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Abstract 
 

 

 

 

In the present project we have tried to find the convection parameters related to the case of mixed 
convection in the entrance region of an inclined channel. We have tried to find the trend in the 
change in the values of various convection parameters related to mixed convection at different set 
values. We have done mathematical modeling using FORTRAN 77 and tried to follow a new 
scheme called SAR scheme whose detail we have shown at proper place. by this scheme we have 
calculated the convection parameters at different coordinates of the channel. This scheme is 
mainly an iteration process by which we have tried to find the error in each subsequent guesses 
and we have made an approach to reach the solution. 
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 Nomenclature 
 

Br Brinkman number, defined by, 
2

refU

k T




 

Dh        Hydraulic diameter,   2L 

Ec Eckert number, 
2

ref

p

U

C T
 

g Acceleration due to gravity, m
2
/s 

Gr Grashof number, defined by, 
3

h

2

g T D


 

k Thermal conductivity, W/m – K 

K1     Ratio of left wall temperature to inlet temperature ( = Tw1/Ti ) 

K2        Ratio of right wall temperature to inlet temperature ( = Tw2/Ti ) 

L          Spacing between the two plates, m 

Nu - Local Nusselt number at left wall, defined by, 
Y 1/ 4

d

dY  


 

Nu + Local Nusselt number at right wall, defined by, 
Y 1/ 4

d

dY 


 

Nub- Nusselt number based on bulk mean temperature at left wall, defined by, 
*

T

2Nu

R 2



 
 

Nub+ Nusselt number based on bulk mean temperature at right wall, defined by,  
*

T

2Nu

R 2



 
 

Pe Peclet number, defined by, ref hU D


 

pd         Pressure that arises when the fluid is in motion, N/m
2
 

ps         Static pressure, when fluid velocity = 0  N/m
2
 

Re Reynolds number, defined by, ref hU D


 

RT refT T

T




 

T          Dimensional temperature 

Tb        Dimensional bulk temperature 

Tref Reference temperature, defined by, w1 w2T T

2


 

Ti         Inlet fluid temperature 

Tw1      Temperature of the wall at y = - L/2 
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Tw2        Temperature of the wall at y =  L/2   

u          Dimensional velocity in x direction,  m/s 

Ui Inlet velocity, m/s 

Uref Reference velocity, m/s 

U         Dimensionless velocity in X direction = u/Uref 

v          Dimensional velocity in y direction,  m/s 

V         Dimensionless velocity in Y direction, = v/Uref 

V


 Velocity vector 

X         Dimensionless axial distance  

Y Dimensionless coordinate normal to the flow direction 

x Dimensional axial distance 

y Dimensional coordinate normal to the flow direction 

xf Dimensional entry length, m 

Xf Dimensionless entry length 

X
*
 X / Pe 

 

Greek Symbols 

 

μ Dynamic viscosity,  kg/m-s 

ν Kinematic viscosity,  m
2
/s 

ρ Fluid density,  kg/m
3
  

β Coefficient of thermal expansion 

θ Dimensionless temperature 

θ
* 
        Non-dimensional bulk mean temperature of the fluid, defined  by, b refT T

T




 

θb         Non-dimensional temperature based on bulk mean temperature, defined  by, ref

b ref

T T

T T




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CHAPTER 1 
 

 

1.1 Introduction 
 

Heat transfer by forced convection in pipes has been the subject of investigation by many 

researchers for the past several decades, starting from Gratz [1] who pioneered the studies. Other studies 

include those of Callender [2], Nusselt [3]. Sparrow and Patankar [4] developed the relationships for 

Nusselt numbers for thermally developed duct flows for different boundary conditions. 

The problem of forced convection in a channel between two parallel plate walls is a classical 

problem that has been revisited in recent years in connection with the cooling of electronic equipment 

using materials involving hyperporous media or microchannels. Recently published textbooks and 

handbooks, such as those by Bejan [37] and Kakac¸ et al. [38], devote substantial space to the case of 

symmetric heating but little to the more complicated case of asymmetric heating. However, this case is 

mentioned in Shah and London [39, pp. 155–157] and Kakac¸ et al. [38, pp. 3.31–3.32], where the key 

results are given, without details of derivation. (An outline derivation is given in Kays and Crawford 

[40].) 

 More recent studies deal with, flow through annuli, channels, with symmetric and asymmetric 

heating, particularly in the combined convection regime (Aung and Worku [5], Cheng, C.H., Kou, H.S., 

Huang, W.H. [6], Hamad and Wirtz [7], Barletta and Zanchini[8] ). Also the channel / pipe / annuli are 

inclined at an arbitrary angle (Iqbal and Stachiewicz [9], Sabbagh, J.A., Aziz, A., El-Ariny, A.S., and 

Hamad, G. [10], Lavine, A. S., Kim, M.Y., and Shores, C.N. [11], Orfi, J., Galanis,N. and Nguyen, C.T. 

[12]). These studies are expected to provide insight needed to design cooling systems for electronic 

devices, solar energy devices, and chemical vapor deposition technique. Combined convection in 

channels of arbitrary inclination subjected to asymmetric heating, including dissipation finds practical 

applications. Asymmetric thermal boundary conditions may be thought of as due to a deliberate unequal 

temperature or fluxes imposed, or as due to unequal temperature jump owing to differing 

accommodation coefficients at the two walls in the rarefied (Kn << 1, where Kn is the Knudsen number) 

regime as relevant in micro-channel heat transfer. 
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1.2. Literature Review 
 

 The following table gives the major studies pertaining to the flow and heat transfer through 

channels, annuli and pipes. 

 

S.No. Author Geometry Flow Model Heat Transfer Model 

1. Kays [13] Circular tube Developing flow Forced convection, Uniform tube 

temperature and uniform tube heat 

flux 

2. Sparrow [14] Rectangular 

duct 

Developing flow Forced convection, Analytical study 

3. Reynolds [15] Circular tube Fully developed 

flow 

Forced convection, Uniform heat 

flux, Analytical solution 

4. Mercer, 

Pearce, and 

Hitchcock, 

[16] 

Parallel flat 

plates 

Developing flow Forced convection, Both plates are 

at uniform temperature, 

experimental study 

5. Morton [17] Vertical tube Fully developed 

flow 

Mixed convection, Uniform wall 

heat flux. Analytical solution 

6. Barletta [18] Vertical channel Fully developed 

flow 

Mixed convection with viscous 

dissipation. Walls are at same or at 

different temperatures, Approximate 

perturbation solution 

7. Barletta [19] Vertical circular 

duct 

Fully developed 

flow 

Mixed convection with viscous 

dissipation and uniform wall 

temperature 

8. Barletta , 

Rossi di Schio 

[20] 

Vertical circular 

tube 

Fully developed 

flow 

Mixed convection with viscous 

dissipation and uniform wall heat 

flux 

9. Choi,D.K., 

and Choi,D.H. 

[21] 

Horizontal tube Fully  

Developed flow 

Mixed convection,  

Upper half of the duct wall is 

insulated and lower wall subjected 

to uniform heat flux 

10. Barletta and 

Zanchini [22] 

Inclined 

channel 

Fully developed 

flow 

Mixed convection with viscous 

dissipation and uniform wall 

temperature 
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11. Lavine [23] Inclined parallel 

plates 

Fully developed 

flow 

Opposing mixed convection 

12. Lavine[24] Inclined parallel 

plates 

Fully developed 

flow 

Aiding mixed convection 

13. Barletta et.al. 

[25] 

Vertical circular 

duct 

Fully Developed 

flow 

Non-axisymmetric mixed 

convection 

S.No. Author Geometry Flow Model Heat Transfer Model 

14. Bohne and  

Obermeier 

[26] 

Vertical, 

inclined 

cylindrical 

annulus 

Fully Developed 

flow 

Combined Free and Forced 

Convection. Experimental study 

15. Lawrence and 

Chato [27] 

Vertical tube Developing 

laminar flow 

 

Mixed convection, Uniform heat 

flux and uniform wall temperature 

16. Zeldin 

Schmidt [28] 

 

Vertical tube 

 

Developing 

laminar flow 

 

Combined free and forced, 

convection  isothermal wall 

Experimental study 

17. Moutsoglou 

and Kwon[29] 

 

Vertical tube 

 

Onset of flow 

reversal in 

developing flow 

Mixed convection, Uniform heat 

flux and uniform wall temperature 

18. Morcos 

Abou-Allail 

[30] 

Inclined multi 

rectangular 

channel  

Buoyancy effects 

in the entrance 

region 

Mixed convection, Numerical 

solution 

19. Cheng and 

Yuen [31] 

Heated inclined 

pipes 

Entrance region  Visualization studies on secondary 

flow pattern for mixed convection 

Isothermally heated pipe 

20. Choudury and 

Patankar [32] 

Inclined 

isothermal tube 

Convection in the 

entrance region  

Combined forced and free laminar 

convection , Isothermal tube 

21. Rao and 

Morris [33] 

 

Vertical parallel 

plates 

Fully developed 

flow 

Superimposed laminar mixed 

convection, One wall is heated at 

uniform heat flux and other is 

thermally insulated 

22. Yao [34] Vertical channel Hydrodynamically 

and thermally 

developing flow 

Mixed convection 

Symmetric UWT or UHF 

23. Barletta and 

Zanchini [35] 

Inclined 

channel 

Steady periodic 

Flow 

Mixed convection, The temperature 

of one wall is stationary and the 

temperature of other wall is a 

sinusoidal function of time 
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Chapter 2 

 

2.1. Lacunae 
 

1. Most studies assumed fully developed conditions or invoked boundary layer approximations. 

2. Within the framework of Boussinesq approximation (for mixed convection studies). 

3. Symmetrically heated wall boundary condition, constant temperature or uniform heat flux. 

4. Particularly the studies [17-20, 22] including dissipation dealt with fully developed conditions 

only. 

 

2.2. Objective 

To study mixed convection in the entry region of an arbitrarily inclined channel subjected to 

asymmetric heating including dissipation. 

 

2.3. Motivation 
 

1. Examine the criterion to define fully developed thermal condition when asymmetrically heated. 

2. Mixed convection when the channel is arbitrarily inclined is of practical importance in several 

electronic cooling configurations. 

3. When the channel width is small, (micro channels), asymmetric thermal conditions can be 

expected irrespective of imposed boundary conditions, bring temperature jump or velocity jump 

boundary conditions, which may not be equal, even if walls are subjected to equal temperature or 

heat flux. 
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Chapter 3 

 
 

3.1. Mathematical Formulation 
 

The physical model considered is that of a channel of width L with both left and right walls 

being maintained at constant temperatures Tw1 and Tw2 are subjected to q1 and q2 respectively. 

 

   The channel is inclined at an angle φ with the direction of gravity. The flow enters at a uniform 

velocity Ui and uniform temperature Ti. The x-component of velocity is along the longitudinal direction 

of the channel and y-component of velocity is along the transverse direction of the channel. The flow is 

buoyancy aided when the flow is in upward direction and is buoyancy opposed when flow is in 

downward direction. The physical model and the coordinate system are shown in Fig. 1. 

 

 

3.2. Governing Equations: General Formulation 

Governing equations for steady, laminar two dimensional flow of an incompressible, Newtonian 

fluid with constant fluid properties and invoking Boussinesq approximation to describe buoyancy forces 

are as follows 

 

 

 

 

 

Figure 1. Physical model and  

                Coordinate system 

 

 

 
  y = -L/2  

L 

φ 

g 

T=Tw1  

T=Tw2  

x 

y = 0 

φ 
 gx 

gy 

y = L/2 
y 
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Continuity Equation 

u v
0

x y

 
 

 
                                                                                                                         (1) 

x-Momentum Equation 

2d
ref ref

pu u
u v u g( )cos

x y x

   
       

   
                                                            (2) 

y-Momentum Equation 

2d
ref ref

pv v
u v v g( )sin

x y y

   
       

   
                         (3) 

Conservation of Energy Equation 

2 222 2

ref p 2 2

T T T T u v u v
C u v k 2

x y x y y x x y

                
                                   

                (4) 

In Eqs. (2) and (3), it may be noted that   

p = pd + ps                               (5) 

where p is the pressure in the fluid at a point, ps is the static pressure(i.e., the pressure that exists, 

when V 0


) and pd is the dynamic pressure that arises when the fluid is in motion. 

has been used along with  

s
ref

p
g Cos

x


 


                   (6) 

s
ref

p
gSin

y


  


                   (7) 

In addition, the auxiliary equation describing the variation of density with temperature within the 

frame work of Boussinesq approximation is given by,  

 ref ref1 (T T )                      (8) 

Where ρref is the reference density 

β is the thermal coefficient of expansion 

Boundary Conditions 
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u = Ui at x = 0 for –L/2 ≤ y ≤ +L/2 

u = 0, v = 0 at y = ± L/2 for all x > 0 

T = Ti at x = 0 for –L/2 ≤ y ≤ +L/2 

T = Tw1 at y = - L/2 for all x > 0 

T = Tw2 at y = + L/2 for all x > 0 

u

x




= 0, v = 0 for x > xfd, for –L/2 ≤ y ≤ +L/2                        (9) 

Note: Tw1=Tw2 correspond to symmetric heating. 

xfd is the entry length, i.e., the distance required for the flow/ thermal field  to become fully 

developed. x > xfd represents fully developed condition. 

In addition, the fully developed condition leads to a certain non-dimensional temperature 

remaining constant with x for x > xfd. 

 

Non-Dimensional Equations 
  

The following dimensionless variables have been introduced to render the governing equations 

non-dimensional. 

U =
ref

u

U
, V =

ref

v

U
, X =

h

x

D
 , Y =

h

y

D
 , θ = refT T

T




, d

d 2

ref ref

p
p

U



, 
ref





              (10)                                   

The governing equations given by Eqs. (1), (2), (3) and (4) non-dimensionalised using the non-

dimensional variables defined by Eq. (10) take the following form 

U V
0

X Y

 
 

 
                   (11) 

2d

2

pU U 1 Gr
U V U cos

X Y X Re Re

  
       

   
                                                                 (12) 

2d

2

pV V 1 Gr
U V V sin

X Y Y Re Re

  
       

   
                         (13) 

2 2 22 2

2 2

1 Ec U V U V
U V 2

X Y Pe X Y Re Y Y X Y

                   
                                    

              (14) 

Uref and ΔT in Eq. (10) are chosen depending on the wall boundary condition and the problem 

studied.  

Uref = Ui                  (15) 
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ΔT = ( Tw2 - Tw1 ) if Tw2 ≠ Tw1   for constant but unequal wall temperatures.          (16) 

           = 
2

2

p hC D


 if Tw2 = Tw1   for constant and equal wall temperatures.          (17) 

      =  (Ti - Tref) when the flow is thermally developing.            (18) 

 In Eq. (18) Tref is defined by, 

 Tref = (Tw1+Tw2)/2                    (19) 

Tref = Ti ,                           (20) 

The boundary conditions given in Eq. (9) become, 

U = 1 at X = 0 for –1/4 ≤ Y ≤ +1/4 

U = 0, V = 0 at Y = ± 1/4 for all X > 0 

i refT T

T





 at X = 0 for –1/4 ≤ Y ≤ +1/4 

w1 refT T

T





 at Y = -1/4 for all X > 0 

  w2 refT T

T





 at Y = +1/4 for all X > 0 

*

*

U
0,V 0,

X X X

   
  

   
 at X > Xfd for –1/4 ≤ Y ≤ +1/4            (21) 

Where Xfd , (= xfd/Dh ), is the non-dimensional distance for the flow to become fully developed, 

or entry length. 

In Eq.(21), the condition on temperature gradient 
X




for X > Xfd follows from the fully 

developed condition for temperature, b

X




= 0 where θb is the non-dimensional temperature based on the 

mixed mean temperature Tb of the fluid. θb is defined by, 

ref
b

b ref

T T

T T


 


                  (22) 

Where Tb, the mixed mean temperature is given by, 

            Tb = 

L/2

p
L/2

L/2

p
L/2

C uTdy

C udy












                 ( 23)  

 Introducing θ
*
, the non-dimensional bulk mean temperature, defined by, 

 * b refT T

T


 


                  ( 24) 
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The fully developed condition b

X




= 0 on non-dimensional temperature field leads to, 

*

*X X

  


  
                    (25) 

 Governing equations given by Eqs. (11), (12), (13) and (14) along with the boundary conditions 

given by Eq. (21), take specific form depending on the assumptions made and approximations invoked. 

In what follows work done so far employing the governing equations with specific simplifications is 

described. 

 

In Eqs. (12), (13) and (14) the non-dimensional parameters, Gr, the Grashof number, Re, the 

Reynolds number, Ec, the Eckert number, Pe, the Peclet number are defined by, 

            Gr = 
3

h

2

g T D


                       (26) 

            Re = ref hU D


                        (27) 

Ec = 
2

ref

p

U

C T
                  (28) 

 

Pe = ref hU D


                  (29) 

Also, when both the flow and temperature fields are fully developed and 
T

u
x




 term is neglected, 

Br, the Brinkman (see, § 8 (a)) number appears, which is defined by,  

Br = 
2

refU

k T




 = 

Ec.Pe

Re
 = Ec.Pr                (30) 

 

 

 

3.3. Numerical Scheme (Successive Accelerated Replacement 

Scheme - SAR) 

 

 The basic philosophy of the Successive Accelerated Replacement (SAR) scheme as described in 

[42-45] is to guess an initial profile for each variable such that the boundary conditions are satisfied. Let 

the partial differential equation governing a variable,  (X, Y), expressed in finite difference form be 
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given by M,N 0   where M and N represent the nodal points when the non-dimensional height and 

length of the channel are divided in to a finite number of intervals MD, ND respectively. The guessed 

profile for the variable   at any mesh point in general will not satisfy the equation. Let the error in the 

equation at (M,N) and k
th
 iteration be 

k

M,N  

 The (k+1)
th
 approximation to the variable   is obtained from, 

            

k

M,Nk 1 k

M,N M,N k

M,N

M,N




  




                          (31) 

 Where   is an acceleration factor which varies between 0 < ω < 2. ω < 1 represents under-

relaxation and  > 1 represents over relaxation. 

 

 The procedure of correcting the variable  at each mesh point in the entire region of interest is 

repeated until a set convergence criterion is satisfied. For example, the change in the variable at any 

mesh point between k
th
 and (k+1)

th
 approximation satisfies, 

 





1k

N,M

k

N,M
1                             (32) 

 Where   is a prescribed small positive number. 

 

 To correct the guessed profile, each dependent variable has to be associated with one equation. It 

is natural to associate the variable with the equation, which contains the highest order derivative in that 

variable. For example, conservation of energy equation will be associated for correcting the temperature 

profile. The feature of using the corrected value of the variable immediately upon becoming available is 

inherent in this method. 
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Chapter 4 
  
4.1 Laminar Forced Convection in a Channel, Thermally Developing Field. 

 

Simplified Equations (Velocity Field Fully Developed and Boundary Layer 

Approximation   

           in Entry Region) 
 

The governing equations, when the flow is assumed to be hydrodynamically developed and 

thermally developing, in a parallel plate vertical channel with constant wall temperatures, neglecting 

axial conduction and buoyancy forces are obtained by setting φ = 0 and v = 0, 
u

x




= 0 in the governing 

equations given by Eq.(1) to Eq.(4). They are,  

 

x-Momentum Equation 

 
2

d

2

ref

dp1 d u
0

dx dy
   


                                                                                   (33) 

Conservation of Energy 

2

2

T T
u

x y

 
 

 
                                        

            (34) 

 

 

 

 

 

 

Figure 2.  Physical model and  

                 Coordinate system 

 

 

 

 

x 

Cold wall 

T = Tw1 

u = 0 

 

L 
 

y
  

Hot wall 

u = 0 

 T = Tw2 

y = - L/2 y = 0  y = L/2 

T = Ti 
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Where pd = p + ρref g x, is the difference between the pressure and the hydrostatic pressure.  

Boundary Conditions 

u = 0 at y = ± L/2 for all x > 0 

T = Ti at x = 0 for -1/4 < Y < 1/4 

            T = Tw1 at y = - L/2 for all x > 0 

T = Tw2 at y = + L/2 for all x > 0                        (35) 

Non-Dimensional Equations 

 The following dimensionless variables have been introduced to render the governing equations 

non-dimensional. 

 U = 
ref

u

U
, V = 

ref

v

U
, X = 

h

x

D
, Y = 

h

y

D
 , θ = 

ref

refi

T T

T T




                                     (36) 

Uavg is average velocity = Uref  = - (dpd/dx)Dh
2
/ (48μ).  

Tw1, Tw2 are left and right wall temperatures. 

Ti  is the inlet temperature. 

Tw1 = K1 Ti 

Tw2 = K2 Ti 

The governing equations given by Eqs. (53) and (54) non-dimensionalised using the non-

dimensional variables defined by Eq. (56) take the following form. 

2

2

d U
48 0

dY
                                                                                           (37)  

2

2
Pe U

X Y

   
 

  
                                 (38)  

or 

2

* 2
U

X Y

   
 

  
                    (39) 

 Where X
*
 = X / Pe 

 

The boundary conditions given in Eq. (35) becomes, 

     

             θ = 1 at X = 0 for    -1/4 < Y < 1/4 
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 U = 0, θ = 1 2

1 2

K K

2 K K



 
 at Y= -1/4 for all X  

             U = 0, θ = 2 1

1 2

K K

2 K K



 
 at Y=   1/4 for all X                                              (40) 

 It may be noted that K1 = K2 ( ≠ 1 ) represents symmetric heating, i.e., both the walls are at the 

same temperature but different from Ti and the boundary conditions, θ given by Eq. (40) become 

independent of K1 and K2. 

 

Nusselt Number 

 

The defining equation for calculating the heat transfer coefficient, say at the left wall is given by, 

             1 w1 b

y L/ 2

T
k h (T T )

y
 


  


                                                                                        (41) 

Local Nusselt number values based on Dh, are expressed in terms of non-dimensional temperature as,  

               Nu b-  = 
* 1 2 Y 1/ 4

1 2

1

K K Y

2 K K




 
 

 

                                                                (42) 

               Nu b+  = 
* 2 1 Y 1/ 4

1 2

1

K K Y

2 K K





 
 

 

                                                                               (43) 

 Also when K1 = K2 ( ≠ 1 ), i.e., symmetric heating, Nub- = Nub+ = 
*

Y 1/ 4

1

Y 



 
when K1 = K2 

since Nub- = Nub+ shall be referred to as Nub. 

 

4.2 Results and Discussion 

Variation of Nusselt number Nub with X
*
 is shown in Figure 3. Nusselt number gradually 

decreases along the flow direction and reaches to a minimum and remains constant in the fully 

developed region. High Nusselt numbers in the entry region are due to high temperature gradients 

prevailing over there. 
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Figure 3. Nub at different positions of X* for the case of symmetric heating 

 
 

Average Nusselt number 
bxNu up to a certain value of X

*
 for the case of symmetric heating is 

shown in Figure 3. 
bxNu  gradually decreases in the flow direction. The fully developed Nusselt number 

Nub obtained is 7.53 at X
*
 = 0.04 and up to this value of X

*
 the average Nusselt number obtained is 8.21.  
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Figure 4(a). 

bNu up to a certain value of X* for the case of symmetric heating 

 

 Variation of average Nusselt number up to a certain value of X
*
 for different asymmetries is 

shown in Figure 4(a), (b) and in (c). From Figure 4(a) it is clear that for small asymmetry (K1 = 3, K2 = 

2.9 ), the average Nusselt number is same for both symmetric and asymmetric cases up to a distance 

where bulk mean temperature equals to lower wall temperature. However, when the asymmetry is more, 
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the average Nusselt number for the symmetric heating with that of asymmetric heating cases of K1 = 3, 

K2 = 2 and K1 = 3, K2 = 1.5, is different and this difference increases with asymmetry and also the 

average Nusselt number at the lower temperature wall 
b2Nu gradually diverges with increase in 

asymmetry in the flow direction. But the average of 
b1Nu and 

b2Nu  is equal to 
bNu of  symmetric heating 

up to where bulk mean temperature becoming equal to lower wall temperature. Moreover, the bulk mean      
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temperature becoming equal to lower wall temperature will shifts towards the inlet with increase in 

asymmetry. Considering local Nussel number, actually the difference in Nub fd (Fully developed Nusselt 

number) for Tw1 = Tw2 and Tw1  Tw2 is due to comparing Nub at X
*
 = Xf

*
 for Tw1 = Tw2 with Nub at X

*
 = 

Xfa
*
, where Xfa

*
 is the fully developed length for asymmetric heating and Xfa

*
 > Xf

*
. For example, as 

shown in Figure (b), Xf
*
 for symmetric heating (K1 = 3, K2 = 3) is 0.04 whereas the fully developed 

length for asymmetric heating (K1 = 3, K2 = 2.99), i.e. Xfa
*
 is 0.5097 which is much higher than Xf

*
.    
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Figure 6:. Sinh-1(Nub) at different positions of X* for different asymmetries: (a) higher temperature wall (b) lower 

temperature wall 
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Chapter 5 

 
 5.1 Laminar Mixed Convection in a Channel, Thermally Developing Field.  
 

The governing equations, when the flow is assumed to be hydrodynamically developed and 

thermally developing, in a parallel plate vertical channel with constant wall temperatures, neglecting 

axial conduction are obtained by setting φ = 0 and v = 0, 
u

x




= 0 in the governing equations given by 

Eq.(1) to Eq.(4). The non-dimensionalised governing equations obtained by using non-dimensional 

variables given by Eq. (10) take the 

following form 

 

 

 

 

 

 

Figure 7.  Physical model and  

                 Coordinate system 

 

 

 

 

X-Momentum Equation 

 
2

2

d U Gr
48 0

dY Re
                                                                                   (44) 

Conservation of Energy 

22

2

dU
Pe U Br

X Y dY

     
    

    
                                                                                   (45)  

or  

X 

Cold wall 

U = 0 

 

1/2 

 

Y 

Hot wall 

g 

U= 0 

 

Y = - 1/4 Y = 0  Y = 1/4 

θ = 1 

θ = 1 2

1 2

K K

2 K K



 
 θ = 2 1

1 2

K K

2 K K



 
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22

* 2

dU
U Br

X Y dY

     
    

    
                                  (46) 

Where X
*
 = X / Pe 

 

The boundary conditions are, 

   θ = 1 at X = 0 for    -1/4 < Y < 1/4 

 U = 0, θ = 1 2

1 2

K K

2 K K



 
 at Y= -1/4 for all X  

             U = 0, θ = 2 1

1 2

K K

2 K K



 
 at Y=   1/4 for all X                                                         (47) 

Nusselt Number 

The defining equation for calculating the heat transfer coefficient, say at the left wall is given by, 

             1 w1 b

y L/ 2

T
k h (T T )

y
 


  


                                                                                   (48) 

 Local Nusselt number values based on Dh, are expressed in terms of non-dimensional temperature as,  

               Nu b-  = 
* 1 2 Y 1/ 4

1 2

1

K K Y

2 K K




 
 

 

                                                        (49) 

               Nu b+  = 
* 2 1 Y 1/ 4

1 2

1

K K Y

2 K K





 
 

 

                                                           (50) 

5.2 Results and Discussion 

            Variation of Nub (Nusselt number based on bulk mean temperature) with X
*
 for Br = 0 is shown  

 In fig 8 for different values of Gr/Re in the case of symmetric heating. Nub is gradually decreasing 

along the flow direction and reaches to a minimum in the fully developed region. High Nusselt numbers 

in the entry region are due to high temperature gradients prevailing over there. Nub increases with Gr/Re 

in the developing region, whereas fully developed Nub is independent of Gr/Re. This needs further 

investigation along with asymmetric heating. 
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Chapter 6 

 

6.1 Conclusion  

 
1. Nufd (fully developed Nusselt number) when Tw1  Tw2 is not the same as Nufd when Tw1 = Tw2 

even if (Tw1 - Tw2) is small. Since Xfd
*
 (Tw1  Tw2) >> Xfd

*
 (Tw1 = Tw2) 

2. bNu (Tw1  Tw2)  bNu (Tw1 = Tw2), if Tw1  Tw2 for X
*
 << Xfd

*
 or for all X

*
 < X

*
 for which Tb 

< Tw1 where Tw1 > Tw2. Thus there is no discontinuity in average Nusselt number 
bNu or in heat 

transfer. 

 

6.2. Further Work 

 

1. Study developing flow and thermal fields by employing full Navier-Stokes equations under 

asymmetric heating. 

2. Include viscous dissipation when the channel is arbitrarily inclined under asymmetric heating. 
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