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ABSTRACT 

In this thesis an overview of Autonomous Underwater Vehicles (AUV) is presented which 

covers the advancements in AUV technology in last two decades, different components of AUV 

and the applications of AUVs. A glimpse on AUV research in India is presented.  

A nonlinear model of AUV is obtained through kinematics and dynamics equation which is 

linearized about an operating point to get linearized depth plane model. A two loop controller (PI 

control) is used to control the pitch and in turn the depth of the AUV.  

After having developed, simulated and analyzed the pitch and depth controller for a single AUV, 

we focus our attention towards developing formation control of three AUVs. The formation 

control for multiple Autonomous Underwater Vehicles (AUVs) is considered in spatial motions. 

The objective is to drive a leader AUV along a desired trajectory, and make the follower robots 

keep a desired formation with respect to the leader’s configuration in 3-dimensional spaces 

(leader-follower formation control).  

Also, an obstacle avoidance scheme, using pitch and depth control, is used to avoid static 

obstacles in the path of AUV.  

The results of the above three control objectives such as tracking control of AUV, controller for 

avoiding obstacles and formation control of multiple AUVs are presented and discussed in the 

thesis.   
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History and classification of AUV 

About 70% of the Earth’s surface is covered with water which is like an empire of natural 

resources. In order to utilize these resources, mankind depends on developing underwater 

vehicles and employing them [1]. The idea of submersible vehicles originated a long time back. 

The first American submarine was titled “Turtle” built in 1975. In 1879 the Reverend George W. 

Garrett designed the “Resurgam” which is considered to be world’s first practical powered 

submarine. There have been many more submersibles developed and used for different 

operations in past decade. Torpedoes, which are considered as first autonomous underwater 

vehicles, also developed along with these submarines. 

There are various types of underwater vehicles which can be categorized into two categories 

namely manned and unmanned systems. In manned system, we have military submarines and 

non-military submersibles operated for underwater investigations and assessment.  

Unmanned submersibles can also be further classified into different categories. The simplest and 

most easily described are those submersibles that are towed behind a ship. They act as platforms 

for various sensor suites attached to the vehicle frame. Second type is called Remotely Operated 

Vehicle (ROV) which is a tethered vehicle. The tether supplies power and communication to the 

ROV and it is controlled directly by a remote operator. Third type is an Unmanned Untethered 

Vehicle (UUV). These vehicles have their own onboard power but are controlled by a remote 

operator through a communication link. An Autonomous Underwater Vehicle (AUV) is an 

undersea system which has its own power and controlled by an onboard computer while doing a 

pre-defined task [2] [16]. 
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AUVs are compact, self-contained, low-drag profile crafts powered (in most cases, but not all) 

by a single underwater DC power thruster. The vehicle uses on-board computers, power packs 

and vehicle payloads for automatic control, navigation and guidance. They can be equipped with 

state-of-the-art scientific sensors to measure oceanic properties, or specialized biological and 

chemical pay-loads to detect marine life when in motion. As is common in most developments 

today, AUVs have been operated in a semi-autonomous mode under human supervision, which 

requires them to be tracked, monitored, or even halted during a mission so as to change the 

mission plan. However, there have been successful attempts at true autonomy [3]. 

The first AUVs were built in the 1970s, put into commercial use in the 1990s, and today are 

mostly used for scientific, commercial, and military mapping and survey tasks (Blidberg2001). 

Developed in cooperation between Kongsberg Maritime and the Norwegian Defense Research 

Establishment, the HUGIN series represents the most commercially successful AUV series on 

the world market today (Hagen et al. 2003) [1]. 

Currently, the challenges for AUV address the navigation, communication, autonomy, and 

endurance issues. Autonomy is the main aspect of AUVs which deals with the electronics and 

control design. In this work, the main concentration is on the autonomy. During a mission, an 

AUV  may  undergo  different  maneuvering  scenarios  such  as  a  complete  turn  at  the  end  of  a  

survey line, a severe turn during obstacle avoidance or frequent depth changes while following a 

rugged  seabed  terrain  [4].  Different  control  schemes  are  used  for  different  operations.  First,  a  

pitch and depth controller is used to maintain the AUV at a particular height above the sea floor. 

Second, a tracking and formation control is achieved so that a group of AUVs move on pre-

defined path while maintaining a desired distance and angular separation between them. Next, an 

obstacle avoidance scheme, which uses forward look sonar to detect obstacles, is presented to 
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avoid static obstacles in the path. A small paragraph is dedicated to AUVs in India and future of 

AUVs. 

AUV in India 

A good research is going on in development of AUV in India.  

Some of the Indian students residing worldwide have found the Indian Underwater Robotics 

Society (IURS). It brought the composite technology of Autonomous Underwater Vehicles to 

India. BhAUV is the first Indian robot designed by this group. It was competed in the 2005. 

Now, IURS has designed a completely new low-cost AUV “Jal” that includes a passive sonar 

system, computer vision, navigational sensors. [19] 

Maya, a small autonomous underwater vehicle was developed by the National Institute of 

Oceanography (NIO), Goa (another CSIR lab) in September 2009 to sense physical, biological, 

and chemical properties of the ocean and collect relevant scientific data. [22] 

Researchers at Central Mechanical Engineering Research Institute (CMERI) - the apex R&D 

institute for mechanical engineering under the Council of Scientific and Industrial Research 

(CSIR) – have developed India’s first indigenous autonomous underwater vehicle (AUV). The 

mega system can fulfill tasks such as seafloor mapping, coastal surveillance, mine 

countermeasure, and oceanographic measurements during adverse weather conditions. [20] 

A technological dream name “VARUN” whose main theme was to meet up the challenge of the 

modern technology, made by students of Delhi Technological Universities (DTU), won the 

contest named “Autonomous Underwater Vehicle Competition” held by AUVSI every year. The 

team secured the 14th position in the International AUVSI competition held at SSC Transdec, 
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San Diego in the year 2009. The fourth generation team is developing a completely new 

prototype using better technologies and hopes to fare much better this year. [21] 

In February 2011, a group of scientists performed sea trials of AUV in south-east India off 

Chennai coast. 

Objectives 

i. To get a linearized pitch and depth model of AUV to control the depth inside sea. 

ii. Use leader-follower approach to perform formation control of multiple AUVs in spatial 

motion in both horizontal plane and 3D. 

iii. Modeling of forward-look sonar to detect the static obstacles in the path of AUV and use of 

pitch depth control to avoid these sensed obstacles. 

Organization of thesis 

This thesis is divided into six chapters. 

Second chapter deals with applications of AUVs, AUV technology, its main components, sensor. 

Also, a glimpse on AUV research in India is presented. 

Third chapter deals with the modeling of AUV which includes the kinematics and dynamics 

equations. These equations are used in further chapters for controlling purpose. 

Fourth chapter deals with the depth control of AUV. In this chapter a linearized model of AUV is 

obtained by making use of kinematics and dynamics described in previous chapter. This 

linearized model is used to control the depth by PI and P control. 
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Fifth chapter deals with the formation control of AUVs. Leader-follower approach is used where 

an AUV of formation is designated as follower which tracks the desired path. The remaining 

AUVs are designated as followers which follow the leader by maintaining a desired distance and 

angular orientation. 

Sixth chapter deals with the obstacle avoidance. Here, sonar is used to detect the obstacles in the 

path of AUV by measuring range and height of the obstacle. These data are used by controller to 

plan a new path and make AUV to follow this by changing depth of AUV. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 2 

Autonomous Underwater Vehicle 
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As the name suggests, AUV is an autonomous (no external input) robot which travels 

underwater. It is a part of unmanned underwater vehicles which includes AUV’s partner called 

remotely operated underwater vehicle, ROV. The first AUV was developed at the Applied 

Physics Laboratory at the University of Washington as early as 1957 by Stan Murphy, Bob 

Francois and later on, Terry Ewart. The "Special Purpose Underwater Research Vehicle", or 

SPURV, was used to study diffusion, acoustic transmission, and submarine wakes. 

Applications of AUVs 

Until relatively recently, AUVs have been used for a limited number of tasks dictated by the 

technology available. With the development of more advanced processing capabilities and high 

yield power supplies, AUVs are now being used for more and more tasks with roles and missions 

constantly evolving. 

i. Commercial:  The  oil  and  gas  industry  uses  AUVs  to  make  detailed  maps  of  the  seafloor  

before they start building subsea infrastructure; pipelines and subsea completions can be installed 

in the most cost effective manner with minimum disruption to the environment. The AUV allows 

survey companies to conduct precise surveys or 

areas where traditional bathymetric surveys 

would be less effective or too costly. Also, post-

lay pipe surveys are now possible. 

ii. Military: A typical military mission for an 

AUV is to map an area to determine if there are 

any mines, or to monitor a protected area (such 
Fig. 2.1: REMUS AUV [image courtesy of 

AUV fest 2008: Partnership runs deep 
Navy/NOAA, oceanexplorer.noaa.gov] 
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as a harbor) for new unidentified objects. AUVs are also employed in anti-submarine warfare, to 

aid in the detection of manned submarines. 

iii. Research:  Scientists use AUVs to study lakes,  the ocean, and the ocean floor.  A variety of 

sensors can be affixed to AUVs to measure the concentration of various elements or compounds, 

the absorption or reflection of light, and the presence of microscopic life. [5] 

AUV Technology 

The first AUVs were built in the 1970s, put into commercial use in the 1990s, and today are 

mostly used for scientific, commercial, and military mapping and survey tasks. During this span 

of time different technologies have introduced and the existing one are modified and advanced 

which has made AUVs to perform more and specific tasks. The main components in AUV 

technology comprises of autonomy, energy, navigation, sensors, and communication.  

Autonomy: Many of the tasks being assigned to today’s AUVs required only a list of 

preprogrammed instructions to accomplish a task.  For this reason, there has not been a 

significant level of development, recently, that is focused on AUV autonomy. Over the past, 

issues such as intelligent systems architectures design, mission planning, and perception and 

situation assessment were investigated and now also research is going on in this field.                                                 

Energy:  Endurance  of  AUVs has  increased  from a  few hours  to  10s  of  hours.   Some systems 

now contemplate missions of days and, and a very few of year which is at the expense of sensing 

capability  as  well  as  very  limited  speeds.  In  the  majority  of  early  AUVs,  Lead  Acid  batteries  

were used for energy systems. Some uses Silver Zinc batteries but it is very costly. Recent 

advances in NiMH batteries have provided new opportunities and this technology is being used 

in  many  of  the  current  systems.  Currently  the  ALTEX  program  is  underway  to  utilize  



17 
 

Aluminum/Oxygen “semi-cell” technology to allow an AUV to transit under the Arctic ice. Also 

the Solar energy is now being used to power AUV.                                                         

Navigation: Early AUVs used dead reckoning for their navigation. Acoustic transponder 

navigation systems provides greater accuracy but at a significant cost. In the past few years, 

many AUVs have taken advantage of Global Positioning Systems (GPS). It is possible to obtain 

an accurate position when the vehicle surfaces.                                                                           

Sensors:  An  AUV  is  simply  a  platform  on  which  to  mount  sensors  to  acquire  data  from  the  

ocean environment. Recently, it has been recognized that we must develop entirely new sensors 

based  on  the  constraints  imposed  by  AUVs  i.e.  sensors  specifically  for  AUVs;  smarter,  lower  

power, highly reliable, smaller in size, and etc. With the new processors, it has been possible to 

obtain very high resolution images over longer and longer ranges.                                       

Communication: In the underwater environment, acoustic communications is probably the most 

viable communication system. Other technologies, such as laser communication at short range 

and relatively noise free communications over larger ranges using RF current field density are 

also used. There has been a significant advance in acoustic communications such that relatively 

low error rate communications is possible over ranges of kms at bit rate of a few kbps. [2][5] 

Other aspects like hydrodynamics and control systems, user interface, modeling etc. also 

constitute a good part in AUV technology. 

Main components of AUV 

Most of the AUVs are modular in structure consisting of a cylindrical main body blended with a 

nose cone at its front and a tapered tail section at its rear, giving it a hydrodynamically efficient 

streamlined shape. [4] 
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The pressure hull provides the majority of the buoyancy for the vehicle and space for dry 

components such as batteries and control electronics [4]. The tail cone is like a torpedo tail, and 

is designed to reduce the drag caused by the pressure drop at the end of the vehicle body. The 

nose section consists of scientific sensors like forward look sonar which helps in navigation. The 

main section encompasses of electronic circuitry, batteries, Rate GYRO which is used to 

measure the   

 

   

yaw of the vehicle, main CPU, and Doppler Velocity Log (DVL) sensor that allows the vehicle 

to know the approximate distance it travelled in three orthogonal axes. Fins help in swimming. 

Rudder is the vertical and movable control surface, which is hinged to the fin and primarily 

controls the yawing movement of the vehicle. At the rear, there are thruster motor which 

Fig. 2.2: Exploded view of AUV. [22] 
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provides the necessary thrust to move in forward direction and GPS antenna used to locate the 

exact position of AUV. 

AUV Sensors 

Different types of sensors are used depending upon the application of AUV e.g. whether we want 

to know the temperature, depth, concentration, or high resolution photos or all. 

Temperature Sensors: Generally Platinum Resistance Thermometers (PRTs), which are 

suitable for use in all anticipated environments, are used. Combinations of PRTs with thermistors 

are also suitable for use in all anticipated temperature extremes. 

Pressure Transducers: Most strain gauge type pressure sensors are temperature sensitive and 

hence the data quality is affected by all temperature changes, not just the extremes. This problem 

can be overcome by the inclusion of a temperature sensor diffused into the silicon of the strain 

sensing  element  [18].  The  completed  sensor  is  then  thermally  characterized,  which  allows  a  

performance of better than 10mBar accuracy (for a 60 Bar transducer) over the full working 

range of temperatures. [5] 

Conductivity Sensors: Standard designs use an epoxy molded body bonded to a stainless steel 

base. 

Optical Sensors: Sensors such as transmissometers and fluorimeters operate by emitting a light 

beam (pulsed for the fluorimeters) through optical filters and into the sea water via a window set 

in the face of the sensor housing which has to be relatively thick to withstand high pressures. [6] 

[18] 
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Multibeam sonar: This allows the sounder to provide continuous swath bathymetry. Deep-

water, high altitude systems utilize low acoustic frequencies (~12 kHz) and have large, heavy 

transducer arrays to achieve the necessary range. The Multibeam sonar is comprised of a wet end 

and a dry end. The wet end consists of the transmit and receive transducer arrays together with 

any closely associated electronics. It is mounted within the flooded section of the AUV. The dry 

end, which is mounted inside the pressure hull, consists of the sonar processing electronics and 

any additional equipment required for sonar control and data logging. 

Side scan sonar: It transmits beams of acoustic energy from the side of the tow fish and across 

the seabed. For these reasons, it is normally towed from ships. Unlike a ship, the AUV can 

operate close to the seabed, and consequently, the sonar transducers are mounted on the hull 

rather than towed. [7][10] 

The sonar transmits one pulse at a time and waits for the sound to be reflected back. The imaging 

range is determined by how long the sonar waits before transmitting the next acoustic pulse. The 

image is thus built up one line of data at a time. Operation of the sonar is controlled via an 

interface (such as RS232) to the AUV computer. Sonar data will available to the AUV computer 

over an Ethernet connection. 

Limitations  on  the  different  sensors  limit  the  operation  of  AUV e.g.  if  depth,  temperature,  etc.  

change then the existing sensors may not work. 
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To get a mathematical model of the vehicle, we divide modeling task into two categories; 

Kinematics which relates only geometrical aspects of motion and Dynamics which is the analysis 

of forces causing the motion. 

Since six independent co-ordinates are necessary to determine the position and orientation of a 

rigid body, AUV has six degree of freedom, (6 DOF). 

Notation used: 

DOF                Motion Forces Linear and angular 

velocity 

  Position 

 1 Motion in x-direction(surge)    X                 u         x 

 2 Motion in y-direction(sway)    Y                 v         y 

 3 Motion in z-direction(heave)    Z                 w         z 

 4 Rotation about x- axis(roll)    K                  p          

 5 Rotation about y-axis(pitch)    M                  q          

 6 Rotation about z-axis(yaw)    N                  r          

 

The first three coordinates and their time derivatives are used to represent the position and 

translation motion along x, y, and z axes, while the last three coordinates and their time 

derivatives are used to describe the orientation and rotational motion.  

 

Table 3.1: Notation used for AUV modeling. [8] 
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Kinematics  

For analyzing the motion of the vehicle in 6DOF, we choose two co-ordinate frames. The 

moving reference frame is fixed to the vehicle called as body-fixed reference frame. Motion of 

the body-fixed frame is described relative to an inertial frame. For marine vehicles, it is usually 

assumed that the acceleration of a point on the surface of Earth can be neglected. Thus, an Earth 

fixed frame can be considered to be an inertial frame. This suggests that the linear and angular 

velocities of the vehicle should be expressed in body-fixed frame while position and orientation 

should be described with respect to inertial frame. [8]. In a very general form, the motion of 

vehicle in 6DOF can be described by the following vectors:

 

 = [ 1
T  2

T]T                  = [     ]T               = [     ]T 

                            = [ 1
T  2

T]T               1 = [     ]T               2 = [     ]T 

                             = [ 1
T   2

T]T                 1= [X  Y  Z]T              2 = [K  M  N]T   [8] 

Fig. 3.1: Body-fixed and inertial reference frames. [9] 
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Where  describes the position and orientation of the vehicle with respect to the earth-fixed 

reference frame,  the translational and rotational velocities with respect to the body-fixed 

reference  frame,  and   the  total  forces  and  moments  acting  on  the  vehicle  with  respect  to  the  

body-fixed reference frame. [8] 

Vehicle’s path relative to the earth-fixed coordinate system is given 

      = J1( ) 1                               [8]   (3.1) 

where J1 2) is the transformation matrix as follows: 

                         J1( ) = 
+ +

+ +       [8] 

here, • means cosine(•) and • means sine(•). 

The body-fixed angular vector 2 and the Euler rate vector  are related through transformation 

matrix J2 2) by the relation 

                                  = J2( ) 2                            [8] (3.2) 

and                                                      J2( ) = 
1
0
0 / /

        [8] 

here, too , • means cosine(•), • means sine(•), and • means tangent(•). 

Dynamics  

Dynamics is further divided into translational motion and rotational motion of the vehicle. The 

translational equation of motion is given as below: 
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+   +   + ( ) =  

and the rotational equation of motion is as follows: 

 +  (  ) + ( + ) =  [8] 

where  is the mass of the body (vehicle) and   is the moment of inertia.  

The above two equations are generally written in component form according to the SNAME 

(1950) notation, that is: 

 = 1= [X  Y  Z]T           external forces 

 = 2 = [K  M  N]T         moment of external forces 

 = 1 = [     ]T           linear velocity 

  = 2 = [     ]T             angular velocity 

 = [     ]T                center of gravity 

Applying this notation to the above equations, we have: 

 ( -  +  –   (  2 +  2) +  (  - ) +  (  +  )) = X 

 ( -  +  –  ( 2 +  2) +  (  - ) +   (  + )) = Y 

 ( -  +  -  (  2 +  2) +  (  - ) +  (  + )) = Z 

 + (  - )  - ( + )  + (  2 -  2) + (  -  )  + m[  ( -  + ) -  ( -  + 

)] = K 
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 + (  - )  - (  + )  + (  2 -  2) + (  - ) + m[  ( -  + ) -  ( -  + 

)] = M 

+ (  - )  -(  + )  + (  2 –  2)  + (  - )  + m[  ( -  + ) -  ( -  +                                    

)] = N                       

The first three equations represent translational motions and the last three rotational motions. [8] 

The center of buoyancy is taken to be same as the center of body-fixed frame so that  has only 

diagonal elements i.e.  = [  0 0; 0  0; 0 0  ]. The off diagonal elements are neglected so that 

the above equations can be further simplified by drooping off diagonal elements of inertia tensor 

Unless the vehicle is specially ballasted  is in fact negligible and the equations can further be 

reduced by drooping out  term. 

External forces and moments are given by 

  =  +  +  +  

which can be found out in terms of vehicle parameters. [9] 
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The objective is to maintain the AUV at a particular height above the seafloor. This is achieved 

by changing the pitch of the vehicle. A two loop controller is used for this purpose. The inner 

loop controller, PD controller controls the pitch and the outer loop controller, P controller 

controls the depth of the vehicle. 

Linearized kinematics and dynamics 

First, the kinematics and dynamics equations are simplified by drooping out the terms other than 

body relative surge velocity , heave velocity , pitch rate , and the earth relative forward 

position , depth , and pitch angle . Next, this simplified model is linearized about an 

operating point [9]. The final model is simulated in Simulink and vehicle’s behavior is observed.  

Using equations (3.1) and (3.2) and drooping out the undesired terms, we get the kinematics of 

the AUV for pitch and depth control as follows: 

= cos( ) + sin ( ) 

= sin( ) + sin ( ) 

=    [9] 

We linearizes these equations by assuming that there are small perturbation around a steady 

point. Let  be the steady state forward velocity around which  is linearized. Heave and pitch 

rate are linearized about zero. Using Maclaurin expansion of the trigonometric terms and 

neglecting higher order terms, the linearized kinematic equations are  

= +  

= +  

=    [9] 
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Similarly for dynamics equations, all the unrelated terms are set to zero and out of plane vehicle 

motion equations are neglected. The dynamics equations are: 

( + + ) = X 

( ) = Z 

+ [ ( + ) ( )] = M  

Now, using the linearization, the above equations are reduced to 

( + ) = X 

( ) = Z    

+ [ ( )] = M   [9] 

X, Z, and M values are found in terms of vehicle parameters e.g. added mass due to fin lift, body 

lift, moment, drag, etc. so that the above equations transform to the following equations 

(  - ) w   (  + )   – (  + )  =  

 (  +  ) w  + (  )   + (   )  -  = s [9] 

where, , , , , are the added mass,  is the fin lift,  is stern plane angle. 

If heave velocity is less, we can neglect it with respect to other terms so that the kinematics and 

dynamics equations can be written into following matrix form: 

0 0
0 1 0
0 0 1

  + 
0

0 0
1 0 0

  = 0
0
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Transfer functions  

From the above matrix representation, the transfer function for the inner pitch loop is found as 

( ) =  ( )
( )

 = 
    

   

Pitch control is done by PD controller with general transfer function given by 

( )
( ) = ( + 1) 

where, (error in pitch) = (desired pitch) – (actual pitch).  is the proportional gain,  is 

the derivative time constant. Here ‘-’ sign is due to the difference in sign convention between 

stern plane angle and vehicle pitch angle. 

Outer depth loop transfer function relates the  to . As inner pitch loop is very fast compared 

to outer depth loop, we can assume that  is  nearly  equal  to   so that the transfer function 

becomes 

( ) = ( )
( )

 =  

For depth control, a proportional controller (P control) is used whose gain,  =  ( )
( )

 ; where  is 

the error in depth of the vehicle.  

Substituting the data given for REMUS AUV as given in [9], we get 

( ) =  .
 .   .
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Open loop poles are -0.55 ± j0.47. Choosing 5% overshoot or damping ratio,  = 0.69 and  = 

0.210, we got from the root locus plot the value of natural frequency, n = 5.77 rad/sec and 

gain = 10.3 and  = - 0.772.   

  

 

 

Fig. 4.1: Root locus plot 
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Simulation results 

 

 

Fig. 4.2: Closed loop step response 

Fig. 4.3: Simulink model for pitch and depth control 
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Fig. 4.4: Depth control of AUV 

Fig. 4.5: Pitch control of AUV 
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From the waveforms it is clear that that the linearized pitch depth model of AUV gives 

satisfactory results as the actual depth is settling to commanded depth and also the pitch of the 

vehicle is settling to zero value as required.  

State Feedback control 

Here, we employed a state feedback controller with actuating signal, u = - Kx . where K is the 

gain matrix and x is the state matrix.  

we have,    

( ) = .
 .   .

 

( ) = -10/s 

which gives G (s)*Gz(s) = .
 .   .

 

>>[A, B, C, D] = tf2ss([31.8],[1 1.09 .52 0]) gives 

A =   
1.09 .52 0
1 0 0
0 1 0

          B =   
1
0
0

           C = [0 0 31.8]     D = 0 

Controllability matrix, Pc = [B AB A2B] is calculated and found out that it is non-zero signifying 

that the system is state controllable.  

For damping ratio,  = 0.69 desired poles are -0.338±j 0.355, -10 (from root locus plot) which 

give desired characteristic equation: s3+10.676s2+7s+2.4=0 

( ) ( ) 

-K 

  

Fig. 4.6: State feedback control model  
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Since A matrix is not in CCF, we use a transformation x =Px which transform the system in 

CCF form so that P matrix is [0, 0, 1; 0, 1, 0; 1, 0, 0] and system co-efficient are (-1.09, -0.52, 0) 

which give the gain matrix K = [2.4-0, 7+0.52, 10.676+1.09]P or [11.766, 7.52, 2.4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5 

Tracking and Formation Control 
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In this chapter the problem of leader-follower formation control for multiple Autonomous 

Underwater Vehicles (AUVs) in spatial motions is considered. The objective is to drive a leader 

robot along a desired trajectory, and make the follower robots keep a desired formation with 

respect to the leader’s configuration in 3-dimensional spaces. [11] 

Advantages of formation control 

In many applications, a given task is too complex to be accomplished by a single robot; thus a 

multi-robot system working cooperatively is required to complete the job. Multi-robot systems 

are more robust as compared to the single-robot systems because a team of robots provides 

certain  amount  of  redundancy,  which  is  useful  when  some  of  the  robots  malfunction  also  less  

time is needed to complete the job e.g. the use of AUVs for offshore operations includes ocean 

sampling, mapping, minesweeping, ocean floor survey, and oceanographic data collection. 

Instead of a single specialized expensive AUV, it is beneficial to use comparatively simple and 

inexpensive AUVs to cooperatively increase the service area. One fundamental problem in 

multi-AUVs cooperation is formation control in an effort to design a structure for AUVs to keep 

a desired formation configuration while completing the assigned tasks. Some examples of 

formation in animals include bird flocking, fish schooling, and animal herding. [11] [12] 

Approach  

There are mainly three approaches toward formation control of autonomous vehicles, namely 

behavioral, virtual structure, and leader-follower. 

In the behavioral approach, a weighted average of desired behavior (e.g. collision avoidance, 

formation keeping, target seeking) of each vehicle is used to obtain the control input for that one; 
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therefore, this approach allows decentralized implementation. The theoretical formalization and 

mathematical  analysis  of  this  approach  is  dif cult  and  consequently  it  is  not  easy  to  guarantee  

the convergence of the formation to a desired con guration. [11] [13] [14] 

The virtual structure approach considers the robot formation as a single virtual rigid structure so 

that the behavior of the robotic system is assimilable to that of a physical object. Desired 

trajectories are to the entire formation as a whole and not assigned to each single robot. In this 

case the behavior of the robot formation is predictable and consequently the control of the robot 

formation is straightforward. Nevertheless a large inter-robot communication bandwidth is 

required. [14] 

In the leader-follower approach, a robot of the formation, designated as the leader, moves along a 

predefined trajectory while the other robots, the followers, are to maintain a desired distance and 

orientation with respect to the leader. In this case, a global leader can be designated and the 

group behavior can be assigned based on the global leader’s reference trajectory. [11]  

As the bandwidth of underwater acoustic communication is severely constrained, which inhibits 

a large number of data exchange among the vehicles, leader-follower scheme is useful because 

only communication event required is to broadcast the necessary information of the leader to the 

follower.  

In this chapter formation control is achieved using leader-follower approach and PD control. 

Leader-follower formation control of AUVs in 2D (horizontal plane)                

In leader-follower formation control, the leader AUV has to track the desired trajectory and the 

follower AUV tries to maintain a desired distance and angle relative to the leader. When all 

vehicles are in expected positions, the desired formation is established.  
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The leader-follower formation problem in horizontal plane can be given as follows: Given the 

position of the leader vehicle, the reference trajectory for the follower is set in such a way that its 

position is shifted by a distance d and an angle  relative to the leader. Hence, the reference 

trajectory of the follower is generated as the leader cruises. [11] 

AUV kinematics and dynamics: To study the planar motion, we define an inertial frame {I} 

and a body fixed frame {B}. The origin of {B} frame coincides with the AUV center of mass 

         

 

(CM) while its  axes are along the principal axes of inertia of the vehicle.  xb is the longitudinal 

axis, yb is the transverse axis, and zb is the normal axis [15]. The kinematic equations of motion 

for an AUV on the horizontal X-Y plane can be written as  

    =  
cos ( ) sin ( ) 0
sin ( ) cos ( ) 0

0 0 1
   

Fig. 5.1: AUV diagram showing inertial and body fixed frames. [15] 
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where  and  represent the inertial coordinates of the CM of the vehicle and u and v are the 

(linear) surge (forward) and sway (side) velocities, respectively, defined in the body fixed frame. 

The orientation of the vehicle is described by angle  measured from the inertial X-axis and r is 

the yaw (angular) velocity. Assuming that (i) the CM coincides with the center of buoyancy (CB) 

(ii) the mass distribution is homogeneous, (iii) the hydrodynamic drag terms of order higher than 

two are negligible, and (iv) heave, pitch and roll motions can be neglected, the dynamics is 

expressed by the following differential equations: 

=     | | | | +  
1
  

=    | |  | | +  
1
  

=     | |  | |  [15] 

The variable  denotes the control force along the surge motion of the vehicle and variable  

denotes the control force along the sway motion of the vehicle. Third equation is uncontrolled 

and the AUV is an underactuated dynamic system. The constants  and  are the combined 

rigid body and the added mass terms, and  is the combined rigid body and added moment of 

inertia  about  zb axis. , | |, , | |, , and | | are the linear and quadratic drag terms 

coefficients. [15] 

Reference path and controller design: we choose a reference circular inertial planar trajectory 

given as follows                                  xR(t) = 8sin(0.01t) m, 

yR(t) = 8cos(0.01t) m. 
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From this reference path, we find the error in position (= actual position – reference position). 

This error is then given to proportional derivative controller (PD controller) which generates 

necessary  controlling  signals.  The  output  from  controller  is  then  feed  to  system  (AUV)  which  

reduces the error in position and thus, AUV tracks the desired trajectory. The reference path for 

follower AUV is the circle with same frequency but with different radius.  

Simulation: Numerical data used in simulation: 

Parameter Symbol Value Unit 

Mass                   M 185 Kg 

Rotational mass                   IZ 50 kgm2 

Added mass   -30 Kg 

Added mass  -80 Kg 

Added mass  -30 kgm2 

Surge linear drag  70 kg/s 

Surge quadratic drag | | 100 kg/m 

Sway linear drag  100 kg/s 

Sway quadratic drag | | 200 kg/m 

Yaw linear drag  50 kgm2/s 

Yaw quadratic drag | | 100 kgm2 

 

 

Table 5.1: Rigid body and hydrodynamic parameters of the AUV studied by Pettersen and 
Egeland (1999). [15] 
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Also,         m11 = m-  = 215 kg,  m22 = m-  = 265 kg,  m33 = m-  = 80 kgm2 [15] 

Simulation result: 

 

 

The leader AUV is tracking its desired path which is a circle of radius 8m and also the follower 

AUV is maintaining a constant distance of 2m from the leader AUV. Thus, the PD controller 

used is working satisfactorily. 

Leader follower formation control of AUVs in 3D 

Here we have considered motion in Z axis direction also i.e. AUVs are at different heights with 

respect to each other. Therefore, in kinematics model one more state z in incorporated and also in 

dynamics model a controlling force for z motion is added in simulation. 

Fig. 5.2: Tracking and formation control of AUVs in horizontal plane 
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The equations of motion of an underwater vehicle in six degrees of freedom (6 DOF) with 

respect to body fixed frame can be written as:  

M( )  + C( ) + D( )  +g =  

where,  = [ x y z  ]T  is position and orientation in {I} and   = [u v w p q r]T is linear and 

angular velocity in {B}. M = diag{ m11, m22,….., m66 } and C are the rigid body mass matrix and 

the coriolis and centripetal matrix, which includes the added mass matrix and the added coriolis 

and centripetal matrix, respectively. D = diag{d11, d22,….,d66 } is the resultant  matrix  of linear 

and quadratic drag (damping matrix ) and g is  the resultant vector of gravity and buoyancy.  is  

the vector of forces and moments acting on the robot in the body-fixed frame. 

Here we are considering 4DOF i.e. control in x, y, z, and direction. 

The mass matrix in this case is changed to the matrix given below 

 = [ 11 0 0 0; 0 22 0 0; 0 0 33 0; 0 0 0 44] 

where,  11 = 99 kg,  22 = 108.5 kg,  33 = 126.5 kg,  44 = 29.1 kg 

and damping matrix is given by 

D = [ d11 0 0 0; 0 d22 0 0; 0 0 d33 0; 0 0 0 d44 ] 

where,  d11 = 10+227.18| | kg/s,  d22 = 405.41| | kg/s,  d33 = 10+227.18| | kg/s,                        

d44 = 1.603+12.937| | kg/s. [11] 

The effects of coriolis force matrix C( ) and gravitation matrix g are neglected for simplicity. 

Reference trajectory for leader is a straight line given as 
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xR(t) = 40t + 10 

                                                                  yR(t) = 30t – 5    in z =10 plane. 

Trajectories for followers are also straight lines but in different planes i.e. AUVs are at different 

heights ( in z = 20 and z = 30 planes). Again PD controller is used to control the paths of AUVs. 

Simulation results: 

 
Fig. 5.3: Tracking and formation control of AUVs in 3D ( positions in x direction) 
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Fig. 5.4: Tracking and formation control of AUVs in 3D ( positions in y direction) 

Fig. 5.5: Tracking and formation control of AUVs in 3D ( positions in z direction) 
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From the waveforms, we have that the leader AUV is tracking its desired path which is a straight 

line in z =10 plane and follower1 is maintaining a distance of 10m from leader and follower2 is 

maintaining a distance of 20 m from leader which means that the proposed PD controller is 

operating properly. Thus, the tracking and leader follower formation control is achieved in 3D. 

 

 

 

 

Fig. 5.6: Tracking and formation control of AUVs in 3D 



 

Chapter 6 

Obstacle Avoidance 
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Fig. 6.1: Shape of 
obstacle considered for 

obstacle avoidance 

Obstacle detection and avoidance is an important aspect of autonomy in AUVs. Like roads on 

land, oceans are also crowded with lot of unwanted traffic. To bypass this traffic successfully, 

obstacle avoidance systems are incorporated in AUVs so that they can easily pass through 

obstacles without any harm and on same time carry on their mission (monitoring for example). 

Approach  

In this chapter, an obstacle avoidance scheme is used which is based on the pitch and depth 

control of AUV. The forward look sonar detects the obstacle in the path of the vehicle. If there is 

an obstacle then the obstacle avoidance algorithm is activated. The normal obstacles encountered 

inside sea are coral reefs and sea walls. AUV is required to pass over these reefs and/or walls. 

This can be achieved by increasing the pitch angle of AUV so that its depth (height) above the 

sea floor increases or decreases i.e. the AUV pitches up or pitches down and obstacles are 

avoided. [17] 

The modeling of AUV remains the same as described in chapter 2. For obstacle avoidance, four 

states are considered namely heave, pitch rate, pitch angle and depth unlike the pitch and depth 

control where heave was not considered. 

Forward  look  sonar  detects  the  obstacle  and  gives  a  measure  of  its  height  and  range.  The  

important aspect is to plan a new path which will be traversed by the vehicle and then make a 

controller  that  will  execute  this  planned  path.  Also,  when  the  obstacle  has  passed,  the  vehicle  

should come to its original path. 

Here, an only specific type of obstacle is considered as shown in fig. 6.1.                                        

The  sonar  will  sense  this  obstacle  and  will  give  data  about  its  range  
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and  height.  Now  a  new  path  is  to  be  calculated  so  that  the  vehicle  does  not  hit  the  obstacle.  

Obviously, the new path should be parallel to the boundary of the obstacle. Thus, first AUV will 

pitch up to the height of obstacle while maintaining a particular distance from the obstacle. After 

reaching the top of obstacle, AUV move over the top at a safe altitude and when the downward 

slope part encountered, it pitches down and moves toward the bottom of the obstacle. When the 

obstacle is passed, the obstacle avoidance algorithm is completed and AUV returns to its 

previous path. [17] 

Simulation results 

For simulation of the above algorithm, first we model the sea floor. In sea floor modeling, we put 

an obstacle at some distance from origin. Next step is to model the forward-look sonar. Here, the 

sonar considered for simulation is of 35m range and 24  forward  zone.  With  the  help  of  data  

given by sonar, we calculate the slope of upward motion (upward path) which is the ratio of 

height to range. This new path calculated is fed to the controller which controls the vehicle by 

changing pitch and depth to go through this part. The same process is repeated when AUV 

moves downward. During the flat portion of the obstacle, AUV is maintained at a particular 

altitude as slope is zero. 



50 
 

Fig. 6.2: Obstacle avoidance by varying pitch and depth (by using pitch and depth 
control) 

 

  

 

The problem with this approach is that it does not consider the blind spot situation which can 

harm the vehicle. A new and more reliable approach to obstacle avoidance is the potential field 

method.  

 

 

 

 

 



 

Chapter 7 

Appendix 
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MATLAB code for formation control in 2D 
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MATLAB code for formation control in 3D 
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