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ABSTRACT 

p53 acts as the single most important gene in cancer as a single mutation can lead to 

tumorigenesis. More recently p53 functions have been further diversified by the discovery 

of various isoforms of p53. These isoforms derived either by alternative splicing or by 

differential translational sites are expressed in a tissue specific manner and have been 

proposed to influence p53 activity. Here we are trying to confirm the influence of p53β 

isoform on p53 activity either by its transcriptional repression or by forming a complex 

with p53 thereby modulating its activity at p53 dependent promoters. Expression of both 

p53 and its isoform rules out the chances of transcriptional regulation. Therefore, it may 

be that p53β/p53 may be binding differentially to p53 dependent promoters producing 

aberrations. 
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INTRODUCTION 

The body's system is composed of trillions of cells which continually grow and divide 

providing for the growth and maintenance of the body. Even though we stop growing when 

we become adults, many of our cells continue to grow and divide. Our bodies constantly 

replace the worn-out cells with new cells to stay healthy. To do this, cells must enter a 

"highway" called the cell cycle. The cell cycle has built-in controls for how fast, and for how 

long a cell will keep dividing. Such control mechanism is called the homeostatic mechanism 

otherwise called the ―Traffic controllers‖ of the cell. Such a mechanism depends on signals to 

decide when to stay in or exit the cell cycle. The proto-oncogenes and tumor suppressor genes 

constitute the go and stop signals of this machinery, respectively. Tumor suppressor genes 

code for proteins that serve as the "stop" signals that tell a cell to leave the cell cycle and stop 

dividing. The proto-oncogenes code for the "go" signals that tell the cell to stay in the cell 

cycle and continue to divide. 

Deregulation of these "stop" or "go" signals can lead the cells to escape from the tight controls 

that maintain homeostasis. Cells that accumulate DNA damage (called mutations) may lose 

their ability to respond to or make "stop" signals resulting in cancer developement.  

The development of cancer is a complex process that requires the accumulation of damage to 

the cell's growth-controlling genes, including damage to tumor suppressor genes and proto-

oncogenes. That is why cancer takes so long to develop.  

A central player in protecting the integrity of the genome is p53. p53 protein is expressed at 

low levels under unperturbed conditions. However, the p53 pathway is activated by any 

cellular stresses that alter the normal cell-cycle progression or can induce mutations of the 

genome leading to the transformation of a normal cell into a cancerous cell. Depending on the 

tissue-type and the extend of the damage, activated p53 protein either stops the cell cycle to 

repair the lesions or switches ‗on‘ the programmed cell death pathways (apoptosis), forcing 

the damaged cells to ‗commit suicide‘. The p53 protein prevents the multiplication of 

damaged cells that are more likely to contain mutations and exhibit abnormal cellular growth 

than undamaged cells. Hence, p53 protein is the guardian of the genome preventing cancer 

formation. The mechanisms by which p53 accomplishes its tumour suppressor activity are 

still not completely understood. The best described mechanism is its ability to modulate gene 

expression. p53 is a transcription factor that binds directly and specifically as a tetramer to 



p53 and Cancer 2011 
 

 Page 2 
 

target sequences of DNA (p53-responsive elements (p53RE). The ability of p53 to modulate 

gene expression is required for its tumour suppressor activity. Identification of the cyclin 

dependent kinase inhibitor Waf as a p53-responsive gene, helps to explain how p53 can 

induce cell-cycle arrest. Recently, several p53-inducible genes that encode for proteins with 

apoptotic potential have been identified. However, the tumour suppressor p53 can trigger cell 

death independently of its transcriptional activity through sub-cellular translocation and 

activation of proapoptotic Bcl-2 family members. 

The importance of its role is exemplified by the facts that p53 activity is ubiquitously lost in 

human cancer either by p53 protein inactivation or by p53 gene mutation. A defective p53 

gene deprives the cells of crucial signals that normally put the "brakes" on inappropriate cell 

division and tumor development. Human p53 gene has indeed a dual gene structure. p53 gene 

transcription can be initiated in normal human tissue from two distinct sites upstream of 

exon1 and from an internal promoter located in intron 4. The alternative promoter leads to the 

expression of an N-terminally truncated p53 protein initiated at codon 133 (∆133p53). The 

intron 9 can be alternatively spliced to produce three isoforms: p53, p53β (identical to p53i9) 

and p53g, where the p53b and p53g isoforms lack the oligomerisation  domain. Therefore the 

human p53 gene can encode at least nine different p53 protein isoforms, p53, p53b, p53g, 

∆133p53, ∆133p53b and ∆133p53g due to alternative splicing of the intron 9 and usage of the 

alternative promoter in intron 4, and also ∆40p53, ∆40p53b, ∆40p53g due to alternative 

splicing of the intron 9 and alternative initiation of translation or alternative splicing of the 

intron 2. p53 variant mRNA are expressed in several normal human tissues in a tissue-

dependent manner, indicating the internal promoter and the alternative splicing of p53 can be 

regulated. Moreover, the tissue-specific expression of the p53 isoforms could explain the 

tissue-specific regulation of p53 transcriptional activity in responses to stresses such as 

ionising radiation, UV, pH and hypoxia. But still their expression patterns and functions 

remained a mystery.  
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REVIEW OF LITERATURE 

The genetic basis of cancer development has only been established recently based on the 

evidence that familial, epidemiologic, and cytogenetic studies have provided over the last 

quarter century. The current understanding shows  that cancers is a multistage process in 

which mutations  (both inherited and somatic) of cellular genes lead to clonal selection of 

variant progeny with the most robust and aggressive growth properties.(1) 

Two classes of genes, are targets for the mutations, i.e. Proto-oncogenes and Tumor Supressor 

Genes  

Proto-oncogenes: 

Proto-oncogenes have critical roles in a variety of growth regulatory pathways, and their 

protein products are distributed throughout many subcellular compartments. The oncogenic 

variant alleles present in cancers have sustained gain-of-function alterations resulting from 

point mutations, chromosomal rearrangements, or gene amplifications of the protooncogene 

sequences Whereas oncogenic alleles harbour activating mutations, tumor-suppressor genes 

are defined by their inactivation in human cancer [1]. 

Tumor-suppressor genes:  

A tumor suppressor gene, called as an anti-oncogene, by Knudson, is a gene that protects a 

cell from developing cancerous properties. When this gene is mutated to cause a loss or 

reduction in its function, the cell can progress to cancer, usually in combination with other 

genetic changes.  

Some of the epithets used for tumor suppressor genes are the ‗gatekeeper‘, Caretaker‘ and 

‗Landscaper‘ [2]. They are called the gatekeepers because, first, their loss of function is rate-

limiting for a particular step in multi-stage tumorigenesis; second, they act directly to prevent 

tumor growth, and third, restoring ‗gatekeeper‘ function to tumor cells suppresses neoplasia. 

Ex. Adenomatous Polyposis Coli (APC). 

 Kinzler and Vogelstein subsequently qualified the ‗gatekeeper‘ definition of tumor 

suppressor genes to include all direct inhibitors of cell growth (suppressing proliferation, 

inducing apoptosis or promoting differentiation). This allows us to define genes such as p53 

as a ‗gatekeeper‘, albeit as a ‗progression gatekeeper‘.  

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Mutated
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By contrast, ‗caretaker‘ tumor suppressor genes act indirectly to suppress growth by ensuring 

the fidelity of the DNA code through effective repair of DNA damage or prevention of 

genomic instability (such as microsatellite or chromosome instability). As such, a large 

number of ‗caretaker‘ tumor suppressor genes are DNA repair genes. Loss of ‗caretaker‘ 

function predisposes to cancer by increasing the DNA mutation rate, thereby increasing the 

chances that ‗gatekeeper‘ gene function will be lost. Mutation in both alleles of a ‗caretaker‘ 

gene requires mutations in both alleles of gatekeeper genes to be functional whereas, 

gatekeeper muatation does not require caretaker mutation. 

Mutations in tumor suppressor genes are recessive; that is, as long as the cell contains one 

normal allele, tumor suppression continues. (Oncogenes, by contrast, behave as dominants; 

one mutant, or overly-active, allele can predispose the cell to tumor formation) [2]. 

Tumor suppressor pathways: 

Cells escape growth control by targeting key oncogenes/ tumor suppressor in molecular 

pathways. These pathways have evolved to integrate positive and negative growth signals 

according to cellular function and microenvironment during normal development and tissue 

repair. The RB pathway (RB/p16INK4a/cyclin D1) and the p53 pathway 

(p19ARF/mdm2/p53) are both frequently targeted in tumorigenesis and the mutation 

occurring in each pathway depends on the tumor type. 

p53  

TP53 gene and p53 protein: 

The tumour suppressor protein p53 was first described in 1979 and ten years later identified as 

a tumour suppressor. In human, the TP53 gene that contains 11 exons is located in 

chromosome 17p13.1, the coded protein is approximately 53 kDa in size, containing 393 

amino acids [3]. 

Structural and functional aspects of p53:  

There are four conserved domains in p53: 

1. The N-terminal domain is required for transcriptional transactivation 

2. A hydrophobic central sequence-specific DNA binding domain, composed of two beta-

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/O/Oncogenes.html
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sheets and a zinc atom which stabilizes the structure 

3. A tetramerization domain near the C-terminal end 

4. The C-terminal domain interacts directly with single stranded DNA [4]. 

When normal mammalian cells are subjected to stress signals (e.g. hypoxia, radiation, DNA 

damage or chemotherapeutic drugs ∆p53 is activated; additionally to its activation, ubiquitin-

dependent degradation of the p53 protein is blocked. The resulting increase in p53-dependent 

gene transcription leads to the p53-mediated induction of programmed cell death and/or cell 

cycle arrest. Functional p53 is thought to provide a protective effect against tumorigenesis, 

and indeed, mutations of p53 have been found in nearly all tumor types and are estimated to 

contribute to around 50% of all cancers. 

 

Figure 1: Schematic representation of the p53 structure (Ling Bai et.al, 2006). 

 Functions of the p53 protein: 

Of the many functions of p53, the first ones identified were inhibition of abnormal growth of 

cells and triggering of programmed cell death. Because these processes ensure genomic 

integrity or destroy the damaged cell, p53 has been called the ―guardian of the genome‖[5]. 

Later on, other important functions, such as DNA repair and inhibition of angiogenesis, were 

discovered. p53 is a sequence-specific nuclear transcription factor that binds to defined 

consensus sites within DNA as a tetramer and affects the transcription of its target genes[6]. 

p53 regulates these genes either by transcriptional activation  or by modulating other protein 

activities by direct binding. The p53-induced activation of target genes may result in the 

induction of growth arrest either before DNA replication in the G1 phase of the cell cycle or 
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before mitosis in the G2 phase. The growth arrest enables the repair of damaged DNA. By 

programmed cell death, which is often referred to as apoptosis according to its morphological 

appearance, the cells damaged beyond repair are eliminated thus preventing the fixation of 

DNA damage as mutations. The importance of p53 mutation in tumor cell biology is 

irrefutable. Wild-type p53 mediates imperative functions such as regulation of the cell cycle 

and programmed cell death. Deficiency of p53 function by mutation or inactivation abrogates 

normal cell cycle checkpoints and apoptosis, generating a favourable milieu for genomic 

instability and carcinogenesis.  

 

Figure.2: The classical p53 pathway[ V. Marcel,et. al]. 

 

Activation of p53:  

p53 is activated, among others, in response to DNA damage, and many factors interact to 

signal and modulate this response. There is still controversy over the pathways that lead to the 

activation of p53. Several mechanisms have been suggested:  

One idea is that stress-activated protein kinases phosphorylate p53, protecting it from 

degradation and activating its function as a transcription factor. Indeed, many phosphorylated 

forms of p53 are found in cells, and by phosphorylation p53 can be released from a latent 

state, in which it cannot bind DNA. One attractive candidate for p53 activation by 

phosphorylation is the DNA-dependent protein kinase (DNA-PK). DNA-PK is activated by 

DNA damage, and one of its substrates is p53[7].  
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Instead of its phosphorylation, the dephosphorylation of p53 at serine 376 by the ATM-

dependent activation of a specific phosphatase might enable DNA binding of p53 and its 

transcriptional activation. In this process, the so called 14-3-3 proteins bind to the C-terminus 

of the dephosphorylated p53, and by this possibly activate it.  

Another pathway towards activation of p53 involves the mdm-2 gene product. MDM-2 can 

target p53 for nuclear export and degradation; nonfunctional MDM-2 results in accumulation 

of p53 and activation of p53-dependent transcription. The mdm-2 gene itself is activated for 

transcription by p53, so this model implies that p53 is constitutively active, driving 

transcription of the protein (MDM-2) that targets its own degradation. Blocking the p53 

degradation pathway would result in the activation of the p53 response. Indeed, it was shown 

that the ARF tumor suppressor (also called p14
ARF

) binds to the complex of p53 and MDM-2, 

by this stabilizing p53, possibly by inducing degradation of MDM-2 . ARF expression itself is 

regulated by the E2F-1 transcription factor! This connects the Rb pathway to p53: oncogenes 

like E1A or SV40 T block Rb function, thus activating E2F-1. E2F-1 transcriptional activity 

leads to the expression of a number of genes required for passage into and through S phase 

but also to the expression of ARF which stabilizes p53. This would result in either p53 

dependent apoptosis or cell cycle arrest unless p53 itself is inhibited [8]. 

Regulation of p53: 

The p53 protein is effectively able to inhibit cell growth, and its activity is therefore strictly 

regulated. There are several mechanisms for the regulation of p53. Although, in some models, 

chemical DNA damage, for example, seems to increase TP53 transcription, it is generally 

believed that the principal mechanisms governing the activity of p53 occur at the protein 

level. These include post-translational modifications, regulation of the stability of p53 protein, 

and control of its sub-cellular localization[9]. Post-translational modifications of the protein 

take place in response to stress, and different agents elicit diverse responses. The human p53 

protein has been shown to be modified at least at 17 different sites. Of the post-translational 

modifications of p53, the most widely studied and best-known so far is phosphorylation. After 

DNA damage induced by ionizing radiation or UV light, phosphorylation takes place mostly 

at the N-terminal domain of p53[10]. Another important modification is acetylation, which 

has been shown to occur in response to chemically induced DNA damage and hypoxia. In 

response to DNA damage, the p53 protein is also modified by conjugation to SUMO-1, a 
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ubiquitin-like protein. Many proteins able to interact with p53 may also play a role in p53 

regulation. 

The murine double minute 2 (mdm2, hdm2 in human) gene encodes a 90 kDa protein (97 kDa 

in human) that was originally identified as a dominant transforming oncogene. The mdm2 

gene has been found to be amplified in human cancers. The combination of overexpressed 

mdm2 and p53 gives a worse prognosis than either one of them alone. Deletion of the mdm2 

gene in mice is embryonically lethal, probably due to increased accumulation of p53, but this 

lethality can be counter-acted by deletion of the TP53 gene The p53-mdm2 relationship is 

vital in the regulation of cell growth and death.The mdm2 protein regulates the activity of the 

p53 protein with more than one mechanism. It can block the transcriptional activity of the p53 

protein, export p53 from the nucleus to the cytoplasm and promote the degradation of p53 as 

The protein functions as a ubiquitin ligase and can ubiquitinate p53  

Mdm2-mediated degradation regulates the stability of p53. For many of its functions, p53 

needs to be localized in the nucleus. The p53 protein involves nuclear import and export 

sequences, and the activity of p53 is regulated by both nuclear import and nuclear export. The 

mdm2 protein is able to shuttle between the nucleus and the cytoplasm [11] and it is known to 

bind to the p53 protein in the N-terminal region. Through binding to p53, mdm2 shuttles p53 

out of the nucleus to the cytoplasm for degradation [12]. 

Aberrations of p53 function: 

There are many ways in which the p53 function may be altered in human cancers. p53 can be 

inactivated indirectly through binding to viral proteins, as a result of alterations in the mdm2 

or p19
ARF

 genes or by localization of the p53 protein to the cytoplasm. The most common 

aberration of p53 in human cancers is, however, mutation of the TP53 gene. Most of the 

mutations in the TP53 gene occur in the exons 4-9, the coding region for the DNA-binding 

central domain of the protein. A large proportion of all mutations in TP53 are single base 

substitutions . Of all mutations, approximately 30% occur in six codons, which are called the 

hotspot codons. These residues are located in the DNA-binding part of the protein, and 

mutations in these codons influence the protein-DNA contacts and the conformation of the 

protein[13]. It also seems that, in cancer cells with normal TP53 alleles, the expression or 

regulation of the protein is often somehow altered. Other factors that prevent normal folding 
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of the p53 protein, such as cadmium, may influence its DNA-binding capacity. It has 

therefore been suggested that all cancer cells have some aberration of p53 [3].  

p53 Target Genes:  

Wild-type p53 binds to specific genomic sites with a consensus binding site 5'-

PuPuPuC(A/T)(T/A)GPyPyPy-3'. p53 binds as a tetramer and stimulates expression of 

downstream genes that negatively control growth and/or invasion or are mediators of 

apoptosis. It was predicted that the expression of about 200-300 genes might be controlled by 

p53 transactivation.  

1. p53 target genes involved in p53 control: 

mdm2  

2. p53 target genes involved in cell cycle control: 

p21 WAF1/CIP1, GADD45, WIP1, mdm-2, EGFR, PCNA, CyclinD1, CyclinG, TGF 

alpha and 14-3-3sigma  

3. p53 target genes involved in DNA repair: 

GADD45, PCNA, and p21 WAF1/CIP1  

4. p53 target genes involved in apoptosis: 

BAX, Bcl-L, FAS1, FASL, IGF-BP3, PAG608 and DR5/KILLER, GML, P2XM  

5. p53 target genes involved in angiogenesis: 

TSP-1, BAI1  

6. p53 target genes involved in cellular stress response: 

TP53TG1, CSR, PIG3  

Analysis of p53 binding sites throughout the human genome suggests the existence of many 

more p53 regulated genes.  

Other p53 dependent proteins 

Poly(ADP-ribose)polymerase: 

Poly(ADP-ribose)polymerase (PARP) has long been known to play a role in the recognition 

of DNA damage and in DNA repair. PARP is known to be involved in the regulation of p53. 

It has been suggested that PARP plays a positive role in the activation and upregulation of 

p53[14] and have shown that, in human osteosarcoma cells, p53 is poly(ADP-ribosyl)ated by 

http://www.celldeath.de/encyclo/index/m.htm#mdm-2
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PARP. PARP has also been shown to activate DNA-dependent protein kinase (DNA-PK) 

activity in vitro and thus to regulate the activity of p53 by phosphorylation[15]. Altogether, 

the relationship between PARP and p53 seems to differ in different models and still needs 

further studies to be thoroughly understood. 

Oncogenic Ras: 

Mammalian ras genes are considered crucial in the regulation of cell proliferation. In 

mammals, the ras family consists of three genes located in different chromosomes, encoding 

the homologous 21 kDa proteins H-Ras, N-Ras and K-Ras. It has been estimated that 30% of 

all human cancers express mutated forms of ras[16]. The signal of Ras can have either 

negative or positive effects on cell growth, differentiation and death[17]. The signal is 

subsequently transmitted by a cascade of kinases, which results in the activation of MAPK. 

The Ras-MAPK pathway is apparently involved in the regulation of basal and induced levels 

of p53 and p19
ARF

 is required for oncogenic Ras-induced accumulation of p53. 

p21
WAF1/Cip1/Sdi1

: 

The p21 protein was the first cyclin-dependent kinase (CDK) identified. The p21 protein has 

multiple functions. It codes a protein that mediates p53-induced growth arrest of the cell cycle 

and is also a regulator of CDK activity. Yet another group demonstrated its gene expression to 

be induced in relation to cellular senescence. p21 can inhibit CDK-cyclin activity[18]  and 

directly inhibit DNA replication. The gene is transcriptionally upregulated by wild-type p53. 

The activation of p53 causes induction of p21, which in turn inhibits CDK-cyclin activity and 

arrests the cell cycle at the G1  or G2 cell cycle checkpoint. This gives time for DNA repair 

before replication or mitosis and thus links p21 directly to the tumour suppressor function of 

p53 [19]. 

“Family members” of p53: p63 and p73 proteins 

Recently, two new genes notably similar to the TP53 gene have been found. One of these 

genes is called p63, p51 or KET, and the other p73. They encode proteins that share high 

sequence similarity and conserved functional domains with p53 and can exert p53-like 

functions, such as transactivation of p53 target genes and induction of apoptosis. Both give 

rise to differentially spliced mRNAs and, respectively, to several different proteins 
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homologous to p53, There are at least three different forms of the p63 protein differing at the 

C-terminal end (α, β and γ ) that may also differ at the transactivation domain (p63TA and 

p63ΔDN) and six different variants of the p73 protein, p73-. The p73 protein, like p53, 

accumulates in response to DNA damage, and it is noteworthy that different types of inducers 

of DNA damage seem to affect p73 in different ways. Both p63 and p73 take part in the 

regulation of normal cell development and apoptosis[20]. Different forms of p63 protein can 

act in a dominant-negative manner towards p53, but whether p63 dysregulation has a role in 

tumorigenesis remains to be seen. p73, on the other hand, has been suggested to be a tumour 

suppressor protein, although opposite opinions have also been presented [21]. The function of 

p63 or p73 as a tumour suppressor still remains unclear. 

P53 isoforms 

A protein isoform is any of several different forms of the same protein. Different forms of a 

protein may be produced from related genes, or may arise from the same gene by alternative 

splicing. Both family members TP63 and TP73 are expressed as multiple isoforms that share 

a common ―p53-like‖ DNA binding domain with a different N- or C-terminus, generated by 

alternate promoter and alternative splicing. Such an observation led to the search for p53 

isoforms.[22,23] 

The human p53 gene flaunts a relatively simple architecture. According to previous studies 

p53 was supposed to comprise of only one promoter, and transcribe three mRNA splice 

variants encoding, respectively, full length p53, p53i9[24] and ∆40p53[25].   

p53i9 encoded by alternative splicing of the intron 9 was re- ported as a p53 protein isoform 

truncated of the last 60 amino acids of p53, lacks the p53 tetramerization domain, devoid of 

DNA-binding activity, defective in transcriptional activity and even was not found expressed 

at protein level.  

∆40p53 (also named p47 or _Np53), is an N-terminally truncated p53 isoform deleted of the 

first 40 amino acids. It can be generated either by an alternative splicing of intron 2 or by 

alternative initiation of translation but the generated protein still contains a part of the p53 

transactivation domain, and it can activate gene expression after transfection through a second 

transactivation domain located between amino acids 43 and 63. ∆40p53 can also act, after 

transfection, in a dominant-negative manner toward wild type p53, inhibiting both p53 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Genes
http://en.wikipedia.org/wiki/Alternative_splicing
http://en.wikipedia.org/wiki/Alternative_splicing
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transcriptional activity and p53-mediated apoptosis. ∆40p53 can modify p53 cell localization 

and inhibits p53 degradation by MDM2[26].  

Previous observations also reported no alternative promoter for the p53 gene.  

However recent studies have suggested that the p53 gene has a complex transcriptional 

expression pattern encoding different p53 mRNA variants, through both the use of alternative 

splicing and the existence of an internal promoter in intron 4[27]. The C terminus can be 

alternatively spliced to produce three isoforms—p53, p53β, and p53γ—where the p53β and 

p53γ isoforms lack the oligomerization domain. The alternative promoter leads to the 

expression of an N-terminally truncated p53 protein (∆133p53), which is initiated at codon 

133.  

Therefore, the human p53 gene can encode at least nine different p53 protein isoforms— 

 p53, p53β, p53γ,- due to alternative splicing of intron 9  

 ∆133p53, ∆133p53β, and ∆133p53γ due to alternative splicing of intron 9 and usage 

of the alternative promoter in intron 4, and  

 ∆40p53 due to alternative splicing of intron 2 and alternative initiation of translation.  



p53 and Cancer 2011 
 

 Page 13 
 

 

Figure.3: Human p53. (a) Schema of the human p53 gene structure: alternative splicing (a, b, 

g) and alternative promoters (P1, P10 and P2) are indicated. (b) p53 protein isoforms: p53, 

p53b and p53g proteins encoded from P1 or P10 promoters contain the conserved N-terminal 

domain (FxxcW) of transactivation (TA). D133p53 isoforms encoded from promoter P2 are 

amino-truncated proteins deleted of the entire transactivation domain and deleted of part of 

the DNA binding domain. Translation is initiated at ATG-133. D40p53 protein isoforms 

encoded from P1 or P10 promoters are amino-truncated proteins due to alternative splicing of 

exon 2 and/or alternative initiation of translation at ATG-40). D40p53 protein isoform have 

lost the conserved N-terminal domain of transactivation (FxxcW) but still contain part of the 

transactivation domain [F Murray-Zmijewski, et.al]. 

All p53 isoforms are expressed in normal tissue at the mRNA level. Moreover, the pattern of 

expression is tissue specific, indicating that their expression can be selectively regulated. The 

endogenous expression of p53 protein isoforms cannot be accessed by any existing p53 

antibodies as they cannot distinguish isoforms from full-length p53 forms that have been 

subject to post-translational modification including phosphorylation, acetylation, methylation, 
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ubiquitination, sumoylation, and neddylation or protein degradation[28]. p53 protein isoforms 

are less abundant than full-length p53 protein. It is thus unclear what sub-fractions of total 

p53 are active in the different biochemical and biological functions of p53 (gene expression, 

cell cycle arrest, senescence, apoptosis, differentiation, replication, control of chromosome 

segregation, mitosis, meiosis, DNA repair, etc.). Moreover, p53 abundance is not necessarily 

associated with p53 transcriptional activity. Endogenous p53β and p53 proteins bind 

differentially to promoters. p53β binds preferentially to BAX and p21 promoters rather than 

the MDM2 promoter, while p53 binds preferentially (five times more) to p21 and MDM2 

promoters than to the BAX promoter. This suggested that p53β could interfere with p53 

transcriptional activity on the BAX but not the p21 promoter. p53β interferes with p53 

transcriptional activity by forming a protein complex with p53. The p53/p53β complex may 

bind preferentially to specific p53-responsive elements, and therefore only a subset of p53-

inducible promoters will be responsive to p53β. As p53 isoforms can bind differentially to 

promoters, can modulate p53 target gene expression and p53-mediated apoptosis, the 

differential expression of the p53 isoforms in human breast tumors could explain the 

difficulties in many clinical studies to link p53 status to the biological properties and drug 

sensitivity of human cancer. Furthermore, it suggests that failure of appropriate regulation of 

expression of p53 isoforms may have a role in tumor formation since attenuation of the wild-

type p53 response would render the cells more susceptible to further genetic damage and 

therefore neoplastic transformation and tumor progression. It will be essential to extend our 

study to a larger series of tumors. In conclusion, the structure of the p53 gene is similar to the 

p63 and p73 genes, revealing an unforeseen complex regulation. The interplay between p53 

isoforms and p53 on specific targets may play a major role in controlling the activity of p53-

related proteins.  

Biochemical and biological functions of p53 isoforms  

p53 isoforms differ by the absence of structural and functional domains that may alter 

biochemical properties known to be essential for p53 suppressive functions. Only one motif is 

common to all isoforms, the portion of the DNA-binding domain (residues 133–257), which 

is stabilized by a Zinc atom and provides the structural motif that binds in the minor groove of 

DNA[29]. In theory, p53 isoforms can exert their effects by two mechanisms: autonomous 

functional properties, different from those of p53, and/or modulation of p53 activity. All p53 

isoforms discussed above appear to conserve some DNA-binding activity. The lack of 



p53 and Cancer 2011 
 

 Page 15 
 

transcriptional activity is likely due to their poor capacity to recruit components of the 

transcriptional machinery onto promoters, either because of the lack of a suitable protein 

interaction domain (e.g. ∆Np53 and ∆133p53) or to the lack of domains essential for high 

DNAbinding affinity (e.g. ∆p53: core domain; p53b: oligomerisation and/or regulation 

domains). How-ever, it cannot be ruled out that they may exert effects towards genes different 

from the known p53 target genes [30]. 

∆p53 has no detectable impact on p53 transcriptional activity. ∆p53 is thus able to act as an 

inhibitor of p53, but only if ∆p53 is forced to relocalize into the nucleus. ∆p53 is not able to 

form oligomers with p53 but retains DNA-binding capacity, suggesting that the inhibitory 

effect results from competition between p53 and ∆p53 for promoter binding ∆Np53 isoform 

can also inhibit p53 transcriptional activity. Transfected ∆Np53 may also affect p53 activity 

by altering its cellular localization, as exogenous ∆Np53 accumulated in the cytoplasm and 

induced the cytoplasmic re-localization of p53, thereby decreasing its transcriptional activity. 

∆Np53 may work as an inhibitor of p53 suppression by two complementary mechanisms, 

depending upon stress context. In non-stressed cells, ∆Np53 may work in the nucleus as a 

competitive inhibitor of p53 to prevent transactivation. In stressed cells, accumulation of p53 

may favor formation of hetero-oligomers with ∆Np53 that are exported from nucleus into 

cytoplasm, preventing p53 from regulating gene expression. In contrast with the above 

isoforms, p53b presents the capacity to increase p53 transcriptional capacity. Even if some 

intrinsic biochemical capacities have been attributed to p53 isoforms, most of the studies 

report their biochemical role towards p53 transcriptional activity either as inhibitory 

regulators (∆Np53, ∆133p53 and ∆p53) or as enhancer (p53b). In both instances, the 

biochemical mechanisms include DNA binding modulation, hetero-oligomers formation and/ 

or p53 sequestration in the cytoplasm. These three mechanisms may be dependent on the 

isoform, on the cellular context and also on the target gene considered, leading to a wide 

diversity of regulatory options, either positive or negative, by p53 isoforms. In this way, one 

of the most important factors is the relative expression level of the isoforms as compared to 

p53 itself, which may vary from one tissue or cell type to another. 

Mutations affecting p53 splicing patterns. 

 Several studies reported that intronic or exonic mutations gave rise to particular truncated 

p53 proteins with strong similitude to p53 isoforms. A deletion of 8 bp was identified in 
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intron 9 leading to an insertion of 133 additional nucleotides derived from intron 9 this 

transcript corresponds to p53β RNAand we can speculate that the 8 bp deletion may favor the 

use of the alternative splice site producing p53β In one case of colorectal cancer, a 

substitution of A to G in the 3 part of intron 9 led to the expression of a p53 protein, which 

conserves residues 1 to 332 but presents new residues from 332 to 358[31]. This truncated 

protein presents some similitude with p53b but has a longer Cterminal domain. On the other 

hand, mutations sometimes occur at splice junctions, leading to the production of aberrant p53 

truncated protein. In one study of chronic lymphocytic leukemia, 85% of patients expressed a 

Dex6 p53 transcript, which lacks the first 113 nucleotides of exon 6 leading to a premature 

stop codon at residue 189 that results in a C-truncated p53 product. This transcript was not 

found in healthy patients and no mutation on TP53 was detected, suggesting a deregulation of 

splicing giving rise to the production of a new p53 isoform. In Li-Fraumeni syndrome, 

defined as family carrying germline TP53 mutations, three atypical mutations have been 

described, all affecting acceptor or donor splicing sites [32] . For example, mutation of 5_ 

acceptor splice site in intron 3 resulted in the skipping of exon 4, suggesting that these cells 

were unable to produce p53 and ∆Np53. 

Biological integration of the p53 isoforms Network 

The diversity of processes leading to their production is a clue to the functionalsignificance of 

p53 isoforms, as cells have adopted number of strategies to produce them in different 

regulatory contexts. Second, most p53 isoforms are deficient for p53-like suppressive 

function but appear tomodulate p53 activity [33, 34, 35].Third, N-truncated p53 isoforms 

escapeHdm2-mediated degradation and may provide a regulatory system for controlling p53 

activity independently of Hdm2 [36]. Fourth, patterns of p53 isoform appear to be deregulated 

in different cancer types and may provide an alternative mechanism to inactivate p53 

suppressive function in wild-type TP53 tumors or to modulate mutation penetrance and 

phenotype in mutant TP53 tumors The complex effects of p53 isoforms on p53 response may 

have significant consequences for cancer development. Aside from a possible involvement in 

individual susceptibility, isoform expression may contribute to p53 inactivation in cells 

retaining wild-type TP53 alleles. However, based on the hypotheses detailed above, the 

biggest impact of isoforms may be on p53-dependent responses to cytotoxic therapies, as the 

capacity of cancer cells to undergo drug-induced apoptosis may be largely dependent upon 

p53 isoform expression patterns. ∆Np53, a ―buffer‖ for regulating p53 response is more stable 
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than p53 as it escapes to Hdm2-degradation and is not activated by a stress as compared to 

p53. As DNp53 inhibits p53 transcriptional activity, a p53 response would be observed only 

when the quantity of stabilized p53 is higher than the quantity of ∆Np53. A change in p53 

ratio would induce a decrease of p53 response. Epressing high levels of ∆Np53 or ∆133p53 

may have poor apoptotic responses, whereas cells expressing high levels of p53b may be very 

good responders to treatment. Thus, studies on p53 isoforms will provide a rich field of new 

concepts and paradigms in the regulation of p53 activities. 

p53 & Its Interaction with Other Genes 

p53 and p300: 

P300 are transcriptional co-factors and histone acetyl transferases that play a significant role 

in the p53 pathway. P300 has been found to both stabilize [37] and help in the degradation of 

p53[38]. p300 can forma complex withMDM2in vitro and in vivo, a negative regulator of p53, 

and this complex was shown to facilitate MDM2-mediated p53 degradation, on the other hand 

p300 was also shown to stabilize p53 after DNA damage.  

Acetylation by p300 at lysine residues at C terminus occuring after DNA damage leads to 

activation of sequence-specific DNA binding of p53 and transcriptional activation, helps p53 

to escape ubiquitination which share the same site, and thus escape degradation[39]. 

Inhibition of p300-mediated p53 acetylation by MDM2 would result in loss of sequence 

specific DNA binding and more efficient ubiquitination, consequently leading to the 

degradation of p53[40]. Phosphorylation of p53, at specific Lysine residues, stimulated by 

UV and γ irradiation, prevents MDM2 binding which prevents phosphorylation of p53 and 

recruits p300 which stabilizes p53. 

P53 and DNMTs: 

DNA methylation is the predominant epigenetic mechanism in regulation of gene expression. 

Epigenetic instability due to an imbalance of hypermethylation and global hypomethylation is 

a general feature of cancer cells and occurs early during cellular transformation[41]. The 

importance of DNA methylation in tumorigenesis has been demonstrated in cancer cells, 

which harbor global genomic DNA hypomethylation and regional hypermethylation at CpG 

islands of tumor suppressor genes. DNA methylation is mediated by a class of DNA 
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methyltransferases (Dnmts) involved in de novo methylation of genomic DNA and in the 

maintenance of DNA methylation patterns during replication. Global genomic DNA 

demethylation induced by 5-Aza-deoxycytidine activates the p53 signaling pathway and 

induces apoptosis, suggesting that DNA methylation mediated by Dnmts is associated with 

p53 signaling in maintaining genome stability. Although one mechanism for tumor promotion 

is the overexpression of Dnmts, which brings about hypermethylation of the transcriptional 

regulatory regions of tumor suppressor genes, Dnmts have also been shown to interact with 

transcriptional corepressors thereby suppressing transcription.   

p53 and Dnmt1 cooperate to repress survivin gene expression. Activation of p53 leads to 

down-regulation of survivin, a member of the inhibitor of apoptosis (IAP) family .Induction 

of p53 leads to transcriptional and translational repression of survivin in vivo p53 recruits 

Dnmt1 and stimulates Dnmt1-mediated DNA methylation of the survivin promoter 

cooperation between DNMT1 and p53 is essential for survivin gene regulation, either through 

methylation-dependent or -independent pathways. A plausible model of this repressor 

complex would require DNA damage-mediated recruitment of HDAC1–DNMT1–p53 

complexes to the CpG-rich survivin promoter, a preferred site for DNMT1 binding because of 

high density of CpGs. Presence of p53 may stabilize the HDAC1–DNMT1–p53 complex on 

the survivin promoter, either by direct or indirect contacts with DNA by means of methylated 

histones [42, 47].  

Dnmt3a interacts with p53 directly and represses p53-mediated transactivation of the p21 

gene. It was found that trans-repression by Dnmt3a does not require the methyltransferase 

activity implying that transcriptional repression does not involve promoter silencing through 

DNA methylation by Dnmt3a.  Whether the interaction of Dnmt3a with p53 interferes with 

the oligomerization of p53 remains to be determined. The identification of p53 interaction 

with Dnmts may have some clinical relevance. Since Gadd45 is one of the downstream targets 

of p53, it will be of interest to determine whether the hypermethylation of Gadd45 promoter is 

due to recruitment of Dnmt3a or other Dnmts by p53 in HCC [43]. 

P53 and HDACs: 

HDAC1 may also aid in survivin repression through interaction with p53 by means of the 

Sin3a repressor complex or by directly binding to DNMT1 Induction of p53 leads to 

transcriptional and translational repression of survivin in vivo [44]. 
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 P53 and GADD45:  

The tumor suppressor p53 gene has been implicated in the control of cell cycle checkpoint in 

response to genotoxic stress. The role for p53 in G1-S arrest is clearly shown to be mediated 

though p21. However, the role of p53 in the control of the G2-M arrest is under debate and 

remains to be further elucidated. It is postulated that as one of the p53-targeted genes, 

GADD45 might be a strong player in mediating p53-regulated cell cycle G2-M checkpoint. 

Previous studies have shown that Gadd45 protein interacts with Cdc2 and dissociates the 

Cdc2/cyclin B1 complex Subsequently, 'free' cyclin B1 protein dissociated from the Cdc2 

complex is more likely pumped out from the nucleus, probably by the nuclear transport 

system. As a result of exclusion of cyclin B1 protein from the nucleus, Cdc2 kinase activity is 

inhibited and followed up by the cell cycle G2-M arrest. This goes along with the finding by 

that DNA damage causes increased nuclear export of cyclin B1 and in turn arrests cells at the 

G2-M transition. Our observations that inducible expression of GADD45 protein alters cyclin 

B1 nuclear localization have suggested that exclusion of nuclear cyclin B1 protein by Gadd45 

might be an essential step for the GADD45-induced G2-M arrest. Therefore, the findings in 

this work have further presented the precise evidence that the p53-GADD45 pathway is well 

involved in the control of G2-M arrest. 

Both p21 and MDM2 appear not to be the candidates to mediate the role for p53 in GADD45-

induced G2-M arrest. Independence from p38 kinase activity suggest that Gadd45 acts at the 

late G2-M transition or early mitotic phase, instead of at the initiation of G2-M transition. 

Overexpression of cyclin B1 protein has been found in certain types of human tumors 

although the biological function of this overexpressed protein in tumorigenesis remains 

unclear [45].  

 

 

 

 

 



p53 and Cancer 2011 
 

 Page 20 
 

OBJECTIVE 

As  it is suggested that failure of appropriate regulation of 

p53 isoforms  may have a role in tumor formation, 

therefore the objective of our work is to check if any of the 

isoforms express in any cancer tissue which contain an 

intact, unmutated p53 gene. 
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MATERIALS AND METHODS 

1. Collection of Samples: 

        Blood was collected as the normal tissue from the local CWS Hospital, Rourkela, Odisha, stored 

in ice and immediately processed for better RNA extraction.  Cancer tissue (Lymph Node Carcinoma) 

was collected from National Medical College, Kolkata and stored in RNA later (Sigma) at –20
0
C until 

the extraction of RNA. 

2. Extraction of Total RNA: 

Total RNA was extracted from both blood (normal) and cancer tissue using 

GeneJET
TM 

RNA Purification Kit (Fermentas). 

2.1. For extraction from Blood: 

The collected blood was centrifuged at 3000 rpm for 15 mins at 4° C. The supernatant 

containing the serum was separated from the pellet which contains the blood cells. The pellet 

was resuspended in 600 μl of Lysis Buffer (supplemented with 20 μl of 14.3 M β-

mercaptoethanol for every 1ml of Lysis Buffer) and vortexed to mix thoroughly. 450 μl of 

ethanol (96-100%) was mixed with the solution. About 700 μl of the lysate was transferred to 

a GeneJET
TM 

RNA Purification Column inserted in a collection tube and centrifuged at 12000 

rpm for 1 min at 4° C. The flow-through was discarded and the column was placed into a new 

2 ml RNase-free microcentrifuge tube. 700 μl of Wash Buffer 1(supplemented with 250 μl of 

ethanol for every 1ml Wash buffer 1) was added to the column and centrifuged for 1 min at 

12000 rpm. The flow-through was discarded and 600 μl of Wash Buffer 2 (supplemented with 

850 μl of ethanol for every 0.5 μl Wash buffer 2) was added to the column. It was centrifuged 

at 12000 rpm for 1 min at 4° C. The flow-through was again discarded. Centrifugation was 

again done at 12000 rpm for 1 min at 4 ° C by adding 250 μl of Wash buffer 2. The flow-

through was discarded and the column was transferred to a sterile 1.5 RNase-free 

microcentrifuge tube. 100 μl of nuclease-free water was added to the column and centrifuged 

for 1 min at 12000 rpm to elute RNA. The RNA was stored at - 20° C for further use or 

immediately processed for cDNA synthesis  
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2.2. For Extraction from Cancer tissue: 

About 30 mg of frozen cancer tissue was taken and thoroughly homogenized using 

Lysis buffer. The grinded tissue was transferred into a sterile 2 ml microcentrifuge tube 

containing 300 μl of Lysis Buffer (supplemented with 20 μl of 14.3 M β-mercaptoethanol for 

every 1ml of Lysis Buffer). The mixture was vortexed for 10 secs for thorough mixing. The 

next steps of extraction were same as that followed in the previous protocol for blood RNA 

extraction. 

3. Quantitative Estimation of RNA Concentration by Spectrophotometric 

Analysis: 

The concentration of the extracted total RNA from both blood and cancer tissue was 

quantified by measuring the absorbance at 260 nm in a spectrophotometer (ELICO, BL 200 

Bio Spectrophotometer, double beam) and calculated by using the formula as given below: 

Total RNA (μg /ml) = OD260 × 40 × Dilution factor. 

4. Quantitative Estimation of RNA Concentration by Denaturing Gel   

Electrophoresis: 
 

The extracted RNA from both blood and cancer tissue was run on a denaturing 

agarose gel and the quantity of RNA estimated from the band intensity. For denaturation gel 

(40 ml), 0.6 g agarose (Sigma), 28.8 ml dH2O (Sigma), 7.2 ml formaldehyde (Sigma), 4 ml 

10X MOPS buffer were mixed properly. About 2 μl (2μg) of the total RNA was mixed with 

18 μl 1X Reaction Buffer (2μl of 10X MOPS Buffer, 4 μl formaldehyde, 10 μl formamide 

(Sigma) ,2 μl 0.2 mg/ml Etbr (Sigma)) and incubated at 55 °C for 1 hr. It was then cooled on 

ice and loaded in the wells of the denaturing gel. 

 

5. First strand cDNA synthesis: 

Total RNA (4 g) from both blood and cancer tissue were used for first strand cDNA 

synthesis by reverse transcription using RevertAid
TM 

First Strand cDNA Synthesis Kit 

(Fermentas) in a thermocycler (Biorad). The RNA were incubated with 1 l of oligo(dT)18  

primers (100 μM, 0.2 μg/μl) and 12 μl of nuclease-free water at 65 C for 5 min. The reaction  
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was cooled on ice to allow the primers to anneal to the RNA, then spin down and placed on 

ice again after which the following components were added to the reaction in order; 4 l of 

5X Reaction Buffer, 1 l of Ribolock
TM

 RNase inhibitor (20 U/l), 2 l of 10 mM dNTPs and 

1.0 L of RevertAid
TM

 M-MuLV-Reverse Transcriptase (200 U/l). The reagents were gently 

mixed and incubated for 1 hr at 42C. Heating at 70C for 5 min terminated the reaction and 

the synthesized cDNA was stored at –20 
0 

C for further use. 

6. Gene-specific PCR for amplification of the desired gene: 

6.1. Primers selection: 

A set of specific forward and reverse primers for the amplification of the desired gene under 

study was selected from published papers (Boldrup L.,Christophe J.B.et al 2007). The cDNA 

of both the blood and cancer tissue synthesized were used as the template for the specific 

primers. The constitutively expressed housekeeping gene, β-actin was used as a positive 

control to ensure high quality. The primer sequences used for the PCR reaction are shown in 

Table 1: 

Table 1.Table showing the sequence of the forward and backward primers used. 

 

 

 

6.2. PCR conditions: 
 

The PCR sample mixtures, in a 25 μl volume, contained 17 μl of dH2O (Sigma), 2.5 μl of 1X 

PCR buffer (Sigma), 0.5 μl of dNTP (0.2 mM, Sigma), 1.5 μl of MgCl2 (1.5 mM, Sigma), 0.5 

μl each of the forward and reverse primers (0.2 μM, Sigma) p53 AND p53β and 0.5 μl Taq 

DNA-polymerase (1U/μl, Himedia). 2 μl of each cDNA sample was added. PCR 

amplifications of p53 and p53β were performed in a thermal cycler by initial denaturation at 

PRIMER TYPE SEQUENCE 

p53 Forward 
5‘-GTCACTGCCATGGAGGAGCCGCA-3‘ 

Reverse 5‘-GTCACTGCCATGGAGGAGCCGCA-3‘ 

p53β Forward 5‘-GTCACTGCCATGGAGGAGCCGCA-3‘ 

Reverse 5‘-GTCACTGCCATGGAGGAGCCGCA-3‘ 

 

β-ACTIN 

Forward             5‘  TCTACAATGAGCTGCGTGTG  3‘ 

Reverse 5‘  TCTCCTTCTGCATCCTGTC  3‘ 

Boldrup L.,Christophe J.B.et al 2007[48] 
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94° C for 1 min, followed by 30 cycles of denaturation at 94° C  for 1 min, annealing at 94 ° 

C for 30 secs, and extension at 60° C for 45 secs, followed by an final extension step at 72° C 

for 5 mins.  

7. Agarose Gel Electrophoresis of the PCR products: 

The generated PCR products were analyzed by electrophoresis on 1.5% agarose gel. 

Agarose gel was prepared with 1X TAE (Tris Acetate EDTA, Sigma) buffer. Before casting 

ethidium bromide(1µl of 10mg/ml stock in 30 ml) was added to the gel. 15 μl of sample (PCR 

product) was loaded to each well along with 3 μl 1 X loading dye. 5 μl of DNA marker (1 kb, 

Sigma). The gel was run in TAE buffer at 100 volt for 40 minutes. 

8. Analysis of the Relative Expression level of the different genes:  

The relative levels of expression of each gene were analyzed by taking the absorbance 

through spectrophotometric readings. The ratios of desired genes/β-actin product were 

subsequently calculated after subtraction of the background pixel intensity for each gene of 

interest and used to assess the differences in expression levels between normal and cancer 

tissue. 
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RESULTS AND DISCUSSION 

For Normal (Blood) Tissue: 

Product Conc
n
.
 
(µg/ml) Purity 

260/280 260/230 

Total RNA 1570.32 1.34 0.82 

Table.1: Spectrophotometer results of total RNA from blood tissue 

 

 

 

 

 

 

 

Gene Conc
n
.
 
(µg/ml) Purity 

260/280 260/230 

p53 2058.58 1.83 0.89 

p53β
 

2608.23 2.01 0.86 

Β-Actin 1302.35 1.93 1.02 

Table.3: Spectrophotometer results of gene specific amplification product from blood 

 

 

[Total RNA in 1% agarose gel] [Total RNA in denaturation gel] 
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For Cancerous Tissue (Lymph Node):- 

Tissue Conc
n
.
 
(µg/ml) Purity 

260/280 260/230 

Gall Bladder Cancer 234.67 1.03 0.65 

Lymph Node Cancer 1478.51 1.61 1.02 

Table.3: Spectrophotometer results of total RNA from cancerous tissue 

 

 

 

 

 

 

[Gene Specific PCR Amplification] 

   1            2             3 

Lane.1: β-Actin 

Lane.2: p53 

Lane.3-p53β 

  Lane.1: Lymph Node Cancer 

  Lane.2: Gall Bladder Cancer 

1          2 

[Total RNA in denaturation gel] 
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Table.5: Spectrophotometer results of gene specific amplification product from lymph node 

cancer tissue  

 

 

 

 

 

 

 

 

 

 

Gene Conc
n
.
 
(µg/ml) Purity 

260/280 260/230 

DNMT3A 168.23 1.74 1.28 

HDAC 1746.0 0.93 0.19 

GADD45 1764.0 0.96 0.21 

p300 1864.0 1.00 1.24 

p53 1474.0 1.05 1.36 

p53β
 

2440.0 1.02 0.18 

Β-Actin 1282.0 0.93 0.71 

Lane.1 & 8: β-Actin 

Lane3: HDAC 

Lane.9: p53 

Lane.10: p53β 

Lane.7 & 11: Marker 

    8          9          10         11 

[Gene Specific PCR Amplification] 

1      2       3     4     5      6      7 

[Gene Specific PCR Amplification] 



p53 and Cancer 2011 
 

 Page 28 
 

 

 

 

 

 

 

 

 

 

[Comparative Study of Gene Amplification Product By Spectrophotometry Analysis] 

P53 and p53i: 

P53 being the frequently mutated gene event, leading to tumorigenesis is often found 

expressed at low or minimal levels in various cancers. In this study of lymp node carcinoma 
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Lane.1 & 4: Marker 

Lane.2: p300 

Lane.3: β-Actin 

Lane.5: GADD45  

[Gene Specific PCR Amplification] 
[Gene Specific PCR Amplification] 
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both p53 and p53β are found to express fairly, indicating some other mechanism or mutation 

in some other pathway dependent upon p53 expression. 

Or it may be that expression of p53β modulates the activity of p53. P53β has been seen to 

change the transcription activity of p53 and also forms complex with p53 and binds 

differentially to p53 responsive promoters. Since we have extracted the mRNA and then 

carried out cDNA synthesis, it is clear that p53 is active at the transcriptional level. So it may 

be that expression of p53β changes the activity of p53 by binding differentially to 

p53reponsive promoters. 

P53 expression in cancer cells may be explained by interactions between p53 and p53β and 

other target genes. Some such interactions may be: 

p53 and p300:- 

P300 being a histone actyltransferase, has twin action on p53. It has been previously reported 

that it can either stabilize or help in the degradation of p53. Expression of both p300 and p53 

in the lymph node carcinoma sample, suggests that p300 acts to stabilize the p53 by 

Acetylation. Stable p53 is expected to promote apoptosis and prevent tumor formation. But 

p53β in conjugation with p53 might be changing the activity of p53 at the respective 

promoters. 

p53 and GADD45:- 

As previously stated GADD45 is a p53 target protein which mediates p53 regulated G2-M 

checkpoint. Expression of GADD45 in lymph node carcinoma sample suggests active cell 

cycle regulation through the expressed p53. This anomalous behaviour of GADD45 and p53 

may be due to the expression of p53β isoform which alters the interaction of p53 and 

GADD45. 

P53 and DNMT 3a:- 

DNMT3a represses the downstream activator p21 of p53 dependent cellcycle arrest pathway, 

expression of DNMT3a in lymph node carcinoma suggests down-regulation of p21 and hence 

unrestricted cell divivsions leading to tumorigenesis. This is in aggrement with the previous 

proposition that DNMT3a may lead to tumor formation by interfering with p53 pathway. 
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However, it is still not clear if it prevents p53 oligomerization.from this we can conclude that 

p53β does not change the DNMT3a mediated p53 target repression. 

Moreover, expression of GADD45, a p53 target protein in the cancer sample suggests that, 

DNMT3a does not cause the hypemathylation of its promoter. 

 P53 and HDAC:- 

As reported, p53 in combination with HDAC helps in the repression of survivin, an inhibitor 

of apoptosis gene either by a methylation dependent or independent mechanism. Expression 

of both p53 and HDAC in absence of DNMT1 may lead to repression of surviving in 

methylation independent mechanism. Such pro-apoptotic environment does not lead to tumor 

formation. Therefore it may be that p53β expression alters its interaction with HDAC, 

inactivating surviving repression and thus promoting tumor. 
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CONCLUSION 

p53 being a tumor suppressor gene is expected to be not expressed by cancer cells. But the 

lymph node carcinoma cells show the expression of p53as well as its truncated isoform p53β. 

This indicates that some other mutation or aberration may be involved in cancer formation 

which may be dependent on p53 expression. 

Moreover interactions of p53 with other cancer related genes show that, p53 isoform p53β, 

influences such interactions, often showing abnormal behaviour of tumor suppressor gene. As 

it has been stated previously that p53β can influence the p53 transcriptional activity or form a 

complex with  p53, thereby modulating its interactions with other genes. 
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FUTURE PROSPECTS 

The influence of p53 isoform p53β, on its transcription as well as its interactions with other 

target genes causing cancer is subject to further evaluation through RT-PCR studies, which 

give a quantitative estimation of the relative levels of expression, immunoblot analysis to 

confirm the nature of the isoforms as well as different knock out gene methods to ascertain 

the role of each p53 isoform. 
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