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ABSTRACT 

 

Sandwich beams with composite face sheets and foam core are widely employed as lightweight 

components in many of the industries that extend from automotive, marine to aerospace 

applications due to its high bending stiffness and strength combined with low weight factor. 

Therefore, it is important for us to gain insight about their flexural or bending behaviour under 

static as well as dynamic loads. Extensive research has been carried out on the flexural behaviour 

of composite laminates. The flexural and bending behaviour of sandwich structures is quite and 

obviously different. Several works treating the dynamic flexural behaviour of sandwich beams 

have also confirmed the marked susceptibility of sandwich structures to damage caused by the 

impact of low velocity foreign objects. Impacts can certainly damage the face sheets, the core 

material, and the core face interface. The type of damage found in the faces is similar to that 

observed after impacts on monolithic composites. However, the damage initiation thresholds and 

damage area depend on the properties of the core material and the relationship between the 

properties of the core and those of the face sheets. 

 

Thus we need the FEM simulations of sandwich beams and accurate descriptions of the damage 

induced by the contact area, and finally we require the modelling of both the face sheets as well 

as the core. 

 

The researches for new vibration control systems are all about hybrid active–passive control 

strategies. These were mainly based on simultaneous application of piezoelectric and viscoelastic 

materials in the same damping treatment. In particular, it was found that, for the last 6 years, 

these researches have focused on configurations that increase the damping ability of the 

conventional passive constrained layer damping treatments. Depending on the position of the 

piezoelectric actuator, the passive and active actions can operate either on their own or 

simultaneously. In the former configuration, the passive constrained layer and piezoelectric 

patches are placed away from each other, so that each of them uses independently its own 

damping mechanism.  

 

The piezoelectric actuator employs the conventional active control mechanism, based on induced 

in-plane piezoelectric actuation strains; whereas, the passive constrained layer employs its 

conventional passive damping mechanism, based on vibratory energy dissipation that happens 

through the transverse shear strains induced in the viscoelastic material by relative in-plane 

displacements of the constraining layer and base structure. 

 

A sandwich beam was made of laminate faces, with elastic and piezoelectric sub layers, and 

viscoelastic core. Faces was modeled using the classical laminate theory and the whole beam 

was modeled using classical sandwich theory. Euler–Bernoulli assumptions were considered for 
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the laminate faces, whereas those of Timoshenko were retained for the viscoelastic core. The 

piezoelectric layers were supposed transversely poled and subject to transverse electrical fields. 

Elastic and viscoelastic layers are assumed to be insulated. All layers are assumed perfectly 

bonded and in plane stress state. 

 

An electromechanically coupled finite element model was used to handle the active–passive 

damped multilayer sandwich beams. Classical laminate theory was used to model the multilayer 

piezoelectric faces, whereas classical sandwich theory was considered for the laminate 

piezoelectric face, viscoelastic core, laminate piezoelectric face beam, leading to three-layer 

kinematic description and layer wise material constitutive equations. This has resulted in 

additional membrane bending coupling terms in electromechanical internal and external forces 

and translation to rotation coupling terms in inertial forces. 

 

A hybrid active-passive damping mechanism, replacing the elastic constraining layer of a 

conventional Passive Constrained Layer Damping treatment by a piezoelectric actuator, was used 

to increase the shear deformation in the viscoelastic material and, thus, the energy dissipation. 

The electric field was applied perpendicular to the poling direction of the piezoelectric actuators 

to cause transverse shear deformation of the sandwich beam. Active vibration suppression is 

achieved using either positive position feedback or strain rate feedback. The control system is 

implemented in real-time using Matlab/Simulink and a dSPACE digital controller. First, the 

frequency response of the adaptive beam is investigated by using one shear actuator to excite the 

beam and the other to control its vibration. Parametric studies are conducted to assess the 

influence of controller parameters on the frequency response of the system. 

 

 

Using a proof-mass actuator that was attached to the tip of the cantilever beam in the time 

domain the effectiveness of the active vibration suppression system was analyzed using a proof-

mass actuator which was attached to the tip of the cantilever beam to provide an input of 

repeatable vibration. Piezoelectric actuators that are used in adaptive structures are thin wafers, 

which are poled in the thickness direction and bonded to the surfaces of the host structure. An 

electric field applied in the thickness direction causes the lateral dimensions of the actuators to 

increase or decrease, thereby forcing the host structure to deform.  

 

 

A piece of viscoelastic damping material sandwiched between an active piezoelectric layer and 

the host structure constitutes Active constrained layer (ACL) damping. An Active Constrained 

configuration will raise the viscoelastic layer damping ability by increasing its shear angle during 

operation. That is the ACL will enhance the system damping when compared to a structure with 

traditional passive constrained layers. 
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Experimental results are presented for an adaptive sandwich cantilever beam that consists of 

aluminum facings and a core made of two piezoelectric shear actuators and foam. The electric 

field is applied perpendicular to the poling direction of the piezoelectric actuators to cause 

transverse shear deformation of the sandwich beam. Active vibration suppression is achieved 

using positive position feedback. Piezoelectric actuators employed in adaptive structures are 

usually thin wafers which are poled in the thickness direction and bonded to the surfaces of the 

host structure.  

 

 

 

The application of an electric field in the thickness direction causes the lateral dimensions of the 

actuators to increase or decrease, thereby forcing the host structure to deform. The actuators are 

usually placed at the extreme thickness positions of a plate-like structure to achieve the most 

effective actuation. This subjects them to high longitudinal stresses and may lead to failure, 

especially when they are made of brittle piezo-ceramics. To alleviate these problems several 

researchers have investigated adaptive sandwich structures consisting of axially-poled 

piezoelectric actuators. 

 

 

The work to do is modeling of sandwich beam for active vibration control analysis on working 

software Ansys. The inputs for the sandwich beam are varied materials with different properties 

in different directions. The beam is isotropic in nature. The properties of materials include 

Young‟s modulus, Poisson Ratio, and Density of material. The excitation is given in intervals 

with varying frequency values within permissible limit. The material type used are coupled field, 

Solid , Visco-solid. the inputs are given in Material Models in Preprocessor and Material 

Properties. 

 

 

The modeling is done for sandwich beam with create volume option with dimensions known in 

the software. Meshing is done for the whole volume for nodal points of force application. Force 

has to be applied in the nodal point which has maximum displacement. The vibration given at 

that nodal point is to be suppressed with active vibration control mechanism. Solution after load 

application is solved in Ansys with FloatRun option for viewing analytical solution regarding 

control mechanism.  
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Fig 1(a). Schematic Diagram Of A Sandwich Beam 

 
Fig 1(b). Schematic Diagram Of A Meshed Sandwich Beam 
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2. INTRODUCTION 

 

2.1 SANDWICH BEAM 

 

Sandwich beam is nothing but a composite beam in which a viscoelastic layer is sandwiched 

between two elastic layers. 

According to the sandwich theory, it describes the behavior of a beam which consists of three 

layers - two face sheets and one core that is used in between the two face sheets.  The most 

commonly sandwich theory that is applied is a linear and is an extension of first order beam 

theory. Linear sandwich theory is of utmost importance for the design and analysis of sandwich 

panels, which are of use in building construction, vehicle construction, airplane construction and 

refrigeration engineering. 

The sandwich panels are a special class of composite materials that is fabricated by attaching two 

thin but stiff skins to a lightweight but thick core. The core material is of a low strength material, 

but higher the thickness higher will be the bending stiffness with overall low density. 

 
Fig 2. Assembled Composite Sandwich 

Diagram of an assembled composite sandwich (A), and its constituent face sheets or skins (B) 

and honeycomb core (C). 

Open and closed cell structured foam, polystyrene, balsa wood and honeycomb are commonly 

employed as core materials. Glass or carbon fiber reinforced laminates are widely as skin 

materials. Sheet metal is also employed as skin materials. 

http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Beam_theory
http://en.wikipedia.org/wiki/Beam_theory
http://en.wikipedia.org/wiki/Sandwich_Panel
http://en.wikipedia.org/wiki/Sandwich_Panel
http://en.wikipedia.org/wiki/Bending
http://en.wikipedia.org/wiki/Stiffness
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Balsa
http://en.wikipedia.org/wiki/Composite_honeycomb
http://en.wikipedia.org/wiki/Glass
http://en.wikipedia.org/wiki/Carbon_fiber
http://en.wikipedia.org/wiki/Laminate
http://en.wikipedia.org/wiki/File:CompositeSandwich.png
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Metal composite material (MCM) is a type of sandwich structure formed by the application of 

two thin skins of metal bonded to a plastic core in a continuous process under controlled 

pressure, heat, and tension. 

Recycled paper is also now being employed over a closed-cell recycled kraft honeycomb core, 

which helps in creating a lightweight, strong and fully repulpable composite board. This material 

is being employed for applications including point-of-purchase displays, recyclable office 

furniture, exhibition stands and wall dividers. 

To fix different panels, among other solutions, are normally use a transition zone, which is a 

gradual reduction of the core height, until the two fiber skins are in touch. In this place, the 

fixation can be made by means of bolts, rivets, adhesive or can be selected from different kinds 

of material available. 

The strength of the composite material is largely dependent on two factors: 

1. The outer skins:  

If the sandwich is given support on both sides, and is then stressed by means of a force in the 

middle of the beam, then the shear forces from the bending moment will be introduced within the 

material. The shear forces results in the bottom skin being in tension and the top skin being in 

compression. The core material spaces those two skins apart. The thicker the core material, then 

stronger is the composite. This principle works for an I-beam too.  

2. The interface between the core and the skin:  

As the shear stresses in the composite material changes rapidly between the core and the skin, 

the adhesive layer also sees some degree of shear force. If the adhesive bond between the two 

layers is too weak, the most probable result will be de lamination in those sheets. 

 

2.2 Behavior of Sandwich Beam: 

The behavior of a beam with sandwich cross-section under a load will differ from a beam with a 

constant elastic cross section. If the radius of curvature during bending is found to be small 

compared to the thickness of a sandwich beam and the strains in the component materials are 

small, the deformation of a sandwich composite beam can be separated into two parts : 

1. Deformations that occurs due to bending moments or bending deformation, and 

2. Deformations that occurs due to transverse forces, also called shear deformation. 

http://en.wikipedia.org/wiki/Recycled_paper
http://en.wikipedia.org/wiki/Composite_material
http://en.wikipedia.org/wiki/Linear_elasticity
http://en.wikipedia.org/wiki/Radius_of_curvature
http://en.wikipedia.org/wiki/Deformation
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For sandwich beam, plate, and shell theories the reference stress state is one of zero stress. But, 

during curing, there is a difference of temperature between the face-sheets because of the thermal 

separation by the core material. 

The face-sheets with different linear expansions are coupled. Due to temperature difference it 

can lead to the bending of the sandwich beam having the warmer face-sheet compared to the 

other face sheet. Residual stresses can develop during the manufacturing process if the bending 

is constrained.  

The superposition of a reference stress state on the solutions provided by sandwich theory is 

possible when the problem is linear. However, when large elastic deformations and rotations are 

expected, the initial stress state has to be incorporated directly into the sandwich theory. 

 

2.3 Advantages of Sandwich Beam: 

 

1. Sandwich cross sections are usually composite. They consist of a low to moderate stiffness 

core which is then connected with two firm exterior face-sheets. The composite has considerable 

higher shear stiffness to weight ratio compared to an equivalent beam made of only the core 

material or the face-sheet material. The composite also has a very high tensile strength to weight 

ratio. 

2. High bending stiffness to weight ratio for the composite is achieved because of the high 

stiffness of the face-sheet. 

2.3.1 Piezoelectric materials: 

 

1. Piezoelectric materials have the ability to generate electric potential in response to applied 

mechanical stress.  

2. This property is exhibited by certain materials like ceramics & some crystals. 

3. The  piezoelectric  effects  can  be  seen  as  transfer  between electrical  and  mechanical energy.  

4. Such transfers can only occur if the material is composed of charged particles and can be 

polarized.   

5. For a material to exhibit an anisotropic property such as piezoelectricity, its crystal structure 

must have no centre of symmetry. 

 

2.3.2 Piezoelectric Layered Sandwich Beams: 

 

Active control of smart structures depends on the magnitude of electric potential difference for a 

given mechanical stress.  This subsequently depends on the piezoelectric stress/strain   constants. 

http://en.wikipedia.org/wiki/Plate_theory
http://en.wikipedia.org/wiki/Shell_theory
http://en.wikipedia.org/wiki/Residual_stress
http://en.wikipedia.org/wiki/Superposition_principle
http://en.wikipedia.org/wiki/Linear
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The existing monolithic piezoelectric materials being used in beams posses low   control   

authority as   their piezoelectric   stress/strain   constants   are   of   small magnitude.  Because,   

tailoring   of   these   properties   may   improve   the   damping characteristics of the smart 

st ructures. These beams show improved mechanical    performance, electromechanical 

coupling characteristics, and acoustic impedance matching with the surrounding medium over 

the piezoelectric material alone. 

 

 

2.4 Critical Elements in a structure: 

 

There are two important components in a structure: 

1. Actuators 

2. Sensors  

 

2.4.1 Actuators: 

 

Actuator is generally the reverse of sensor. It converts electrical inputs to physical (thermal, 

mechanical, etc) outputs. The  ideal  mechanical  actuator  would  directly  convert  electrical  

input  into  strain  or displacement in the host structure. The principal actuating mechanism of 

actuators is referred to as actuation strain. 

 

2.4.2 Sensors: 

 

Sensors are mechatronics devices that can convert analogue physical values into electrical 

impulses thus informing of their magnitude. The  ideal  sensor  for  structures  converts  strain  or  

displacement  directly  into electrical   output.   The   primary   functional   requirement   of   such   

sensors   is   their sensitivity to strain and displacement. 
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3. Motivation Of The Present Work 

 

Sandwich beams which are the answer to many structural problems demanding self control and 

flexible characteristics involving mechanical and thermal stresses. The technological 

implications of this class of beams are immense, as they are  especially  useful  in  remote  

operations,  expensive  space  operations  subjected  to extreme thermo-mechanical loadings, 

aerospace skins, protective shields, components in reactor vessels, machine tools, and medical 

applications, to name only a few. As the advent of steel changed the last century, similarly these 

beams which will revolutionize the 21st century. 

 

The beams have characteristics such as  thermo-electro-mechanical  coupling,  functionality, 

intelligence,  and  gradation  at  micro  and  nano  scales. The reliability and integrity of these 

systems are the main challenges before us.   They can be customized to operate   under   varying 

conditions covering the   whole spectrum of electro-thermo-mechanical conditions. The 

conditions can vary across a wide range of temperature, magnetic & electric fields, pressure and 

mechanical load, and/or a combination of two or many. Experimental investigations of  both  

these systems & beams although possible, are prohibitively expensive, and therefore must be 

complemented with simulations and theoretical analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DYNAMIC BEHAVIOR OF SANDWICH BEAM WITH PIEZOELECTRIC 

LAYERS 
2011 

 

Page | 12  
 

4. LITERATURE REVIEW 

 

A.Benjeddou in „Advances In Piezoelectric Finite Element Modeling Of Adaptive Structural 

Elements‟ proposed that earlier piezoelectric materials were of great interest for finite element 

modeling, but interests have been shifted to smart structures and modeling of the same for 

advanced applications .These smart structure includes composite plates, sandwich beams, shells. 

The trends and advances in these structures are determined by the electrical properties and 

elemental characteristics such as shape, independent variables and degree of freedom. For finite 

element formulation, the basic equation governing the electrostatic behavior of the piezoelectric 

element is assumed. Modeling of intelligent structures is done for finite analysis followed by 

conventional actuation method is applied. The important feature of the piezoelectric material to 

finite element modeling is its electromechanical coupling and electric charge is distributed on 

both top and bottom sides of the piezoelectric patches. The electromechanical coupling and 

surface characteristics can be handled through three-dimensional finite element modeling with 

modified degree of freedoms. Shear actuator mechanism is used for thin plates and sandwich 

beams, which makes it high efficient and better performance consideration. Finite element 

development took place with three-dimensional elements with electric as well as mechanical 

degree of freedoms for formulating electromechanical coupling and surface characteristics of the 

sample. Two-dimensional elements were formulated for thin sheets and composite plates with 

electric DOF. 

 

 

Brian.P.Baillargeon in „Active Vibration Suppression of Sandwich Beams Using Piezoelectric 

Shear Actuators‟ proposed that piezoelectric material has a capacity of producing self-actuated 

voltage, when stress is being applied on it. When load is applied on the cantilever beam, 

sandwiched with piezoelectric and core material, it causes transverse shear deformation. Active 

vibration suppression is achieved either through strain rate feedback or positive position 

feedback. Actuators basically serve for two types of purposes. It helps in excitation of the beam 

and controlling of the vibrations. Piezoelectric actuators are actually bonded to hot structures and 

electric field applied to the bonded sheet causes change in lateral dimensions and hence 

deformation in host structure. The actuators used in this case for deformation in piezoelectric 

material with the help of application of electric field are called piezoelectric extension actuators. 

These types of actuators are much efficient and brittle, which increases its failure rate. To 

overcome this problem, adaptive sandwich structures consisting of the axially poled piezoelectric 

actuators have been proposed. The axially poled piezoelectric actuator when sandwiched 

between viscoelastic layers is of optimum strength to overcome transverse deflection within 

permissible limits. 
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Jingjun Zhang in „Active Vibration Control of Flexible Structures Using Piezoelectric Materials‟ 

Proposed that Piezoelectric ceramics can be used in wide variety of applications like from active 

vibration control to nano-positioning technology.  Piezoelectric ceramics are of greater concern 

because of its mechanical simplicity, light weight, low volume, conversion between electrical 

energy to mechanical energy etc. These days, we can see undesirable vibrations are produced 

during an operation, which causes failure of the system. These can be reduced with the help of 

feedback control mechanism. There are two types of feedback mechanisms to damp the 

undesired vibrations. Positive position feedback is applied by providing structural position 

coordinate directly to compensator. Strain rate feedback mechanism is used for active damping 

of flexible structures where lateral deformation occurs with load application. Here steel acts as a 

core material and piezoelectric patches acts as sensor as well as actuators. Actuators actuates the 

flexible structure with varied frequency and sensor senses the vibration, control system sends 

signals to sensor with equal and opposing voltage to damp the vibrations.  

      

 
Fig 3. An assembled sandwich beam with actuators and sensors on board. 

 
Anna Markidou in „Soft-materials elastic and shear module measurement using piezoelectric 

cantilevers‟ has proposed a method for finding shear and elastic properties of the soft materials. 

Sensors made up of soft material elastic modulus and shear modulus, are used in piezoelectric 

cantilever for actuation and damping purpose. Applying electric field in the direction of 

thickness causes deformation generating axial displacement or force. Elastic modulus depends on 

axial displacement and axial displacement can be measured with proper geometry of the 

cantilever beam. The elastic and shear modulus of soft tissues like rubber material and gelatin 

can be measured with the help of piezoelectric cantilever beam of lower dimensions. The main 

purpose of this paper is to develop a sensor which can measure elastic and shear properties of the 

soft materials with sensor operating in few micron levels. With experiments, we can calculate 
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spring constant K, by placing different weights at cantilever tip. Shear tests and compression 

tests were carried out to find elastic and shear properties of the sample. 

 

W.H.Liao in „on the analysis of viscoelastic materials for active constrained layer damping 

treatments, 1997‟ proposed that viscoelastic material influence the functioning of active as well 

as passive damping. The beam used here is viscoelastic layer sandwiched between active 

piezoelectric layer and host structure. During the experimentation, it has been found out that 

active piezoelectric action in Active Constrained Layer configuration will enhance the 

viscoelastic layer damping by increasing its shear angle. It is desirable that viscoelastic material 

has high loss factor to obtain good passive damping abilities and active passive hybrid actions. 

One should select viscoelastic material with high shear modulus high active gains for lowered 

rate of vibrations. Based on the experiment results, it will be desirable if one can develop means 

to reduce the viscoelastic effect on active vibration control, while retaining the passive damping 

ability in the Active Constrained Layer. This could increase the design space for viscoelastic 

selections and enhance the ACL overall. 

 

Raja in „Modelling, Simulation and Validation for Active Vibration Control of Smart Sandwich 

Beam with Piezoelectric Actuation, 2002‟ proposed a theory on modelling and active vibration 

control of smart structures with piezoelectric actuation. The sandwich beam is a composite of 

piezoelectric and piezoceramic materials for intelligent behaviour response. For correct 

simulation, finite element procedures have to be applied in modelling of sandwich beams with 

distributed actuated and sensing capabilities. For actuation, an elastic core is sandwiched 

between two transversely polarised piezoelectric layers, whereas for shear actuation, an axially 

polarised piezoelectric core is sandwiched between two composite faces. 

 

Zeki kiral in „Active control of residual vibration of a cantilever smart beam, 2007‟has proposed 

a theory paper to control the residual vibrations of clamped-free beam subjected to a load. 

Vibrations are considered as undesirable output due to waste of energy, precision loss, noise etc., 

and should be kept under control. Two laser displacement sensors are used to figure out the 

dynamic response of the beam during load application. Dynamic response of the beam is 

calculated by finite element modelling for designing a control mechanism. In this experimental 

study, piezoelectric actuators are used for active vibration control and displacement feedback 

mechanism is employed. Modelling is done by finite element procedures and simulation results 

are done in analysis software ANSYS. Author has concluded that residual vibrations of the smart 

beam are suppressed to greater extent through active vibration control and displacement 
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feedback. The design of active vibration control of more complex structures can be achieved 

with the finite element packages, which enable us to use active elements. 

                                                                                                             

 D. A. van den Ende in „Piezoelectric and mechanical properties of novel composites of PZT and 

a liquid crystalline thermosetting resin, 2007‟ has proposed a theory based on piezoelectric and 

mechanical properties of PZT and liquid crystalline resin (LCR) for actuation purpose. The 

piezoelectric properties of polymer are greatly influenced by temperature. The polymers show 

excellent process ability in high temperatures. Good chemical and thermal resistance of polymer, 

makes it better material for sensor applications at high temperatures. Author concluded that PZT-

LCR composite have high piezoelectric voltage, which is a better quality for sensor applications. 

Dielectric and piezoelectric behavior of thermosetting resin have been described. These sensors 

can be used in automobile and aerospace applications, where elevated temperatures are 

employed. A maximum operating temperature was observed at which, piezoelectric attributes are 

found to be deteriorated. 

 

Chih-Liang Chu in „Active vibration control of flexible beam mounted on elastic base, 2006‟ 

investigated the active vibration control of flexible beam which is analyzed through finite 

element modeling. Shearing deformation and inertia is included in experiment calculation. The 

controller system in the process works on the principle of suppression of excessive vibration 

during base excitation, thereby improving dynamic characteristics of system. In industries, the 

heavy machines during operation are subjected to undesirable vibrations which should be cutoff 

for high precision outputs. These vibrations are suppressed which control strategy employed. 

Piezoelectric vibrations and optical sensors were used to perform active vibration control to 

improve measurement accuracy. Independent modal space control (IMSC) mechanism was 

employed because this method has a capability to reduce vibration to each and every mode and 

feedback is applied to every mode, which suppresses vibrations to greater extent. The basic 

principle of modal space control method is to transform the coupled system dynamic equations 

into the decoupled modal space, and thereafter apply a process of feedback control to each 

decoupled mode. Optimum independent modal space control is found and numerical simulation 

is done during experiments. Author has concluded that Timoshenko theory has been used to 

develop beam, which is good agreement with results in ANSYS finite element software. In 

conclusion, the application ensures a superior dynamic performance of a flexible beam mounted 

on an elastic base. 

 

 

C.Mei in „Hybrid wave/mode active control of bending vibrations in beams based on advanced 

Timoshenko theory,2008‟ studied active vibration control in beams based on Timoshenko 

theory. Both mode and wave theory have been combined to improve the performance of the 
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vibration control. In the proposed hybrid control, wave control is first at one or more points in 

the structure which absorb vibration energy especially during high frequencies. Modal control is 

applied for accuracy and robustness of the system. In modal active vibration control, the 

objective is to control the characteristics of damping factors, natural frequencies or mode shapes. 

At high frequencies, rotary inertia and shear distortion are taken into consideration. In proposed 

hybrid approach, two control strategies are employed, one is to absorb vibration energy and 

another control system is to provide damping to the system. Author has concluded that hybrid 

approach, which includes both wave as well as modal theory, has an advantage of absorbing 

vibrations at higher frequency and damping is provided with higher accuracy. The hybrid 

approach exhibits better active vibration control performance than the cases with either modal or 

wave control individually. 

 

C.M.A.Vasques in „active vibration control of smart piezoelectric beams‟ proposed a theory on 

vibration control through smart beams. A one-dimensional finite element of a three-layered 

smart beam with two piezoelectric surface layers and metallic core is made composite. The two 

piezoelectric layers acts as sensor for sensing the amount of displacement and actuator for 

actuating vibrations with low frequency. A partial layer wise theory and electro-mechanical 

theory is considered for control mechanism. The main aim of the paper is to reduce vibration of 

mechanical system by systems structural response. The ability of piezoelectric to produce 

electric charge (actuating voltage) proportional to the external force applied, is the main 

characteristics for most of the sensors manufacturing with PZT material. Author studied analysis 

of active vibration control of a cantilever aluminum beam with piezoelectric patches acting as 

sensor and actuator. Smart structures have excellent characteristics for damping purpose with 

low weight applications. 
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4. ANALYTICAL WORK 

After designing of Cantilever Beam in Ansys design software, with specific material properties, 

analysis is done by applying varying loads (-10N, -50N, -100N,-1000N & -3000N ) on the 

meshed node of the beam to study the stress-strain distribution along the cantilever beam. After 

analysis procedure, Results are found out in the form of Stress-Strain graphs are plotted for 

different loads. 

Stress Analysis of Cantilever Beam with 10N Force applied in Negative Z direction: 

Total No of Nodes: 2936  

Load Applied: Node 2585 

Maximum Stress: Node 243                                Maximum Strain: Node 243 

Minimum Stress: Node 1502                                Minimum Strain: Node 1287 
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Stress-Strain relationship for 10 N Load applied in the negative Z direction. 

 

The stress-strain curve is a relation between stress, which is measured with load applied on the 

beam and strain, derived from measuring the deflection in the beam. Hook‟s Law relates these 

parameters within elastic limit. 

 

Maximum Stress: 24.715 N/mm
2       

                            Maximum Strain: 0.825E-06 

Minimum Stress: 0.2768 N/mm
2 

Minimum Strain: 0.1361E-07 
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Stress Analysis of Cantilever Beam with 50N Force along Negative Z axis direction 

 

Total No of Nodes:2936  

Load Applied: Node 2585 

Maximum Stress: Node 243                                Maximum Strain: Node 243 

Minimum Stress: Node 1502                                Minimum Strain: Node 1290 
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Stress Analysis of Cantilever Beam with 100N Force in Negative Z direction. 

 

Total No of Nodes: 2936  

Load Applied: Node 2585 

Maximum Stress: Node 243                                     Maximum Strain: Node 243 

Minimum Stress: Node 1502                                     Minimum Strain: Node 1290 

Maximum Stress: 247.15 N/mm
2
                               Minimum Stress: 2.7683 N/mm

2 

Maximum Strain: 3.25E-05                                        Minimum Strain:  1.36E-07 
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Strain Analysis of Cantilever Beam with 100N Force in Negative Z direction. 

 

1) Scatter diagram for stress-strain curve for -100N load 
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2) Stress-strain curve for 100N load applied in Negative Z direction 

 

 
 

Stress Analysis of Cantilever Beam with 1000N Force in Negative Z direction. 

 

Total No of Nodes: 2936  

Load Applied: Node 2585 

Maximum Stress: Node 243                                 Maximum Strain: Node 243 

Minimum Stress: Node 1502                                 Minimum Strain: Node 1290 

Maximum Stress: 2471.5 N/mm
2 
                           Maximum Strain: 8.25E-05 
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Minimum Stress:  27.683 N/mm
2                                         

Minimum Strain: 1.36E-06

 
 

 

 

 

 

 

Strain Analysis of Cantilever Beam with 1000N Force in Negative Z direction. 

 

The intensity of stain distributed along the beam is shown in figure with different colors showing 

variation of strain. With red color being the maximum strain produced area and navy blue 

indicating minimum strain affected area. Strain is derived from measuring the change in 

deformation of the sample. Below figure shows the deformation before and after load 

application. 
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Stress-Strain relationship for 1000 N Load applied in the negative Z direction.  

1) Scatter diagram for stress-strain curve for -1000N load 

 
 

2) Stress-strain curve for 1000N load applied in Negative Z direction 
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Stress Analysis of Cantilever Beam with 3000N Force in Negative Z direction. 

 

Total No of Nodes: 2936  

Load Applied: Node 2585 

Maximum Stress: Node 243                                Maximum Strain: Node 243 

Minimum Stress: Node 1502                                Minimum Strain: Node 1290 

Maximum Stress: 7414.5 N/mm
2                             

Minimum Stress: 83.048  

 

 

 

 

 

 

 



DYNAMIC BEHAVIOR OF SANDWICH BEAM WITH PIEZOELECTRIC 

LAYERS 
2011 

 

Page | 27  
 

 

Strain Analysis of Cantilever Beam with 3000N Force in Negative Z direction. 

 

Maximum Strain Node: 243                                    Maximum Strain: 2.48E-04 

Minimum Strain Node: 1290                                  Minimum Strain: 4.10E-06 

As displacement and strain are directly proportional, maximum displacement occurs at the point 

of maximum strain. When higher load is applied, high displacement and hence high strain 

produced at the specific area of the beam. 

 

 

 



DYNAMIC BEHAVIOR OF SANDWICH BEAM WITH PIEZOELECTRIC 

LAYERS 
2011 

 

Page | 28  
 

Stress-Strain relationship for 3000 N Load applied in the negative Z direction. 

1.  Scatter diagram for stress-strain curve for -3000N load 

 

     

2. Stress-strain curve for -3000N load  
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Calculations:  

As we know the Young‟s modulus is calculated as the ratio of stress to strain. 

So as per the definition we have Y = Stress / Strain 

For load 1 i.e. -10 N, from the stress v/s strain graph, we have, 

Y = 31.25 TPa 

For load 2 i.e. -100N, from the stress v/s strain graph, we have 

Y = 30.5 TPa 

For load 3 i.e. -1000N, from the stress v/s strain graph, we have 

Y = 31.5 TPa 

For load 4 i.e. -3000N, from the stress v/s strain graph, we have 

Y = 31.25 TPa 

So, taking average value from all the values for Young‟s modulus we have, 

Y(avg) for this sandwich beam is 31.125 TPa. 
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Conclusion:  

Sandwich cross sections are composite and consist of a low to moderate stiffness core which is 

connected with two stiff exterior face-sheets and it has a considerably higher shear stiffness to 

weight ratio compared to an equivalent beam made of only the core material or the face sheet 

material. The face sheets that were used for this analysis were of PZT-5 material having a 

young‟s modulus of 63 GPa and the core material was of Aluminium which has a young‟s 

modulus of 69 GPa. When we analyzed a sandwich beam with core as aluminium and face sheet 

as PZT-5 material the young‟s modulus for the sandwich beam composite was found to be 

31.125 TPa (taking an average value from all the loads applied on a particular node). The value 

is acceptable as it is proved from early researches that the young‟s modulus for a sandwich beam 

is supposed to yield much better results compared to an equivalent beam made out from 

individual materials that are used as core or face sheets. 

 

Scope for future work: 

For the simplification purpose a three layered sandwich beam was selected and the core material 

for this purpose selected was aluminium and the face-sheets as PZT-5. There are few works that 

have been carried out in this direction where instead of 3 layers, more layers are being used and 

instead of simple layer like arrangements honeycomb like structures are used. Instead of core as 

aluminium and face-sheets as PZT-5 other materials showing considerable young‟s modulus 

value too can be used. 
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