
 

 
A Thesis 

 

By 
 

KRISHNA TEWARI 
(Roll No. 107CH016) 

 

In partial fulfillment for the award of the Degree of 

 
BACHELOR OF TECHNOLOGY 

 
IN 

 
CHEMICAL ENGINEERING 

 
Under the guidance of 

Prof. Arvind Kumar 
 

 
 

 
 
 

 
 

 
 

Department of Chemical Engineering 
 

National Institute of Technology Rourkela 
 

2011 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53187784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 
 

 

CERTIFICATE  

 

 This is to certify that the thesis entitled, “Design of Cumene Plant using Aspen Plus” 

submitted by Krishna Tewari for the requirements for the award of Bachelor of Technology in 

Chemical Engineering at National Institute of Technology Rourkela, is an authentic work carried 

out by him under my supervision and guidance.  

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any 

other University / Institute for the award of any Degree or Diploma.  

 

 

Prof. Arvind Kumar  

Asst. Professor         Date:  

Department of Chemical Engineering  

National Institute of Technology Rourkela 



ii 
 

ACKNOWLEDGEMENT 

 

 

 

I would like to make my deepest gratitude to Prof.Arvind Kumar, Professor in the department of 

Chemical Engineering, NIT Rourkela for giving me the opportunity to work under him and 

lending every support at every stage of this project work. I would also like to convey my 

sincerest gratitude and indebtness to all the faculty members, friends and staff of Department of 

Chemical Engineering, NIT Rourkela, for their invaluable support and encouragement. A special 

thanks to my classmate Mr. S Dinesh for providing me help with the designing in Aspen Plus. 

Lastly I would like to thank my parents for their constant support, encouragement and good 

wishes, without which working on this project would not have been possible.  

 

Krishna Tewari 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

ABSTRACT 

 

The work deals with optimization of the process of production of cumene from benzene by its 

alkylation with propylene. This process also involves an undesirable reaction between cumene 

and propylene to form p-diisopropylbenzene (PIDB). Since the activation energy of the second 

reaction is higher than the first one, lower reactor temperature is favored to improve the 

selectivity of the reaction towards cumene. This can be done by increasing the reactor size, 

finding a suitable method of distillation and designing the distillation columns accordingly. All 

the variations increase the capital and/or energy cost but also decrease the amount of raw 

material required. Thus this provides a classic example of an engineering design and 

optimization of a process. The process present in the design book by Turton et. al is referred and 

consists of a tubular reactor and two distillation columns. The purpose of this project is to 

develop an optimum design for the cumene plant which is aimed at saving maximum amount of 

raw material possible and also reduce the costs to an extent. 
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1. INTRODUCTION:  

The process considered for studying in this report is the production of isopropyl benzene, 

popularly known as cumene from benzene in a cumene production plant. This process is a classic 

example to study trade-off in engineering design and simulation as it has a lot of scope for 

optimization in the reaction section of the plant and the cost in the separation section. 

Cumene is produced by the reaction of propylene and benzene and it also involves an 

undesirable reaction between cumene and propylene to produce p- diisopropylbenzene(p- DIPB). 

The raw materials fed to the plant are benzene and propylene with a small amount of propane as 

impurity in propylene. The process description of Turton et al. (2003) has been utilized which 

provides relevant and valuable data required for the simulation of the process.  

1.1. Industrial Uses of Cumene: 

Around 98% of cumene is used to produce phenol and its co-product acetone. It is used as feed 

back in the process. The cumene oxidation process for phenol synthesis has been growing in 

popularity since the 1960’s and is prominent today. The first step of this process is the formation 

of cumene hydroperoxide. The hydroperoxide is then selectively cleaved to Phenol and acetone. 

The largest phenol derivative is bisphenol-A (BPA) which supplies the 

growing polycarbonate (PC) sector. PC resins are consumed in automotive applications in place 

of traditional materials such as glass and metals. Glazing and sheet uses, such as architectural, 

security and glazing outlets, are also important PC applications. The third largest use for PC is 

optical media such as compact discs (CDs) and digital versatile discs (DVDs). [Schmidt et. al, 

2002] 

Cumene in minor amounts is used as a thinner for paints, enamels and lacquers and to produce 

acetophenone, the chemical intermediate dicumylperoxide and diisopropyl benzene. Cumene is 

also used as a solvent for fats and raisins.  

http://www.icis.com/v2/chemicals/9075162/bisphenol-a.html
http://www.icis.com/V2/chemicals/9076144/polycarbonate.html
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1.2. Objective of the Project: 

 

Considering the amount of designing possible in this process, work was undertaken to develop 

the economically optimum design considering production rate, reactor design, capital costs, 

energy costs, and raw material costs.  The objectives of the current project are as following: 

  To use the cumene process to illustrate the process design optimization features using the 

optimization variables reactor size and benzene recycle ratio. 

  To develop an optimum design to achieve a low capital cost, low operating cost and an 

appreciable conversion rate of reactant to products. 
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2. LITERATURE REVIEW 

 

2.1.  Process: 

The process of production of cumene usually involves alkylation of benzene with iso-propylene 

catalyzed by various catalysts like zeolites, protonic acids ( H3PO4) or lewis acids (BF3) on 

various supports like amorphous or crystalline aluminosilicates. The two processes most widely 

used are UOP’s Cumox process; which uses mixture of propylene and excess benzene reacted in 

the presence of solid phosphoric acid as a catalyst. The process offers 99.3% (byweight) 

conversion of propylene with 92.5% selectivity to cumene and UOP’s Moonsanto- Lummus 

process; which involves mixing of dry benzene and propylene in alkylation reactor with AlCl3 

catalyst. The processes documented have many drawbacks like high catalyst volume, high 

reaction temperature, high feed mole ratio, lower yield, by-product formation etc. [Bokade and 

Kharul, 2009]. 

The most commonly used reactor in the industries is fixed bed reactor, which is easy to be 

implemented. In the process generally used, the feeding molar ratio must be large enough to 

maintain the catalyst activity run for a long time. [Lei et. al, 2009] 
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2.2  Reaction Mechanism and Kinetics: 

The production of cumene from benzene involves the reaction of benzene with propylene in a 

high temperature, high pressure gas-phase reactor.  

 

This is followed by another reaction in which cumene reacts with propylene to form p-

diisopropylbenzene (PDIB). [Ding and Fu, 2005].  

 

 

 

 

 

 

 

 

The reactions occur in vapor phase in the presence of a catalyst of solid density 2000kg/m3 and 

0.5 void fraction). The kinetic data and the reaction conditions specified by Turton et al (2003) 

for a particular catalyst have been used in the present work. 
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Table 5: Kinetic data of the reactions 

 Reaction 1 Reaction 2 

K 2.8 × 107 2.32 × 109 

Activation Energy ( KJ/kmol) 104174 146742 

Since the activation energy of the undesirable reaction is more than that of the desirable reaction, 

lower reactor temperatures improve selectivity. In addition selectivity is improved by keeping 

the concentration of cumene and propylene low in the reactor. [Turton et. al, 2003]. 

Process Flowsheet: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Process Flowsheet [Luyben, 2010] 
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2.3. Process Description: 

 

Fresh feed streams of benzene and mixed C3( propylene and propane) enter the process as 

liquids at 110kmol/hr. Composition of this feed is 95 mol% propylene and 5 mol% propane. 

Since propane doesn’t react, it is vented in the gases from the flash tank. Fresh feed of benzene is 

introduced at 104.2kmol/hr. The liquid fresh feeds are combined with benzene recycle stream 

and fed to the vaporizer. The total benzene fed to the reactor is 207 kmol/hr. Saturated gas leaves 

the vaporizer at 209°C and 25bar. It is preheated in two heat exchangers. First recovers heat from 

the reactor and the second adds heat to bring the reactor inlet temperature to 360°C.   

 

The reactor is a cooled reactor filled with solid catalyst. Temperature on the steam side of the 

reactor is 360°C. The reactor inlet temperature is assumed to be set to the same value as 

coolant(steam) temperature in the reactor. Reactor effluent leaves at 427°C, which is  cooled to 

322°C in feed-effluent heat exchanger and sent to a condenser where it is again cooled to 90°C. 

The two phase stream is then sent to flash tank in which the gases separated out are used as fuel 

and the liquid from the bottom is sent to the benzene column. 

 

The benzene column consists of 15 stages and fed on the 6th stage which is the optimum feed 

stage to minimize reboiler heat input. Operating pressure is 1.75 bar and cooling water is used in 

condenser. Distillate is mostly benzene and is recycled back to the reactor. Design specification 

is to keep the benzene from coming out of bottom and affecting the quality of cumene leaving 

from downstream which is then sent to the cumene column. 
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The second distillation column consists of 20 stages and is fed on stage 12 with an operating 

pressure of 1bar. Design specification is to attain high purity cumene in distillate and minimize 

loss of cumene in bottoms. Undesired byproduct containing mostly PDIB leaves from the 

bottom.   
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3. PROCEDURE, RESULT AND DISCUSSION: 

3.1 Procedure: 

The process described above was simulated in the Aspen Plus simulation software and the results 

obtained were studied. The design proposed by Turton et. al. was used for reference and the 

required data like inlet feed rate, inlet temperature, pressure, size of the reactor, reflux ratio and 

no. of stages in the distillation columns, properties of the catalyst etc were input. The Turton 

design was taken as the base run and all the parameters optimized were compared to the result 

obtained from the base run. 

The process is mainly divided into a Reaction section and a Separation section. The optimization 

process mainly involves designing both the sections to get the most economical output. So it 

involves design of the reactor in reaction section and design of flash tank, benzene column and 

the cumene distillation column in the separation section. 

In the Aspen Plus software, NRTL physical property package was chosen for the calculations. 

The blocks most suitable for the process were chosen from the available options to give the best 

results. Shell and tube heat exchangers were chosen for the feed effluent heat exchanger. The 

flowsheet of the process designed using aspen plus and the results obtained from the base run are 

as following:  
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3.2 Reactor Design: 

The reactor chosen for the process was a tubular high pressure and temperature reactor as 

prescribed in the Turton design. The feed stream contains benzene, propylene and propane (as 

inert) mainly. The size of the reactor was varied by varying the number of tubes in the reactor. 

The outlet flow rate from all the streams like the product, byproduct and the gases stream was 

kept constant and the amount of cumene present in the streams were monitored to analyze the 

results. Fresh propylene stream contains propane as impurity which is inert in the reaction. Since 

the separation of propylene and propane is difficult, economics favor designing reactor for high 

conversion of propylene. The undesirable byproduct is also burned. So it only has value as a fuel. 

Since it takes reactants to produce this product, there is a strong requirement to keep its 

production rate small.    

To study the changes in the process by variation of reactor size, the number of tubes in the 

reactor was varied from 342(as in Turton design) to 1000. A larger reactor has both advantages 

and disadvantages. On one hand it increases the capital and/or energy costs and on the other hand 

it maintains low reactor temperature which improves the selectivity and reduces the production 

of PIDB [Lei et. al, 2007]. This in turn, saves raw material used which is given more preference 

in the design process. The result obtained after varying the reactor size is given below:  
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Table 6: Variation in Reactor Size  

no. of tubes %cumene in product %cumene in Byproduct %cumene in gases 

342 99.0478 6.20323E-05 40.1663 

350 99.0572 6.20002E-05 40.1030 

370 99.1134 6.19842E-05 40.0938 

390 99.1695 6.19361E-05 39.9755 

410 99.2223 6.1856E-05 39.9502 

450 99.3200 6.17919E-05 39.8295 

470 99.3436 6.17759E-05 39.7475 

490 99.3922 6.17118E-05 39.7059 

510 99.4895 6.16958E-05 39.5653 

530 99.5256 6.16477E-05 39.4164 

550 99.5954 6.16156E-05 39.3882 

570 99.6197 6.15996E-05 39.3317 

590 99.6843 6.15676E-05 39.2957 

610 99.7231 6.15515E-05 39.2028 

630 99.7531 6.15035E-05 39.1619 
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700 99.8551 6.14554E-05 38.8826 

750 99.8503 6.14073E-05 38.7653 

800 99.8512 6.13592E-05 38.6879 

850 99.8610 6.13432E-05 38.6286 

900 99.8702 6.12791E-05 38.5298 

950 99.8739 6.12631E-05 38.4948 

1000 99.8733 6.12631E-05 38.0023 

After the results were obtained, the percentage cumene present in the product, its percentage in 

the byproduct and the vent gases were plotted against the no. of tubes of the reactor to analyze 

the data. The graphs obtained are as following:  

 

 

 

 

 

 

 

 

Figure 2: % Cumene in Product Vs Size Of Reactor 
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Figure 3: %Cumene in Byproduct Vs Size Of Reactor 

Figure 4: %Cumene in Gases Vs Size Of Reactor 
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We see that the as the number of tubes were increased, the amount of cumene in product stream 

kept on increasing and after a certain point, the rate of increase of cumene started decreasing. At 

the same time, the percentage of cumene present in the byproduct and gases from the flash tank 

decreased with increase in the size of the reactor.  

Therefore, increase in the reactor size does increase the cumene production in the process. This 

saves a lot of raw material required for the production. Although the inc rease in reactor size calls 

for an increase in capital and/or energy investment but the amount of raw material it saves in the 

process is appreciable. It also reduces the amount of cumene present in the byproducts and the 

vent gases which is a great positive sign for considering this variation for optimizing the process. 

It might not even compensate for the extra capital investment but it may also turn out to be more 

profitable, considering the shortage of raw materials present in the present day scenario.  

 

3.3 VLE Characteristics: 

In the cumene plant, as the separation process plays a major role and involves considerable costs, 

it has to be optimized so as to make it as economic as possible. Since it consists of two 

distillation columns namely, the benzene and the cumene distillation column, its VLE (Vapor 

Liquid Equilibrium) characteristics have to be monitored accordingly so as to decide upon the 

method and type of distillation. When a fat curve is observed in the plot between two 

components, it means that they can be easily separated. The Txy diagram for Benzene-Cumene 

and the Cumene-DIPB systems have been plotted below. The boiling point of the benzene, 

cumene and DIPB are 80.2, 152.4 and 209.8°C respectively. The NRTL physical property 

package in Aspen plus software is used to plot the Txy diagram for all the components.  
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Figure 5: T-xy Diagram for Benzene-Cumene system  

 

 

 

 

 

 

 

 

 

 

Figure 6: T-xy Diagram for Cumene-DIPB System 

As seen from the above plots, an azeotrope is not formed in the plot. As the curve formed in both 

the cases is wide, it can be said that the separation in both the distillation columns would be easy 

and a low value of reflux ratio and lesser number of trays will be required. 
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3.3 Flash Tank Design: 

A flash tank is installed in the system to flash the light vapors present in the outlet from the 

reactor. These vapors usually contain unreacted propylene and propane (as inert), which are used 

as fuel later on. Main purpose of installing a flash tank in the process is to vaporize the lighter 

components so that energy can be saved in the distillation columns and separation process can be 

easier. 

In the Turton design, the flashing temperature is taken as 90°C. Since the minimum boiling point 

in the mixture is that of benzene, i.e. 80.2°C at 1 atm, the temperature was varied from 85 to 

95°C. The pressure in the flash tank was set at 1.75 bar and the NRTL property package was 

utilized to calculate the data. The percentage of cumene present in the product and by-product 

streams from the cumene column and in the vent gases from the flash tank were used as 

parameters to check for the optimized results. After the results were obtained from the 

simulations, 3 graphs were plotted between the 3 parameters and the flashing temperature to 

analyze the results.  
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From the above plots, it was observed that as the temperature is increased, the percentage of 

cumene in the product stream increased initially until a temperature of 91°C was reached and 

then a gradual decrease was observed. Similarly, with increase in temperature, the percentage of 

cumene in by-products and the vent gases decreased initially until a temperature reached around 

91°C and then started increasing. According the above observation, it was found that the 

temperature of the flash tank cannot be kept neither very high nor very low.  

Thus the optimum temperature of the flash tank was found out to be 91°C. Although there isn’t a 

big variation in the flashing temperature from the Turton design, this small change could 

increase the efficiency by a small amount. The flow rate of the outlet stream at the optimized 

temperature was found out to be: 

Table 7: Flow Rates of Products From Flash Tank 

 Cumene (kgmol/hr) Total Flow Rate (kgmol/hr) 

Bottom Product 163.48 184.95 

Gases 8.293 20.55 

 

The bottom product from the flash tank acts as the feed to the benzene column where benzene 

and cumene are separated where benzene is recycled back to the feed and cumene is sent for 

further separation. 
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3.5 Benzene Column Design: 

In the benzene column, the design specification is to separate the two components such that 

maximum amount of benzene should leave from the top as recycle benzene and cumene should 

leave as bottom product for further separation process. This ensures maximum purity in the 

cumene which is the main product in the process and also makes the process economical by 

recycling benzene to the feed stream of the reactor.  

In the procedure followed for designing the benzene column, NRTL physical property package 

was used to make the calculations. The required data like temperature, pressure, number of 

stages, reflux ratio and feed tray location was taken from the Turton design and further  

optimization was done based on those values. The variables optimized in the process are reflux 

ratio, feed stage location and the number of stages. When one variable was being optimized, the 

other two were kept constant. 

 

 Reflux Ratio Optimization: 

While the reflux ratio was being optimized, the number of stages was kept fixed and its value 

was taken to be 15 with reference to the Turton design. The reflux ratio was varied from 0.1 

onwards and the percentage of cumene in the final product stream was considered to check for 

the best result. After the simulation was run, a graph was plotted between the two parameters 

which is shown below:  
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From the above graph, it was observed that as the value of reflux ratio was increased from 0.1 

onwards, the percentage of cumene in product stream increased initially until a reflux ratio of 0.5 

was reached and after that it becomes more or less constant. Even though a high value reflux 

ratio does ensure purity in the product but it leads to a higher reboiler heat duty which makes the 

process very uneconomical. So an optimum reflux ratio of 0.5 was chosen for the benzene 

distillation column. 
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3.5.2 Feed Tray Location Optimization: 

The feed tray location is optimized by varying it and keeping the reflux ratio constant at 0.5 and 

number of trays at 15. The two parameters mainly affected due to the feed tray location and 

which decide the economic viability are amount of cumene in product stream and the reboiler 

heat duty. Therefore these variables are used to find the optimized result. Feed tray location was 

varied from 3 onwards and the graphs were plotted between the two parameters and the feed tray 

location and are shown below:  
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Figure 10: %Cumene in Product Vs Feed Tray Location 
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From the above results, it was seen that the amount of cumene in the product stream increased 

rapidly in the beginning but as the feed tray location of 6 was reached, the graph became almost 

constant. Similarly, when reboiler heat duty was analyzed, the heat duty was very high initially. 

A high value of heat duty would have made the process very costly. As the feed tray location 

was increased, it was found that the heat duty reduced suddenly until a value of 6 to 8 was 

reached and then it became more or less constant. Therefore the optimized value of the feed tray 

location was taken to be 6 and was used to make the further calculations. 

3.5.3 Number of Trays Optimization: 

To optimize the number of trays, the amount of cumene in product and the reboiler heat duty 

were used again. The reflux ratio and the feed tray location were kept constant at their optimized 

value found previously. The number of trays was varied from 10 onwards and graphs between 

the two parameters and the number of trays to analyze the result. The graphs are as following: 
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In this process also, the variation of amount of cumene in product was similar. As the number of 

trays was increased from 10 onwards, initially there was a steep rise in the graph. As the value of 

number of trays reached around 18, there was any considerable change above it. Similarly, when 

the number of stages was varied with reboiler heat duty, the heat duty decreased suddenly in the 

beginning. But after the value crossed 18, the change in the heat duty was negligible. Therefore, 

18 was found as the optimum number of trays for the benzene column.  

Finally, the optimized values for the benzene distillation column were as following: 

TABLE 8: Optimized Results For Benzene Column 

No. of Trays 18 

Feed Tray Location 6 

Reflux Ratio 0.5 

Temperature 60°C 

Pressure 1.75 bar 

 

3.6 Cumene Distillation Column: 

In the cumene distillation column, the design specification is to obtain maximum amount of 

cumene in the distillate and reduce its amount in the bottoms. The bottom product in this column 

contains mostly DIPB (di- isopropyl benzene) which is a by-product in the process. The 

optimization process is aimed at minimizing the production of the by-product and obtaining a 

balance between the amount of cumene and its purity.  
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In the procedure followed, NRTL physical property package was used again to make the 

calculations similar to benzene column. The properties optimized were reflux ratio, feed tray 

location and the number of stages. When one variable is being optimized, the other two are kept 

constant. As the process goes on, the optimized values are used instead of the basic values. The 

basic data like temperature, pressure etc was again referred from the Turton design and used in 

the simulation. 

3.6.1 Reflux Ratio Optimization: 

For the optimization process, the number of stages was kept at 20 with reference to the Turton 

design and the feed tray location was set at 12. The reflux ratio was then varied from 0.1 

onwards. As the Txy diagram for the cumene-DIPB system was thinner than the benzene-

cumene system, a comparatively higher value of reflux ratio is expected. For analyzing the 

results, amount of cumene in the product was chosen as the parameter. After obtaining the values 

of amount of cumene for different values of reflux ratios, they were plotted on a graph and 

further analyzed. The graph is shown below: 
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From the above graph, it can be seen that amount of cumene in product increases until a value of 

0.6 is reached and then becomes more or less constant. As the reflux ratio cannot be increased 

beyond a certain limit because it may lead to increase in the reboiler heat duty which can make 

the whole process very uneconomical. Therefore, 0.6 is chosen as the optimum reflux ratio for 

the cumene distillation column.  

3.6.2 Feed Tray Location Optimization: 

In this process, similar to the benzene column, the reflux ratio is kept fixed at its optimized value 

i.e. 0.6 and the number of stages is taken as 20. Now to find out an optimized value, amount of 

cumene in product and the reboiler heat duty was chosen again. The feed tray location was 

varied from 7 onwards and the graph was plotted between the two parameters and the feed tray 

location. The graph is shown below: 
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It was seen that the graph followed the same patter as that for benzene column. According to 

both the graphs an optimum value of 11 was taken as the feed tray location. As the number of 

trays was kept at 20, a ratio of 2:1 was found out to be optimum for this column.  

Number of Trays Optimization: 

A similar process was followed for this optimization also. The reflux ratio was kept constant at 

0.6 and the ratio of 2:1 was maintained to choose the feed tray location while varying the total 

number of trays.  The variables used to optimize the number of trays were amount of cumene in 

product and the reboiler heat duty. The plots of these two parameters with total number of trays 

are shown below: 
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Again it was found out that there was a steep rise in the plot of amount of cumene initially upto a 

value of 19 but it became constant gradually. Similarly in the plot of reboiler heat duty, the heat 

duty was very high in the beginning. As the number of stages increased, the heat duty kept on 

decreasing until a value around 19 was reached. After this point the change became negligible. 

Therefore, an optimum value of 19 was chosen as the number of trays for the cumene distillation 

column.  

99.043

99.044

99.045

99.046

99.047

99.048

99.049

8 11 14 17 20 23 26

%Cumene in product vs No.of Stages 

%Cumene in product vs
No.of Stages

Figure 17: %Cumene in Product Vs No. Of Stages 
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Finally, the optimized values for the cumene distillation column are: 

Table 5: Optimized Values for Cumene Column 

Number of trays 19 

Feed Tray Location 11 

Reflux Ratio 0.6 

Temperature 152°C 

Pressure 1.75 bar 
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CONCLUSIONS 
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4. CONCLUSIONS: 

In the optimization process, main emphasis was given on saving the cost of raw materials rather 

than saving the energy and capital costs. The cumene process exhibits an interesting design 

feature in terms of the engineering trade-offs. The basic components of the cumene process are 

the reactor and the separator sections. Optimization in the reactor section was conducted and it 

was found that increase in the reactor size increases the cumene production and at the same time 

increases the capital investment. Therefore depending on the requirement of a particular industry 

it could be modified to provide the desired result. Since the cost of raw material is usually more 

than the cost of energy in any industry, this optimization could earn an industry appreciable 

amount of gain in the production. 

 

Optimization of the reactor section was followed by the separation section. For checking the type 

of separation process required, VLE characteristics for the components were checked and it was 

found that the mixtures were non-azeotropic and easily separable. As flash distillation was done 

before fractional distillation, an optimum flashing temperature for the process was found out. 

The fractional distillation was carried out using two distillation columns namely, the Benzene 

column and the Cumene column. The parameters optimized in these columns were reflux ratio, 

feed tray location and number of trays in the column. Once the optimized values were found for 

one unit, they were utilized to carry out further calculations. 
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The design of this process is such that if costs like energy costs and capital investments are 

saved, then the cost of raw materials tend to increase and vice versa. Therefore, the industries 

have to strike a balance between the two according to their requirements. The main concern in 

this particular report was to save the cost of raw material due to its shortage and all the 

manipulations were carried out accordingly.  This was based on the Douglas Doctrine which 

states that the costs of raw materials and products are usually much larger than the costs of 

energy or capital in a chemical process. Therefore the process must be designed (investing 

capital and paying for energy) so as to not waste feed stocks or lose products (particularly in the 

form of undesirable products). [Douglas, 1998] 
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