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INTRODUCTION AND SUMMARY

There is a quote by the famous mathematician Carl Friedrich Gauss

(1777−1855): ”Mathematics is the queen of all sciences, and number theory

is the queen of mathematics.” Number theory, or higher arithmetic is the

study of those properties of integers and rational numbers, which go beyond

the ordinary manipulations of everyday arithmetic.

Throughout history, almost every major civilization has been fascinated by

the properties of integers and has produced number theorists and ancient and

medieval times, these were usually geometers, or more generally scholars,

calendar calculators, astronomers, astrologers, priests or magicians. From

the oldest number theoretical record we have a tablet from Babylonia,a table

of right triangles with integer sides, that is, positive integer solutions to

x2 + y2 = z2. Some of these solutions are too large for us to believe that

they discovered by trial and error in those days. The Babylonian scholars

knew the Pythagorean Theorem well over a millennium before Pythagoras

and were also able to compute with large numbers.

Euclid and Diophantus of Alexandria (about 300−200B.C.) are the best

known number theorists of ancient times and Euclid’s contribution consists

of thirteen books, three of them are about number theory of the positive

integers, but everything is stated in a geometric language. Among these

important results, Euclid’s contributions are the properties of divisibility of

numbers including the idea of odd and even numbers, and an algorithm for

finding the greatest common divisor of two numbers. He derived formulas

for the sum of a finite geometric progression and for all Pythagorean triples

he also introduced the notion of a prime number and showed that if a prime

number divides a product of two numbers, it must divide at least one of

them. He proved the infinitude of primes in the same way we are doing

till today. One of the most famous mathematical problems of all time in
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Diophantine analysis is Fermat’s last theorem , which states that the Dio-

phantine equation xn + yn = zn has no solution in positive integers x, y and

z if n > 3. Pierre de Fermat (1601− 1665) was a judge in Toulouse, France

and also a very serious amateur mathematician. One evening, reading a copy

of Diophantus’ Arithmetica, newly rediscovered and translated from Greek

to Latin, he came on a theorem about Pythagorean triplets. In the margin

of the book he wrote ”It is impossible to separate a cube into two cubes, or

a fourth power into two fourth powers, or, in general, any power higher than

the second into two like powers. I have discovered a truly marvelous proof

of this result, which, this margin is too narrow to contain.” Fermat left no

proof of the conjecture for all n, but he proved the special case n = 4. After

that this reduced the problem to proving the theorem for all exponents n

that are odd prime numbers. Over the next two centuries (1637− 1839), the

conjecture was proved for only the first three odd primes (3, 5, and 7), al-

though Sophie Germain (1776−1831) proved a special case for all primes less

than 100 and in the mid-19th century, Ernst Kummer (1810− 1893) proved

the theorem for a large (probably infinite) class of primes known as regular.

On the base of Kummer’s work and using sophisticated computer studies,

other mathematicians were able to prove the conjecture for all primes up to

four million. Despite much progress in special cases, the problem remained

unsolved until British mathematician Andrew Wiles, working at Princeton

University, announced his solution in 1992 and corrected in 1995 . Wiles’

proof, not only settled an old mathematical problem, but it also opened the

doors to new areas of research thought with the introduction of new ideas

and techniques on Number theory.

In the first chapter we have given some definations, theorems, lemmas,

on Elementary Number Theory. This brief discussion is useful for next dis-

cussion on the main topic.

We know that there are two type of Diophantine equation i.e., (i) Linear

2



Diophantine equation, (ii) Non-linear Diophantine equation. In the second

chapter we have discussed about the solutions of both kind of Diophantine

equation. Here we have given the necessary and sufficient condition for exis-

tence the solution of a Linear Diophantine equation and also discussed about

the Non-linear Diophantine equation and discussed Fermat’s Last theorem.

Pell’s equation is a special type of Diophantine equation. The history of

Pell’s equation is very interesting. In the last section we have given some

methods to find the fundamental solution of the Pell’s equation.
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CHAPTER 1

Prelimnaries of Number Theory

In this chapter we recall some definitions and known results on elemen-

tary number theory. This chapter serves as base and background for the

study of subsequent chapters. We shall keep on referring back to it as and

when required.

Division Algorithm: Let a and b be two integers, where b > 0 then there

exist unique q and r such that a = bq + r, 0 ≤ r < b.

Definition 1.0.1. (Divisibility) An integer a is said to be divisible by an

integer d 6= 0 if there exist some integer c such that a = dc.

Definition 1.0.2. If a and b are integers, not both zero, then the greatest

common divisor of a and b, denoted by gcd(a, b) is the positive integer d

satisfying

1. d | a and d | b

2. if c | a and c | b then c | d

Theorem 1.0.3. Let a, b be two integers, not both zero, then there exist

integers p, q such that gcd(a, b) = ap+ bq.

Euclidean Algorithm:see([5]) Euclidean algorithm is an method of

finding the greatest common divisor of two given integers. This is the re-

peated application of the division algorithm

Let a and b two integers whose gcd is required. Since gcd(a, b) = gcd(|a|, |b|),
it is enough to assume that a, b are positive integers.

Without loss of generality, we assume a > b > 0. Now by division algorithm,

a = bq1 + r1, where 0 ≤ r1 < b.

If it happens that r1 = 0, then b | a and gcd(a, b) = b.
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If r1 6= 0, by division algorithm b = r1q2 + r2, where 0 ≤ r2 < r1.

If r2 = 0, the process stops. If the r2 6= 0 by division algorithm r1 = r2q3 +r3,

where 0 ≤ r3 < r2.

The process continues until some zero remainder appears. This must happen

because the remainders r1, r2, r3, ... form a decreasing sequence of integers

and since r1 < b, the sequence contains at most b non-negative integers. Let

us assume that rn+1 = 0 and rn is the last non-zero remainder.

We have the following relation

a = bq1 + r1, 0 < r1 < b

b = r1q2 + r2, 0 < r2 < r1

r1 = r2q3 + r3, 0 < r3 < r2

. . . . . . . . . . . .

rn−2 = rn−1qn + rn, 0 < rn < rn−1

rn−1 = rnqn+1 + 0

Therefore gcd(a, b) = rn.

Fundamental theorem of Arithmetic: Any positive integer is either 1,

or prime, or it can be expressed as a product of primes, the representation

being unique except for the order of the prime factors.

Congruence: Let m be a fixed positive integer. Two integers a and b are

said to be congruent modulo m if a − b is divisible be m and symbolically

this is denoted by a ≡ b(mod m).

Some properties of Congruence:

1. a ≡ a(mod m)

2. If a ≡ b(mod m), then b ≡ a(mod m)

3. If a ≡ b(mod m), b ≡ c (mod m) then a ≡ c(mod m)
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4. If a ≡ b(mod m), then for any integer c

(a+ c) ≡ (b+ c)(mod m); ac ≡ bc(mod m)

Polynomial Congruence: Let f(x) = a0x
n +a1x

n−1 + · · ·+an (n ≥ 1), be

a polynomial with integer coefficients a0, a1, · · · , an with a0 not congruent to

0 modulo m. Then f(x) ≡ 0(mod m) is said to be a polynomial congruent

modulo m of degree n.

Linear Congruence: A polynomial congruence of degree 1 is said to be a

linear congruence.

The general form of a linear congruence modulo a positive integer m 6= 0 is

ax ≡ b(mod m), where ax is not congruent to 0 modulo m.

Chinese Remainder Theorem: See([5])Let m1,m2, · · · ,mr be positive

integers such that gcd(mi,mj) = 1 for i 6= j. Then the system of linear

congruences

x ≡ c1(mod m1)

x ≡ c2(mod m2)

...
...

x ≡ cr(mod mr)

has a simultaneous solution which is unique modulo m1m2 · · ·mr.

Continued fraction: See([4]) An expression a0 + b1

a1+
b2

a2+
b3

... bn−1

an−1+ bn
an

is called

a continued fraction.

Simple Continued fraction:See([4]) A continued fraction is called a simple

continued fraction if all the bi’s are 1 and the ai’s are integers satisfying

a1, a2, · · · ≥ 1. Simple continued fraction is denoted by [a0, a1, · · · , an], that

is, [a0, a1, · · · , an] = a0 + 1
a1+ 1

a2+ 1

... 1

an−1+ 1
an

In this notation , 181
101

= [1, 1, 3, 1, 4, 4].
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Remark 1.0.1. See([4])A real number α can be expressed as a simple con-

tinued fraction if and only if α is rational.

Convergent of simple continued fraction:See([4]) We determine

the kth convergent Ck of the simple continued fraction [a0, a1, · · · , an] to be

Ck = [a0, a1, · · · , ak] for k ≤ n.

Example 1.0.4.

The convergents of the simple continued fraction 181
101

= [1, 1, 3, 1, 4, 4] are

C0 = [1] = 1

C1 = [1, 1] = 1 +
1

1
= 2

C2 = [1, 1, 3] = 1 +
1

1 + 1
3

=
7

4

C3 = [1, 1, 3, 1] =
9

5

C4 = [1, 1, 3, 1, 4] =
43

24

C5 = [1, 1, 3, 1, 4, 4] =
181

101

Remark 1.0.2. See([4]) For the kth convergent of the continued fraction

[a0, a1, · · · , an], the numerator pk and denominator qk satisfies the recurrence

relation

pk = akpk−1 + pk−2 (1.1)

qk = akqk−1 + qk−2 (1.2)

with initial values

p0 = a0, p1 = a1a0 + 1, q0 = 1, q1 = a1

Remark 1.0.3. See([4])Let Ck = pk

qk
be the kth convergent of [a0, a1, · · · , an].

Then

pkqk−1 − qkpk−1 = (−1)k−1 (1.3)

pkqk−2 − qkpk−2 = (−1)kak (1.4)
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CHAPTER 2

Diophantine Equation

2.1 Linear Diophantine equation

An equation in one or more unknowns which is to be solved in inte-

gers is called Diophantine Equation, named after the Greek Mathematician

Diophantus.See([2])

A Linear Diophantine equation of the form ax + by = c may have many

solutions in integers or may not have even a single solution.

2.2 Necessary and sufficient condition for existence of Linear Dio-

phantine equation

If a, b, c are integers and a,b are not both zero, then the linear diophan-

tine equation ax+ by = c has an integral solution if and only if gcd(a, b) is a

divisor of c.

Proof. Let one integral solution of the equation ax+by = c be (x1, y1). Then

ax1 + by1 = c, where (x1, y1) are integers. Let gcd(a, b) = d and so d | a and

d | b which implies d | (ax1 + by1),i.e.,d | c.
conversly , let gcd(a, b) be a divisor of c. Let gcd(a, b) = d and so a =

dm,b = dn where m,n are integers prime to each other. Let c = dp where

p is an integer. Now since m,n are prime to each other, there exist integers

u, v such that mu+ nv = 1. Then

dmup+ dnvp = dp

⇒ a(up) + b(vp) = c

This implies that (up, vp) is a solution of the equation ax + by = c where

up and vp are integers . Hence the equation ax + by = c has an integral

solution.
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Theorem 2.2.1. The linear Diophantine equation ax+by = c has a solution

if and only if d | c,where d = gcd(a, b) and if (x0, y0) be any particular solution

of the equation, then all other solutions will be

x = x0 + (
b

d
)t y = y0 − (

a

d
)t

where t is an arbitrary integer.

Proof. To prove the second part of the theorem, let us suppose that (x0, y0)

be a known solution of the given equation. Now if x′, y
′
is any other solution,

then

ax0 + by0 = c = ax
′
+ by

′

which is equivalent to

a(x
′ − x0) = b(y0 − y

′
)

So there exist relatively prime integers r and s such that a = dr, b = ds.

Substituting these value into the last equation and canceling the common

factor d, we get r(x
′−x0) = s(y0−y

′
). Then r | s(y0−y

′
), with gcd(r, s) = 1.

Using Euclid’s lemma, we get r | (y0−y
′
); or in other words (y0−y

′
) = rt for

some integer t and so (x
′−x0) = st. From this we get x

′
= x0+st = x0+( b

d
)t,

y
′
= y0 − rt = y0 − (a

d
)t which satisfy the Diophantine equation

ax
′
+ by

′
= a[x0 + (

b

d
)t] + b[y0 − (

a

d
)t]

= (ax0 + by0) + (
ab

d
− ab

d
)t

= c+ 0 · t

= c

Hence there are infinite number of solutions of the given equation, one for

each value of t.
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Example 2.2.2.

Let us take the linear Diophantine equation

172r + 20s = 1000

Solution 2.2.3. First applying the Euclidean’s Algorithm we find that

172 = 8 · 20 + 12

20 = 1 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4.

Therefore gcd(172, 20) = 4. Now, since 4 | 1000, a solution to this equation

exists. To obtain the integer 4 as a linear combination of 172 and 20, we

work backward through the previous calculations, as follows:

4 = 12− 8

= 12− (20− 12)

= 2 · 12− 20

= 2(172− 8 · 20)− 20

= 2 · 172 + (−17)20

Multiplying this relation by 250, we get

1000 = 250 · 4 = 250[2 · 172 + (−17)20] = 500 · 172 + (−4250)20

So r = 500 and s = −4250 provide one solution to the Diophantine equation.

All other solutions are

r = 500 + (
20

4
)t = 500 + 5t s = −4250− (

172

4
)t = −4250− 43t

for some integer t and for positive integers solutions, if exist , t must be

chosen to satisfy simultaneously the inequalities

5t+ 500 > 0, − 43t− 4250 > 0

or, −9836
43
> t > −100

10



Next, we are looking for the non trivial solution of the nonlinear Dio-

phantine equation.

2.3 Fermat’s Last Theorem

The equation

xn + yn = zn (2.1)

where n is an integer greater than 2, has no integral solutions, except the

trivial solutions in which one of the variables is 0.See([3])

The theorem had never been proved for all n. Later this has been resolved

and proved for all n. In this chapter we are giving the solution of Fermat’s

last theorem i.e. the equation (2.1) is soluble for n = 2 and also the equation

(2.1) has no integral solution for n = 3 and 4.

Theorem 2.3.1. The general solution of the equation

x2 + y2 = z2 (2.2)

satisfying the conditions

x > 0, y > 0, z > 0, (x, y) = 1, 2 | x, (2.3)

is

x = 2ab, y = a2 − b2, z = a2 + b2, (2.4)

where a, b are integers and

(a, b) = 1, a > b > 0, (2.5)

There ia a one to one correspondence between different values of a, b and

different values of x, y, z.

Proof. First, we assume that x2 + y2 = z2 and x > 0, y > 0, z > 0, (x, y) =

1, 2 | x. Now since 2 | x and (x, y) = 1, y and z are odd and (y, z) = 1. So

1
2
(z − y) and 1

2
(z + y) are integral and

(
z − y

2
,
z + y

2
) = 1

11



Then by (2.2),

(
x

2
)2 = (

z − y
2

,
z + y

2
) = 1

and the two factors on the right, being coprime, must both be squares. So

z + y

2
= a2,

z − y
2

= b2

where

a > 0, b > 0, a > b, (a, b) = 1

Also

a+ b ≡ (a2 + b2) = z ≡ 1(mod2)

where a and b are of opposite parity. Therefore any solution of (2.2), satisfy-

ing (2.3), is of the form (2.4); and a and b are of opposite parity and satisfy

(2.5).

Next, we assume that a and b are of opposite parity and satisfy (2.5). Then

x2 + y2 = 4a2b2 + (a2 − b2)2 = (a2 + b2)2 = z2,

x > 0, y > 0, z > 0, 2 | x

If (x, y) = d, then d | z, and so

d | y = (a2 − b2), d | z = (a2 + b2)

Therefore d | 2a2, d | 2b2. Since (a, b) = 1, d must be 1 or 2, and the second

alternative is excluded because y is odd. Hence (x, y) = 1 and if y and z are

given, a2 and b2 are uniquely determined, so that different values of x, y, and

z correspond to different values of a and b.

Theorem 2.3.2. There are no positive integral solutions of the equation

x4 + y4 = z2 (2.6)

12



Proof. Let u be the least number for which

x4 + y4 = u2 (x > 0, y > 0, u > 0) (2.7)

has a solution. Then (x, y) = 1, otherwise we can divide through by (x, y)4

and so replace u by a smaller number. Therefore at least one of x and y is

odd, and u2 = x4 + y4 ≡ 1 or 2(mod4).

Since u2 ≡ 2(mod4) is impossible, so u is odd, and one of x and y is even.

Now if x is even, then by (2.3.1),

x2 = 2ab, y2 = a2 − b2, u = a2 + b2,

a > 0, b > 0, (a, b) = 1 and a and b are of opposite parity. Again if a is

even and b is odd, then

y2 ≡ (−1)(mod4) which is impossible; so a is odd and b is even, say b = 2c.

Next we get

(
1

2
x)2 = ac (a, c) = 1

and so

a = d2, c = f 2, d > 0, f > 0, (d, f) = 1

and d is odd. Therefore

y2 = a2 − b2 = d4 − 4f 4

(2f 2)2 + y2 = (d2)2

and no two of 2f 2, y, d2 have a common factor.

Now by applying theorem (2.3.1) again, we obtain

2f 2 = 2lm, d2 = l2 +m2, l > 0,m > 0, (l,m) = 1.

Since

f 2 = lm, (l,m) = 1

we get

l = r2,m = s2 (r > 0, s > 0)

13



and so

r4 + s4 = d2.

But

d ≤ d2 = a ≤ a2 < a2 + b2 = u

and u is not the least number for which the equation (2.7) is possible. This

is a contradiction which proves the theorem.

2.4 Pythagorean triples and the unit circles

We have already described all the solutions to

x2 + y2 = z2 (2.8)

in whole numbers x, y and z. Now if we divide this equation by z2, we obtain

(
x

z
)2 + (

y

z
)2 = 1 (2.9)

and so the pair of rational numbers (x
z
, y

z
) is a solution to the equation

u2 + v2 = 1 (2.10)

Therefore there are four rational solutions to the equation u2 + v2 = 1.

see([4])These are (±1, 0) and (0,±1). Now if (x0, y0) is a point on the circle

with rational coordinates, then the slope of the line joining (u0, v0) to (−1, 0)

is rational. Conversly, if a line through (−1, 0) with rational slope intersects

the circle at another point (u0, v0), then u0 and v0 are rational.

Let t be a rational number. Let us consider the line with slope t through

(−1, 0) and it has the equation v−0
u+1

= t or v = t(u+ 1). Substituting this in

(2.10) we obtain u2 + t2(u + 1)2 = 1 or u2(1 + t2) + 2t2u + t2 − 1 = 0. Now

we can use the quadratic formula to solve for u, or we observe that one root

is −1 and the sum of the roots of the equation au2 + bu+ c = 0 is − b
a
, hence

u− 1 = − 2t2

1 + t2

14



or

u =
1− t2

1 + t2

Let t = s
r

with (s, r) = 1 and so

u =
x

z
=

1− s2

r2

1 + s2

r2

=
r2 − s2

r2 + s2

Since (x, z) = 1 and if (r2 − s2, r2 + s2) = 1, then

x = r2 − s2, z = r2 + s2, y = 2rs

But (r2 − s2, r2 + s2) 6= 1, we cannot take x = r2 − s2, z = r2 + s2, because

(r, s) = 1 implies that (r2− s2, r2 + s2) = 1, 2. Again if (r2− s2, r2 + s2) = 2,

then

x =
r2 − s2

2
, z =

r2 + s2

2
, y = rs

This equation can be written as the form stated in the theorem. Here both

r and s must be odd, so we can transform

z = (
r + s

2
)2 + (

r − s
2

)2

x = (
r + s

2
)2 − (

r − s
2

)2

y = 2(
r + s

2
)(
r − s

2
)

Now letting m = r+s
2

and n = r−s
2

and adding switching x and y, we see that

the solution is again of the form

x = m2 − n2, y = 2mn, z = m2 + n2

Conversely, we can easily verify that for any (m,n) = 1, these formulas yield

a Pythagorean triple.
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CHAPTER 3

Pell’s equation

3.1 Introduction

Now we consider some specific Diophantine equation and their integer

solutions. Let d 6= 0 be a positive non square integer and n be a fixed positive

integer. Then the Diophantine equation

x2 − dy2 = ±n (3.1)

is known as Pell’s equation and is named after John Pell.

Let us consider the equation

nx2 + 1 = y2 (3.2)

and this equation arises naturally while we approximate
√
n by rational num-

bers. Now we can also write this equation as y2 − nx2 = 1, where n is an

integer and we are looking for integer solution, say (x, y).

This equation is called as Pell’s equation.

The first mathematician to study this equation were Indian mathematicians

Brahmagupta and Bhaskara.

Let us first note that

(b2 − na2)(d2 − nc2) = (bd+ nac)2 − n(bc+ ad)2 (3.3)

and

(b2 − na2)(d2 − nc2) = (bd− nac)2 − n(bc− ad)2 (3.4)

from this two equations we see that if b2 − na2 = 1 and d2 − nc2 = 1

(bd+ nac)2 − n(bc+ ad)2 = 1

(bd− nac)2 − n(bc− ad)2 = 1

16



So if (a, b) and (c, d) are solutions to Pell’s equation then (bc+ ad, bd+ nac)

and (bc− ad, bd− nac) are also solutions. This is important fact generalizes

easily to give Brahmagupta’s lemma.

3.2 Brahmagupta’s Method:

If (a, b) and (c, d) are integer solutions to Pell’s equation of the form

na2 + k = b2 and nc2 + k′ = d2 respectively then

(bc+ ad, bd+ nac)and(bc− ad, bd− nac)

are both integer solution to the Pell’s type equation

nx2 + kk′ = y2 (3.5)

Brahmagupta’s lemma was discovered by himself in 628 AD.

The proof that we given earlier is due to European Mathematician Euller in

the time of 17th century.

We shall call this method as ’method of composition’, in fact this method of

composition allow Brahmagupta to make a number of fundamental discov-

eries regarding Pell’s equation.

He deduced one property which is that if (a, b) satisfies Pell’s method of

composition to (a, b) and (a, b), then again we can applied the method of

composition to (a, b) and (2ab, b2 + na2). Brahmagupta immediately saw

that from one equation of Pell’s equation he could generate many solution.

He also noted that using the similar argument we have just given, if x = a,

y = b is a solution of nx2 + k = y2 then applying method of composition

to (a, b) and (a, b) gave (2ab, b2 + na2) as a solution of nx2 + k = y2 and so

dividing through by k we get

x =
2ab

k
, y =

b2 + na2

k

17



as a solution of Pell’s equation nx2 + 1 = y2.

This values x, y do not look like integer if k = 2, then since (a, b) is a solution

of nx2 + k = y2 we have na2 = b2 − 2. Thus x = 2ab
2

= ab, y = 2b2−2
2

= b2 − 1

which is an integer solution of Pell’s equation.

If k = −2 then essentially the same argument works and while k = 4,−4

then a more complicated method, still it is based on method composition,

shows that integer solution to Pell’s equation can be found.

So Brahmagupta was able to show that if he can find (a, b) which nearly

satisfies Pell’s equation in the sense that na2 +k = b2 where k = ±1,±2,±4,

then he can find many integer solution to Pell’s equation.

Example 3.2.1.

Brahmagupta himself gives a solutions of Pell’s equation

83x2 + 1 = y2 (3.6)

Solution 3.2.2. Here a = 1, b = 9 satisfies the equation 83 · 12 − 2 = 92

So applying above method x = 2ab
k

, y = b2+na2

k
is a solution to (3.6), i.e,

x = 2×9
2
, y = 81+83×1

2
i.e, x = 9, y = 82 i.e, (9, 82) is a solution.

Then applying method of composition (9, 82), (9, 82) (2ab, b2 + na2) is a so-

lution i.e, (2× 9× 82, 82× 82 + 83× 81) = (1476, 13447)

Again applying method of composition to (9, 82), (1476, 13447) we get x =

ad + bc, y = bd + nac i.e, x = 9 × 13447 + 82 × 1476 = 242055, y =

82× 13447 + 83× 9× 1476 = 2205226

Again applying method of composition to (1476, 13447) and (242055, 2205226)

x = 6509827161, y = 5907347692

Now applying (242055, 2205226) x = 1067557198860, y = 972604342215

Again applying method of composition to (242055, 2205226) and (39695544, 361643617)

x = 175075291425879, y = 15950118138848202

Therefore we have generate equation of solution (x, y)

18



3.3 Cyclic Method

The next step was forwarded by mathematician Bhaskara in 1150. He

discovered the cyclic method, called Chakravala method by Indian.

This is a algorithm to produce a solution to a Pell’s equation

nx2 + 1 = y2

starting from a close pair (a, b) with na2 + k = b2.

Here we assume that (a, b) are coprime, otherwise we can divide each by their

gcd and get a closer solution with smaller k.

After that a and k are also coprime.

This method relies on a simple observation.Now let for any m, (1,m) satisfy

Pell’s type equation n · 12 + (m2 − n) = m2.

Bhaskara applied the method of composition to the pair (a, b) and (1,m) to

get am+ b, bm+ na.

Now dividing by k

x =
am+ b

k
, y =

bm+ na

k

is a solution to

nx2 +
m2 − n
k

= y2

Since a, k are Prime to each other, we can choose m such that am + b is

divisible by k.

He knows that when m is choosen so that so that am+b is divisible by k then

m2 − n and bm + na are also divisible by k with such choice of m therefore

has the integer solution

x =
am+ b

k
, y =

bm+ na

k

to the Pell’s type equation

nx2 +
m2 − n
k

= y2
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where m2−n
k

is also an integer.

Next he knows there are infinitely m such that am+b is divisible by k. So he

choose the one which makes (m2 − n) as small as possible in absolute value.

Then if (m2−n)
k

is one of k = ±1,±2,±4 then we can apply Brahmagupta’s

method to find the solution to Pell’s equation

nx2 + 1 = y2

If (m2−n)
k

is not one of these values then we have to repeat the process starting

with the solution

x =
am+ b

k
, y =

bm+ na

k

to Pell type equation nx2 + m2−n
k

= y2 in exactly the same way as we applied

the process to na2 + k = b2.

However he knows that the process will end after a finite no. of steps and

this happens when an equation of the form

nx2 + t = y2

is reach 0 where t = ±1,±2,±4.

Bhaskara gives an example in Bijaganita.

Example 3.3.1.

6x2 + 1 = y2 (3.7)

Solution 3.3.2. We choose a = 1, b = 8 which satisfies the equation

61× 12 + 3 = 82

Now we choose the m so that k divides (am+ b). Here for that m, m+8
3

is an

integer. Again we choose this m so that m2 − n that is m2 − 61 is as small

as possible.
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Then taking m = 7 we get

x =
am+ b

k
=

7 + 8

3
= 5

y =
bm+ na

k
=

8× 7 + 61× 1

3
= 39

as a solution of Pell’s equation nx2 + m2−n
k

= y2 i.e, 61x2 + 49−61
3

= y2 that

implies 61x2 − 4 = y2.

Now we can apply Brahmagupta method to solve the equation and by Brah-

magupta method solution is

x = 226153980, y = 1766319049

as the smallest to 6x2 + 1 = y2

The next contribution to Pell’s equation was made by mathematician

Narayana in 14th century.

3.4 Continued Fraction Method

The equation

x2 − dy2 = ±1 (3.8)

where d > 0 is squarefree, arises naturally in trying to approximatite
√
d by

rational numbers. The techniques of this section are based on the continued

fraction expansion of
√
d and the norm identity in the integers Z[

√
d]

The continued fraction expansion of
√
d is given by the following algorithm:See([4])

1. The continued fraction has the form [a0, a1, a2 · · · a2, a1, 2a0].

2. The expansion of
√
d is computed by

A0 = 0 B0 = 1 ak = bAk +
√
d

Bk

c

Ak+1 = akBk − Ak Bk+1 =
d− A2

k+1

Bk
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3. The convergents pk

qk
of
√
d satisfy

p2
k − dq2

k = (−1)k+1Bk+1

4. The shortest period length m of
√
d is the smallest positive m such

that Bm = 1.

Let Z[
√
d] be the numbers of the form a + b

√
d for integers a and b. Then

addition and multiplication are defined by

(a+ b
√
d) + (x+ y

√
d) = (a+ x) + (b+ y)

√
d

(a+ b
√
d)(x+ y

√
d) = (ax+ dby) + (ay + bx)

√
d

also the conjugate of α = a+b
√
d is α = a−b

√
d and the norm isN(a+b

√
d) =

(a + b
√
d)(a − b

√
d) = a2 − db2. Now we are in a way to solve the equation

x2 − dy2 = 1 by considering x and y positive.

Theorem 3.4.1. If p and q are positive integers satisfying the equation p2−
dq2 = 1, then p

q
is a convergent of

√
d.

Proof. If p2 − dq2 = 1,then (p+ d
√
d)(p− d

√
d) = 1 and so

|p− q
√
d| = | 1

p+ q
√
d
|

Dividing by q, we get

|p
q
−
√
d| = 1

q|p+ d
√
d|

Now, p > q
√
d since p2 > dq2 and hence p+ q

√
d > 2q

√
d. Therefore

|p
q
−
√
d| = 1

q|p+ d
√
d|
<

1

q2q
√
d

=
1

2q2
√
d

Since d > 1, we get that |p
q
−
√
d| < 1

2q2 . Hence p
q

is a convergent of
√
d.

Theorem 3.4.2. Let pk

qk
be the kth convergent of

√
d. If the period length m

of
√
d is even, then the solutions of x2−dy2 = 1 are x = pjm−1 and y = qjm−1
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for any j ≥ 0. If the period length m of
√
d is odd , then the solutions are

x = pjm−1 and y = qjm−1 for j even. In particular, if d is not a perfect

square , then the equation has infinetly many solutions.See([4])

Proof. Using theorem (3.4.1), we see that every solution is a convergent. We

know that pk

qk
satisfies p2

k − dq2
k = (−1)k+1Bk+1.

If m is the period of the continued fraction, then Bk = 1 if and only if m | k.

Then we have k = jm and substituting in equation we have

p2
jm−1 − dq2

jm−1 = (−1)jmBjm = (−1)jm

If m is even, (−1)jm = 1 and all the convergents
pjm−1

qjm−1
give solution to

equation. If m is odd ,(−1)jm = 1 when j is even.

Here we are giving an example to find solution by continued fraction

method.

Example 3.4.3.

19x2 + 1 = y2 (3.9)

Solution 3.4.4. At first we have to first find out the continue fraction ex-

pansion of
√

19.

A0 +
√

19

B0

, A0 = 0, B0 = 1

Ak+1 = akBk − Ak, Bk+1 =
(n− (Ak+1)

2)

Bk

xk =
Ak +

√
n

Bk

, ak = [xk]
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k Ak Bk xk ak

0 0 1
√

19 4

1 4 3 4+
√

19
3

2

2 2 5 2+
√

19
5

1

3 3 2 3+
√

19
2

3

4 3 5 3+
√

19
5

1

5 2 3 2+
√

19
3

2

6 4 1 4+
√

19
1

8

7 4 3 4+
√

19
3

2

8 2 5 2+
√

19
5

1

9 3 2 3+
√

19
2

3

From the table we see that when k = 8, we obtain the same terms as when

k = 2. Since the computation of AK and Bk depends only on the previous

terms, so the terms must repeat. Therefore the continued fraction is

√
19 = [4, 2, 1, 3, 1, 2, 8, 2, 1, 3, . . .] = [4, 2, 1, 3, 1, 2, 8]

since the period length is even, so the solutions are x = pjm−1 and y = qjm−1

for any j ≥ 0.

k 0 1 2 3 4 5
pk

qk

4
1

9
2

13
3

48
11

61
14

170
39

since p5

q5
= 170

39
, so

19 · 392 + 1 = 1702

is the smallest nontrivial solution to find the infinite series of solution. Now

let us take the power of (170 + 39
√

19)

((170 + 39
√

19)2 = 57799 + 13260
√

19)

x = 13260, y = 57799

Again taking the power, (170 + 39
√

19)3 = 1965140 + 4508361
√

19

So we get x = 4508361, y = 196514
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Example 3.4.5.

To verify the theorem (3.4.2), we give the following example.

x2 − 13y2 = 1 (3.10)

Solution 3.4.6. The continued fraction expansion of
√

13 is

√
13 = [3, 1, 1, 1, 1, 6] (3.11)

and the period length is odd, so the solutions are x = p5j−1 and y = q5j−1 for

j even. Also for j odd (p5j−1, q5j−1) gives solutions to x2 − 13y2 = −1. Now

the convergents are

k pk

qk
p2

k − 13q2
k

0 3
1

-4

1 4
1

3

2 7
2

-3

3 11
3

4

4 18
5

-1

5 119
33

4

6 137
38

-3

7 256
71

3

8 393
109

-4

9 649
180

1

10 4287
1189

-4

11 4936
1369

3

12 9223
2558

-3

13 14159
3927

4

14 23382
6485

-1

The Pell equation in (3.8) has infinitely many integer solutions (xn, yn) for

n ≥ 1 and first nontrivial positive integer solution (x1, y1) of this equation is

called fundamental solution,because all other solution can be easily derived

from it. In fact if(x1, y1) is the fundamental solution of the equation x2 −
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dy2 = 1, then the nth positive solution of it that is (xn, yn) is defined by the

equality

xn + yn

√
d = (x1 + y1

√
d)n (3.12)

for integer n ≥ 2. The methods for finding the fundamental solution have

already discussed.
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