in the backward direc-

tion of the LSP.

Now, an egress router initiates the message with a parameter as the new free bandwidth.

The message starts from that point and traverses in the backward direction of the LSPs

passing through it. At each intermediate router, now, it compares this new free bandwidth

with the actual free bandwidth of the links and updates if necessary. This way it

reaches the ingress node, with the new value of the free bandwidth.
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Chapter 6

SIMULATION

We include the simulation of a static bandwidth allocation using RSVP-TE proto-

col for bandwidth reservation and MPLS using OMNET++ 4.1 IDE integrated with

INET framework. The network simulator OMNET++ 4.1 by itself doesnt support

MPLS networking. The additional package of INET is needed to simulate MPLS

networks [9].

The steps followed in the simulation as mentioned in [9]:

1. We create a new OMNET++ project in the desired folder

2. In the project–properties bar, we select the references tab and check the ‘inet’ box

to specify that the project will use the functions of the inet package.

3. Then we create an NED(Network Definition file) under that folder to define the

structure of the network using GUI tools in the framework. The NED file in the

example network RSVPTE4.ned given below which we have taken from the folder

inet/examples/mpls/testte tunnel for analysis looks like the following.

Each LSR is a RSVP LSR which includes the modules rsvp, linkStateRouting,

network layer, mpls, ppp, routing table, interface table, libTable etc.

Each host is a standard host with an IP address and is capable of transmitting and

receiving packets.

4. We create an ‘rt’ file for each of the host and LSR in the network which represents

the routing table information for the respective nodes. For the example network, we

have seven ‘rt’ files defined for LSRs and five for standard hosts. To understand the
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Figure 6.1: Snapshot of RSVETE4.ned

results and analysis given in the later chapters, we need to show the structure of ‘rt’

files.

host1.rt:

host2.rt
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Each host has one interface, defined by ppp0 and an inet addr. The rt files are

similarly defined for the rest of the network hosts.

The inet addr for

Host3: 10.4.1.1

Host4: 10.4.2.1

Host5: 10.3.3.1
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LSR1.rt:

Since there are five interfaces, five inet addresses are defined. The inet address for

the router would be 10.1.1.* . Routes are defined for each of its neighbor and the

interfaces they refer to.

LSR2.rt:

LSR2 is connected directly to three network nodes through interfaces ppp0, ppp1 and

ppp2 and can be denoted by inet addr, 10.1.2.*.

Similarly, other network nodes are defined in the rt files.

The inet addr for,

LSR3: 10.1.3.* , 3 interfaces ppp0,ppp1,ppp2

LSR4: 10.1.4.* , 3 interfaces ppp0,ppp1,ppp2

LSR5: 10.1.5.* , 5 interfaces ppp0,ppp1,ppp2,ppp3,ppp4

LSR6: 10.1.6.* , 2 interfaces ppp0,ppp1

LSR7: 10.1.7.* , 2 interfaces ppp0,ppp1

5. We define an xml file for each LSR that describes the paths from one host to the

other as described below.
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LSR1 fec.xml:

There are two FECs defined here for packets moving out of LSR1. For all packets

destined for host3, the FEC id is 1 and label inserted is 11. For packets destined for

host4, the path followed is defined by FEC id, 2 and an outlabel of 22.

LSR1 lib.xml:

This file defines the parameters for the LibTable. Parameters are read from this file

and set in the corresponding Forwarding Table entry. The first libentry says that “if

a packet comes with inlabel as 1 from any interface, send that packet onto the path

represented by ppp0 after pushing a label 101 into the label stack”

When this encapsulated MPLS packet reaches LSR2(connected to ppp0 of LSR1 )

with LabelStack as 11:101, LSR2s forwarding table is searched for the corresponding

entry.
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LSR2 lib.xml:

So, with topLabel 101 and inInterface of ppp0 as satisfied by the above packet,

the outgoing Label stack becomes 11:101:111 as 111 is pushed into it and the packet

along with this modified header is sent over interface ppp1, which is LSR4.

A packet destined for host3, therefore, follows the route LSR1, LSR2, LSR4, as de-

fined by the xml files. This is particularly part of an LSP from any of the hosts at

the left end to host3.

6. Simulation can then be run using the omnetpp.ini file.

For analysis,

7. We generate an analysis file under that project. The simulation results in some

vector(.vec) and scalar(.sca) files which are loaded into the analysis file. Each of the

vectors and scalars can be opened to see the corresponding graphs.
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SIMULATION RESULTS

CASE 1:

Queue length for every interface of every LSR/LER in the MPLS network

X-axis: time elapsed as an unit defined in the OMNET++ simulation environment

(0.001 units = 1 sec)

Y-axis: number of packets being queued at the interface at that time

Graph 1: LSR4.ppp[0], mean=0.5
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Graph 2: LSR4.ppp[1], mean=0.875

Graph 3: LSR4.ppp[2], mean= 0.6428
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Graph 4: LSR2.ppp[2], mean=1.3333

Graph 5: LSR2.ppp[1], mean=0.7
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Graph 6: LSR2.ppp[0], mean=1.25

Graph 7: LSR5.ppp0, mean =1.1666
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Graph 8: LSR3.ppp0, mean=1.0714

Graph 9: LSR3.ppp1, mean =0.5
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Graph 10: LSR3.ppp2, mean=1.5

Graph 11: LSR5.ppp3, mean=2.7222
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Graph 12: LSR5.ppp4, mean =2.8636

Graph 13: LSR1.ppp1, mean=0.5
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Graph 14: LSR7.ppp0, mean=0.6666

Graph 15: LSR7.ppp1, mean =1.7
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Graph 16: LSR1.ppp0, mean =1.4848

Graph 17: LSR6.ppp1, mean =1.8181
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CASE 2:

Queue length for interface ppp4 of LSR5 for different datarates.

X-axis: time elapsed as an unit defined in the OMNET++ simulation environment

(0.001 units = 1 sec)

Y-axis: number of packets being queued at the interface at that time

Graph 18 : Datarate = 100kbps; mean=3.8888

Graph 19 : Datarate=200 kbps, mean=4.0714
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Graph 20 : Datarate = 250 kbps; mean= 4.1333

Graph 21 : Datarate = 300kbps; mean=4.8
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Graph 22 : Datarate = 400 kbps; mean = 4.5294

Graph 23 : Datarate = 600kbps;mean=3.1
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Graph 24 : Datarate = 800 kbps;mean=2.0476

Graph 25 : Datarate = 1000 kbps; mean = 1.6111
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Graph 26 : Datarate =1200kbps; mean = 0.9444

Graph 27 : Datarate = 1400 kbps; mean = 0.875
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ANALYSIS

Plotting the mean values at different datarates for CASE 2.

X-axis: datarate in kbps.

Y-axis: Mean queue length of LSR5.ppp[4] for that datarate.

Figure 8.1: Plot of queue length of ppp4 of LSR5 for different datarate values

8.1 Observation and Inference:

From this graph, it is seen that as datarate increases, the queue length first increases

for small values of datarate and then steadily decreases. The inference we draw from

this trend is that, as datarate of a channel increases, the amount of traffic it carries at
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a time increases and so the traffic that accumulates at the starting node of the chan-

nel, decreases. This means that the number of packets being queued at the starting

node reduces. This explains the steady decrease in the queue length i.e. the amount

of traffic accumulating at a node (here LSR5), as datarate of the channel increases.

The above graph gives the trend for interface ppp4 of LSR5. LSR5 is the only node

through which every packet needs to pass to reach any of the destination hosts(host3

and host4). It is, thus, a bottleneck link and so we have based our readings on this

particular Label Edge Router.
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CONCLUSION

As we can see from the analysis given above, the queue length [1] of a node depends

heavily on the datarate of the channel through which it forwards data. A bandwidth

allocation strategy where the main concern is congestion avoidance can thus be op-

timized by considering the instantaneous data rate. The queue length parameter is

a direct implication of congestion at a node. So an attempt to monitor the datarate

over an interval and make bandwidth reallocation accordingly is our motive. Our

algorithm suggests a mechanism that helps in a better optimized usage of available

bandwidth in an MPLS network. We try to incorporate our idea to the algorithms

proposed in [2] and [3]. By considering the actual data rate over an interval, the

bandwidth allocated on the basis of an approximation is made more accurate so as to

free some unused bandwidth to make space for new LSPs. This improves the overall

utilization of the available bandwidth. The above mentioned improvement is only

theoretical.

Moreover, the project addresses the issue of optimized bandwidth allocation problem

by taking into account the fluctuations in the bandwidth requirement of LSPs. In this

project, thus we have put together the concept of changing bandwidth reuirement of

LSPs and changing data rate to improve the usage of bandwidth in the network.
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