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ABSTRACT 

 

 

Fused deposition modelling is one of rapid prototyping process that uses plastic materials such 

as ABS (acrylonitrile-butadiene-styrene) in  the semi molten state to  produce 

prototypes.  FDM is  an addit ive process  and the prototypes are made by layer  

by layer  addi t ion of  the semi -molten plast ic  material  onto a plat form from 

bottom to top.  Primary process parameters such as layer thickness, raster angle and part 

orientation in addition to their interactions are studied in the present dissertation that influences 

the dimensional accuracy of the part produced by the process of Fused Deposition Modelling 

(FDM). Due to shrinkage of the filaments, the dimensions of the CAD model does not match 

with the FDM processed part. The shrinkage dominates along length and width of the build 

part but a positive deviation is observed along thickness direction. 

Influence of each parameter on responses such as percentage change in length, width, and 

thickness of the build part are essentially studied. The effect of process parameters on responses 

are studied via Response surface methodology (RSM). RSM is used to calculate the regression 

coefficients and the function is made with the significant factors. Then optimization of process 

parameters is made by genetic algorithm so as to minimize the percentage change in length, 

width and thickness. 
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INTRODUCTION: 

 

The competition in the world market is growing tremendously and it is the vital need to 

make sure that the new products reach the market as soon as possible. Rapid Prototyping 

(RP) is an additive manufacturing technology that automatically builds functional 

assemblies using CAD model of the part. Real practice prototypes can be built by ABS 

(Acrylonitrile Butadiene Styrene) material using FDM process that is one of RP 

technology. In general, FDM process includes five basic steps to build a part model 

automatically: (a) creation of the CAD model of the design. (b) Converting the 

CAD model to STL (stereolithography) file format. (c) Creation of thin 

cross sectional layers by slicing STL files. (d) Construction of the model 

one layer atop another. (e) Cleaning and finishing of the model.  Alteration in 

dimensions of prototype during testing could lead to inaccurate results therefore 

dimensional accuracy is considered very important. It is important since producing new 

prototype again, will be expensive, time consuming etc. Hence study of process 

parameters influencing dimensional accuracy is considered essential. 

 

During manufacturing of the specimen by the FDM machine, presence of shrinkage 

alters dimensions along length, width and thickness from the exact dimensions framed 

by the CAD model. Hence it is very essential to study how different process parameters 

affect the accuracy of the dimensions along length, width and thickness simultaneously. 

Use of DOE (Design of Experiments) has significantly increased the quality of cost. A 

rule box is created using Design of Experiments (DOE) to decide about the significant 

experiment. Response Surface Methodology (RSM) approach is used to calculate 

regression coefficients from the experimental data and the suitable functions are made 

using the significant factors affecting dimensional accuracy to the greatest extent. In order 

to calculate the optimised process parameters various methods such as artificial neural 

network, Mamdani fuzzy inference system, genetic algorithm etc. are available, but 

genetic algorithm is preferred to predict the optimised result of all the experiments 

because of its simplicity and can be easily understood. So it can be made to be used by an 

unskilled worker. It also considers uncertainty at the shop floor. Hence genetic algorithm 

is used to predict the optimum parameters which can increase the dimensional accuracy of 

the FDM processed part  
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LITERATURE REVIEW 

 

Anitha et al. [1], by the use of taguchi method influence of road width, layer thickness and 

speed of deposition each at three different levels on the surface roughness of the part produced 

by the process of FDM is determined. From the results, it  is indicated that the layer 

thickness is the most influencing factor greatly affecting surface roughness 

followed by road width and speed of deposition.  

Sood et al. [2], the effect of orientation, layer thickness, raster angle, raster width, and raster to 

raster gap is studied with the help of taguchi method on dimensional accuracy. Significant 

factors and their interaction are found out using taguchi method. The optimum settings of the 

parameters are found out so that all the three dimensions show minimum deviation from actual 

value simultaneously and the common factor settings need to be explored. 

 

Pradhan et al. [3], study shows that the quality of product considerably influences the 

properties of the material. Method of response surface methodology is used to analyse the 

influence of process parameters on surface roughness. By the use of RSM a correlation between 

the process variables and response is established. A second order response model of these 

parameters are developed and found that pulse current, discharge time, and interaction term of 

pulse current with other parameters significantly affect the surface roughness. 

Thrimurthulu et al. [4], this paper is an approach to determine the orientation for optimal part 

deposition for FDM process. Build time and average part surface roughness are two 

contradicting objectives, which are minimized by the minimization of their weighted sum. In 

evaluating the above two objectives the effect of support structure is taken into consideration. 

Thus, the support structure minimization is also indirectly included in this work. In order to 

determine optimum part deposition orientation the use of adaptive slicing is made 

simultaneously. 

 

Carley et al. [5], various situations are studied in which response surface methodology which 

mainly consists of experimental strategy can be applied and the desired results can be obtained. 

 

Pandey et al. [6], the average part surface roughness and production time is mainly affected by 

Orientation of the part deposition. In the study, objective functions for build time and average 
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part surface roughness are framed. A set of pareto optimal solutions for part deposition 

orientation for the two objectives is determined by the use of NSGA-II. From the results it is 

observed that there are two limiting situations. One is having minimum average part surface 

roughness but maximum production time, other with minimum production time but maximum 

average part surface roughness. The system developed also gives intermediate solution sets and 

depending upon the preference of the user any solution can be used for the two objectives. 

 

Lee et al. [7], in the study for improving the flexibility of the FDM part significant parameters 

and their levels were identified. From the results, layer thickness, raster angle and air gap are 

found to be significant and they are affecting the elastic performance of the compliant FDM 

ABS prototype. 

 

Chattoraj et al. [8], In this study the method of Genetic Algorithm is used for the optimization 

of magnetized FMSA. A code of genetic Algorithm for magnetized ferrite micro strip antenna is 

developed using C++ language and fitness function is obtained. The comparison of the 

optimized results with the results obtained using GA optimizer of MATLAB is done.  

Zhou et al. [9],in this study the influence of five control factors like layer thickness, overcure, 

hatch spacing, blade gap, and part location on build platform and few selected interactions on 

the accuracy of SLS parts. It is observed that for maximum accuracy the factor settings depend 

on geometrical features in the part. 
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EXPERIMENTAL PLAN 

 

 

FDM machines builds part in an additive manner by building a layer atop another layer. The 

extrusion of the heated thermoplastic filament (ABS plastic) takes place from the tip of the 

nozzle. On the FDM machine there are two nozzles, one for the part material deposition and the 

other to build support structure, both works alternately according to the requirement. The two 

main qualities in the material selected are rapid solidification upon adhering to the previous layer 

and the material shou ld  mel t  a t  a  t empera tu re .  Three factors viz., layer thickness (A), 

part build orientation (B), and raster angle (C), each at three levels, as shown in Table1, are 

considered. They are briefly defined as follows [2]. 

A. Layer thickness:  It denotes the thickness of the layer being deposited by the nozzle and is 

dependent on the type of nozzle.  

B. Part build orientation:  It is the inclination of the part in a build platform with respect to X, Y, Z 

axis in which Z-axis is along the direction of the build part and, X and Y axis are considered 

parallel to the build platform.  

C. Raster angle: it is the direction of the raster with respect to X-axis of the build table.  

 

And the other factors are kept fixed. 

 

 With the help of CATIA V5 software 3D solid model of prototype is modelled and are the 

converted to STL file. STL file is imported to FDM software (Insight). Now, control factors 

l i s t ed  in  Table1 are set as per shown experiment plan (Table2). Three parts per experiment are 

fabricated by the  use  of  FDM Vantage SE machine. ABSP400  i s  t he material used for 

fabricating the designed part. The mean of the three readings each of length, width and 

thickness is taken to be the representative value respectively. Mitutoyo vernier calliper having 

least count of 0.01mm is used to measure the dimensions. Measurement of  the dimensions 

shows that  there is  shrinkage in dimensions along length (L),  width (W), but 

thickness  (T) is  more than the exact  value depicted in the CAD model . 

Equation (1) is used to analyse percentage change in dimensions of the build part. 

Reference taken from [2] section. 

 

                                          … (1) 
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1 . 

 

 

 

                          FIGURE1:  showing the Dimensions of test specimen in mm 

 

 

 

EXPERIMENTAL DATA: 

 

     Table1:  Levels of process parameters [2] 

 

Factors Symbol Levels 

  -1                          0                          1                                          

Layer thickness A .127 .178 .254 mm 

Orientation B 0 15 30 degree 

Raster Angle C 0 30 60 degree 

 

 

Here -1, 0, and 1 represent three different levels in coded form. 

 

 

 

 

 

 

 

 



14  

 

 

 

 

 

Table2:  Experimental plan based on RSM [2] 

 

 

Expt. No. A B C % change in 

length 

% change in 

width 

% change in 

thickness 

1 1 -1 0 0.041666 0.18 8.6666 

2 -1 1 0 0.17666 0.43333 2.666 

3 0 0 0 0.140833 0.433333 4.833333 

4 1 0 -1 0.063333 0.42 9.58329 

5 -1 0 1 0.1375 0.666666 4 

6 0 1 1 0.0475 0.36666 3.66666 

7 0 1 -1 0.070072 0.49999 4.50002 

8 0 0 0 0.139999 0.463226 4.26666 

9 1 0 1 0.060833 0.4 8.5833 

10 -1 -1 0 0.069321 0.56932 2.66667 

11 0 -1 -1 0.01249 0.2 2.666 

12 0 0 0 0.149012 0.493212 4.29999 

13 0 -1 1 0.075833 0.36666 2.9999 

14 1 1 0 0.096532 0.568123 6.41667 

15 -1 0 -1 0.119999 0.433333 3.91665 

 

   The experiments are planned with A, B, and C taken in coded form. 
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METHODOLOGY: 

4.1 RESPONSE SURFACE METHODOLOGY: 

One of the useful modern techniques used for predicting and optimising the machining 

performance is response surface methodology (RSM). In the present study, dimensional 

accuracy of the part processed by the FDM machine is predicted and also the machining 

parameters are optimized. Response surface methodology (RSM) is an assembly of 

statistical and mathematical functions that are used for improvement and optimization of 

the process. The quality characteristic that is influenced by the input parameters is called 

response. Response surface methodology includes planning of experimental strategy for 

development of an approximate relationship between the process parameters and the 

response [5]. 

The relationship between process variables              and the response   is, 

 

                         ………….…………………………………….(4.1)  

 

Where   includes factors such error in the measurement of the response, the effect of other 

variables, background noise, and so   is considered as a statistical error and often assumed 

having  a normal distribution with variance    
and mean zero.  

 

So,                                                    ………...(4.2)  

 

The variables                in equation (4.2) are expressed in natural units of 

measurements, such as degrees Celsius, pounds per square inch, etc. and are known as 

natural variables. The natural variables are suitably transferred to coded variables 

              using RSM and are defined to be dimensionless having zero as mean and 

the standard deviation remains the same. The response function equation in terms of the 

coded variables is given as 

 

                                       ………………………………………………..(4.3) 

 

For developing a suitable approximation, generally a low order polynomial (first order or 

second order polynomial) is used over a small region of independent variable space. If the 

experimenter is interested in the approximation of the true response over a little expanse of 
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the independent variable space in the location where response function has little curvature, 

than first order model is mostly used. The first-order model in terms of the coded variables 

for the case having two independent variables, is shown below,  

 

                                            …….…………….. ……………………….(4.4) 

 

If the interaction between the variables is considered then the first order model is easily 

expressed as, 

 

                                      …….……… ………………………...(4.5)  

 

Curvature is induced with the addition of the interaction between the variables. Due to 

curvature, a second-order model is used because first order model is inadequate to 

approximate the curvature of the true response surface which is generally strong. The 

second-order model for the case of two variables is given by: 

 

                                                       ………(4.6) 

 

This model would likely be useful as an approximation to the true response surface in a 

relatively small region. The parameters can be easily estimated in the second order model 

by using the method of least square. 

In general, first order model can be written as 

 

                                …………………………………….(4.7)  

 

And the second order model can be given by, 

 

     ∑     

 

   
 ∑      

 
 

   
 ∑ ∑         

 

   
  …………………………………(4.8) 

 

 

Where ‟s are unknown parameters and for the estimation of the values of these parameters 

experimental data is needed. 
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4.2 GENETIC ALGORITHM:  

Genetic algorithm uses iterative optimization procedure and it works with number of 

solutions in every iteration rather than one solution. The solutions are known as 

„population‟. The basic working principle is shown with the help of a flowchart below, 

 

 

Each string created in the genetic algorithm is either a population and is assigned a fitness 

value. The fitness value for minimisation problems is given by the formula, 

 

Fitness = 
 

                  
 

 

The string is in the form of binary digits like a four bit string „1001‟.The three basic 

operators used in genetic algorithm are reproduction, crossover and mutation [8]. 
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(A). Reproduction Reproduction selects good strings or ‟parents‟ from the initial 

population with the best fitness value to reproduce offspring with best fitness. The parents 

are selected by means of selection procedures where they go for reproduction [8]. There 

are various methods available for selection of the parents such as proportionate selection  

operator in which the string is selected having probability proportional to their 

corresponding fitness, ranking selection scheme in which the strings are placed according 

to the ascending order of their fitness value and the strings with the best fitness are 

selected, tournament selection procedure in which two random strings are chosen from the 

population and the one with the better fitness survives, etc. 

 

The selected strings are placed in a mating pool from where reproduction phase starts 

making the use of crossover operator.  

 

(B) Crossover    Crossover operator works by selecting random points [8]. The crossover 

operation is as shown by the diagram, 

 

.           

 

In the crossover operator two strings at random are picked from the mating pool and both 

the selected strings are made to cut at an arbitrary place and the portion on the right side of 

the strings are exchanged  between the strings to create two new strings  known as child. 

The crossover operator is stopped until the new gen is completely comes to existence.  

Although new generation that come into existence with the help of reproduction and 

crossover, is a combination of extant characteristics of the parents. Sometimes occasional 

random alteration in the string position value is done hoping to make a better offspring, the 

process is known as mutation [8].   
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(C) Mutation      In mutation one bit is chosen at random and is flipped from „1‟ to „0‟ or 

vice versa. Mutation is shown below as, 

 

In order to maintain the diversity in the population mutation is done.  

As soon as the mutation is over, the fitness is evaluated. The members in the new 

generation with better fitness replace the old members with less fitness. The replacement 

of the old generation by the new generation might happen partially or fully that depends 

upon the fitness value. The process is repeated again and again unless fitness of the 

members become same expect for those that are mutated [8]. When this point is reached 

genetic algorithm is stopped. 
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RESULTS AND DISCUSSONS: 

Analysis of the experimental data obtained from box-behnken design runs is done on 

minitab 15 software by the use of full quadratic response surface model which is given by, 

     ∑        

 

   

 ∑   ∑         

 

Where     is      factor and   is the response. 

In the ANOVA table the value of F is checked. Probability of F value is greater than 

calculated F value due to noise is indicated by P value. The significance of corresponding 

term is established, if P value is less than 0.05. The value of P must be greater the 0.05 for 

the lack of fit. An insignificant lack of fit is desired because it is the indication that 

anything left out of the model is not important and the developed model fits. 

 

5.1 Response Surface Regression: % change in Length versus A, B, C  

The analysis was done using coded units 

              Table 3: Estimated Regression Coefficients for % change in Length 

Term           Coef    SE Coef       T      P 

Constant   0.143281    0.012712  11.271    0.000 

A         -0.030139    0.007784  -3.872    0.012 

B          0.023932    0.007784   3.074    0.028 

C          0.006971    0.007784   0.896    0.412 

A*A       -0.001647    0.011458  -0.144    0.891 

B*B       -0.045590    0.011458  -3.979    0.011 

C*C       -0.046218    0.011458  -4.034    0.010 

A*B       -0.013118    0.011009  -1.192    0.287 

A*C       -0.005000    0.011009  -0.454    0.669 

B*C       -0.021479    0.011009  -1.951    0.109 

S=0.0220177    PRESS=0.038100   

R-Sq = 92.39%    R-Sq (pred.) = 0.00%   R-Sq (adj) = 78.68% 

In the analysis, the factors A and B, and interaction B*B, C*C are important because their 

P value is less than 0.05. The coefficient of determination (R-Sq) which indicates the 
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goodness of fit for the model so the value of R-Sq = 92.39%, which indicate the high 

significance of the model.  

 

F(% change in Length) = 0.143281 - 0.030139*A + 0.023932*B – 0.045590*(B*B) – 

0.0462181*(C*C)  

 Table4: Analysis of Variance for % change in Length: 

Source          DF    Seq SS    Adj SS    Adj MS      F      P 

Regression       9  0.029411  0.029411  0.003268   6.74  0.025 

  Linear         3  0.012238  0.012238  0.004079   8.41  0.021 

  Square         3  0.014540  0.014540  0.004847  10.00  0.015 

  Interaction    3  0.002634  0.002634  0.000878   1.81  0.262 

Residual Error   5  0.002424  0.002424  0.000485 

  Lack-of-Fit    3  0.002374  0.002374  0.000791  31.91  0.031 

  Pure Error     2  0.000050  0.000050  0.000025 

Total           14  0.031835 

 

Surface Plots of % change in Length: 

 

   

FIGURE2: Surface Plots of % change in Length w.r.t all pair of factors 
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5.2 Response Surface Regression: % change in Width versus A, B, C 

 

The analysis was done using coded units. 

 

              Table5:  Estimated Regression Coefficients for % change in Width 

 

Term          Coef     SE Coef       T      P 

Constant   0.46326     0.02035  22.767   0.000 

A         -0.06682     0.01246  -5.362   0.003 

B          0.06902     0.01246   5.539   0.003 

C          0.03083     0.01246   2.475   0.056 

A*A        0.04805     0.01834   2.620   0.047 

B*B       -0.07362     0.01834  -4.014   0.010 

C*C       -0.03131     0.01834  -1.707   0.148 

A*B        0.13103     0.01762   7.436   0.001 

A*C       -0.06333     0.01762  -3.594   0.016 

B*C       -0.07500     0.01762  -4.256   0.008 

 

             S = 0.0352428       PRESS = 0.0747141 

             R-Sq = 97.29%     R-Sq(pred) = 67.35%      R-Sq(adj) = 92.40% 

 

 

In the analysis, all the factors, and interaction A*A, B*B, A*B, A*C, B*C are important 

because their P value is less than 0.05. The coefficient of determination (R-Sq) which 

indicates the goodness of fit for the model so the value of R-Sq  = 97.29%, which indicate 

the high significance of the model.  

 

F(% change in width) = 0.463257 - 0.0668157*A + 0.0690154*B + 0.0308329*C – 

0.0480543*(A*A) – 0.0736180*(B*B) + 0.131028*(A*B) – 0.0633332*(A*C) – 

0.0749975*(B*C) 
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 Table 6:  Analysis of Variance for % change in Width 

Source          DF    Seq SS    Adj SS    Adj MS      F      P 

Regression       9  0.222616  0.222616  0.024735  19.91  0.002 

  Linear         3  0.081425  0.081425  0.027142  21.85  0.003 

  Square         3  0.033974  0.033974  0.011325   9.12  0.018 

  Interaction    3  0.107217  0.107217  0.035739  28.77  0.001 

Residual Error   5  0.006210  0.006210  0.001242 

  Lack-of-Fit    3  0.004418  0.004418  0.001473   1.64  0.400 

  Pure Error     2  0.001793  0.001793  0.000896 

Total           14  0.228826 

 

Surface Plots of %change in Width: 

 

 

FIGURE3: Surface Plots of % change in Width w.r.t all pair of factors 
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5.3 Response Surface Regression: %change in Thickness  versus A, B, C  

 

             Table7:   Estimated Regression Coefficients %change inT 

Term          Coef      SE Coef       T      P 

Constant   4.46666      0.4529     9.862   0.000 

A          2.50007      0.2774     9.014   0.000 

B          0.03127      0.2774     0.113   0.915 

C         -0.17701      0.2774    -0.638   0.551 

A*A        1.84999      0.4083     4.531   0.006 

B*B       -1.21267      0.4083    -2.970   0.031 

C*C        0.20415      0.4083     0.500   0.638 

A*B       -0.56231      0.3922    -1.434   0.211 

A*C       -0.27083      0.3922    -0.690   0.521 

B*C       -0.29182      0.3922    -0.744   0.490 

 

 

             S = 0.784487   PRESS = 46.4530 

             R-Sq = 95.89%  R-Sq(pred) = 37.89%  R-Sq(adj) = 88.48% 

 

In the analysis, the factor A, and interaction A*A, B*B are important because their P value 

is less than 0.05. The coefficient of determination (R-Sq) which indicates the goodness of 

fit for the model so the value of R-Sq  = 95.89%, which indicate the high significance of 

the model.  

 

F(% change in Thickness) = 4.46666 + 2.50007*A + 1.84999*(A*A) – 1.21267*(B*B)  
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Table8:  Analysis of Variance for % change in Thickness 

Source          DF    Seq SS    Adj SS    Adj MS      F      P 

Regression       9   71.7101    71.7101   7.9678  12.95  0.006 

  Linear         3   50.2612    50.2612  16.7537  27.22  0.002 

  Square         3   19.5501    19.5501   6.5167  10.59  0.013 

  Interaction    3   1.8988     1.8988    0.6329   1.03  0.455 

Residual Error   5   3.0771     3.0771    0.6154 

  Lack-of-Fit    3   2.8749     2.8749    0.9583   9.48  0.097 

  Pure Error     2   0.2022     0.2022    0.1011 

Total           14   74.7872 

 

Surface Plots of % change in Thickness: 

 

 

 FIGURE4: Surface Plots of % change in Thickness w.r.t all pair of factors 
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OPTIMIZTION OF PARAMETERS USING GENETIC ALGORITHM: 

Fitness function is given by, 

 

F(% change in dimensions) = F(% change in Length) + F(% change in Width) + F(% 

change in Thickness) =5.073198 + 2.4031148*A + 0.0929472*B - 0.0308329*C + 

1.8980443*A^2 - 1.3318775*B^2 - 0.0462181*C^2 + 0.131028*A*B - 0.0633332*A*C - 

0.0749975*B*C 

 

GENETIC ALGORITHM TOOL IN MATLAB 2010 is used to optimise the process 

parameters in coded form. 

The fitness function is saves in matlab and is called in the column named fitness function 

by „@fitness_function‟ 

 

FIGURE 5: Optimization of parameters by Genetic Algorithm in Matlab 
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FIGURE6: PLOT OF FITNESS VALUE vs GENERATION’ 

 

 

The optimised results obtained in coded form are: 

A= -0.651, B = 1, C = 1  

The optimized values of the process parameters in uncoded form are: 

A= 1.44mm, B = 30 , and C = 60  

 

 

 

 

 

 

 



30  

 

CONCLUSION: 

In the present study, influence of three process parameters namely, layer thickness, part 

build orientation, and raster angle each taken at three different levels are studied for the 

accuracy of the dimensions of the FDM processed part. Response surface methodology‟s 

design of experiment is used to make the experimental plan. It is observed that the 

reduction dominates in length and width of the specimen but, the value of the thickness is 

always more than the desired value. With the help of RSM significant factors and their 

interaction are identified. In order to improve dimensional accuracy of the build part it is 

required that the parts are manufactured in such a way that the minimum deviation of all 

the dimensions from the actual value is obtained. Therefore optimum process variables 

should be obtained through a structured method. The method of genetic algorithm is used 

to get the optimum value of the process parameters so that dimensional accuracy is 

increased. Genetic algorithm shows that layer thickness of       , part build orientation 

of     and the raster angle of     will fabricate the part with overall improvement in 

accuracy of dimensions. Percentage deviation of         is observed in dimensional 

accuracy with the optimum values. Small percentage error establishes the fitness of the 

present model. 
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