
 

 
 
 
 
 
 
 
 
 
 
 
 

A thesis submitted in fulfilment of the 
requirements for the degree of Master of Technology (Research) 

in 

Electronics & Communication Engineering 

 

Under the guidance of 

Prof. S. K. Patra 

By 

   Devi Rain Guha 

 

                                                                                     

 

 

                                                                                      

                                                                                                   

                                           Department of Electronics and Communication Engineering 

                                      National Institute of Technology, Rourkela, INDIA 

Artificial Neural Network Based Channel 

Equalization  



 

 

 

Department of Electronics & Communication Engineering 
NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA 

ORISSA, INDIA – 769 008 
 

 

 

This is to certify that the thesis titled “Artificial Neural Network Based Channel 

Equalization”, submitted to the National Institute of Technology, Rourkela by 

Devi Rani Guha, Roll No. 60609004 for the award of the degree of Master of 

Technology (Research) in Electronics & Communication Engineering, is a bonafide 

record of research work carried out by her under my supervision and guidance. 

 

The candidate has fulfilled all the prescribed requirements. 

 

The thesis is based on candidate’s own work and has not been submitted 

elsewhere for a degree / diploma. 

 

In my opinion, the thesis is of required standard for the award of a Master of 

Technology (Research) degree in Electronics & Communication Engineering. 

 

To the best of my knowledge, she bears a good moral character and decent 

behaviour. 

  

 

                                                                                        Dr. S. K. Patra 

                                         (Professor) 

                                                                                          Department of ECE                           
                                                                       NATIONAL INSTITUTE OF TECHNOLOGY  

                     Rourkela-769008 (INDIA) 

                                                                                           Email: skpatra@nitrkl.ac.in 

 

 

CERTIFICATE 



ii 

 

 

 

I take the opportunity to express my reverence to my supervisor, Prof. S. K. Patra, for his 

guidance, inspiration and innovative technical discussions during the course of this work. 

He is not only a great teacher with deep vision but also a very kind person. His trust and 

support inspired me for taking right decisions and I am glad to work with him.  

I express my respect to all master scrutiny committee members and my teachers Prof. J. K. 

Satapathy, Prof. K. K. Mahapatra, Prof. G. S. Rath, Prof. G. Pand, Prof. S. Meher and Prof. 

Susmita Das, for their contribution in my studies and research work. They have been great 

sources of inspiration to me and I thank them from the bottom of my heart.  

I would like to thank all the faculty members and staffs of the Department of Electronics 

and Communication Engineering, N.I.T. Rourkela for their inspiration, cooperation and 

provided me all official and laboratory facilities in various ways for the completion of this 

thesis.  

I would also like to thank all my friends for their cooperation and encouragement for the 

completion of this thesis. 

My indebted respect and thanks to my loving parents (Sri. Gopal Chandra Guha and Smt. 

Bela Rani Guha) and elder sisters (Ujjala didi and Karabi didi) for their love, sacrifice, 

inspiration, suggestions and support. They are my first teachers after I came to this world 

and have set great examples for me about how to live, study and work. Also, my special 

thanks to little friends Dev, Puja, Surjo and chotku as they are the key to my steps towards 

success.  

Last but not the least; I take this opportunity to express my regards and obligation to my 

late grand-father and mother, for their blessings. 

 

 

 

Devi Rani Guha 

 
 
 

ACKNOWLEDGEMENT 



iii 

 

 
 
 

The field of digital data communications has experienced an explosive growth in the last 

three decade with the growth of internet technologies, high speed and efficient data 

transmission over communication channel has gained significant importance. The rate of 

data transmissions over a communication system is limited due to the effects of linear and 

nonlinear distortion. Linear distortions occure in from of inter-symbol interference (ISI), 

co-channel interference (CCI) and adjacent channel interference (ACI) in the presence of 

additive white Gaussian noise. Nonlinear distortions are caused due to the subsystems like 

amplifiers, modulator and demodulator along with nature of the medium. Some times burst 

noise occurs in communication system. Different equalization techniques are used to 

mitigate these effects.  

Adaptive channel equalizers are used in digital communication systems. The equalizer 

located at the receiver removes the effects of ISI, CCI, burst noise interference and 

attempts to recover the transmitted symbols. It has been seen that linear equalizers show 

poor performance, where as nonlinear equalizer provide superior performance.  

Artificial neural network based multi layer perceptron (MLP) based equalizers have been 

used for equalization in the last two decade. The equalizer is a feed-forward network 

consists of one or more hidden nodes between its input and output layers and is trained by 

popular error based back propagation (BP) algorithm. However this algorithm suffers from 

slow convergence rate, depending on the size of network. It has been seen that an optimal 

equalizer based on maximum a-posterior probability (MAP) criterion can be implemented 

using Radial basis function (RBF) network. In a RBF equalizer, centres are fixed using K-

mean clustering and weights are trained using LMS algorithm. RBF equalizer can mitigate 

ISI interference effectively providing minimum BER plot. But when the input order is 

increased the number of centre of the network increases and makes the network more 

complicated. A RBF network, to mitigate the effects of CCI is very complex with large 

number of centres.   

To overcome computational complexity issues, a single neuron based chebyshev neural 

network (ChNN) and functional link ANN (FLANN) have been proposed. These neural 

networks are single layer network in which the original input pattern is expanded to a 

higher dimensional space using nonlinear functions and have capability to provide 

arbitrarily complex decision regions.   

ABSTRACT 



iv 

 

 

 

More recently, a rank based statistics approach known as Wilcoxon learning method has 

been proposed for signal processing application. The Wilcoxon learning algorithm has 

been applied to neural networks like Wilcoxon Multilayer Perceptron Neural Network 

(WMLPNN), Wilcoxon Generalized Radial Basis Function Network (WGRBF). The 

Wilcoxon approach provides promising methodology for many machine learning 

problems. This motivated us to introduce these networks in the field of channel 

equalization application. In this thesis we have used WMLPNN and WGRBF network to 

mitigate ISI, CCI and burst noise interference. It is observed that the equalizers trained 

with Wilcoxon learning algorithm offers improved performance in terms of convergence 

characteristic and bit error rate performance in comparison to gradient based training for 

MLP and RBF. Extensive simulation studies have been carried out to validate the proposed 

technique. The performance of Wilcoxon networks is better then linear equalizers trained 

with LMS and RLS algorithm and RBF equalizer in the case of burst noise and CCI 

mitigations.   
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Chapter 1 

    Introduction 

_________________________________________________________________________ 

The advent of high speed global communication ranks as one of the important 

developments of human civilization from the second half of twentieth century to till date. 

This was only feasible with the introduction of digital communication systems. Today 

there is a need for high speed and efficient data transmission over the communication 

channels. It is a challenging task for the engineers and scientists to provide a reliable 

communication service by utilizing the available resources effectively in-spite many 

factors that distort the signal. The main objective of the digital communication system is to 

transmit symbols with minimum errors. The high speed digital communication requires 

large bandwidth, which is not possible due to limited resources available. 

This chapter is organised as follows.  Following this introduction, section 1.1 describes the 

theme of the thesis. Section 1.2 describes the motivation of the work. Sections 1.3 provide 

a brief literature survey on equalisation in general and nonlinear equalisers in particular. At 

the end, section 1.4 presents the thesis layout. 

 

1.1. Theme of the thesis 

Digital communication systems are designed to transmit high speed data over 

communication channels. During this process the transmitted data is distorted, due to the 

effects of linear and nonlinear distortions. Linear distortion includes inter-symbol 

interference (ISI), co-channel interference (CCI) in the presence of additive noise [1, 2]. 

The non-ideal frequency response characteristic of the channel causes ISI, where as CCI 

occurs in cellular radio and dual-polarized microwave radio,for efficient utilization of the 

allocated channels bandwidth by reusing the frequencies in different cells.  

Burst noise [3] is a high intensity noise which occures for short duration of time with fixed 

burst length means a series of finite-duration Gaussian noise pulses. Nonlinear distortions 
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are caused due to the subsystem like amplifiers, modulator and demodulator along with 

nature of the medium. Compensating all these channel distortion calls for channel 

equalization techniques at the receiver side which aids reconstruct the transmitted symbols 

correctly. 

Adaptive channel equalizers have played an important role in digital communication 

systems. Generally equalizer works like an inversed filter which is placed at the front end 

of the receiver. Its transfer function is inverse to the transfer function of the associated 

channel [4], is able to reduce the error causes between the desired and estimated signal. 

This is achieved through a process of training. During this period the transmitter transmits 

a fixed data sequence and the receiver has a copy of the same.  

The main aim of the thesis is to develop and investigate novel artificial neural network 

equalizer [2], which can be trained with linear, nonlinear or evolutionary algorithms, so as 

to minimize the error caused in the desired signal.  

In this thesis we consider linear gradient based algorithms like least-mean-square (LMS), 

recursive-least-square (RLS) to train the weights of the adaptive equalizer [1] and by 

iterative process minimize the mean square error. Generally these linear equalizers show 

poor performance than nonlinear equalizers. To overcome this problem artificial neural 

network equalizers are used. Artificial neural network (ANN) is a powerful tool in solving 

complex applications such as function approximation, pattern classification, nonlinear 

system identification and adaptive channel equalization [1, 5]. An ANN based multi layer 

perceptron (MLP) equalizer [6, 7] is a feed-forward network, consists of one or more layer 

of neural nodes with in input and output layers and is trained using popular error based 

back propagation (BP) algorithm. But it has a drawback of slow convergence. Another 

standard neural network structure that has been seen to provide optimal equalizer based on 

maximum a-posterior probability (MAP) criterion is based on radial basis function (RBF) 

network[8, 9]. The RBF network is a three layer standard simple structure. It provides 

optimal bit error rate performance similar to optimized Bayesian equalizer [10]. But one 

drawback in the RBF network is that if equalizer order increases, the number of centre of 

the network also increases and it makes the RBF network more complex. 

Different methods have been proposed [11] to train ANN based equalizers. A new learning 

algorithm named Wilcoxon learning algorithm has been proposed recently. Wilcoxon 

learning is a rank based statistics approach used in linear and nonlinear learning regression 
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problems and is usually robust against outliers. In this method, weights and parameters of 

the network are updated using simple rules based on gradient descent principle. This 

Wilcoxon learning algorithm can be used on different neural networks. These networks 

include Wilcoxon Neural Network (WNN), Wilcoxon Multilayer Perceptron Neural 

Network (WMLPNN), Wilcoxon Fuzzy Neural Network (WFNN), and Kernel-based 

Wilcoxon Regressor (KWR). The Wilcoxon approach provides a promising methodology 

for many machine learning problems. This has motivated us to use this technique for 

Channel Equalization. This has been not used before for channel equalization. 

To overcome the problem of computational complexity a single neural network based 

nonlinear artificial neural network (ANN) equalizer named as Chebyshev neural network 

(ChNN) [12], functional link ANN (FLANN) [13, 14] is used. These neural networks are 

single layer network in which the original input pattern is expanded to a higher 

dimensional space using nonlinear functions and they have capacity to form an arbitrarily 

complex decision region by generating nonlinear decision boundaries. This enhanced space 

is then used for the channel equalization process. The advantage of ChNN and FLANN is 

that they provide superior performance in terms of convergence characteristic, 

computational complexity and bit error rate over a wide range of channel conditions. But 

ChNN have advantages over FLANN, that Chebyshev polynomials are computationally 

more efficient than FLANN trigonometric polynomials.  

Evolutionary algorithms [15] have also been used to minimize the distortion of the 

communication system. Genetic Algorithm and Particle Swarm Optimization [16, 17] 

based approach are popular method to achieve adaptive channel equalization. Recently 

optimization techniques have been used to train the adaptive equalizer, named as Bacteria 

Foraging Optimization (BFO) technique [18]. The equalizers provide improved 

performance than linear equalizer and MLP equalizer in terms of convergence 

characteristic and bit error rate, but it has a drawback that computational complexity is 

more as compared to linear and nonlinear equalizers.  
 

1.2. Motivation for work 

The digital communication techniques can be attributed to the invention of the automatic 

linear adaptive equaliser in the late 1960’s [19]. From this modest start, adaptive equalisers 
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have gone through many stages of development and refinement in the last 5 decade. Early 

equalisers were based on linear adaptive filter algorithms [20] with or without a decision 

feedback. Alternatively Maximum Likelihood Sequence Estimator (MLSE) [21] was 

implemented using the Viterbi [22] algorithm. Both forms of the equalisers provided two 

extremities in-terms of performance achieved and the computational cost involved. The 

linear adaptive equalisers are simple in structure and easy to train but they suffer from poor 

performance in severe conditions. On the other hand, the infinite memory MLSE provide 

good performance but at the cost of large computational complexity.  

In mobile radio channels always changes and multipath causes time dispersion of the 

digital information is known as inter-symbol-interference, it makes too difficult to detect 

the actual information at the receiver. Mitigate this problem using adaptive linear equalizer 

but it needs large training data sequences for the equalizer and also shows poor 

performance. 

Compensate the linear equalizers problems by using equalizers based on Maximum a-

posterior probability (MAP) principle these were also called Bayesian equalizers [9]. These 

Bayesian equalizers techniques used like Artificial Neural Networks (ANN) [7], radial 

basis function (RBF) [8], recurrent network [23], Kalman filters, Fuzzy systems [24, 25] 

etc for nonlinear signal processing. RBF equalizer provides optimal bit error rate 

performance similar to optimized Bayesian equalizer. But one drawback in the RBF 

network is that if equalizer order increased, the centre of the network is also increased and 

its make the network complex and increases the conversation period.  

To overcome this computational complexity problem, an efficient nonlinear artificial 

neural network equalizer structure for channel equalization is used named Chebyshev 

Neural Network (ChNN) [12], and Functional link ANN (FLANN) [13, 14] (descried as 

section 1.1) These novel single layer neural network provide superior performance in terms 

of computational complexity and bit error rate over a wide range of channel conditions. 

This motivated us to apply this ANN structures in the field of channel equalization to 

mitigate the ISI, CCI and burst noise interference in communication channels. 

Evolutionary algorithms have been used to minimize the distortion of the communication 

system. The evolutionary principles have led scientists in the field of “Foraging Theory” to 

hypothesize that it is appropriate to model the activity of foraging as an optimization 
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process like Bacterial Foraging Optimizations (BFO) [18], Ant-Colony Optimizations 

(ACO) [26] and Particle Swarm Optimization (PSO) [16, 17]. This optimization technique 

encourages us to use this algorithm in the channel equalization processes and compared its 

performance with ANN structure performance.  

More recently, a rank based statistics approach known as Wilcoxon learning method [11] 

has been proposed for signals processing application to mitigate the linear and nonlinear 

learning problems. This Wilcoxon learning algorithm can be used on different neural 

networks. This motivated us to introduce this learning strategy in the field of Channel 

Equalization.   

           

1.3.  Background Literature Survey 

Nyquist laid the foundation for digital communication over band limited analogue channels 

in 1928, with the enunciation of telegraph transmission theory. The research in channel 

equalisation started much later in 1960’s and was centred on the basic theory and structure 

of zero forcing equalisers. The LMS algorithm by Widrow and Hoff in 1960 [19] paved the 

way for the development of adaptive filters used for equalisation. But it was Lucky [5] who 

used this algorithm in 1965 to design adaptive channel equalisers. With the popularisation 

of adaptive linear filters in the field of equalisation their limitations were also soon 

revealed. It was seen that the linear equaliser, in-spite of best training, could not provide 

acceptable performance for highly dispersive channels. This led to the investigation of 

other equalisation techniques beginning with the Maximum Likelihood Sequence 

Estimator (MLSE) equaliser [21] and its Viterbi implementation [22] in 1970’s. In this 

field in 1970’s and 1980’s were the developments of fast convergence and/or 

computational efficient algorithms like the recursive least square (RLS) algorithm, Kalman 

filters.  1980’s saw the beginning of development in the field of ANN [1]. The multi layer 

perceptron (MLP) based symbol-by-symbol equalisers was developed in 1990[33]. This 

brought new forms of equalisers that were computationally more efficient than MLSE and 

could provide superior performance compared to the conventional equalisers with adaptive 

filters. But it has a drawback of slow convergence rate, depending upon the number of 

nodes and layers. Another new implementation were done in symbol-by-symbol equalizers 

using the maximum a-posterior probability (MAP) principle these were also called 
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Bayesian equalizers [24]. These Bayesian equalizers have been approximated using 

nonlinear signal processing techniques like radial basis function (RBF) [8], recurrent 

network [23], Kalman filters [10], Fuzzy systems [24-25] etc. 

During 1989 to 1995 some efficient nonlinear artificial neural network equalizer structure 

for channel equalization were proposed, those include Chebyshev Neural Network [12], 

Functional link ANN [13-14]. These neural networks are single layer network in which the 

original input pattern is expanded to a higher dimensional space using nonlinear functions 

thus providing an arbitrarily complex decision region by generating nonlinear decision 

boundaries. This enhanced space is then used for the channel equalization process. Both 

the networks provide good performance and comparatively low computational cost.  

Evolutionary algorithms are also used to provide improved equalizer performance. In 2002 

Kevin M. Passino described the Optimization Foraging Theory in article “Biomimicry of 

Bacterial Foraging” [18]. BFO technique consider the genes of those animals have 

successful foraging strategies since they are more likely to enjoy reproductive success and 

after many generations, poor foraging strategies are either eliminated or shaped into good 

one (redesigned). Such evolutionary principles have led scientists in the field of “Foraging 

Theory” to hypothesize that it is appropriate to model the activity of foraging as an 

optimization process. This optimization process used to develop adaptive controllers and 

cooperative control strategies for autonomous vehicles, also in the field of digital 

communication system like channel equalization and identification. 

More recently in 2008, a rank based statistics approach known as Wilcoxon learning 

method [11] has been proposed for signals processing application to mitigate the linear and 

nonlinear learning problems. As per Jer-Guang Hesieh, Yih-Lon-Lin and Jyh-Horng Jeng 

the Wilcoxon learning algorithm has been applied to neural networks like Wilcoxon 

Multilayer Perceptron Neural Network (WMLPNN), Wilcoxon Generalized Radial Basis 

Function Network (WGRBF). The Wilcoxon approach provides promising methodology 

for many machine learning problems. We approach this method for digital communication 

system like channel equalization and identification. 

 

1.4.  Thesis Layout 

         Following the chapter on Introduction, The rest of the thesis is organised as follows 
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Chapter 2   provides the fundamental concepts of channel equalisation and discusses 

linear and nonlinear interferences like ISI, CCI and burst noise interference in a DCS. This 

chapter analyses the channel characteristics that bring out the need for an equaliser in a 

communication system. Subsequently an equaliser classification is presented which puts in 

context the work undertaken in this thesis. This chapter also describes the need of adaptive 

filter in channel equalization processes and also explains the gradient based adaptive 

algorithms used in channel equalizer for parameter updating.  

Chapter  3  provides the introduction of soft computing techniques. This chapter describes 

neural network and its advantage in communication. This chapter also describes the 

artificial neural network equalizer like MLP, RBF, FLANN, ChNN, WMLPN and 

WGRBFN.  

Chapter 4 This chapter represents evolutionary algorithm “bacterial foraging 

optimization” technique with some simulation results.  

Chapter  5 This chapter represents all the simulation results and discussion. These 

equalizers have been simulated for different channel distortion conditions which include 

ISI, CCI and Burst Noise interference. The ANN equalizers like MLP, RBF, FLANN, 

ChNN, WMLP, and WGRBF have been simulated for performance evaluation. The 

performances of these equalizers have been compared with linear equalizers trained with 

LMS and RLS algorithm. BFO based training for linear equalizer has been simulated. BER 

has been used as the performance criteria for evaluating equalizers 

Finally Chapter  6 summarises the work undertaken in this thesis and points to possible 

directions for future research. 
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________________________________________________________________________ 

                                                                    Chapter 2 

    Channel Equalization Techniques an 

Overview 
________________________________________________________________________ 

This chapter represent the development of artificial neural network based adaptive channel 

equalisers for a variety of channel impairments and brings out the need of an adaptive 

equaliser in a digital communication system (to mitigate the linear, nonlinear destruction 

like as Inter-symbol Interference, Co-channel Interference, Burst noise interference) and 

describes the classification of adaptive equalisers.   

This chapter is organised as follows. Following this introduction, section 2.1 discusses the 

digital communication system in general. Section 2.2 discusses the propagation channel 

model in a digital communication system. Section 2.3 discusses the general concept of 

interferences ISI, CCI, ACI channel and burst noise interference. Section 2.4 discusses 

gradient based adaptive algorithms. Section 2.5 discusses the different types of channel 

models need for equalization. Section 2.6 discusses need of channel equalizer in digital 

communication system; subsequently describe the classification of adaptive equalisers. 

Section 2.7 discusses the optimal Bayesian symbol by symbol equaliser for ISI channels. 

Finally, section 2.8 provides the concluding remarks. 

 

2.1 Digital Communication System 

The general block diagram of a digital communication system is presented in Figure 2.1. In 

digital communication system, some of the blocks are not shown in the Figure 2.1. The 

data source constitutes the signal generation system that generates the information to be 

transmitted. The work of the encoder in the transmitter encode is to 

The information bits before transmission so as to provide redundancy in the system. This 

in turn helps in error correction at the receiver end. Some of the typical coding schemes 

used are convolutional codes, block codes and grey codes. The encoder does not form an 

essential part of the communication system but is being increasingly used. The digital data 

transmission requires very large bandwidth. The efficient use of the available bandwidth is 

achieved through the transmitter filter, also called the modulating filter. The modulator on 
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the other hand places the signal over a high frequency carrier for efficient transmission. 

Some of the typical modulation schemes used in digital communication systems are 

amplitude shift keying (ASK), frequency shift keying (FSK), pulse amplitude modulation 

(PAM) and phase shift keying (PSK) modulation. 
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Figure.2.1 Block diagram of a digital communication system 

The channel is the medium through which information propagates from the transmitter to 

the receiver. At the receiver the signal is first demodulated to recover the baseband 

transmitted signal. This demodulated signal is processed by the receiver filter, also called 

receiver demodulating filter, which should be ideally matched to the transmitter filter and 

channel. The equaliser in the receiver removes the distortion introduced due to the channel 

impairments. The decision device provides the estimate of the encoded transmitted signal. 

The decoder reverses the work of the encoder and removes the encoding effect revealing 

the transmitted information symbols.  

 

2.2 Propagation Channel 

This section discusses the channel impairments that mitigate the performance of a digital 

communication system (DCS). The DCS considered here is shown in Figure 2.1. The 

transmission of digital pulses over an analogue channel would require infinite bandwidth. 
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An ideal physical propagation channel should behave like an ideal low pass filter 

represented by its frequency response, ideal low pass filter represented by its frequency 

response,  

                           fjexpff
cc

                                                                            (2.1)  

Where Hc(f) represents the Fourier transform (FT) of the channel and Ѳ is the phase 

response of the channel.  

The amplitude response of the channel |Hc(f)| can be defined as,                                           
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Where k1 is a constant and ωc is the upper cutoff frequency. The channel group delay 

characteristic is given by  
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Where k2 is an arbitrary constant. The conditions described in (2.2) and (2.3) constitute 

fixed amplitude and linear phase characteristics of a channel. This channel can provide 

distortion free transmission of analogue signal band limited to at least ωc. Transmission of 

the infinite bandwidth digital signal over a band limited channel of ωc will obviously cause 

distortion. This demands for the infinite bandwidth digital signal is band limited to at least 

ωc, to guarantee distortion free transmission. This work is done with the aid of transmitter 

and receiver filters shown in Figure.2.2. The combined frequency response of the physical 

channel, transmitter filter and the receiver filter can be represented as,  

                     )f(H)f(H)f(H)f(H
RcT

                                                                        (2.4) 

Where HT (f), Hc(f) ,HR(f) represents the FT of the transmitter, channel and receiver 

respectively. When the receiver filter is matched to the combined response of the 

propagation channel and the transmitter filter, the system provides optimum signal to noise 

ratio (SNR) at the sampling instant. As channel impulse response is not known beforehand, 

the receiver filter impulse response hR(t) is generally matched to the transmitter filter 

impulse response hT(t). This condition can be represented as 

                     )f()f( *

TR
                                                                                   (2.5) 

                     )t(h)t(h *

TR
                                                                                 (2.6) 

Where, )f(H*

T
and )t(h*

T
are complex conjugates of )f(H

T and )t(h
T

respectively. It is 



                                                                                Chapter 2 

Channel Equalization Technique Page 26 
 

desired to select )f(H so as to minimise the distortion at the output of the receiver filter at 

sampling instants. For the ideal channel presented in (2.1), the design of transmitter and 

receiver filters is the raised cosine filter and is given by, 
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           )f(H)f(H)f(H
RTTR

                                                                                 (2.8) 

Where, T is the source symbol period and 10,   , is the excess bandwidth and HTR 

is the FT of the combined response of transmitter and receiver filter. The plot of this 

combined filter response is presented in Figure 2.2. Figure 2.2(a) and Figure 2.2(b) 

represents the impulse response and frequency response of the combined filter 

respectively.  

      
 

Figure 2.2. Raised cosine pulse and its spectrum 

From the Figures 2.2(a) and 2.2(b), it can be observed that any value of   can provide 

distortion free transmission if the receiver output is sampled at the correct time. A 

sampling timing error causes ISI, which reduces with an increase in  . The special case of 

 =0 provides a pulse satisfying the condition 

(2.7) 
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Under this condition the channel can provide highest signalling rate
3
, 

c
21T  . At the 

other extreme, 1  provides a signalling rate equal to reciprocal of the 

bandwidth
c

1T  . In this process, selection of    provides a compromise between 

quality and signaling speed.  

It has been assumed that the physical channel is an ideal low pass filter (2.1). However, in 

reality all physical channels deviate from this behaviour. This introduces ISI even though 

the receiver is sampled at the correct time. The presence of this ISI requires an equaliser to 

provide proper detection. 

In general all types of DCS’s are affected by ISI. Communication systems are also affected 

by other forms of distortion. Multiple access techniques give rise to CCI and adjacent 

channel interference (ACI) in addition to ISI. The presence of amplifiers in the transmitter 

and the receiver front end causes nonlinear distortion. Fibre optic communication systems 

are also affected by nonlinear distortion [3]. On the other hand the mobile radio channels 

are affected by multi-path fading due to relative motion between the transmitter and 

receiver [4]. 

In the following subsections these channel impairments are discussed and the channel 

models are presented. These models are used in the later chapters for evaluating 

equalisation algorithms that have been presented in this thesis. The discussions in these 

subsections are limited only to the channel effects that have been analysed in this thesis.   

                                                                                                                                                                      

2.3.     Interference  

Today’s communication systems transmit high speed data over the communication 

channels. During this process the transmitted data is corrupted due to the effect of linear 

and nonlinear distortions.  

Linear distortion includes inter-symbol interference (ISI), co-channel interference (CCI), 

and adjacent channel interference (ACI) in the presence of additive white Gaussian noise 

(AWGN). 
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The nonlinear distortion occurs in the system by impulse noise, modulation, demodulation, 

amplification process, cross-talk in the communication   pipelines and depended on the 

nature of the channel. The following sections briefly describe the linear and nonlinear 

interferences. 

 

2.3.1  Inter Symbol Interference (ISI)  

Inter-symbol interference (ISI) arises when the data transmitted through the channel is 

dispersive, in which each received pulse is affected somewhat by adjacent pulses and due 

to which interference occurs in the transmitted signals. 

In Figure. 2.3. Shown the block diagram of baseband binary data transmission system, 

cascade of the transmitter filter hT(t), the channel hC(t)  and the receiver hR(t)  matched 

filter and the T spaced sampler.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Figure. 2.3 Baseband binary data transmission system 

 Here, the incoming binary pulse sequence consists of symbols 1 and 0, each of duration T. 

The pulse amplitude modulation modifies this binary sequence into a new sequence of 

short pulses (approximating a unit impulse), whose amplitude xj is represented in the polar 
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The sequence of short pulses so produced is applied to a transmit filter of impulse response 

hT(t), producing the transmitted signal 

                              )jTt(hx)t(s
T

j
j

                                                              (2.11) 

In addition, the channel adds random noise to the signal at the receiver input. The channel 

observed output y(t) is given by the sum of the noise free channel output )t(ŷ , which in 

turn is formed by the convolution of the transmitted sequence s(t) with the channel taps  

hC, 1n0  and adaptive white Gaussian noise η(t).   

The received filter output y(t) is written as 

                              )t()jTt(hx)t(y
C

j
j

                                               (2.12)  

Where   is a scaling factor use to account of amplitude changes incurred in the course of 

signal transmission through the system, and )jTt(h
C

  represent the effect of 

transmission delay. To simplify the exposition, we have put this delay equal to zero in 

equation (2.12) without loss of generality.  

Generally the receive filter output y(t) is sampled at time t  = iT  ,where i is a integer values 

and -∞ ≤ t ≤ ∞.                                                                                           

                       )i(]T)ji[(hxx)i(y
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                   (2.13) 

In equation (2.13), the first term 
i

x represents the contribution of the i
th

 transmitted bit. 

The second term represents the residual effect of all other transmitted bits on the decoding 

of the i
th 

bit, this residual effect due to the occurrence of pulses before and after the 

sampling instant i
th

 is called inter-symbol interference (ISI). The last term  η(i)    represents 

the noise sample at time t .  

In the absence of both ISI and noise, we observe from equation (2.13) that  

                                 
i

x)i(y                                                                        (2.14) 

Which shows that, under these ideal conditions, the i
th

 transmitted bit is decoded correctly. 

The unavoidable presence of ISI and noise in the system, however, introduces errors in the 

decision device at the receiver output. Therefore, in the design of the transmit and receive 
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filters, the objective is to minimize the effects of noise and ISI and thereby deliver the 

digital data to their destination with the smallest error rate possible.  

The ISI is zero if and only if )jTt(h  =0, 0j  ; that is, if the channel impulse response has 

zero crossings at T-spaced intervals. In channel impulse response. When the impulse 

response has such uniformly spaced zero crossings, it is said to satisfy Nyquist’s first 

criterion. In frequency-domain terms, this condition is equivalent to  

           
T2

1
f)

T

n
f(H)f('H Constant

an

                            (2.15) 

H(f) is the channel frequency response and )f('H is the “folded” (aliased or overlapped) 

channel spectral response after symbol-rate sampling. The band   T21f   is commonly 

referred to as the Nyquist or minimum bandwidth. When H(f)=0 for T1f   

(the channel has no response beyond twice the Nyquist bandwidth), the folder response 

)f('H has the simple from 

                            T1f0
T

1fH)f(H)f('H                      (2.16) 

Figure 2.4 (a) and (d) shows the amplitude response of two linear-phase low-pass filters: 

one an ideal filter with Nyquist bandwidth and the other with odd (or vestigial) symmetry 

around T21 hertz. As illustrated in figure 2.4 (b) and (e), the folded frequency response of 

each filter satisfies Nyquist’s first criterion.  
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Figure. 2.4(a)-(f) Linear phase filters which satisfy Nyquist’s first criterion 

In practice, the effect of IS1 can be seen from a trace of the received signal on an 

oscilloscope with its time base synchronized to the symbol rate.  
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2.3.2.       Co-channel Interference and Adjacent Channel Interference  

Co-channel Interference (CCI) and Adjacent Channel Interference (ACI) occur in 

communication systems due to multiple access techniques using space, frequency or time. 

CCI occurs in cellular radio and dual-polarized microwave radio, for efficient utilization of 

the allocated channels frequencies by reusing the frequencies in different cells.  

Figure.2.5 shows a digital communication system model where s(t) is the transmitted 

symbol sequence, )(t  is additive white Gaussian noise, )t(y  is a received signal sequence 

sampled at the rate of the symbol interval Ts, )dt(ŷ   is an estimate of the transmitted 

sequence s(t) and d denotes the delay associated with estimation. The received signal is 

additionally corrupted by n co-channel interference sources. The receiver has a copy of the 

training signal transmitted by the transmitter. 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.5. Communication system model with Co-channel interference             

The received signal sequence is defined by the following equation.      

                         )t()t(s)t(s)t(y
CCI

                                                         (2.17) 

Where s(t) is the output of the desired channel, SccI(t) is the co-channel interference 

component. The desired signal s(t) and co-channel signal SccI(t)  are represent as  
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Where s(t) and  sj(t) are the desired and co-channel data symbols respectively, h(i) and hj(i) 

are the impulse responses of the desired channel and the j
th

 co-channel, having n and nhj 

taps respectively. Furthermore, the desired and co-channel data symbols and noise samples 

are assumed to be mutually uncorrelated. Without loss of generality the transmitted 

sequences can be assumed to be bipolar ( 1 ). The signal-to-noise ratio (SNR) and the 

signal-to-interference ratio (SIR) are defined as            

                            
2

e

2

sSNR



         

2

CCI

2

sSIR



                                                   (2.20)  

Where
2

CCI

2

s

2

e
and,,  , are the noise variance, the signal power and the co-channel signal 

power respectively. 

In digital communication system adjacent channel interference is causes due to inter carrier 

spacing between different cells in time division multiple access (TDMA)[13] and inter 

carrier spacing among carriers in the same cell in FDMA[12,14,15] systems. The 

frequency spectrum of the signals that carry the desired signal, the Co-channel Interference 

and Adjacent Channel Interference signals is presented in Figure 2.6.  

 

 

 

 

 

 

 

 

 

Figure.2.6 Spectrum of desired signal, CCI and ACI in DCS 
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the neighbouring carrier with respect to the signal of interest is received by the receiver 

filter and this signal is the main cause of ACI.  

 

2.3.3. Burst Noise Interference 

Burst noise is a high intensity noise which occurs for short duration of time with fixed 

burst length means a series of finite-duration Gaussian noise pulses. As shown in Figure. 

2.7 The block diagram of burst noise model. The receiver input is s(t) + nb(t) where s(t) is 

the binary signal component and nd(t) is the noise Component [17]. The noise is given by 

                                     )t(n)t()t(n
bd

                                                             (2.21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.7 Block diagram of Burst noise model 

Where )t(  is the background Gaussian-noise component and nb(t) is the burst-noise 

component. The combination of the background Gaussian noise and burst noise is referred 

to as bursty noise. 

The burst-noise component of the channel noise, let )t(ŝ  denote a sample function from a 

delta-correlated Gaussian stochastic process with zero mean and double-sided power 

spectral density (PSD) Nb/2 and let {ti} denote a set of Poisson points with average rate v. 

The burst noise component is expressed as 
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Where  Tt  is defined to be a unit-amplitude pulse of width T centred at t = 0. When 

two pulses overlap, the stochastic process is doubled in amplitude in the overlapping 

interval. In eq. (2.22), T is the time duration of each Gaussian-noise burst and ti is the time 

at which the burst begins. The double-sided PSD for burst noise is 

                             f),2/N(vd)f(s
bb

                         (2.23) 

and is easily derived via the autocorrelation function and the Wiener-Khinchine theorem. 

Since the PSD for burst noise is constant, the process is white. The background Gaussian-

noise component )t( , is assumed to be zero-mean and delta correlated with double-sided 

PSD. 

                             f2/N ,)f(s                                         (2.24) 

If )t(  and )t(ŝ  is uncorrelated then descriptions for Gaussian noise and burst noise, it is 

clear that burst noise is characterized by Gaussian noise which contains bursts of larger 

variance Gaussian noise. Only four parameters are required to completely describe bursty 

noise; the mean burst rate v, the burst duration T, the single-sided PSD for the Gaussian 

noise )t( , and the single-sided PSD for the burst noise Nb. Since )t(  and )t(ŝ are 

uncorrelated, the double-sided PSD for bursty noise is                   

                           2/N2/vdNN)f(s)f(s
lbb

                                      (2.25) 

The fraction of bursty noise is defined as 

                                    
)f(s)f(s

)f(s

b

b


                                                                       (2.26) 

This parameter is useful because it allows the limiting cases of bursty noise to be 

considered. For example, Sb(f) = 0 yields   = 0, which corresponds to a Gaussian-noise 

channel, and s(f) = 0 yields   = 1, which corresponds to a burst-noise channel. It is an 

easy matter to determine Nl and  from v, d, Ng and Nb. N and N. Together, v, d, Nl, and   

are the only parameters required to completely describe bursty noise and will be used for 

all subsequent developments. Since burst locations are given by a Poisson distribution, 

bursty noise is a stationary stochastic process. 
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2.4 The Adaptive Filter 

 
Adaptive filters used for wide range of applications like Direct Modelling (System 

Identification), Inverse Modelling, Channel Equalization, etc. Channel equalization was 

one of the first applications of adaptive filters and is described in the pioneering work of 

Lucky [19]. Today, it remains as one of the most popular uses of an adaptive filter.  

 

2.4.1 Gradient Based Adaptive Algorithm 

An adaptive algorithm is a procedure for adjusting the parameters of an adaptive 

filter to minimize a cost function chosen for the task at hand. In this section, we 

describe the general form of many adaptive FIR filtering algorithms and present a 

simple derivation of the LMS adaptive algorithm. In our discussion, we only 

consider an adaptive FIR filter structure in Figure.2.8. Such systems are currently 

more popular than adaptive IIR filters because 

(1) The input-output stability of the FIR filter structure is guaranteed for any set 

of fixed coefficients, and  

(2) The algorithms for adjusting the coefficients of FIR filters are simpler in 

general than those for adjusting the coefficients of IIR filters.  
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Figure. 2.8 Structure of an FIR filter 

Figure.2.8 shows the structure of a direct-form FIR filter, also known as a tapped- delay-

line or transversal filter, where z
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multiplicative gain within the system. In this case, the parameters in )t(  correspond to the 

impulse response values of the filter at time n. We can write the output signal y(t) as 

                               )t(StWitstty T
1n

0i
i






                                          (2.27) 

Where,  

T)]1nt(s)1t(s),t(s[)t(S   denotes the input signal vector and T denotes      

      vector transpose. 

is 1ni0)},t({
i

 are the n parameters of 

the system at time t. The general form of an adaptive FIR filtering algorithm is 

                  s(t)ψ(t)(e(t)Gμ(t)W(t)1)W(t                                                        (2.28) 

where G( ) is a particular vector-valued nonlinear function, μ(t) is a step size 

parameter, e(t) and s(t) are the error signal and input signal vector, respectively, and 

)(t  is a vector of states that store pertinent information about the characteristics of 

the input and error signals. In the simplest algorithms, )(t  is not used.  

The form of G(  ) in (2.28) depends on the cost function chosen for the given 

adaptive filtering task. The Mean-Squared Error (MSE) cost function can be define 

as 

                




 )())(()(
2

1
)( 2 tedteptetJ tMSE

                                                                   (2.29) 

                             )}({E
2

1 2 te                                                                               (2.30) 

Where, pt (e (t)) represents the probability density function of the error at time t and   

E{ } is  the expectation integral on the right-hand side of (2.30). 

In adaptive FIR filters the coefficient of W(t) are updated to minimize JMSE(t). The 

formulation of this problem for continuous-time signals and the resulting solution 

was first derived by Wiener [27]. Hence, this optimum coefficient vector WMSE(t) is 

often called the Wiener solution to the adaptive filtering problem. WMSE(t) can be 

found from the solution to the system of equations  

       
0

)(w

)(J

i

MSE 




t

t ,                            10  Li                                   (2.31) 

Taking derivatives of JMSE(t) in (3.3) we obtain 

T

1n10i
)]t(,)t(),t([)t(


  
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                                    )}i(s)(e{E  tt                                                             (2.33) 

To expand the last result by defining the matrix RSS(t) (autocorrelation matrix) and 

vector PdS(t) (cross correlation matrix). Thus, so long as the matrix RSS(t) is 

invertible, the optimum Wiener solution vector for this problem is 

        )(P)(R)(W
dS

1

SSMSE
ttt



                                                                   (2.34) 

 

Another method of steepest descent is an optimization procedure for minimizing the 

cost function J(t) with respect to a set of adjustable parameters W(t). This 

procedure adjusts each parameter of the system according to relationship 

                       
)(w

)(J
)()(w)1(w

i

ii
t

t
ttt



                                                        (2.35) 

As per this, the i
th

 parameter of the system is updated according to the derivative of 

the cost function with respect to the i
th

 parameter. These weights vector can be 

represented as 

               
)(W

)(J
)()(W)1(W

t

t
ttt



 

                                                      (2.36) 

Where, ∂J(t)/∂W(t) is a vector of derivatives ∂J(t)/∂wi(t). 

The iterative solution to this can be represented as 

              ))(W)(R)(P)(()(W)1(W
SSdS

tttttt                                       (2.37) 

It can be seen that the steepest descent procedure depends on the statistical 

quantities E{d(t)s(t-i)} and E{s(t-i)s(t-j)} contained in PdS(t) and RSS(t), 

respectively.  

 

2.4.2  Least Means Square  Algorithm 

The cost function J(t) chosen for the steepest descent algorithm of eq.(2.34) 

determines the coefficient solution obtained by using adaptive filter. If the MSE 

cost function in (2.33) is chosen, the resulting algorithm depends on the statistics of 

s(t) and d(t) because of the expectation operation that defines this cost function. 

One such cost function is the least-squares cost function given by 
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



t

0i

2))i(S)t(TW)i(d)(i()t(
LS

J 
                                    (2.38) 

The weight update equation for LMS can be represented as  

                        )(S)(e)(W)1(W tttt                                                                   (2.39)                                                          

Where µ is learning factor, equation (2.39) requires only multiplications and 

additions to implement. In fact, the number and type of operations needed for the 

LMS algorithm is nearly the same as that of the FIR filter structure with fixed 

coefficient values and hence LMS has become very popular. 

In effect, the iterative nature of the LMS coefficient updates is a form of time-

averaging that smoothes the errors in the instantaneous gradient calculations to 

obtain a more reasonable estimate of the true gradient. 

 

2.4.3 Recursive Least Squares  Algorithm 

The recursive least squares (RLS) algorithm is another algorithm for determining the 

coefficients of an adaptive filter. In contrast to the LMS algorithm, the RLS algorithm uses 

information from all past input samples (and not only from the current tap-input samples) 

to estimate the (inverse of the) autocorrelation matrix of the input vector. To decrease the 

influence of input samples from the far past, a weighting factor for the influence of each 

sample is used. This cost function can be represented as 

                           
2

ti,e
t

1i

itρtJ 



                                                             (2.40) 

Where, the error signal  te ,i
i

 is computed for all times ti1  using the current filter 

coefficients          istTwidti,e:tw  , where s[i] and w
T
 represents input signal 

and transpose of the channel coefficient vector respectively. 

Analogous to the derivation of the LMS algorithm we find the gradient of the cost function 

with respect to the current weights can be represented as nomenclature 

                   t wiTsisE2isidE2
t

1i

itρtJ
h

Δ 


                (2.41)          

Where, s
T
 represents the transpose of the input signal vector. If search for the minimum of 

the cost function by setting its gradient to zero 
h

 J[t] = 0.  

Finally, the weights update equation is 
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                                    1twtstdt1twtw T                                (2.42) 

The equations to solve in the RLS algorithm at each time step (2.42). The RLS algorithm is 

computationally more complex than the LMS algorithm. The RLS algorithm typically 

shows a faster convergence compared to the LMS algorithm. 

Example 2.1. In this example for channel equalization we used the LMS and RLS 

algorithm. For simulation used the structure of the equalizer is a single input linear 

adaptive neural network equalizer, parameters details given in the table below. The BER 

plot is plotted for different delay of 0, 1, 2, and 3 respectively. 
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Figure. 2.9 BER performance of LMS and RLS based equalizer for ch0 

From the BER performance it is seen that RLS perform better then LMS based equalizer.  

2.5  Channels Models 

When all the root of the model z-transform lie within the unit circle, the channel is termed 

minimum phase [21] the inverse of a minimum phase channel is convergent, illustrated by 

Equation (2.43) 
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Where as the inverse of non-minimum phase channels are not convergent, given as 
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                                                     (2.44) 

Since equalizers are designed to invert the channel distortion process they will in effect 

model the channel inverse. The minimum phase channel has a linear inverse model 

therefore a linear equalization solution exists. However, limiting the inverse model to m-

dimensions will approximate the solution and it has been shown that non-linear solutions 

can provide a superior inverse model in the same dimension. 

A linear inverse of a non-minimum phase channel does not exist without incorporating 

time delays. A time delay creates a convergent series for a non-minimum phase model, 

where longer delays are necessary to provide a reasonable equalizer. Equation (2.45) 

describes a non-minimum phase channel with a single delay inverse and a four sample 

delay inverse. The latter of these is the more suitable form for a linear filter. 
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               (2.45) 

The three-tap maximum phase channel 21 z26.0z93.026.0)z(H    and 

21 z3482.0z8704.03482.0)z(H    is also used throughout this thesis for simulation  

purposes. A channel delay’d’ is included to assist in the classification, so that the desired 

output becomes )dt(ŝ  . 

 

2.6 Need of Channel Equalizer  

Digital communication systems transmitted high speed and efficient data over the communication 

channels. During this process the transmitted data is distorted, due to the effect of linear and 
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nonlinear distortions. Linear distortion includes inter-symbol interference (ISI), co-channel 

interference (CCI) in the presence of additive white Gaussian noise (AWGN). Nonlinear 

distortion are caused due to the subsystem like amplifiers, modulator, demodulator, etc, 

Compensating all these channel distortion calls for channel equalization techniques at the 

receiver side, to reconstruct the transmitted symbols correctly. For which generally an 

adaptive equalization technique is used.  

 

2.6.1 Adaptive Equalisation 

It is very difficult for estimating both the channel order and the distribution of energy 

among the taps and even it is very difficult to predict the effect of the environment on these 

taps. so it necessary that the equalization process must be adaptive, means the equaliser 

need to be adapted very frequently with the changing environment. This includes two 

phases [16]. Firstly the equaliser needs to be trained with some known samples in the 

presence of some desired response (Supervised Learning). After training the weights and 

various parameters associated with the equaliser structure is frozen to function as a 

detector. These two processes are frequently implemented to keep the equaliser adaptive. 

We call “the Equaliser is frozen” if we keep the adaptable parameters of the equaliser 

constant. A typical digital communication system with adaptive equalizer is shown in 

Figure.2.9. 

 

 

 

 

 

                                                                 

   

 

 

 

 

 

 

Figure.2.10 Block diagram of a digital transmission system with equalizer. 

 

 

The transmitted symbols are given as s(t) for discrete time instant. They are then passed 

into the channel model which may be linear or nonlinear. A finite impulse response (FIR) 
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model is widely used to model a linear channel whose uncorrupted output at time instant t 

may be written as 

                           )t()it(sh)t(y
1n

0i
i

a

 




                                                                (2.46) 

Where, 
i

h are the channel tap values and t is the length of the FIR channel. The "NL" 

block represents the nonlinear distortion of the symbols in the channel and its output may 

be expressed as  

                        
1n321 a

h,.....h,h,h....)1rt(s),.....1t(s),t(s)t(b


              (2.47) 

Where, (.)  is some nonlinear function generated by the "NL" block. The channel output 

y(t) is corrupted with additive white Gaussian noise (AWGN) )t( . This corrupted signal 

is compared with the delay versions of input signal and finds the error )t(e . This error is 

used to update the adaptable parameters of the equaliser using some adaptive algorithm. 

These steps constitute the training process of the equalisation. After the completion of 

training, the equaliser output is compared with some threshold and decision is made 

regarding the symbol received. 

 

2.6.2     Need for nonlinear equalisers 

The main reason why nonlinear equalisers are preferred over their linear counterpart is that 

the linear equalizers do not perform well on channels which have deep spectral nulls in the 

pass-band. In an attempt to compensate for the distortion, the linear equaliser places too 

much gain in the vicinity of the spectral nulls, thereby enhancing the noise present in these 

frequencies.  

Linear equalizers view equalisation as inverse problem while non-linear equalisers view 

equalisation as a pattern classification problem where equalizer classifies the input signal 

vector into discrete classes based on transmitted data.  

Example 2.2. Consider the following example of the channel states for the two channels, 

                  1

1
z5.01)z(H   

                 21

2
z34.0z87.034.0)z(H    

For these two channels, channel )z(H
1

 is a minimum phase channel and hence 

classification is not a big problem in this channel. Problem starts when equalising the non-

minimum phase channels [44]. The channel state diagram for the channel )z(H
1

 is shown 
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in figure. 2.11. The channel state diagram for channel )z(H
2

 is shown in figure. 2.12. For 

these two channels, the channel state diagram is plotted for delay zero and at a SNR 20dB. 

 

Figure. 2.11. Channel State diagram for channel )z(H
1

 

 

         Figure. 2.12. Channel State diagram for channel )z(H
2

 

 Channel )z(H
2

 is a family of mixed phase channel. For this channel, a simple linear 

decision boundary cannot classify the symbols easily. It needs a nonlinear decision 

boundary or even a hyper-plane in multi-dimensional channel space. Such a decision 

boundary cannot be achieved using a linear filter. 
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2.6.3 Adaptive Equalizer classification  

This section provides adaptive equalizer classification and specifies the domain of the 

investigation undertaken in this thesis. The general equalizer classification is presented in 

Figure.2.12. In general the family of adaptive equalizers can be classified as supervised 

equalizers and unsupervised equalizers.  

                               

    

 

 

 

    

                                                               
                                                 

                                                   

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         

                                       

                                       

                                         

 

 

Figure. 2.13 Classification of Adaptive Equalizer 

 

 

2.7 Optimal symbol-by-symbol equaliser: Bayesian equaliser 

The optimal symbol-by-symbol equaliser is termed as Bayesian equaliser. To derive the 

equaliser decision function the discrete time model of the baseband communication system 

is presented in Figure 2.13. 
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Figure 2.14. Discrete time model of a digital communication system 

 

The equaliser uses an input vector mR)t(y  , the m dimensional space where the term m 

is the feed forward order of the equaliser. The equaliser provides a decision function  )t(y  

based on the input vector which is passed through a decision device to provide the estimate 

of transmitted signal )dt(ŝ   , where d is a delay associated with equaliser decision. The 

communication system is assumed to be a two level PAM system, where the transmitted 

sequence )t(s  is drawn from an independent identically distributed (i.i.d) sequence 

comprising of {±1} symbols. Where, 
i

a are the channel tap values and i is the length of the 

FIR channel. The noise source is Additive White Gaussian Noise (AWGN) characterised 

by zero mean and a variance of 2

N
  .  

The received signal y(t) at sampling instant t can be represented as, 

                    )t()it(sa)t()t(S)t(y
1n

0i
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

                                             (2.48) 

The equaliser performance is described by the probability of misclassification w.r.t. Signal 

to Noise Ratio (SNR). The SNR is defined as, 
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where,   is the Expectation operator, 2

s
  represents the transmitted signal power and 






1n

0i

2

i

a

a  is the channel power. With the assumption that the signal is drawn from an i.i.d. 

sequence of {±1}, the signal power becomes 12

s
 . Hence, the SNR can be represented 

as, 

                       SNR = 10 log10 (1 / 2

N
  ) dB                                                                (2.50) 

The equaliser uses the received signal vector mT R)]1mt(y...,),...1t(y),t(y[)t(y   to 

estimate the delayed transmitted symbol )(ˆ dts   . The decision device at the equaliser output 

uses a sgn(x) function Hence, the estimate of the transmitted signal given by the equaliser 

is 
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The performance of an equaliser can be evaluated as follows. For bit error rate (BER) 

calculation if the equaliser is tested with statistically independent random data sequence of 

10
7
 channel samples then an error value ei is generated in the following manner. 
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Then the BER is evaluated in decimal logarithm as 
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                                                            (2.53) 

The process of equalisation discussed here can be viewed as a classification process in 

which the equaliser partitions the input space mR)t(y  , into two regions corresponding 

to each of the transmitted sequence +1 /-1 [25, 26,27]. The loci of points which separate 

these two regions are termed as the decision boundary. If the received signal vector is 

perturbed sufficiently to cross the decision boundary due to the presence of AWGN, 

misclassifications result. To minimise the probability of misclassifications for a given 

received signal vector )t(y , the transmitted symbol should be estimated based on 

 1)t(s   having a maximum a-posteriori probability (MAP) [28,29]. The partition 

which provides the minimum probability of misclassification is termed as optimal 

(Bayesian) decision boundary. 
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2.7.1 Channel States 

The concept of channel states is introduced here. The equaliser input vector has been 

defined as mT R)]1mt(y...,),...1t(y),t(y[)t(y  , the m dimensional observation 

space. The vector )t(S  is the noise free received signal vectors 

mT R)]1mt(y...,),...1t(y),t(y[)t(y  . Each of these possible noise-free received signal 

vectors constitutes a channel state. The channel states are determined by the transmitted 

symbol vector  

      1nmT

a

aR)]2nmt(s...,),...1t(s),t(s[)t(s


                                        (2.54) 

Here )t(y  can be represented as )]t(s[H)t(y  , 
i

a are the channel tap values and i is the 

length of the FIR channel. where matrix )1nm(m aRH


  is the channel matrix which can 

be expressed as 
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                           (2.55) 

Since the channel input sequence )t(s  has 1nm

s

a2N


 combinations, the noise-free 

channel output vector )t(S  has Ns states, which are constructed with Ns sequences of )t(s ,  

This can be denoted as, 

         
s

T

ajjj
Nj1,)]2nmt(s...,),...1t(s),t(s[)t(s                             (2.56) 

The corresponding channel states of y(t), denoted as cj, are given by 

                     
sjj

Nj1)],k(s[)t(Sc                                           (2.57) 

The channels state matrix   ,Nj1,cC
sjd

  can be partitioned into two subsets 

according to the values of the transmitted symbol )dt(s   , i.e. 

                    )(

d
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CCC                                                                      (2.58) 

Where, 
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Each set )(

d

)(

d
C,C  contains Ns/2 channel states. Here the channel states ,Cc )(

dj

 are 

termed the positive channel states and )(

dj
Cc   are termed the negative channel states. 

Example: 

An example is considered to show the channel states. The channel considered here is 

represented by its z-transform, 

                               1

1 5.01)()(  zzHzH  

This channel is a minimum phase channel. The equaliser length considered here is m=2. 

This equaliser has Ns =8 channel states. The channel states for this equaliser are presented 

in Table 2.1 and are located at S(t) with its components taken from scalars 

T)]1t(S),t(S[  . 

No. cj )t(s  )1t(s   )2t(s   
)t(S  

    )t(S                  )1t(S   

1 c1 1 1 1       1.5             1.5 

2 c2 1 1 -1       1.5             0.5 

3 c3 1 -1 1       0.5            -0.5 

4 c4 1 -1 -1       0.5            -1.5 

5 c5 -1 1 1      -0.5             1.5 

6 c6 -1 1 -1      -0.5             0.5 

7 c7 -1 -1 1      -1.5            -0.5 

8 c8 -1 -1 -1      -1.5            -1.5 

Table 2.1: Channel states calculation for channel 1z5.01)z(H  with m=2. 

 

2.7.1 Symbol-by-symbol Adaptive Nonlinear Equalisers 

 

Some of the popular forms of nonlinear equalisers are introduced in this section. Nonlinear 

equalisers treat equalisation as a nonlinear pattern classification problem and provide a 

decision function that partitions the input space R
m

 to the number of transmitted symbols. 

This principle is called as Bayesian equalizers [24] principles. These Bayesian equalizers 

techniques used like Artificial Neural Networks (ANN) [7], radial basis function (RBF) 

[8], recurrent network [23], Kalman filters, Fuzzy systems [24, 25] etc for nonlinear signal 

processing. 
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2.8 Conclusion 

In this chapter the adaptive equalizer trained using gradient based algorithms LMS and 

RLS has been derived and its BER performance is presented. The channel state diagram of 

minimum and mixed phase channels is simulated and represented. Other forms of 

nonlinear equalisers using the ANN and fuzzy techniques have also been introduced. The 

ANN equalisers and evolutionary approach based equalizers introduced here are used in 

subsequent chapters for demonstrating the equalization performance of the equalizer in 

linear and nonlinear interference condition of channels.  
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 ________________________________________________________________________ 

Chapter 3 

       Soft Computing Technique for Channel 

Equalization 
_________________________________________________________________________       

The beginning of 1980 saw the beginning of development in the field of artificial neural 

network. Artificial neural networks (ANN) are powerful tools to solve a variety of 

problems in many complex applications like pattern recognition, function approximation, 

time series prediction, optimization, associative memory, adaptive channel equalization 

and control. This chapter discusses the different types of ANN, the need of this in field of 

communication system. 

This chapter is organised as follows. Following this introduction, section 3.1 discusses the 

basic soft computing techniques. Section 3.2 discusses use of neural network in a wireless 

communication system. Sub-section 3.2.1 discusses the advantage of neural network in 

communication field. Section 3.3 discusses the basic concept artificial neural network and 

its advantages indifferent application field. Section 3.4 discusses the multilayer perceptron 

network. Section 3.5 discusses the signal layer functional like artificial neural network. 

Section 3.6 discusses the signal layer Chebyshev artificial neural network with advantages. 

Section 3.7 discusses the generalized radial basis function neural network. Section 3.8 

describes Wilcoxon learning techniques. Sub-section 3.8.1 discusses the Wilcoxon 

Multilayer Perceptron Neural Network. Sub-section 3.9.2 discusses the Wilcoxon 

Generalized Radial Basic Function Network techniques. Finally, section 3.9 provides the 

concluding remarks. 

 

3.1  Soft Computing 

 
Soft computing is a consortium of methodologies that works synergistically and provides 

flexible information processing capabilities for handling real-life ambiguous situations. It 

has been observed that simplicity and complexity of systems are relative and many 

conventional mathematical models are challenging and very productive.
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Generally speaking, soft computing techniques resemble biological processes more closely 

than traditional techniques; these are based on formal logical systems, such as sentential 

logic and predicate logic. Soft computing techniques are intended to complement each 

other. Components of soft computing includes neural network (NN), fuzzy system (FS), 

evolutionary computation (EC) including evolutionary algorithm, Hamony search, swarm 

intelligence, probability including Bayesian network, Chaos theory, rough sets and signal 

processing tools such as wavelets.  

Each soft computing methodology consists of powerful properties and different 

advantages, like Neural networks are nonparametric, robust to noise and have a good 

ability to model highly non-linear relationship, Fuzzy sets provide a natural framework for 

the process in dealing with uncertainty or imprecise data and Wavelet transform provides a 

tool to analyze media in the fashion of multi-resolution.  

Soft computing techniques also have some restrictions that do not allow their individual 

application in some cases, because when the input data are large the training times of 

neural networks are excessive and tedious. The theoretical basis of evolutionary algorithm 

is weak, especially on algorithm convergence. Rough sets are sensitive to noise and have 

the NP problems on the choice of optimal attribute reduction and optimal rules.  

 

3.2  Neural Network 

The concept neural networks started in the late-1800s as an effort to describe how the 

human mind performed. These ideas started being applied to computational models with 

Turing‟s B-type machines and the perceptron.  

Today in general form a neural network is a machine that is designed by using electronic 

components or is simulated in software on a digital computer. To achieve good 

performance, neural networks employ a massive interconnection of simple computing cells 

referred to as „Neurons‟ or „processing units‟, Hence a neural network viewed as an 

adaptive machine can be defined as . 

A neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity for storing experimental knowledge and 

making it available for use. It resembles the brain in two respects:  

1. Knowledge is acquired by the network from its environment through a learning process.  
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2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.  

The procedure used to perform the learning process is called a learning algorithm, the 

function of which is to modify the synaptic weights of the network in an orderly fashion to 

attain a desired design objective. Such an approach is the closest to linear adaptive filter 

theory, which is already well established and successfully applied in many diverse fields 

(Widrow and Stearns, 1985; Haykin, 1996). McCulloch and Pitts have developed the 

neural networks for different computing machines.  

 

3.2.1  Advantage of Neural Network 

Neural network information learning processing capabilities make it possible to solve 

complex problems. The use of neural networks offers the following useful properties and 

capabilities includes nonlinearity, adaptively, massive parallelism, uniformity of analysis 

and design, learning ability, generalization ability, input-output mapping, fault tolerance, 

evidential response, contextual Information, VLSI implementability, distributed 

representation and computation and neurobiological analogy. 

The capability of neural networks marked the modelling of nonlinear adaptive systems 

which could provide high degree of precision, fault tolerance and adaptability compared to 

other forms of mathematical modelling [43]. So the artificial neural networks are 

predominantly used for equalization.  

3.3 Artificial Neural network 

The late 1980‟s saw the beginning of development in the field of artificial neural network 

(ANN) [1]. Artificial Neural Network (ANN) have become a powerful tool for many 

complex applications including functional approximation, nonlinear system identification, 

motor control, pattern recognition, adaptive channel equalization and optimization. ANN is 

capable of performing nonlinear mapping between the input and output space due to its 

large parallel interconnection between different layers and the nonlinear processing 

characteristics.  

An artificial neuron basically consists of a computing element that performs the weighted 

sum of the input signal and the connecting weight. The weighted sum is added with the 
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bias called threshold and the resultant signal is passed through a nonlinear activation 

function. Common types of activation functions are sigmoid and hyperbolic tangent. Each 

neuron is associated with three parameters whose learning can be adjusted. These are the 

connecting weights, the bias and the slope of the nonlinear function. For the structural 

point of view a NN may be single layer or it may be multilayer. As mention in chapter 1 

(Literature Survey), we know that how the ANN structure are modified continuously to 

overcome the drawbacks of the slow convergence rate and complexity of the structure. 

In this section represent the different ANN structure we have used for simulation work 

with details mathematical description, advantage and disadvantages, such as MLP, RBF 

[13], FLANN [36, 37], ChNN [38, 39] and more recently a rank based statistics approach 

known as Wilcoxon learning method [40] have been proposed for signals processing 

application. 

 

3.4 Multilayer Perceptron Network 

In 1958, Rosenblatt demonstrated some practical applications using the perceptron. The 

perceptron is a single level connection of McCulloch-Pitts neurons is called as Single-layer 

feed forward networks. The network is capable of linearly separating the input vectors into 

pattern of classes by a hyper plane. Similarly many perceptrons can be connected in layers 

to provide a MLP network, the input signal propagates through the network in a forward 

direction, on a layer-by-layer basis. This network has been applied successfully to solve 

diverse problems. 

Generally MLP is trained using popular error back-propagation algorithm. The scheme of 

MLP using four layers is shown in Figure.3.2. 
i

s  represent the inputs s1, s2, ….. , sn to the 

network, and 
k

y  represents the output of the final layer of the neural network. The 

connecting weights between the input to the first hidden layer, first to second hidden layer 

and the second hidden layer to the output layers are represented by 

kjjii
w,w,w respectively.  The final output layer of the MLP may be expressed as 
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Figure. 3.1. MLP Neural Network using Back-Propagation Algorithm 

Where, P1, P2 and P3 are the number of neurons in the layer. bi, jb and bk is the threshold to 

the neurons of the layer, n  is the number of inputs and    is the nonlinear activation 

function respectively. Most popular from of activation functions for signal processing 

application are sigmoid and the hyperbolic tangent since there are differentiable.  

The time index t has been dropped to make the equations simpler. The final output )(ty  
k

 at 

the output of neuron k, is compared with the desired output )t( d  and the resulting error 

signal  (t)e   is obtained as 

                                             (t)y(t)(t)
k

 de                                                                                          (3.2) 

The instantaneous value of the total error energy is obtained by summing all error signals 

over all neurons in the output layer, that is 
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                                                                                  (3.3) 

This error signal is used to update the weights and thresholds of the hidden layers as well 

as the output layer. The updated weights are, 
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                      )()()( t
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                       )()()( t
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 where, )(Δand)(Δ),( tw,twtw
ijikj

  are the changes in weights of the second hidden 

layer-to-output layer, first hidden layer-to-second sub-hidden layer and input layer-to-first 

hidden layer respectively. That is, 
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Where, is the convergence coefficient ( 0 1  ). Similarly the thresholds of each layer 

can be updated in a similar manner, i.e. 

                     )(Δ)()( tbtb1tb
kkk

                                                                  (3.8) 

                      )(Δ)()( tbtb1tb
jjj

                                                                   (3.9) 

                       )(Δ)()( tbtb1tb
iii

                                                                    (3.10) 

Where, )(and)(),( tbtbtb
ijk

  are the changes in thresholds of the output, hidden 

and input layer respectively.  

 

Example. 3.1. Here we consider the BP algorithm based MLP equalizer for channel 

equalization application. The BER plot is plotted for different delay of 0, 1, 2 and 3 

respectively for below given network 
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Figure. 3.2 BER Performance of MLP equalizer for Ch1 

 

3.5 Functional Link Artificial Neural Network 

FLANN or Pao-network was originally proposed by Pao [13], which is a novel single layer 

ANN network in which the original input pattern is expanded to a higher dimensional 

space using nonlinear functions, which provides arbitrarily complex decision regions by 

generating nonlinear decision boundaries. The main purpose of enhanced the functional 

expansion block to used for the channel equalization process. 

Each element undergoes nonlinear expansion to form M elements such that the resultant 

matrix has the dimension of N×M. The functional expansion of the element kx by power 

series expansion is carried out using the equation given in  
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Where, 1,2, ,l M  for trigonometric expansion, 
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Where, 1,2, , 2l M  . In matrix notation the expanded elements of the input vector E, is 

denoted by S of size N × (M+1).  
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The bias input is unity. So, an extra unity value is padded with the S matrix and the 

dimension of the S matrix becomes N×Q, where  2Q M  . 

 

     

 

 

  

 

 

 

 

 

 

 

 

Let the weight vector is represented as W having Q elements. The output y is given as 
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In matrix notation the output can be, 

                       T Y S W                                                                                             (3.14) 

The time index t has been dropped to make the equations simpler. At t
th

 iteration the error 

signal )(te  can be computed as  

                    y(t)d(t)e(t)                                                                                        (3.15) 

The weight vector can be updated by least mean square (LMS) algorithm, as 

                    )(S)(e)(W)1(W tttt                                                                        (3.16) 

Where  denotes the step-size  0 1  , which controls the convergence speed of the 

LMS algorithm. 
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Figure.3.3 Structure of the FLANN model 
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Example 3.2. Here we consider the FLANN equalizer for channel equalization application. 

For simulation used a structure with details parameter given below, The BER plot is 

plotted for different delay of 1 respectively. 
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Figure. 3.4 BER Performance of FLANN equalizer compared with LMS, RLS based 

equalizer for Ch2. 

It is seen from above simulation results that FLANN equalizer perform better than LMS 

and RLS based equalizer. 

 

3.6 Chebyshev Artificial Neural Network 

Chebyshev artificial neural network (ChNN) [12], it is similar to FLANN. The difference 

being that in a FLANN the input signal is expanded to higher dimension using functional 

expansion. In Chebyshev the input is expanded using Chebyshev polynomial. The 

Chebyshev polynomials generated using the recursive formula given as  
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The first few Chebyshev polynomials are given as 
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The weight vector represented as
i

w , here i = 0, 1, 2 . . . n. The weighted sum of the 

components of the enhanced input is passed through a hyperbolic tangent nonlinear 

function to produce an output )(y t . Similarly as FLANN network given in section 3.6 the 

ChNN weights are updated by LMS algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

The advantage of ChNN over FLANN is that the Chebyshev polynomials are 

computationally more efficient than using trigonometric polynomials to expand the input 

space.  

 

Example 3.4.  

Here we consider the ChNN equalizer for channel equalization application. For simulation 

used the structure is given below. The BER plot is plotted for different delay of 0 and1 

respectively.  
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Figure.3.5 Structure of the Chebyshev neural network model 
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Figure. 3.6 BER Performance of ChNN equalizer compared with FLANN and LMS, RLS 

based equalizer for ch0 for delay= 0 and 1.  

In terms of results show superior Performance in both linear and nonlinear channel 

equalizers the BER, MSE floor. 

 

3.7 Radial Basis Function Equalizer  

The RBF network was originally developed for interpolation in multidimensional space [6, 

7]. The schematic of this RBF network with m inputs and a scalar output is presented in 

Figure.3.8. This network can implement a mapping Frbf  : R
m

 -> R by the function 
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Where S R
m

 is the input vector                                       , )(  is the given function from 

R
+
 to R, 

,iw ni1    are weights and               are known as RBF centres. The centres of 

the RBF networks are updated using k-means clustering algorithm. This RBF structure can 
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be extended for multidimensional output as well. Gaussian kernel is the most popular form 

of kernel function for equalization application, it can be represented as                         
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Figure.3.7 Structure of the Radial basis function network equalizer 

Here, the parameter  controls the radius of influence of each basis functions and 

determines how rapidly the function approaches 0 with . In equalization applications the 

RBF inputs are presented through a TDL. Training of the RBF networks involves setting 

the parameters for the centres Ci, spread  and the linear weights RBF spread 

parameter,   is set to channel noise variance   this provides the optimum RBF 

network as an equaliser. The RBF networks are easy to train since the training of centres, 

spread parameter and the weights can be done sequentially and the network offers a 

nonlinear mapping, maintaining its linearity in parameter structure at the output layer.  

One of the most popular schemes employed for training the RBF in a supervised manner is 

to estimate the centres using a clustering algorithm like the k-means clustering and setting 
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 to an estimate of input noise variance calculated from the centre estimation error. The 

output layer weights can be trained using popular stochastic gradient LMS algorithm.  

The RBF equaliser can provide optimal performance with small training sequences but 

they suffer from computational complexity. The number of RBF centres required in the 

equaliser increases exponentially with equaliser order and the channel delay dispersion 

order. This increases all the computations exponentially.  

Example 3.5. Here we consider the RBF equalizer for channel equalization application. 

For simulation the network details is given below. The BER plot is plotted for different 

delay of 1 and 2 respectively.  
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Figure. 3.8 BER Performance RBF equalizer compared ChNN, FLANN, LMS, RLS 

equalizer for ch1 for delay=1 and 2.  
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0 2 4 6 8 10 12 14
10

-4

10
-3

10
-2

10
-1

10
0

BER PLOT

SNR in dB---------->

B
E

R
 -

--
--

--
--

--
--

->

 

 

LMS

RLS

ChNN

FLANN

RBF

Delay =1

ch1= 1  0.5

 

0 2 4 6 8 10 12 13 14
10

-4

10
-3

10
-2

10
-1

10
0

BER PLOT

SNR in dB---------->

B
E

R
 -

--
--

--
--

--
--

->

 

 

LMS

RLS

ChNN

FLANN

RBF

Delay = 2

ch1 = 1 0.5

                                     



                                                                                        Chapter 3 

 

Soft Computing Technique for Channel Equalization                                 Page 65                                   
                                                                          
 

3.8 Wilcoxon Learning  

Wilcoxon learning [11] is a rank based statistics approach used in linear and nonlinear 

learning problems. This form of training is robust against outliers. Here the weights and 

parameters of the network are updated using simple rules based on gradient descent 

principle. As per Jer-Guang Hesieh, Yih-Lon-Lin and Jyh-Horng Jeng the Wilcoxon 

provides a promising methodology for many machine learning problems [11]. This 

motivated us to introduce this learning strategy in the field of Channel Equalization along 

with ANN.  

Here, we investigate two learning machines, namely Wilcoxon Neural Network (WNN), 

Wilcoxon Generalized Radial Basis Function Neural Network (WGRBFNN). These 

provide alternative learning machines when faced with general nonlinear problems. 

In the Wilcoxon learning machines the Wilcoxon norm of a vector is used as the objective 

function.  To define the Wilcoxon norm of a vector we need a score function                                     

                          i.e. is a function which is not decreasing function is defined as  

                          du(u)
1

0

2                                                                                  (3.21) 

The score associated with the score function is defined by  

                                                                                                                                        (3.22) 

Where l is a positive integer and as a pseudo-norm function is defined as  

                                                                                          

                                                                                                                                        (3.23) 

 

Where, R(vi) denotes the rank of vi among  v1, …., vl , v1 ≤ …. ≤ vl , are the ordered values of  

v1, …., vl ,                                           and                                        . We call wv  define in 

equation (3.23) the Wilcoxon norm of the vector v .                                                         

 

3.8.1 Wilcoxon Neural Network 

As referring section 3.8, the learning regressor is quite robust against outliers. The 
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Wilcoxon learning method, is named as Wilcoxon Multilayer Perceptron Neural Network 

(WMLPNN) [11]. Consider the neural network as shown in figure.3.10.   

For equalization WMLPNN, has one input layer with n+1 nodes, one hidden layer with 

m+1 nodes, and one output layer with one nodes 

                                                                                                                                        (3.24)   
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Figure. 3.9 Structure of Wilcoxon MLP neural network 
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Where, 
j

h is the active function of the jth hidden node. Commonly used activation 

function is unipolar logistic function 
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respectively 

  

                                                                                                                                        (3.27)                                                 

Where, 
k0

  is the activation function of the k
th

 output nodes. Same as MLP equalizer 

here the output activation functions can be chosen as sigmoidal functions, while for 

regression problems, the output activation functions can be chosen as linear function with 

unit slope. The final output of the network is given by  

                                                                                                                                        (3.28) 

Where, bk is the bias. 

Define all the input parameters used in the input layer are 
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From equation (3.30)-(3.31), we have 
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In the following, we will use the subscript q to denote the qth example. For instance, 
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The Wilcoxon norm of residuals at the k
th

 output node is given by 
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From equation (3.32) and (3.33), we have  
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The NN used here is the same as that used in standard ANN, except the bias term at the 

outputs. The main reason is that the Wilcoxon norm not a usual norm, but a pseudonorm 

(semi-norm). In particular 
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Implies that v1= … = vl. This means that, without the bias terms, the resulting predictive 

function with small Wilcoxon norm of total residuals may deviate from the true function 

by constant offsets. 
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First, propose an updating rule for the output weights. It is given by 
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Where, 0  is the learning rate. From equation (3.37), we have  
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                                                                                                                                        (3.38)            

 

Where )('

k0
 denotes the total derivative of )(

ok
 with respect to its argument and 
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s  is 

the k
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 component of the qth vector sq. 
 
Hence, the updating rule becomes  

                                                                                                                                    (3.39)   

                                                                                                                                                                                                                                                                                           

Where, 
qj

y is the jth component of the qth vector yq. 

Next, propose an updating rule for the input weights. It is given by 
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Where, 

 

    

 

Hence, the updating rule becomes  

                                                                                                                                        (3.41) 

Where )('
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 denotes the total derivative of )(
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 with respect to its argument and 
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y  is the 

j
th

 component of the qth vector uq.                                                                                                                       

The bias term                    is given the median of the residuals at the k
th

 output node, i.e,  

                                                                                                                                       (3.42) 

    

Through extensive simulations study we can observed the performance of WMLPNN 

equalizer. 

 

Example 3.6.  Here we consider the WMLPNN equalizer for channel equalization 

application. The BER plot is plotted for different delay of 0 and 2 respectively. For 

simulation the network details is given below. 
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Figure. 3.10 BER Performance equalizer compared MLP and LMS based linear equalizer 

for ch1, delay=0 and 2.  

 

From the above simulation results we observed that the WMLPNN equalizer perform well 

than MLP and linear equalizer. 
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                                                                                                                                        (3.44)                                                                                                        

Where,         is the connection weight from the j
th

 hidden node to the k
th

 output,         is the 

center of the j
th

 basis function,       is the i
th

  variance of the j
th

 basis function, i.e.,     

                            and      is the bias term.   

In this network, there are one input layer with n nodes, one hidden layer with m node and 

one output layer with p nodes. We have p bias terms at the output nodes. 

Define, for                                                

                                                                                                                                    (3.45) 

 

Then, from equation (3.79), we have   yk = tk + bk  

We are given the same training set S as in section (3.10.1). The Wilcoxon norm       of 

residuals at the k
th

 output node is same as defined in section (3.10.1). The incremental 

gradient descent algorithm requires that     be minimized in sequence. By similar 

derivations, the weights updating rules are given by 

 

                                                                                                                    

                                                                                                                                    (3.46) 

     

    

                                                                                                                                     (3.47) 

  

                                                                                                                      

 

                                                                                                                                    (3.48) 

Where               is the learning rate.  

The bias term                     is given the median of the residuals at the k
th

 output node, i.e,  

                                                                                                                                    (3.49)           

Through extensive simulations study we can observed the performance of WRBFNN 
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Example 3.7. Here we consider the WGRBF equalizer for channel equalization application 

structure details given below. The BER plot is plotted for different delay of 0 and 1 

respectively. 

minimum 

phase 

channel 

Structure of 

network 

No. of Training 

Samples 

No. of Testing 

Samples 

SNR in 

dB 

1+0.5Z 
– 1

 2- input nodes 

8- Centres nodes 

1- output node 

100 100000 30dB 

 

 

 

 

 

 

 

 

 

Figure. 3.11 BER Performance WGRBF equalizer compared RBF, LMS based equalizer 

for ch1, delay=0 and 1. 
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their own pros and cons. Among all these network WGRBF worked same as RBF network 

providing optimal performance. The performance analysis has been presented in details in 

chapter 5. 
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________________________________________________________________________ 

Chapter 4 

      Evolutionary Algorithm Bacterial   

                        Foraging Optimization Technique 

for Channel Equalization 
________________________________________________________________________        

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural 

biological evolution [44]. Evolutionary algorithms based approaches are popular method to 

achieve adaptive channel equalization to minimize the distortion of the communication 

system. The evolutionary principles have led scientists in the field of “Foraging Theory” to 

hypothesize that it is appropriate to model the activity of foraging as an optimization 

process like Bacterial Foraging Optimizations (BFO) [18], Ant-Colony Optimizations 

(ACO) [26] and Particle Swarm Optimization (PSO) [16, 17]. This optimization technique 

encourages us to use this algorithm in the channel equalization processes and compared its 

performance with ANN structure performance.  

This chapter is organised as follows.  Following this introduction, section 4.1 describes the 

Evolutionary Algorithms. Section 4.2 describes Different Types of Evolutionary 

Approaches. Sections 4.3 represent basic principles of Bacterial Foraging Optimization 

technique with simulation result, at the end section 4.4 presents the Conclusion. 

 

4.1 Evolutionary Algorithms 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural 

biological evolution [44]. Evolutionary algorithms operate on a population of potential 

solutions applying the principle of survival of the fittest to produce better and better 

approximations to a solution. At each generation, a new set of approximations is created by 

the process of selecting individuals according to their level of fitness in the problem 

domain and breeding them together using operators borrowed from natural genetics. This 

process leads to the evolution of populations of individuals that are better suited to their 

environment than the individuals that they were created from, just as in natural adaptation. 
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Evolutionary algorithms model natural processes, such as selection, recombination, 

mutation, migration, locality and neighbourhood. Figure.4.1 presents the process of 

working simple evolutionary algorithm. Evolutionary algorithms work on populations of 

individuals instead of single solutions. In this way the search is performed in a parallel 

manner. 

 

 

Figure 4.1 Structure of a single population evolutionary algorithm 

 

At the beginning a number of individuals (the population) are randomly initialized. The 

objective function is then evaluated for these individuals and the initial generation is 

produced. If the optimization criteria are not met the creation of a new generation starts. 

Individuals are selected according to their fitness for the production of offspring. Parents 

are recombined to produce offspring. All offspring will be mutated with a certain 

probability. The fitness of the offspring is then computed. The offspring are inserted into 

the population replacing the parents, producing a new generation. This cycle is performed 

until the optimization criteria are reached. 

Such a single population evolutionary algorithm is powerful and performs well on a wide 

variety of problems. However, better results are obtained by introducing multiple 
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subpopulations. Every subpopulation evolves over a few generations isolated before one or 

more individuals are exchanged between the subpopulation.  

Evolutionary algorithms differ substantially from traditional search and optimization 

methods. The most significant differences are: 

 Evolutionary algorithms search a population of points in parallel, not just a single 

point.  

 Evolutionary algorithms do not require derivative information or other auxiliary 

knowledge; only the objective function and corresponding fitness levels influence the 

directions of search.  

 Evolutionary algorithms use probabilistic transition rules, not deterministic ones.  

 Evolutionary algorithms are generally more straightforward to apply, because no 

restrictions for the definition of the objective function exist.  

 Evolutionary algorithms can provide a number of potential solutions to a given 

problem. The final choice is left to the user 

 

4.2      Different Types of Evolutionary Approaches 

 Genetic algorithm - This is the most popular type of EA. One seeks the solution of a 

problem in the form of strings of numbers (traditionally binary, although the best 

representations are usually those that reflect something about the problem being 

solved - these are not normally binary), virtually always applying recombination 

operators in addition to selection and mutation. 

 Evolutionary programming - Like genetic programming, only the structure of the 

program is fixed and its numerical parameters are allowed to evolve.  

 Evolution strategy - Works with vectors of real numbers as representations of 

solutions, and typically uses self-adaptive mutation rates. 

 Genetic programming - Here the solutions are in the form of computer programs, and 

their fitness is determined by their ability to solve a computational problem.  

 Learning classifier system - Instead of a using fitness function, rule utility is decided 

by a reinforcement learning technique. 
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The differential evolution based on vector differences and is therefore primarily suited for 

numerical optimization problems.  

 Particle swarm optimization - Based on the ideas of animal flocking behaviour. Also 

primarily suited for numerical optimization problems.  

 Ant colony optimization - Based on the ideas of ant foraging by pheromone 

communication to form path. Primarily suited for combinatorial optimization 

problems. 

 Bacterial foraging - Based on the ideas of bacteria foraging by swimming and 

tumbling. Primarily suited for combinatorial optimization problems. 

 

4.3   Basic Bacterial Foraging Optimization 

Natural selection tends to eliminate animals with poor foraging strategies and favour the 

propagation of genes of those animals that have successful foraging strategies, since they 

are more likely to enjoy reproductive success. After many generations, poor foraging 

strategies are either eliminated or shaped into good ones. This activity of foraging led the 

researchers to use it as optimization process. The E. coli bacteria that are present in our 

intestines also undergo a foraging strategy. The control system of these bacteria that 

dictates how foraging should proceed can be subdivided into four sections, namely, 

chemotaxis, swarming, reproduction, and elimination and dispersal [45]. 

For initialization, we must choose the parameter for optimization are represent as  

      P    = Dimension of search space  

      S    = Number of bacteria to be used for searching the total region  

     cN   = Number of chemotactic steps,  

     sN   = Number of reproduction steps,  

     reN  = Swim length after which tumbling of bacteria will be under taken in a chemotatic 

loop, 

     C(i)  =  Step size,   

     edN   = Number of elimination and dispersal events to be imposed over the bacteria.   
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    edP   = Probability of elimination and dispersal event will continue,   

      θ
i
   =  Initial values for i

th
 bacterium position , 

 In case of swarming, we will also have to pick the parameters of the cell-to-cell attractant 

functions; here we will use the parameters given above. Also, initial values for the  θ
i
, i = 

12….S must be chosen. Choosing these to be in areas where an optimum value is likely to 

exist is a good choice. Alternatively, we may want to simply randomly distribute them 

across the domain of the optimization problem. The algorithm that models bacterial 

population chemotaxis, swarming, reproduction, elimination, and dispersal is given here 

(initially j=k=l=0). For the algorithm, note that updates to the θ
i
 automatically result in 

updates to P. Clearly, we could have added a more sophisticated termination test than 

simply specifying a maximum number of iterations. 

 Chemotaxis Stage  

This process in the control system is achieved through swimming and tumbling via 

Flagella. Each flagellum is a left-handed helix configured so that as the base of the 

flagellum (i.e., where it is connected to the cell) rotates counter clockwise, as viewed from 

the free end of the flagellum looking toward the cell, it produces a force against the 

bacterium so it pushes the cell. On the other hand, if they rotate clockwise, each flagellum 

pulls on the cell, and the net effect is that each flagellum operates relatively independently 

of others, and so the bacterium tumbles about. Therefore, an E. coli bacterium can move in 

two different ways; it can run (swim for a period of time) or it can tumble, and alternate 

between these two modes of operation in the entire lifetime. To represent a tumble, a unit 

length random direction )( j  is generated, this will be used to define the direction of 

movement after a tumble. In particular 

                           )()(),,(),,1( jiclkjlkj ii                                            (4.1) 

Where  i  (j+1, k, l) represents the i
th

 bacterium at j
th

 chemotactic k
th

 reproductive and 

l
th

 elimination and dispersal step. C(i) is the size of the step taken in the random direction 

specified by the tumble (run length unit). Lets,
is

N signal samples are passed through the 

model. The output compared with the desired signal to calculate the error as 
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                                                                                                                                   (4.2) 

 

This is the objective function of the BFO. We need to minimize the error square by using 

this technique in channel equalization.  

 Swarming Stage 

When a group of E. coli cells is placed in the center of a semisolid agar with a single 

nutrient chemo-effecter (sensor), they move out from the center in a traveling ring of cells 

by moving up the nutrient gradient created by consumption of the nutrient by the group. 

Moreover, if high levels of succinate are used as the nutrient, then the cells release the 

attractant aspartate so that they congregate into groups and, hence, move as concentric 

patterns of groups with high bacterial density. The spatial order results from outward 

movement of the ring and the local releases of the attractant; the cells provide an attraction 

signal to each other so they swarm together. The mathematical representation for swarming 

can be represented by  

             )),,(,( lkjPJcc   = 



S

i

ii
cc lkjJ

1

)),,(,(  

                      = ]))(wexp(d[
S

1i

p

1m

2i

mmattractattract 
 

           

        + ]))(wexp(h[
S

1i

p

1m

2i

mmrepellentrepellent 
 

                              (4.3) 

Where, )),,(,( lkjPJcc   is the cost function value to be added to the actual cost function to 

be minimized to present a time varying cost function, S  is the total number of bacteria, 

P is the number of parameters to be optimized which are present in each bacterium, and 

repellentrepellentattractattarct whwd ,, ,  are different coefficients that are to be chosen 

properly. Let lastJ = ),,,( lkjiJ  to save this value since we may find a better cost via a run. 

For                           The tumbling/ swimming decision is taken. A random vector          , 

with each element          generated random number. Its generates random number in the  

range of [-1, 1]. Check whether                                           then change the current position 

of the bacteria to a new position using the equation  

                                                                                                                                   (4.5) 
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Unit counter < sN , else tumble. If j < cN then go to the chemotaxis loop otherwise go to 

reproduction step and population Sorted in ascending order of cost function. 

 Reproduction Stage 

For the given k and l, and for each i =1, 2…..S. 

 let 
i
healthJ = 





1

1

),,,(
cN

j

lkjiJ  be the health of bacterium i  (a measure of how many 

nutrients it got over its lifetime and how successful it was at avoiding noxious substances). 

Sort bacteria and chemotactic parameters )(iC in order of ascending cost healthJ  (higher 

cost means lower health). The rS  bacteria with the highest healthJ  values die, i.e., the                

               least healthy bacteria die and the other healthier bacteria each split into two 

bacteria, which are placed in the same location. This makes the population of bacteria 

constant. 

  Elimination and Dispersal Stage  

 It is possible that in the local environment, the lives of a population of bacteria changes 

either gradually (e.g., via consumption of nutrients) or suddenly due to some other 

influence. Events can occur such that all the bacteria in a region are killed or a group is 

dispersed into a new part of the environment. They have the effect of possibly destroying 

the chemotactic progress, but they also have the effect of assisting in chemotaxis, since 

dispersal may place bacteria near good food sources. From a broad perspective, elimination 

and dispersal are parts of the population-level long-distance motile behaviour. This section 

is based on the work in [45].  

Elimination-dispersal: For i = 1, 2… S .With probability edP , eliminate and disperse each 

bacterium (this keeps the number of bacteria in the population constant). To do this, if you 

eliminate a bacterium, simply disperse one to a random location on the optimization 

domain. 

 If l  < edN   then go to l =l+1 elimination and dispersal loop, otherwise end. 

2

s
s

r

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Through extensive simulations study we can observe the performance of adaptive equalizer 

trained using BFO algorithm. 

 

Example 4.1 Here we consider the BFO equalizer for channel equalization application. For 

simulation the network details is given below. The BER plot is plotted for different delay 

of 0, 1 respectively. 

 

Mixed phase 
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Samples 
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 + 
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-2

 

No. of Bacteria – 20 

No. of chemotactic steps – 10 

No. of  reproduction steps – 3 

Dimension of search space – 3 

Swim length after tumbling – 20 

No. of elimination and dispersal – 5 

Probability of  elimination & dispersal- 0.01 

Step size – 0.01 

100 100000 30dB 

 

 

 

 

    

Figure. 3.14 Bit Error Rate Performance of BFO based adaptive equalizer for Ch1 

The Proposed BFO algorithm offers better performance in compared to the LMS, RLS and 

MLP in terms of bit error rate performance. 

 

3.10 Discussion 

  

  

  

Figure. 4.2 BER Performance BFO trained linear equalizer compared with RBF, MLP and 

LMS equalizer for ch3, delay= 1 and 2.  
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From the above simulation results we observed that the BFO equalizer perform better than 

linear equalizer and MLPNN, but lower performance as compared to RBF equalizer. 

 

4.4   Conclusion                             

This chapter introduces the concept of the „Evolutionary Algorithms‟ with more emphasis 

on „Bacterial Foraging‟. The basic „Bacterial Foraging Algorithm‟ is explained. Some 

simulation results have also been presented to validate the efficacy of the proposed 

algorithms. The performance analysis has been presented in details in chapter 5. 
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                                                              Chapter 5 

    Results & Discussion  

______________________________________________________________________ 

This chapter demonstrates the performance of linear and nonlinear equalizer, with the 

extensive simulation. The performance parameters that have been used in the simulations 

include convergence characteristic, bit error rate performance, structure and computational 

complexcity. These have been investigated for a wide variety of channel conditions. A 

wireless communication system is affected by inter-symbol interference, co-channel 

interference in the presence of additive white Gaussian noise, many times the signal is also 

affected by the burst noise. Burst noise can be modelled as a series of finite-duration 

Gaussian noise pulses of fixed duration and Poisson occurrence times. Adaptive 

equalization techniques have also been used to mitigate these effects and results presented 

here. Performance of  ANN, RBF, FLANN, ChNN, WMLP and WGRBF equalizer have 

been analysed for equalization in a variety of channel conditions. There performances have 

been compared with linear equalizers trained with LMS and RLS algorithms. Additionally 

simulation study has also been done for BFO based training with linear equalizer structure.  

The transmitted signal s(t) in all tests were generated randomly from an independent 

identically distributed (i. i. d ) sequence. The equalizers were trained with 1000 samples of 

training data. The convergence characteristics of equalizers were observed through MSE 

plot with respect to iteration. The BER performance provides the actual performance of the 

equalizer. This was computed using 100,000 samples for each signal to noise ratio 

condition.  

For simulation studies five different distortion conditions have been considered. The 

distortion conditions as under 

1. Channel with ISI in presence of AWGN. 

2. Channel with ISI in presence of Burst noise and AWGN. 

3. Channel corrupted with ISI, nonlinearity of ISI and AWGN. 

4. Channel corrupted with ISI, CCI in presence of AWGN.    
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5. Channel corrupted with ISI, CCI in presence of Burst noise and AWGN. 

Following this section, in section 5.1 discusses the channels models used for simulation 

studies. Section 5.2 discusses the simulation results of all ANN and linear based equalizer 

for channels were distorted by ISI. Section 5.3 discusses the simulation results of all ANN 

and linear based equalizer for channels were distorted by nonlinearity and ISI. Section 5.4 

discusses the simulation results of all ANN and linear based equalizer for channels were 

distorted by ISI and burst noise interference. Section 5.5 discusses the simulation results of 

all ANN equalizer for channels were distorted by ISI and CCI. Section 5.6  discusses the 

simulation results of all ANN equalizer for channels were distorted by ISI, CCI and Burst 

noise interference, subsequently in all section subsection consists of comparison study 

among all equalizer we consider for simulation. In the last Section 5.7 present the 

conclusion and remark. All the programs are written in Matlab ver. 7.1.  

 

 

5.1. Performance analysis of equalizers for ISI channels  

Here the performances of the different equalizers in terms of convergence rate and bit error 

rate have been analysed. The channels tested are presented at Annexure-1.  The equalizers 

were trained with 1000 samples of training data. Transmitted uniformly distributed bipolar 

random numbers {-1, +1}. The training samples were passed through the channel and 

AWGN was added to the output of the channel. For mathematical convenience, the 

received signal power was normalised to unity. Thus the received signal to noise ratio 

(SNR) is simply the reciprocal of the noise variance at the input of the equaliser.  For bit 

error rate (BER) performance calculation 100,000 samples were consider for each signal to 

noise ratio. The BER plot were analysed for different equalizers. The experimental 

simulation results are presented below. 

 

 

5.1.1 Performance analysis of ChNN and FLANN equalizer  

Example 5. 1.  

For this, we present the performance result for a mixed phase channel, whose transfer 

function is H2(Z) = 0.26 + 0.93Z 
– 1

+ 0.26 Z 
– 2 

. ChNN equalizer consists of single input, 

four different Chebyshev polynomial functions in functional expansion block. The FLANN 

equalizer consists of single input, Seven different trigonometric function including power 
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series function in functional expansion block. There were compared FIR filter with 

presented 5-tap for LMS and RLS equalizer. The BER plot is plotted for different decision 

delay 0 and 1 respectively and is presented if figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

            

                    (Delay= 0)                                                     (Delay= 1) 

Figure. 5.1 BER performance of ChNN, FLANN compared with RBF and LMS, RLS 

based linear equalizer for ch2.  

The performance of FLANN and ChNN equalizers were also compared with RBF 

equalizer of 2
nd

 order, which provides MAP decision performance. From above simulation 

we observed that ChNN equalizer provides better performance than FLANN, LMS and 

RLS based equalizer in terms of bit error rate over a wide range of channel conditions. But 

RBF provides superior performance. 

5.1.2     Performance analysis of WMLPNN and MLP equalizer 

Example 5. 2. 
 

For this, we present the performance result for a mixed phase channel, whose transfer 

function is H3(Z) = 0.30 + 0.90Z 
– 1

+ 0.30 Z 
– 2 

.  Both the equalizer structure consists of 3 

input, 30 hidden nodes and 1 output nodes. But RBF and RLS equalizer consists of 3-tap 

FIR filter. The MSE and BER plot is plotted for different delay 2 and 3 respectively. 
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                    (Delay= 2)                                                     (Delay= 3) 

Figure.5.2. BER performance of MLPN & WMLPNN equalizer compared with RBF and 

RLS based linear equalizer for ch3. 

From above simulation we observed that the proposed WMLPNN equalizer provides better 

performance than as MLP and RLS equalizer. This equalizer even outperforms MLP 

equalizer. The WGRBF equalizer outperforms both form of MLP equalizer. 

 

5.1.1 Performance analysis of WGRBF and RBF equalizer 

Example 5.3.  

Here we analyse the performance of the channel is a mixed phase channel with transfer 

function is H2(Z) = 0.26 + 0.93Z 
– 1

+ 0.26 Z 
– 2 

.  

Both the equalizer consists of structure is 2 input, 16 centres, 1 output. The input is 

provided through a TDL. The BFO and LMS equalizer consists of 3-tap FIR filter. The 

MSE and BER plot for the equalizer is plotted for different delay 0 and 1 respectively. 
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Figure.5.3. MSE & BER performance of RBFN & WGRBFN equalizer compared with 

BFO and LMS  trained linear equalizer for ch2, Delay= 0 and1. 

This channel is a mixed mode channel, where the zeros are present inside and outside the 

unit circle. The analysis of the decision boundary of this channel provided by an optimal 

equalizer with different decision delay has been analysis in [24], hence form this it is seen 

that at decision delay zero the decision boundary is highly nonlinear and is nearly linearly 

at delay equal to one, for this reason the MSE curve provides better performation for delay 

one compared to delay zero. Similar performance is obtained in BER performance as well. 

Since linear equalizer provide a linear decision boundary the LMS and RLS based 

equalizer completely failed at delay zero.  

The WGRBF proposed here provides MSE performance same as RBF and performs better 

than BFO trained linear equalizer. Similarly its BER performance is close to RBF equalizer 

and superior to linear structures including BFO trained linear equalizer. 

5.2. Performance analysis of equalizers for channels with ISI and 

Burst noise interference 

In the next study the performance of equalizers discussed were evaluated for a burst noise 

channel. The parameters taken for the simulation were same as those taken for channels 
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with ISI. The burst noise added to the main channel is a heigh intensity noise which 

occuring for short duration of time. The duration of noise is fixed burst length means a 

series of finite-duration Gaussian noise pulses. The burst noise was added to only with 5% 

of the samples. The noise was added to 5 consecutive samples in every 100 samples. The 

location of these 5 consecutive samples was considered randomly. 

5.2.1 Performance analysis of WGRBF and RBF equalizer 

Example 5.4.  

For a burst noise channel a mixed phase channel was used the transfer function is H2(Z) = 

0.26 + 0.93Z 
– 1

+ 0.26 Z 
– 2 

.Both the equalizer consists of structure is 2 input, 16 centres, 1 

output. The performance was compared with LMS equalizer consisting of 3-tap FIR filter. 

The convergence MSE and BER plot for the equalizer is plotted for delay 0 and 1 

respectively 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.5.4. MSE & BER performance of RBFN & WGRBFN equalizer compared with   

LMS trained linear equalizer for ch2, Delay= 0 and 1. 

From above simulation we observed that the WGRBF proposed here provides MSE 

performance same as RBF and performs better than LMS trained linear equalizer. For BER 
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performance at delay zero all equalizer fail considerable, with one delay WGRBF 

outperform RBF equalizer.  

 

5.2.2 Performance analysis of WMLPNN and MLP equalizer 

Example 5.5.  

For this performance we used is a minimum phase channel whose transfer function is  

H1(Z)= 1 + 0.5 Z 
– 1 

. Both the equalizer consists of structure is 3 input nodes, 9 hidden 

nodes, 1 output node. The performances have been compared with 2-tap RBF equalizer. 

 BFO and LMS equalizer consists of 3-tap FIR filter. The BER plot is plotted for different 

delay 0 and 1 respectively. 
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Figure.5.5.  BER performance of  WMLPNN & MLP equalizer compared with RBF and 

BFO, LMS trained linear equalizer for ch1 

From above simulation we observed that the proposed WMLPNN equalizer provides better 

performance than as MLP equalizer and BFO and RLS trained linear equalizer. This 

equalizer even outperforms MLP equalizer. The RBF equalizer outperforms both form of 

MLP equalizer. This provides MAP decision performance. 
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5.3. Performance analysis of equalizers for channels with ISI and 

Nonlinearity 

The parameters taken for the simulation were same as those taken for channels with ISI 

discussed in section 5.1. 

5.3.3 Performance analysis of ChNN and FLANN equalizer  

Example 5.6.  

For this performance we consider the mixed phase channel whose transfer function is  

H3(Z) = 0.30 + 0.90Z 
– 1

+ 0.30 Z 
– 2

, and the nonlinearity b (t) = s (t) + 0.2 s
2
 (t) – 0.1s

3
 (t) 

+0.5cos ( )t(s ). ChNN equalizer consists of single input, four different Chebyshev 

polynomial functions in functional expansion block. The FLANN equalizer consists of 

single input, Seven different trigonometric function including power series function in 

functional expansion block. The FIR filter had 5-tap filter. LMS and RLS equalizer 

consists of 5-tap FIR filter and trained with input 1000 samples. The BER plot for these 

equalizers is plotted for delay 2 is shown in figure 5.6.     
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Figure. 5.6 BER performance of ChNN, FLANN compared with RBF and LMS, RLS 

based linear equalizer for ch3, delay= 2. 

From above simulation we observed that ChNN equalizer provides better performance than 

FLANN, LMS and RLS based equalizer. RLS algorithm structure is nonlinear and it has 



                                                                                 Chapter 5  

 

   Results & Discussion                                                                                                      Page 93                                     
                                                                          
 

 

convergence speed is faster than LMS algorithm, and it’s perform better than LMS trained 

linear equalizer. 

5.4. Performance analysis of equalizers to combat CCI in ISI 

environment 

In this study the channel was corrupted with ISI and Co-channel interference. Consider the 

SIR was 10, 13, 15, 16 to 30 dB, difference in the presence of adaptive white Gaussian 

noise (AWGN). The parameters taken for the simulation are same as those taken for 

channels with ISI discussed in section 5.2. Generally ch0, ch1 are considered as main 

channel and ch2 has been considered as co-channel.  

 

5.4.1     Performance analysis of WGRBF and RBF equalizer 

Example 5. 7.  

For this simulation the desired channel is Ch1=1+0.5Z 
-1

 and CCI is ch2=0.26+0.93Z
-

1
+0.26Z

-2 
 , and  SIR=15dB was consider , both the equalizer consist of as 2-input, 8-center 

and 1-output. For analyses of how much BER plot performance degraded in equalization if 

one channel corrupted with CCI and without CCI interference. For which consider 

optimum equalizer is the one where CCI has not been consider. The BER plot is plotted for 

different delay 0 and 1 respectively as shown in figure 5.7. 

 

 

 

 

 

 

 

 

 

 

Figure.5.7. MSE & BER performance of RBFN & WGRBFN equalizer compared with   

LMS based equalizer and optimum equalizer, Delay= 0 & 1. 
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From above simulation we observed that the WGRBF and RBF equalizer treated CCI as 

noise. WGRBF performs better than RBF equalizer and LMS trained equalizer.  

Computational complexity of example 5.7 RBF & WGRBF equalizer is given below  

Operation  RBF 

2-8-1  

WRBF 

2-8-1  

Addition  33  33  

Trigonometric  -  - 

Multiplication  64 72  

Exponcial  8   8 

Tanh(.)  -  -  

 

5.4.2 Performance analysis of WMLPNN and MLP equalizer 

Example 5. 8. For analyseing the performance of WMLPNN and MLP equalizer consider 

the desired channel ch0=0.5+ Z 
-1

 and  CCI is ch2 =0.26+0.93Z
-1

+0.26Z
-2

 . And  SIR=13dB  

were consider. Both the equalizer consist of as 3-input nodes, 9-hidden nodes and 1-output. 

The BER plot is plotted for different delay 0 and 2 respectively. 
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Figure.5.8. BER performance of WMLPNN & MLP equalizer compared with RLS based 

equalizer. Delay= 0, 2. 
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From above simulation we observed that the proposed WMLPNN equalizer provides better 

performance than as MLP and RLS trained linear equalizer. Similar performance was 

observed for other channel and co-channel combination also. 

 

5.4.3 Performance analysis of ChNN and FLANN equalizer  

Example 5. 9.  

For this simulation the desired channel is Ch1=1+0.5Z 
-1

 and CCI is ch2 =0.26+0.93Z
-

1
+0.26Z

-2 
, and consider  SIR=13dB , the RBF equalizer consist of as 2-input, 8-center and 

1-output. ChNN equalizer consists of single input, five different Chebyshev polynomial 

functions in functional expansion block. The FLANN equalizer consists of single input, 

Seven different trigonometric function including power series function in functional 

expansion block. The input is provided through a TDL. The BER plot is plotted for 

different delay 1 respectively. LMS and RLS equalizer consists of 3-tap FIR filter and 

trained with input 1000 samples.  The BER plot is plotted for different delay 1 

respectively. 
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Figure. 5.9 BER performance of ChNN, FLANN compared with RBF and LMS, RLS 

based equalizer, delay= 1. 
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From above simulation we observed that ChNN equalizer provides better performance than 

FLANN, LMS and RLS based equalizer. But RBF provides superior performance than all 

other equalizer. Similar performance was observed for other channel and co-channel 

combination also. 

Computational complexity of example 5.9 RBF, FLANN and ChNN equalizer given  

Operation  RBF 

2-8-1  

FLANN 

1-7-1  

ChNN 

1-5-1  

Addition  33  21  18  

Trigonometric  -  6  -  

Multiplication  64  35  22  

Exponcial  8  -  -  

Tanh(.)  -  1  1  

Example 5. 10.  

For this simulation the desired channel is ch2 =0.26+0.93Z
-1

+0.26Z
-2 

 and CCI is 

Ch1=1+0.5Z 
-1

,  Consider were SIR=15dB and both the equalizer consist of as 2-input, 16-

center and 1-output. The parameters taken for the simulation are same as those discussed in 

example 5.10. The BER plot is plotted for different delay 0 respectively.     
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Figure. 5.10 BER performance of ChNN, FLANN compared with RBF and LMS, RLS 

based equalizer, delay= 0 
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From above simulation we observed that all equalizer in delay zero fail to recognise the 

pattern due to CCI, but RBF, ChNN equalizer recognise the pattern in ISI. Generally at 

high SNR condition the performance difference can be considerable, at a BER 10
-4

 RBF 

provides 1dB performance superior over ChNN and ChNN provides 0.5dB performance 

over a FLANN.  Similar performance was observed for other channel combination. 

5.5. Performance analysis of equalizers for channels with ISI, CCI and Burst 

noise interference 

In this study the channel was corrupted with ISI, CCI and burst noise interference. 

Consider the SIR was 10, 13, 15, 16 to 30 dB difference in the presence of adaptive white 

Gaussian noise (AWGN). Also the burst noise added to the main channel is a heigh 

intensity noise which occuring for short duration of time. The duration of noise is fixed 

burst length means a series of finite-duration Gaussian noise pulses. The burst noise was 

added to only with 5% of the samples with SNR 5dB to 10dB. The noise was added to 5 

consecutive samples in every 100 samples. The location of these 5 consecutive samples 

was considered randomly.  

5.5.1 Performance analysis of WGRBF and RBF equalizer 

Example 5. 11.  

For analyseing the performance of WGRBF and RBF equalizer consider the desired 

channel IS Ch1=1+0.5Z 
-1

 and CCI-ch2 =0.26+0.93Z
-1

+0.26Z
-2 

with  SIR=15dB, and Burst 

noise was added to desired channel with SNR of 5dB for 5% of the samples.  Both the 

equalizer consists of as 2-input, 8-center and 1-output. The BER plot is plotted for different 

delay 0, 1 and 2 respectively. 
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Figure.5.11. BER performance of RBFN & WGRBFN equalizer 

Delay= 0, 1 and 2. 

From above simulation we observed that the WGRBF proposed here provides performance 

closer to RBF equalizer. Similar performance was observed for other channel and co-

channel combined with burst noise also. 

5.5.2 Performance analysis of WMLPNN and MLP equalizer 

Example 5. 12.  

For analyseing the performance of WMLPNN and MLP equalizer consider the desired 

channel is Ch1=0.5+ Z 
-1

 and CCI-ch2 =0.26+0.93Z
-1

+0.26Z
-2 

with  SIR=13dB  and Burst 

noise was added to desired channel with SNR of 10dB for 5% of the samples. Both the 

equalizer consist of as 3-input nodes, 30-hidden nodes and 1-output. The BER plot is 

plotted for different delay 1 and 2 respectively. 
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Figure.5.12. BER performance of MLPN & WMLPNN equalizer 

Delay= 1and 2. 

 

From above simulation we observed that the WMLPNN equalizer proposed here provides 

better performance than MLP equalizer in delay 1. Similar performance was observed for 

other channel combination. 

5.6. Conclusion 

This chapter analyses in details the performance of different types of linear and nonlinear 

ANN based equalizer like MLP, RBF, FLANN, ChNN and linear adaptive equalizer 

trained using LMS, RLS or BFO algorithm for channel equalization in digital 

communication system. Their performance was compared with proposed wilcoxon neural 

network equalizer. Through extensive simulation study we observed that the proposed 

Wilcoxon learning algorithm trained neural network equalizer and WGRBF equalizer 

performed similar as RBF equalizer in ISI and high intensity burst noise interference 

condition, but its perform better in CCI environment than RBF equalizer. Also WMLPNN 

equalizer performs better than MLP, BFO and linear equalizer in all ISI, CCI and burst 

noise environment. RBF equalizer provides MAP decision performance. 
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                                                              Chapter 6 

    Conclusion  

_______________________________________________________________________ 

The main aim of the thesis is to develop novel artificial neural network equalizer (trained 

with linear, nonlinear and evolutionary algorithms) to mitigate the linear and nonlinear 

distortion like ISI, CCI and burst noise interferences occurs in the communication channel 

and can provide minimum mean square error and bit-error-rate plot for wide variety of 

channel condition.  

The research carried out for this thesis primarily discusses the different types of linear and 

nonlinear equalizers. Performance of ANN based equalizer using MLP, RBF, FLANN, 

ChNN and linear adaptive equalizers (trained with LMS, RLS or BFO algorithm) are 

compared with the proposed Wilcoxon neural network equalizer. The proposed neural 

network equalizer provided work out performances in CCI and burst noise environment 

than RBF equalizer. This chapter summarises the work reported in this thesis, specifying 

the limitations of the study and provides some pointers to future development. 

Following this introduction section 6.1 discusses the main contribution of this thesis. 

Section 6.2 provides the limitations and section 6.3 presents few pointers towards future 

work.  

 

6.1    Contributions of thesis 

 The first chapter of the thesis introduced to digital communication system, literature 

survey and its applications. It also provides a brief overview of the theme of the 

thesis. The second chapter discussed the algorithms used to train the equalizer and 

need of adaptive equalizer.  

 In this chapter2 analyses the linear equalizer performance. The equalizer trained 

using LMS and RLS algorithm. We observed that RLS provides faster convergence 

rate than LMS equalizer.  
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 In the chapter3, 4 and 5 analyse the performance of the ANN based equalizer like 

MLP, RBF, FLANN, ChNN in extensively noisy channel condition, like the 

transmitted signals corrupted by ISI, CCI and burst noise interference. Using 

different form of channel equalization techniques to mitigate the effects of the 

interference in communication system. Through extensive simulation study we 

observed that MLP equalizer is a feed-forward network trained using BP algorithm, 

it performed better than the linear equalizer, but it has a drawback of slow 

convergence rate, depending upon the number of nodes and layers. Optimal 

equalizer based on maximum a-posterior probability (MAP) criterion can be 

implemented using Radial basis function (RBF) network. RBF equalizer mitigation 

all the ISI, CCI and BN interference and provide minimum BER plot. But it has 

one draw back that if input is increased the number of centres of the network 

increases and makes the network more complicated.  

More recently a rank based statistics approach known as Wilcoxon learning method has 

been proposed for signals processing application to mitigate the linear and nonlinear 

learning problems. We proposed this network for channel equalizer in communication 

system to mitigate the all the ISI, CCI and BN interference. In this thesis we used WMLP 

and WGRBF network. It is seen that the performance of equalizers Viz. Wilcoxon 

MLPNN and WGRBFNN provide better performance than MLP, BFO, FLANN and linear 

equalizer in all the ISI, CCI and BN interference environment, but not better than RBF 

equalizer. Where as WGRBF equalizer perform similar to RBF equalizer in ISI, Burst 

noise environment, but it perform nearly better than RBF equalizer in CCI environment 

(observed from extensive simulation study which is presented as figure.5.2, 5.3, 5.4, 5.5, 

5.7, 5.8, 5.11, 5.12). 

As we know that RBF equalizer provides MAP decision performance (i.e optimized 

performance), the proposed WGRBF equalizer also provides optimal performance and 

WMLP equalizer provides better performance as compared to other equalizer we 

considered. So both proposed equalizer in channel equalization case is showing superior 

performance. 
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The Evolutionary algorithm discussed in this thesis has been applied for training a 

transversal equalizer. Normally a transversal equalizer provides linear decision boundary. 

Optimization of the weights using BFO algorithm can provide best possible weights.  

 

6.2    Limitations of the work 

 All the simulation conducted for BPSK signals. The performance of the equalizer 

proposed for other forms of modulation like QPSK, MARY-PSK, QAPSK and other 

modulation forms has been considered. 

 The Wilcoxon learning algorithm has for burst noise limited to 5% of the samples. 

This model deviates from the burst noise model. A details analysis will provide 

better in depth to the problem. Also the equalization is basically an iterative process 

of minimization of mean square error, so these equalizers take more training time. 

 These equalization techniques for use in recent applications like 2G, 3G 

communication techniques will be helpful in understanding the problem. 

 

6.3 Scope for further research 

Addition of all three interferences like ISI, CCI and Burst noise interference can be 

computationally more complex. Under these circumstances fuzzy equalisers could provide 

major performance advantages. The study of fuzzy equalisers for mobile communication 

systems like GSM systems could provide alternative equalisation strategies. 

Recently it has been observed that fractionally spaced equalisers can provide additional 

benefit in interference mitigation in the form of CCI and ISI. One of the possible directions 

for research is investigating fractionally spaced fuzzy equalisers for interference limited 

communication system applications. Also recently used OFDM technique also used to 

minimize the interferences in the communication system. 
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                                           Annexure  

_______________________________________________________________________ 

Channels models used for Simulation studies 

The channels used for evaluation of equalization technique were presented in Table 1 and 

Table 2. 

Table. 1. Linear channels simulated  

Sl. No. channel Channel Type 

ch0 0.5 + Z 
- 1

 Non-minimum 

ch1 1 + 0.5Z 
-1

 Minimum 

ch2 0.26+0.93Z
-1

+0.26Z
-2

 Mixed 

ch3 0.30+0.90Z
-1

+0.30Z
-2

 Mixed 

ch4 0.34+0.87Z
-1

+0.34Z
-2

 Mixed 

 

 

Table .2. Non-linearity in Channels  

SL. No                            Non- Linearity 

NL=0      b(t) = s(t)  

NL=1      b(t) = tanh(s(t))  

NL=3     b(t) = s(t) + 0.2 s
2
 (t) – 0.1 s

3
 (t)  

NL=4     b(t)= s(t)+ 0.2 s
2
(t) – 0.1s

3
(t)+0.5cos( )t(s ) 
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