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ABSTRACT 

 

Most of the structural components are generally subjected to dynamic loadings in their working 

life. Very often these components may have to perform in severe dynamic environment where in 

the maximum damage results from the resonant vibrations. Susceptibility to fracture of materials 

due to vibration is determined from stress and frequency. Maximum amplitude of the vibration 

must be in the limited for the safety of the structure. Hence vibration analysis has become very 

important in designing a structure to know in advance its response and to take necessary steps to 

control the structural vibrations and its amplitudes.  

 The non-linear or large amplitude vibration of plates has received considerable attention 

in recent years because of the great importance and interest attached to the structures of low 

flexural rigidity. These easily deformable structures vibrate at large amplitudes. The solution 

obtained based on the lineage models provide no more than a first approximation to the actual 

solutions. The increasing demand for more realistic models to predict the responses of elastic 

bodies combined with the availability of super computational facilities have enabled researchers 

to abandon the linear theories in favor of non-linear methods of solutions.  

 In the present investigation, large amplitude free vibration analyses of composite 

Mindlin’s plates have been carried out using a C
0 

eight noded Langragian element by finite 

element method.  The formulation is based on “First order shear deformation theory”. The large 



deformation effect on plate structures has been taken care by the dynamic version of von 

Karman’s field equation. The effects of variations in the Poisson’s ratio, amplitude ratio, 

thickness parameter & plate aspect ratio on the non-linear frequency ratio has also been included 

in the research.  

 Chapter 1 includes the general introduction and the scope of present investigation. The 

review of literature confining to the scope of the study has been presented in the Chapter 2. The 

general methods of analysis of the laminated composite plates have been briefly addressed in this 

chapter. The chapter 3 presents some information about the theoretical background of finite 

element method and composite materials. The Chapter 4 comprises the mathematical 

formulation of the finite elements. The elastic stiffness and the mass matrices for the plate 

element have been formulated. The boundary conditions have been implemented by eliminating 

the constrained degrees of freedom from the global stiffness matrix. The Chapter 5 briefly 

describes the computer program implementation of the theoretical formulation presented in 

Chapter 4. The different functions and the associated variables which have been used in writing 

the codes in MATLAB have been presented in brief. A few numbers of flow-chart of the 

computer program has been illustrated. Several numerical examples which include “large 

amplitude free vibration analysis” have been presented in the Chapter 6 to validate the 

formulation of the proposed method. The Chapter 7 sums up and concludes the present 

investigation. An account of possible scope of extension to the present study has been appended 

to the concluding remarks. Some important publications and books referred during the present 

investigation have been listed in the References section.  
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CHAPTER-1                                              INTRODUCTION 

  

2.1 Introduction 

  Fiber-reinforced composites, due to their high specific strength, and stiffness, 

which can be tailored depending on the design requirement, are fast replacing the traditional 

metallic structures in the weight sensitive aerospace and aircraft industries [14]. Indeed, 

composite materials present considerable potential for wide use in aircraft structures in the 

future, especially because of their advantages of improved toughness, reduction in structural 

weight, reduction in fatigue and corrosion problems [33]. Most of the structures  experiences 

severe dynamic environment during their  service life;  thus  the  excited  motions  are  likely  to  

have  large  amplitudes.  The  large amplitude  analysis  of  composite  structures  is  far  more  

complex  due  to anisotropy, material couplings,  and transverse shear  flexibility  effects 

compared  to  their  isotropic  counterparts. The use of composite materials require complex 

analytical methods in order to predict accurately their response to external loading, especially in 

severe environments, which may induce geometrically non-linear behaviour. This requires 

appropriate design criteria and accurate estimation of the fatigue life [60]. In addition to the usual 

difficulties encountered generally in the non-linear analysis of structures, related to the fact that 

the theorem of superposition does not hold, existence and uniqueness of the solutions are 

generally not guaranteed [25].     
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2.1  Finite element non-linear analysis 

 In the finite element formulation, we assume that the displacements of the finite element 

assemblage are infinitesimally small and the material is linearly elastic. In addition we also 

assume that the nature of the boundary conditions remain unchanged during the application of 

the loads on the finite element assemblage. With these assumptions, the finite element 

equilibrium equations derived were for static analysis 𝐾𝑈 = 𝑅. These equations correspond to a 

linear analysis of a structural problem because the displacement response U is a linear function 

of applied load vector R. Now applying a load of 𝒌𝑹 instead of R, where k is a constant, if the 

corresponding displacements are not kU, then we perform a nonlinear analysis [70].  In 

dynamic problem if (𝑤𝑚𝑎𝑥 > 0.2 × ℎ) or (𝑤𝑚𝑎𝑥 > 0.02 × 𝑏) then it is called “a problem of 

large amplitude plate vibration”, where wmax is maximum amplitude of the plate under 

vibration, h is thickness, b is the breadth of the plate taken. Now we will perform non-linear 

analysis for dynamic problem. 

 The solution of non-linear problems by the finite element method is usually attempted by 

one of the 3 basic techniques: incremental or stepwise procedures, iterative or Newton methods 

and step-iterative or mixed procedures. In case of incremental procedures, load is subdivided into 

many small partial loads or increments usually equal in magnitude though generally they need 

not be equal. The load is applied one increment at a time, and during the application of each 

increment the equations are assumed to be linear. In other words a fixed value of stiffness matrix 

is assumed throughout each increment, but stiffness matrix may take different values during 

different load increments. The solution for each step of loading is obtained as an increment of the 

displacements.  These displacement increments are accumulated to give the total displacement at 

any stage of loading and the incremental process is repeated until the total load is reached. The 
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incremental method is analogous to the numerical method used for the integration of systems of 

linear or non-linear differential equations, such as the Euler method or Runge-Kutta method. The 

iterative procedure is a sequence of calculations in which the body or structure is fully loaded in 

each iteration. Because some approximate constant value of the stiffness matrix is used in each 

step, equilibrium is not necessarily satisfied. After each iteration, the portion of the total loading 

that is not balanced is calculated and used in the next step to compute an additional increment of 

displacements. The process is repeated until equilibrium is approximated to some acceptable 

degree. Some of the iterative methods are direct iteration technique and Newton-Raphson 

techniques. The mixed procedures utilize a combination of the incremental and iterative 

schemes. Here the load is applied incrementally, but after each increment successive iterations 

are performed.  

Table 1.1 Classification of the non-linear analyses 

Types of analysis Description 

Material non-linearity only Infinitesimal displacement and strain; the stress-strain 

relation is non-linear. 

Large displacement, large 

rotation, but small strains 

Displacements and the rotations of fibers are large, but 

fiber extensions and angle changes between fibers are 

small. The stress-strain relationship may be linear or 

nonlinear. 

Large displacement, large 

rotation large strains 

Fiber extensions and angle changes between fibers are 

large, fiber displacement and rotations may also be large, 

the stress-strain relationship may be linear or non-linear. 
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The geometrically non-linear analysis of composite plates exhibits specific difficulties due to 

the anisotropic material behaviour, and to the higher non-linearity induced by a higher stiffness, 

inducing tensile mid-plane forces in plates higher, than that observed with conventional 

homogeneous materials. These structures with  complex  boundary  conditions,  loadings and  

shapes are not easily amenable to analytical  solutions and hence one has to resort  to numerical 

methods  such  as  finite  elements  [69]. A considerable  amount  of  effort  has  gone  into  the  

development  of  simple  plate  bending elements  based  on  the  Yang,  Norris  and  Stavsky  

theory  [63] which  is  a consistent extension of Mindlin's  theory for homogeneous isotropic 

plates. The advantages of this approach  are  (i)  it accounts for transverse  shear deformation,  

(ii)  it requires only C
0
 continuity of the  field variables,  and  (iii)  it  is possible to develop finite 

elements based on 6 engineering  degrees  of freedom viz. 3 translations and 3 rotations [2]. 

However, the low-order elements, i.e. the 3-node triangular, 4-node and 8-node quadrilateral 

elements, locked and exhibited violent stress oscillations. Unfortunately, this element which is 

having the shear strain term based on the Mindlin’s theory becomes very stiff when used to 

model thin structures, resulting inexact solutions. This effect is termed as shear-locking which 

makes this otherwise successful element unsuitable. Many  techniques have  been  tried  to  

overcome  this,  with  varying  degrees  of  success. The  most  prevalent technique  to  avoid  

shear  locking  for  such  elements  is  a  reduced  or  selective  integration scheme . In all 

these studies shear stresses at nodes are inaccurate and need to be sampled at certain optimal 

points derived from considerations based on the employed integration order .The  use of the  

same interpolation  functions  for transverse  displacement  and  section rotations  in  these 

elements results  in  a mismatch  of the order of polynomial  for  the  transverse  shear  strain  

field. This mismatch  in  the  order  of  polynomials  is  responsible  for  shear  locking [20]..    
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2.3 Present investigation 

The aim of this thesis is to apply the theoretical finite element model developed to analyze the 

large amplitude (geometrical non-linear) free dynamic response of laminated composite plate 

(Mindlin’s plate, 
𝒍𝒆𝒏𝒈𝒕𝒉

𝒕𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔
= 𝟏𝟎……𝟐𝟓) in order to investigate the effect of non-linearity on the 

non-linear resonance frequencies. Periodic displacement was assumed since the motion of plates 

vibrating freely with amplitude displacements of the order of their thickness is generally periodic 

[45]. An isoparametric quadratic plate bending element has been used. It also considers the shear 

deformation of the plate. Hence the formulation is applicable to both thin as well as thick plates. 

Consistent mass matrix has been used. 

 As the higher order terms in the strain-displacement relations are not known, in order to 

obtain the solution for non-linear free vibration problem an iterative procedure is adopted using 

linear strain-displacement relations for the first iteration. For the successive iterations the higher 

order terms of the strain-displacement relations have been evaluated from the scaled eigenvectors 

corresponding to given amplitude at a prescribed point of the previous iterations. The iteration 

process is continued until required convergence is reached. In the present investigation, non-

linear free vibration analysis is done for several quadrangular plates. Various boundary 

conditions have been considered. The effect of variations in some material and/or geometric 

properties of the plate have also been studied.  
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 CHAPTER-2                          LITERATURE REVIEW 

 

 2.1 Introduction 

The analysis of plate and shell structures has a long history starting with membrane theory and 

then the bending theories. Plate and shell analyses are mainly based on 3 theories:                

1. The classical plate theory (CPT)  

2. The first-order shear deformation theory (FSDT) 

3. The higher-order shear deformation theory (HSDT) 

The effect of transverse shear deformation, which may be essential in some cases, is included in 

FSDT and HSDT, whereas it is neglected in CPT due to the Kirchhoff hypothesis. The classical 

laminate plate theory is based on the Kirchhoff hypothesis that straight lines normal to the 

undeformed mid plane remain straight and normal to the deformed mid plane and do not undergo 

stretching in the thickness direction. These assumptions imply the vanishing of the transverse 

shear and transverse normal strains. The classical laminate theory has been used in the stress 

analysis of composite plates. However, it is only accurate for thin plates.  

              In FSDT, a first-order displacement field is assumed for transverse shear strain through 

the thickness. Appropriate shear correction factors are required in FSDT due to the assumption 

of constant transverse shear strain and shear stress through the plate thickness, which is 

contradictory to the zero shear stress condition on the bounding planes of the plate and actual 

stress states through the thickness. Higher-order polynomials are used to represent displacement 

components through the thickness of the plate in HSDT, and the actual transverse strain/stress 

through the thickness and the zero stress conditions on the top and bottom of a plate can be 
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represented. A more accurate approximation of the transverse shear effect can thus be obtained 

with no shear correction factors. However, complexities in formulation and large computational 

effort make it economically unattractive. The free vibration of plates has been largely studied 

using the first order shear deformation theory (FSDT).  The advent of digital computer along 

with its capability of exponentially increasing computing speed has made the analytically 

difficult problems amenable through the various numerical methods and thus making the 

literature rich in this area. 

2.2 Review on laminated composite plate 

Ganapati et al. [16] have studied nonlinear flexural vibrations of laminated orthotropic plate 

using C
0
 shear flexible QUAD-8 plate element. The nonlinear governing equations are solved 

using the direct iteration technique. Numerical results are obtained for isotropic, orthotropic and 

cross-ply laminated plates with simply-supported boundary conditions on immovable edges. It is 

observed that hardening behaviour is increased for thick plates and orthotropic plates. 

 Bhimaraddi et al. [9] have presented a critical analysis on nonlinear vibrations of heated 

antisymmetric angle-ply laminated plates using the parabolic shear deformation theory. Strains 

due to initial imperfections have also been retained using the von Karman type large deflection 

model. Numerical results are obtained by using the single mode approach to simply-supported 

plates, thus reducing five governing equations to a single nonlinear time differential equation 

involving quadratic and cubic nonlinearities. 

 Srinivas [55] has developed a sufficiently accurate refined analysis of composite 

laminates, which is much simpler than exact 3D analysis, for static and dynamic of composite 

laminates. He applied variational approach and considered transverse shear and inertia. 
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 Chandrashekhara et al. [12] have investigated non-linear static and dynamic analysis 

heated laminated plates: a finite element approach by the use of a shear flexible finite element 

model. A 

wide variety of results are presented for the nonlinear response of rectangular and circular plates 

under thermal and thermo-mechanical loads. The influences of anisotropy, boundary conditions, 

aspect ratio, rotary inertia and stacking sequence on the thermally induced response are studied. 

  Liew [28] solved the vibration of thick symmetric laminates by Reissner/Mindlin plate 

theory and the p-ritz method with various combinations of boundary conditions. to incorporate 

the effects of transverse shear deformation and rotary inertia, first-order Reissner/Mindlin plate 

theory is employed.  Finally results in terms of non-dimensional frequency parameters for 

various boundary conditions, aspect ratios and relative thickness ratios are presented. 

Large amplitude free flexural vibration analysis of composite stiffened plates have been carried 

out by Kant[14] using a nine-noded Lagrangian element. The element is based on the first order 

shear deformation theory. The large deformation effect of the stiffened plated structures has been 

taken care by the dynamic version of von Karman’s field equations. The non-linear equations 

obtained have been solved by the direct iteration technique using the linear modeshapes as the 

starting vectors. 

Singh et al. [56] investigated the large amplitude vibratory behaviour of unsymmetrically 

laminated plates. For this purpose, an efficient and accurate four-node shear flexible rectangular 

material with six degrees of freedom per node. The element assumes bi-cubic polynomial 

distribution with sixteen generalized undetermined coefficients for the transverse displacement. 

The element stiffness and mass matrices are computed numerically by employing 3 × 3 Gauss-

Legendre product rules. The element is found to be free of shear locking and does mot exhibit 
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any spurious modes. In order to compute the nonlinear frequencies, linear mode shape 

corresponding to the fundamental frequency is assumed as the spatial distribution and nonlinear 

finite element equations are reduced to a single nonlinear second-order differential equation. 

The geometrically non-linear free vibration of thin composite laminated plates is investigated by 

Harras et al. [19] using a theoretical model based on Hamilton's principle and spectral analysis 

previously applied to obtain the non-linear mode shapes and resonance frequencies of thin 

straight structures, such as beams, plates and shells. The Von Karman’s non-linear strain 

displacement relationships have been employed. In the formulation, the transverse displacement 

w of the plate mid-plane has been taken into account and the in-plane displacements u and v 

have been neglected in the non-linear strain energy expressions.  

 A large amplitude vibration analysis of pre-stressed functionally graded material (FGM) 

laminated plates that are composed of a shear deformable functionally graded layer and two 

surface-mounted piezoelectric actuator layers has been carried out  by Yang et al. [63]. 

Nonlinear governing equations of motion are derived within the context of Reddy’s higher-order 

shear deformation plate theory to account for transverse shear strain and rotary inertia. A semi-

analytical method that is based on one dimensional differential quadrature and Galerkin 

technique is proposed to predict the large amplitude vibration behavior. 

 Singha et al. [53] have presented the large amplitude free flexural vibration behaviors of 

thin laminated composite skew plates are investigated using finite element approach. The 

formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric 

non-linearity based on Von Karman’s assumptions is introduced. The non-linear governing 

equations obtained employing Lagrange’s equations of motion are solved using the direct 

iteration technique. The study reveals the redistribution of vibrating mode shape at certain 
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amplitude of vibration depending on geometric and lamination parameters of the plate. Also, the 

degree of hardening behavior increases with the skew angle and its rate of change depends on the 

level of amplitude of vibration. 

Amabili [5] has worked on theory and experiments for large-amplitude vibrations of rectangular 

plates with geometric imperfections. The von Karman nonlinear strain–displacement 

relationships are used to describe the geometric nonlinearity. A specific boundary condition, with 

restrained normal displacement at the plate edges and fully free in-plane displacements, not 

previously considered, has been introduced as a consequence that it is very close to the 

experimental boundary condition. The nonlinear equations of motion are studied by using a code 

based on pseudo-arclength continuation method. A thin rectangular stainless-steel plate has been 

inserted in a metal frame; this constraint is approximated with good accuracy by the newly 

introduced boundary condition. The plate inserted into the frame has been measured with a 3D 

laser system in order to reconstruct the actual geometry and identify geometric imperfections 

(out-of-planarity). The plate has been experimentally tested in laboratory for both the first and 

second vibration modes for several excitation magnitudes in order to characterize the 

nonlinearity of the plate with imperfections. Numerical results are able to follow experimental 

results with good accuracy for both vibration modes and for different excitation. 

Li and Cheng [27] have proposed Differential quadrature method for nonlinear vibration of 

Orthotropic plates with finite deformation and transverse shear effect. Based on the Reddy’s 

theory of plates with the effect of higher-order shear deformations, the governing equations for 

nonlinear vibration of orthotropic plate s with finite deformations are presented. The nonlinear 

free vibration is analyzed by the differential quadrature method. The differential quadrature 

approach suggested by Wang and Bert is extended to handle the multiple boundary conditions of 
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the plate. The results show that the presented differential quadrature method is fairly reliable and 

valid. Influences of geometric and material parameters, transverse shear deformations and 

rotation inertia, as well as vibration amplitudes, on the nonlinear free vibration characteristics of 

orthotropic plates are studied. Sundararajan et al. [57] have developed the non-linear 

formulation of free flexural vibrations of functionally graded rectangular and skew plates under 

thermal environments, based on von Karman’s assumptions. The nonlinear governing equations 

obtained using Lagrange’s equations of motion are solved   using finite element procedure.  The 

results obtained here reveal that the temperature field and gradient index have significant effect 

on the nonlinear vibration of the functionally graded plate. 

 The large amplitude, geometrically non-linear periodic vibrations of shear deformable 

composite laminated plates, a p-version, hierarchical finite element is employed to define the 

model, taking into account the effects of the rotary inertia, transverse shear and geometrical non-

linearity Ribeiro [45]. Harmonic forces are applied transversely to the plates and the steady-state 

periodic solutions are sought in the time domain by the shooting method. Fixing the amplitude of 

excitation and varying its frequency, response curves are derived. Several cases of modal 

coupling are found and the ensuing motions are analysed. The influences that the fibers 

orientations have on the forced vibrations are investigated. The efficiency and accuracy of the 

methods employed are discussed. 

Malekzadeh [31] used a differential quadrature (DQ) method, to present large amplitude free 

vibration analysis of laminated composite skew thin plates. The governing equations are based 

on the thin plate theory (TPT) and the geometrical nonlinearity is modeled using Green’s strain 

in conjunction with von Karman assumptions. Some new results for laminated composite skew 

plates with different mixed boundary conditions are presented and are compared with those 
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obtained using the first order shear deformation theory based DQ(FSDT-DQ) method. Excellent 

agreements exist between the solutions of the two approaches but with much lower 

computational efforts of the present DQ methodology with respect to FSDT-DQ method. 

                                A nine-noded isoparametric plate-bending element has been used for the 

analysis of free undamped vibration of isotropic and fiber reinforced laminated composite plates 

Pandit et al.[39]. The effect of shear deformation has been incorporated in the formulation by 

considering the first-order shear deformation theory. An effective mass lumping scheme with 

rotary inertia has been recommended. Two types of mass lumping schemes have been formed. In 

one lumping scheme rotary inertia has also been introduced. Numerical examples of isotropic 

and composite rectangular plates having different fiber orientations angles, thickness ratios, and 

aspect ratio have been solved. The present results are very close to the analytical solutions. Few 

examples have been presented as new results. 

Yongsheng et al. [65] have developed large Amplitude Flexural Vibration of the Orthotropic 

Composite Plate Embedded with Shape Memory Alloy Fibers. Based on the nonlinear theory of 

symmetrically laminated anisotropic plates, the governing equations of flexural vibration in 

terms of displacement and stress functions are derived. The numerical results show that the 

relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate 

has similar characteristics compared with that of the linear one, and the effects of temperature on 

forced response behavior during phase transformation from Martensite to Austenite are 

significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration 

amplitude on the dynamical behavior of the plate are also discussed. 

 Allahverdizadeh et al. [3] Vibration amplitude and thermal effects on the nonlinear 

behavior of thin circular functionally graded plates, formulated in terms of von-Karman’s 
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dynamic equations, and a semi-analytical approach is developed. The plate thickness is constant 

and the material properties of the functionally graded plate are assumed to vary continuously 

through the thickness, according to a power-law distribution of the volume fraction of the 

constituents. For harmonic vibrations, by using assumed-time-mode method and Kantorovich 

time averaging technique, governing equations are solved. The nonlinear frequencies and 

associated stresses are determined at large amplitudes of vibration. Effects of material 

compositions and thermal loads on the vibration characteristics and stresses are examined. The 

numerical results obtained here are compared with available published results, based on various 

approaches. Houmat [43] has proposed large amplitude free vibration of shear deformable 

laminated composite annular sector plates by a sector p-element. The effects of out-of-plane 

shear deformations, rotary inertia, and geometric non- linearity are taken into account. The shape 

functions are derived from the shifted Legendre orthogonal polynomials.  The accuracy of the 

solution is improved simply by increasing the polynomial order. The time-dependent coefficients 

are described by a truncated Fourier series. The equations of free motion are obtained using the 

harmonic balance method and solved by the linearized updated mode method. The linear 

frequencies are found to converge rapidly down-wards as the polynomial order is increased.   

Lal et al. [25] have dealt with nonlinear free vibration of laminated composite plates on elastic 

foundation with random system properties. The basic formulation of the problem is based on 

higher-order shear displacement theory including rotatory inertia effects and von Karman-type 

Non-linear strain displacement relations. A C
0
 finite element is used for descretization of the 

laminate. A direct iterative method in conjunction with first-order Taylor series based 

perturbation technique procedure is developed to solve random nonlinear generalized eigenvalue 
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problem. The developed probabilistic procedure is successfully used for the nonlinear free 

vibration problem with a reasonable accuracy. 

Malekzadeh [32] has developed differential quadrature large amplitude free vibration analysis 

of laminated skew plates based on FSDT based on the first order shear deformation theory 

(FSDT) using differential quadrature method (DQM). The geometrical nonlinearity is modeled 

using Green’s strain and von Karman assumptions in conjunction with the FSDT of plates. After 

transforming and discretizing the governing equations, which includes the effects of rotary 

inertia, direct iteration technique as well as harmonic balance method is used to solve the 

resulting discretized system of equations. The effects of skew angle, thickness-to-length ratio, 

aspect ratio and also the impact due to different types of boundary conditions on the convergence 

and accuracy of the method are studied.  

A mesh-free least-squares-based finite difference (LSFD) method is applied for solving large-

amplitude free vibration problem of arbitrarily shaped thin plates by Wu et al. [62]. In this 

approximate numerical method, the spatial derivatives of a function at a point are expressed as 

weighted sums of the function values of a group of supporting points. This method can be used 

to solve strong form of partial differential equations (PDEs), and it is especially useful in solving 

problems with complex domain geometries due to its mesh-free and local approximation 

characteristics. In this study, the displacement components of thin plates are constructed from the 

product of a spatial function and a periodic temporal function. Consequently, the nonlinear PDE 

is reduced to an ordinary differential equation (ODE) in terms of the temporal function.  

 Gajbir et al. [15] have studied Nonlinear vibration analysis of composite laminated and 

sandwich plates with random material properties Nonlinear vibration analysis is performed using 

a C
0
 assumed strain interpolated finite element plate model based on Reddy’s third order theory. 
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An earlier model is modified to include the effect of transverse shear 

variationalongtheplatethicknessandVon-Karmannonlinearstrainterms.Monte Carlo Simulation 

with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear 

natural frequencies of the plate due to randomness in its material properties.  This chaotic nature 

of the dispersion of nonlinear eigenvalues is also revealed in eigenvalue sensitivity analysis. 

 

                     Jayakumar et al. [23] have studied on nonlinear free vibrations of simply 

supported piezo-laminated rectangular plates with immovable edges utilizing Kirchhoff’s 

hypothesis and von Karman strain–displacement relations. The effect of random material 

properties of the base structure and actuation electric potential difference on the nonlinear free 

vibration of the plate is examined. The study is confined to linear-induced strain in the 

piezoelectric layer applicable to low electric fields. The von Karman’s large deflection equations 

for generally laminated elastic plates are derived in terms of stress function and transverse 

deflection function.   

 A review of the recent development of the finite element analysis for laminated composite plates 

from 1990 is presented by Zhang et al. [68]. The literature review is devoted to the recently 

developed finite elements based on the various laminated plate theories for the free vibration and 

dynamics, buckling and post-buckling analysis, geometric nonlinearity and large deformation 

analysis, and failure and damage analysis of composite laminated plates. The material 

nonlinearity effects and thermal effects on the buckling and post-buckling analysis, the first-ply 

failure analysis and the failure and damage analysis were emphasized specially. The future 

research is summarized finally. 
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CHAPTER-3               THEORETICAL BACKGROUND 

 

 

3.1 Basic concept 

In order to analyze an engineering system, a mathematical model is developed to describe the 

system. While developing the mathematical model, some assumptions are made for 

simplification. Finally, the governing mathematical expression is developed to describe the 

behavior of the system. The mathematical expression usually consists of differential equations 

and given conditions. These differential equations are usually very difficult to obtain solutions 

which explain the behavior of the given engineering system. With the advent of high 

performance computers, it has become possible to solve such differential equations. Various 

numerical solution techniques have been developed and applied to solve numerous engineering 

problems in order to find their approximate solutions. Especially, the finite element method has 

been one of the major numerical solution techniques. One of the major advantages of the finite 

element method is that a general purpose computer program can be developed easily to analyze 

the various kinds of problems.  

                                                    The finite element method requires division of problem domain 

into many subdomains and each subdomain is called a finite element. Therefore, the problem 

domain consists of many finite element patches. The finite element method (FEM), or finite 

element analysis (FEA), it based on a idea of building a complicated object with simple blocks, 
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or dividing a complicated object into small and manageable pieces. Application of this simple 

idea can be found everywhere in life, as well as in engineering. 

                                                          The advent of the digital computer along with its 

exponentially increasing computational speed as well as core memory capacity has given the 

investigators a new direction to the analysis of the complicated structures thereby evolving 

simpler and more efficient methodologies.  The   widely used numerical methods to solve PDEs 

are the  

 Finite element method (FEM) 

 Finite volume methods (FVM)  

 Finite difference methods (FDM)  

 Exceptionally efficient higher-order version hp-FEM  

 Generalized finite element method (GFEM) 

 Extended finite element method (XFEM)   

 Spectral finite element method (SFEM) 

 Mesh-free finite element method  

 Discontinuous Galerkin finite element method (DGFEM), etc 

Among all the existing numerical methods, the finite element method is undoubtedly the most 

versatile and accurate one specially for structures having irregular geometry, material anisotropy, 

non-homogeneity and any type of loading and boundary conditions. 

3.1.1 Why finite element method? 

 Design analysis: hand calculations, experiments, and computer simulations. 

 FEM/FEA is the most widely applied computer simulation method in engineering.  

 Closely integrated with CAD/CAM applications. 
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3.1.2 Applications of FEM in engineering 

 Mechanical/Aerospace/Civil/Automobile Engineering 

 Structure analysis(static/dynamics, linear/nonlinear) 

 Thermal/fluid flows 

 Electromagnetic 

 Geomechanics 

 Biomechanics 

3.1.3 A brief history of FEM 

 1943--------Courant (Variational methods) 

 1956--------Turner, Clough, Martin and Topp (Stiffness) 

 1960--------Clough(“Finite element”, plane problem) 

 1970--------application of mainframe computers 

 1980--------Microcomputers, pre and postprocessors 

 1990--------Analysis of large structural systems 

3.1.4 Computer implementations  

 Preprocessing (build FE model, loads and constraints) 

 FEA solver (assemble and solve system of equations ) 

 Postprocessing (sort and display the results) 

3.1.5 Available Commercial FEM Software Packages 

 ANSYS (General purpose PC and workstations) 

 SDRC/I-DEAS (Complete CAD/CAM/CAE package ) 

 NASTRAN (General purpose FEA on mainframe) 
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 ABAQUS (Nonlinear and dynamic analyses) 

 COSMOS (General purpose FEA) 

 ALGOR (PC and workstations) 

 PATRAN (Pre /Post Processor) 

 Hyper-Mesh (Pre /Post Processor) 

 Dyna-3D (crash/impact analysis)  

3.2 Composites 

Generally speaking any material consisting of two or more components with different properties 

and distinct boundaries between the components can be referred to as a composite material. 

Moreover, the idea of combining several components to produce a material with properties that 

are not attainable with the individual components has been used by man for thousands of years. 

Correspondingly, the majority of natural materials that have emerged as a result of a prolonged 

evolution process can be treated as composite materials. Composite materials can be classified 

into two groups such as ‘filled materials‟ and „Reinforced materials‟. 

Table 3.1 Difference between filled and reinforced composite materials 

Filled materials Reinforced materials 

The main feature of these materials is the 

existence of some basic or matrix material 

whose properties are improved by filling it 

with some particles. Usually the matrix 

volume fraction is more than 50% in such 

materials. 

The basic components of these materials 

(sometimes referred to as „advanced 

composites‟) are long and thin fibers 

possessing high strength and stiffness. The 

fibers are bound with a matrix material 

whose volume fraction less than 50%.  
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Fibers used in advanced composite are two types are natural fibers (i.e. carbon, boron, steel, 

glass, aramid, polyethylene fibers) and natural fibers (i.e. wood, coir, bamboo, wool, cotton, rice, 

natural silk, asbestos). Fig.3.1 shows different types of fabrications in composites. 

 

Fig.3.1 Plain (a), twill (b), and (c) biaxial woven, (d) triaxial woven fabrics 

 

3.3 Stress-strain relationships 

In a composite material the fibers may be oriented in a arbitrary manner. Depending upon the 

arrangements of fibers, the material may behave differently in different directions. According to 

their behaviour, composites may be characterized as generally: 

Anisotropic (There are no symmetric planes w.r.t the alignment of fibers. Fibers are arranged in        

three- non mutual perpendicular direction)                                                                                                                                           

Monoclinic (There are one symmetric planes w.r.t the alignment of fibers.)                                                                                                                                

Orthotropic (There are 3 mutually perpendicular symmetric planes w.r.t the alignment of fiber)                   
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Transversely isotropic (there are three-planes of symmetry and, as such, it is orthotropic. In one 

of the planes of symmetry the material is treated as isotropic. An example of transversely 

isotropic material is a composite reinforced with continuous unidirectional fibers with all the 

fibers aligned in x1 direction. In this case the material in the plane perpendicular to fibers(x2-x3  

plane) is treated as isotropic.                              

Isotropic (every plane is a plane of symmetry. For example a composite containing a large no. of 

randomly oriented fibers behaves in an isotropic manner) 

3.3.1 Generalized Hooke‟s law 

Cauchy generalized Hooke's law to 3D elastic bodies and stated that the 6 components of stress 

are linearly related to the six components of strain. The stress-strain relationship written in 

matrix form, where the six components of stress and strain are organized into column vectors, is 

                                  

 
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦 

 
 

 
 

=

 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46

𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56

𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66 
 
 
 
 
 

 
 
 

 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦 

 
 

 
 

                           (3.3.1) 

In general, stress-strain relationships such as these are known as constitutive relations. There are 

36 stiffness matrix components. However, it can be shown that conservative materials possess a 

strain energy density function and as a result, the stiffness and compliance matrices are 

symmetric. Therefore, only 21 stiffness components are actually independent in Hooke's law. 

The vast majority of engineering materials are conservative. Please note that the stiffness matrix 

is traditionally represented by the symbol C, while S is reserved for the compliance matrix. This 

convention may seem backwards, but perception is not always reality.   

                                                              𝜎 =  𝐶  𝜀                                                                (3.3.2) 

                                                              𝜀 =  𝑆  𝜎                                                                (3.3.3) 
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                                                            𝐶 =  𝑆 −1                                                                  (3.3.4) 

3.3.2 Compliance matrix for different materials 

 

 𝑆 =

 
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜈21

𝐸2
−

𝜈31

𝐸3
0 0

𝜈61

𝐺12

−
𝜈12

𝐸1

1

𝐸2
−

𝜈32

𝐸3
0 0

𝜈62

𝐺12

−
𝜈13

𝐸1
−

𝜈23

𝐸2

1

𝐸3
0 0

𝜈63

𝐺12

0 0 0
1

𝐺23

𝜈54

𝐺13
0

0 0 0
𝜈45

𝐺23

1

𝐺13
0

𝜈16

𝐸1

𝜈26

𝐸2

𝜈36

𝐸3
0 0

1

𝐺12 
 
 
 
 
 
 
 
 
 

         𝑀𝑂𝑁𝑂𝐶𝐿𝐼𝑁𝐼𝐶                                        (3.3.5) 

 

 𝑆 =

 
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜈21

𝐸2
−

𝜈31

𝐸3
0 0 0

−
𝜈12

𝐸1

1

𝐸2
−

𝜈32

𝐸3
0 0 0

−
𝜈13

𝐸1
−

𝜈23

𝐸2

1

𝐸3
0 0 0

0 0 0
1

𝐺23
0 0

0 0 0 0
1

𝐺13
0

0 0 0 0 0
1

𝐺12 
 
 
 
 
 
 
 
 
 

          𝑂𝑅𝑇𝐻𝑂𝑇𝑅𝑂𝑃𝐼𝐶                                     (3.3.6) 

 

 𝑆 =

 
 
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜈21

𝐸2
−

𝜈21

𝐸2
0 0 0

−
𝜈12

𝐸1

1

𝐸2
−

𝜈32

𝐸2
0 0 0

−
𝜈12

𝐸1
−

𝜈23

𝐸2

1

𝐸2
0 0 0

0 0 0
2 1+𝜈23 

𝐸2
0 0

0 0 0 0
1

𝐺13
0

0 0 0 0 0
1

𝐺13 
 
 
 
 
 
 
 
 
 
 

   𝑇𝑅𝐴𝑁𝑆𝑉𝐸𝑅𝑆𝐸𝐿𝑌 ISOTROPIC            (3.3.7) 
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 𝑆 =

 
 
 
 
 
 
 
 
 
 
 

1

𝐸 
−

𝜈 

𝐸 
−

𝜈 

𝐸 
0 0 0

−
𝜈 

𝐸 

1

𝐸 
−

𝜈 

𝐸 
0 0 0

−
𝜈 

𝐸 
−

𝜈 

𝐸 

1

𝐸 
0 0 0

0 0 0
 2 1+𝜈 

𝐸 
0 0

0 0 0 0
2 1+𝜈 

𝐸
0

0 0 0 0 0
2 1+𝜈 

𝐸  
 
 
 
 
 
 
 
 
 
 

          𝐼𝑆𝑂𝑇𝑅𝑂𝑃𝐼𝐶                                   (3.3.8) 

 

 

3.3.3 Stiffness matrix [C] for different materials 

 

                                                     𝐶 =

 
 
 
 
 
  𝐿  

0 0 0
0 0 0
0 0 0

 

 
0 0 0
0 0 0
0 0 0

  𝑀 
 
 
 
 
 
 

                                              (3.3.9) 

 

 

 

Value of [L] and [M] for orthotropic material 

 𝐿 𝑂 =
1

𝐷𝑂

 
 
 
 
 
 
 𝐸1  1 −

𝐸3

𝐸2
𝜈23

2  𝐸2  𝜈12 +
𝐸3

𝐸2
𝜈13𝜈23 𝐸3 𝜈13 +  𝜈12𝜈23 

𝐸2  𝜈12 +
𝐸3

𝐸2
𝜈13𝜈23 𝐸2  1 −

𝐸3

𝐸1
𝜈13

2  𝐸3  𝜈23 +
𝐸2

𝐸1
𝜈12𝜈13 

𝐸3 𝜈13 + 𝜈12𝜈23 𝐸3  𝜈23 +
𝐸2

𝐸1
𝜈12𝜈13 𝐸3  1 −

𝐸2

𝐸1
𝜈12

2  
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𝐷𝑂 =
 𝐸1𝐸2𝐸3 − 𝜈23

2 𝐸1𝐸3
2 − 𝜈12

2 𝐸2
2𝐸3 − 2𝜈12𝜈13𝜈23𝐸2𝐸3

2 − 𝜈13
2 𝐸2𝐸3

2 

𝐸1𝐸2𝐸3
 

 

 

 

 𝑀 𝑂 =  

𝐺23 0 0
0 𝐺13 0
0 0 𝐺12

  

 

Value of [L] and [M] for Transversely Isotropic material 

 

 

  𝐿 𝑇𝐼 =
1

𝐷𝑇𝐼

 
 
 
 
 
 
𝐸1 1 − 𝜈23

2  𝐸2𝜈12 1 + 𝜈23 𝐸2𝜈12 1 + 𝜈23 

𝐸2𝜈12 1 + 𝜈23 𝐸2  1 −
𝐸2

𝐸1
𝜈12

2  𝐸2  𝜈23 +
𝐸2

𝐸1
 𝜈12

2   

𝐸3𝜈12 1 + 𝜈23 𝐸3  𝜈23 +
𝐸2

𝐸1
𝜈12

2   𝐸2  1 −
𝐸2

𝐸1
𝜈12

2  
 
 
 
 
 
 

 

 

𝐷𝑇𝐼 =  1 − 𝜈23
2 − 2 1 + 𝜈23 

𝐸2

𝐸1
𝜈12

2   

 

 𝑀 𝑇𝐼 =

 
 
 
  

𝐸2

2 1 + 𝜈23 
0 0

0 𝐺12 0
0 0 𝐺12 

 
 
 
 

Value of [L] and [M] for Isotropic material 
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[𝐿]𝐼 =
𝐸

 1 + 𝜈  1 − 2𝜈 
 
1 − 𝜈 0 0

0 1 − 𝜈 0
0 0 1 − 𝜈

  

 

 𝑀 𝐼 =

 
 
 
 
 
 
  

𝐸 

2 1 + 𝜈  
0 0

0
𝐸 

2 1 + 𝜈  
0

0 0
𝐸 

2 1 + 𝜈   
 
 
 
 
 
 

 

       Table 3.2 Engineering material constants 

  MATERIAL INDEPENDENT DEPENDENT 

MONOCLINIC 𝐸1 ,𝐸2,𝐸3  

𝐺23 ,𝐺13 ,𝐺12  

𝜈12  , 𝜈13  , 𝜈23 

𝜈16 , 𝜈26 , 𝜈45 , 𝜈36 

 

ORTHOTROPIC 𝐸1 ,𝐸2,𝐸3 

𝐺23 ,𝐺13 ,𝐺12  

𝜈12  , 𝜈13  , 𝜈23 

 

TRANSVERSELY 

ISOTROPIC 

𝐸1 ,𝐸2 

𝐺12  

𝜈12 , 𝜈23 

𝐸3 = 𝐸2,𝐺13 = 𝐺12  

𝐺23 =
𝐸2

2 1 + 𝜈23 
 

𝜈13 = 𝜈12  

ISOTROPIC 𝐸1 = 𝐸  

𝜈12 = 𝜈  

𝐸2 = 𝐸3 = 𝐸, 𝜈13 = 𝜈23 = 𝜈 

𝐺23 = 𝐺13 = 𝐺12 =
𝐸

2 1 + 𝜈 
 

 



26 
 

 

3.4 Plane-strain condition 

There are circumstances when the stresses and strains do not vary in a certain direction. This 

direction is designated by z-axis. Although the stresses and strains do not vary along z-axis, they 

may vary in planes perpendicular to z-axis. This condition is referred to as plane-strain condition. 

When the plane-strain condition exists, the three dimension analysis simplifies considerably. For 

an isotropic material, the normal strain εz and the out-of-plane shear strain 𝛾𝑥𝑧  𝑎𝑛𝑑 𝛾𝑦𝑧  are zero. 

For fiber reinforced composites these strains are not necessarily zero. 

3.5 Plane-stress condition 

Under the plane-stress condition one of the normal stresses and both out-of-plane shear stresses 

are zero. Plane stress condition may approximate the stresses in a thin-reinforced composite plate 

when the fibers are parallel to the x-y plane and the plate is loaded by forces along the edges 

such that the forces are parallel to the plane of the plate and are distributed uniformly over the 

thickness. The plane-stress condition does not provide the stresses exactly, not even for this thin-

plate problem. Nevertheless, for many thin wall structures it is a useful approximation, yielding 

answers within reasonable accuracy. 

                                                                            𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0                                             (3.5.1) 

                                                                    𝜎 =  𝑄  𝜀                                                         (3.5.2) 

                                               

𝜎1

𝜎2

𝜏12

 =  

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

  

𝜀1

𝜀2

𝛾12

                                                (3.5.3) 
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                               𝑄 =

 
 
 
 

𝐸1

 1−𝜈12𝜈21 

𝜈12𝐸2

 1−𝜈12𝜈21 
0

𝜈12𝐸2

 1−𝜈12𝜈21 

𝐸2

 1−𝜈12𝜈21 
0

0 0 𝐺12 
 
 
 

    𝑂𝑅𝑇𝐻𝑂𝑇𝑅𝑂𝑃𝐼𝐶                          (3.5.4) 

 𝑄 =  𝑆 −1 =  

 
 
 
 
 

1

𝐸1
−

𝜈21

𝐸2
0

−
𝜈12

𝐸1

1 

𝐸2
0

0 0
1

𝐺13 
 
 
 
 
−1

   𝑇𝑅𝐴𝑁𝑆𝑉𝐸𝑅𝑆𝐸𝐿𝑌 𝐼𝑆𝑃𝑇𝑅𝑂𝑃𝐼𝐶                              (3.5.5) 

 

                                                𝑄 =
𝐸

1−𝜈2  

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

      𝐼𝑆𝑂𝑇𝑅𝑂𝑃𝐼𝐶                                 (3.5.6) 

                                                                  𝑄 𝜃 =  𝑇 𝑇 𝑄  𝑇                                                          (3.5.7) 

                                             𝑇 =  
𝑐2 𝑠2 −2𝑐𝑠
𝑠2 𝑐2 2𝑐𝑠
𝑐𝑠 −𝑐𝑠 𝑐2 − 𝑠2

                                                         (3.5.8) 

𝑐 =  𝑐𝑜𝑠𝜃, 𝑠 =  𝑠𝑖𝑛𝜃 

[Q] and [S] are the stiffness and compliance matrices of different „single layer composite plate‟ 

under plane-stress condition respectively. [Q]θ   is the stiffness matrix of „single layer composite 

plate’ under plane-stress condition when fibers are arranged at an angle θ with the x-axis on x-y 

plane. [T] is the transformation matrix. 

3.6 Laminated composite 

Composites are frequently made up of layers (plies) bonded together to form a laminate. A layer 

may consist of short fibers, unidirectional continuous fibers, or woven or braided fibers 

embedded in a matrix. A layer containing woven or braided fibers is referred to as fabric. 

Adjacent plies having the same material and same orientation are referred to as a ply group. 

Since the properties and the orientations are the across the ply group may be treated as one layer.  
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3.6.1 Basic assumptions 

The following basic assumption are made 

 Each lamina or ply of the laminate is quasi-homogeneous and orthotropic, but the 

orientation of the fiber may change from lamina to lamina.  

 All displacements are continuous throughout the lamina. 

 All deformations in the laminate are considered to be small. 

 The laminate is thin and loaded in its plane only. The laminate and its layers are assumed 

to be in a plane stress condition expect the edges  (𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0). 

 Transverse shear strains 𝜏𝑥𝑧  𝑎𝑛𝑑 𝜏𝑦𝑧  are negligible. This implies that a line originally 

straight and perpendicular to laminate remain straight and perpendicular to the deformed 

state. 

 The bonds between plies in a laminae are perfect, that is plies will not slip over each 

other, and displacements and strains are continuous across interface of plies.  

 Stress-strain and strain-displacement relations are linear. 

3.6.2 Laminate code 

The orientations of unidirectional continuous plies are specified by the angle θ w.r.t x-axis. The 

angle θ is positive in the counter clockwise direction. Example:-  

[453/04/902/60]       This laminate contains four ply groups, the first contain thre plies in the 45-

degree direction, the second containing four plies in 0-degree direction, the third containing two 

plies in the 90-degree direction, the fourth containing one ply in the 60-degree direction. 

Different types of  

Laminates on the basis of ply orientation are:- 
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 Symmetrical laminates - Laminate is symmetrical w.r.t midplane 

ex:   [452/02]s or [45/45/0/0/0/0/45/45] 

 Balanced laminates – For every ply in +θ direction there is an identical ply in –θ 

direction.  Ex.  [452/02/-452/-02] 

 Cross-ply laminates -  Ex. [0/90/90/0/0] 

 Angle-ply laminates – Ex. [45/45/-45/-45/45] 

 π/4 laminates  -  it consists plies in 0, 45, 90 and -45 degree directions. The no. of plies 

in each direction is same (balanced laminate). In addition, the layup is also symmetrical. 

 

45 

45 

0 

0 

0 

0 

45 

45 

  

 

Fig.3.2 Different layers of a laminate 

3.6.3 Stiffness matrices of thin laminates 

 

[452/02]s 

Bottom layer 

Top layer 
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Thin laminates are characterized by 3 stiffness matrices denoted [a], [b] and [d]. In this section 

we determine these matrices for thin, flat laminate undergoing small deformations. The analyses 

are based on the laminate plate theory and are formulated using the approximations that the 

strains vary linearly across the laminate, (out of plane) shear deformations are negligible and the 

out-of-plane normal stress 𝜎𝑧  and the shear stresses 𝜏𝑥𝑧 , 𝜏𝑦𝑧  are small compared with the in-plane 

𝜎𝑥 ,𝜎𝑦  𝑎𝑛𝑑 𝜎𝑥𝑦  stresses. These approximations imply that the stress-strain relationship under 

plane-stress conditions may be applied.   

 𝜎 =  𝑄  𝜀   (3.6.1) 

                                                             𝜀 =  𝜀0 + 𝑧 𝜅                                                        (3.6.2) 

                                                            𝜎 =  𝑄  𝜀0 +  𝑄  𝑧 𝜅                                                    (3.6.3) 

                                           𝑁 =  𝜎 𝑑𝑧
ℎ𝑡
−ℎ𝑏

=  ( 𝑄  𝜀0 +  𝑄  𝑧 𝜅 )
ℎ𝑡
−ℎ𝑏

 𝑑𝑧                             (3.6.4) 

                           

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

 =   𝑄  
ℎ𝑡
−ℎ𝑏

 

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

  𝑑𝑧 +  𝑧  ℎ𝑡
−ℎ𝑏

 𝑄   𝑑𝑧  

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

                                      (3.6.5) 

 

                      

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

 =  𝑧  𝑄  
ℎ𝑡
−ℎ𝑏

 

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

  𝑑𝑧 +  𝑧2 ℎ𝑡
−ℎ𝑏

 𝑄   𝑑𝑧  

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

                                     (3.6.6) 

                              𝜅𝑥 = −
𝜕2𝑤0

𝜕𝑥2 ,     𝜅𝑦 = −
𝜕2𝑤0

𝜕𝑦2 , 𝜅𝑥𝑦 = −
2 𝜕2𝑤0

𝜕𝑥  𝜕𝑦
                                            (3.6.7) 

 

                                                     𝑎 =   𝑄  
ℎ𝑡
−ℎ𝑏

 𝑑𝑧                                                                (3.6.8) 

 

                                                  𝑏 =  𝑧  𝑄  
ℎ𝑡
−ℎ𝑏

 𝑑𝑧                                                                (3.6.9) 
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                                                  𝑑 =  𝑧2  𝑄  
ℎ𝑡
−ℎ𝑏

 𝑑𝑧                                                            (3.6.10) 

 

𝑎𝑖𝑗 =   𝑄 𝑖𝑗
ℎ𝑡
−ℎ𝑏

 𝑑𝑧 ,   𝑏𝑖𝑗 =   𝑧  𝑄 𝑖𝑗
ℎ𝑡
−ℎ𝑏

 𝑑𝑧  , 𝑑𝑖𝑗 =   𝑧2 𝑄 𝑖𝑗
ℎ𝑡
−ℎ𝑏

 𝑑𝑧                                    (3.6.11) 

 

                                                       𝑄  =  𝑄 𝜃                                                                       (3.6.12) 

 

                                              𝑎𝑖𝑗 =   𝑄 𝑖𝑗  𝑘   𝑧𝑘 − 𝑧𝑘−1  
𝐾
𝑘=1                                                     (3.6.12) 

 

                                        𝑏𝑖𝑗 =
1

2
  𝑄 𝑖𝑗  𝑘   𝑧𝑘

2 − 𝑧𝑘−1
2  

𝐾
𝑘=1                                                     (3.6.13) 

 

                                         𝑑𝑖𝑗 =
1

3
  𝑄 𝑖𝑗  𝑘

  𝑧𝑘
3 − 𝑧𝑘−1

3  
𝐾
𝑘=1                                                    (3.6.14) 

 

Where, 𝜺𝒙
𝟎, 𝜺𝒚

𝟎,𝜸𝒙𝒚
𝟎  are the strains in the reference plane (in-plane deformations) and 𝜿𝒙,𝜿𝒚,𝜿𝒙𝒚 

are the curvatures of the reference plane of the laminate.  [Q] stiffness matrix of a ply (single 

layer) when fibers are along x-axis.   𝑸   is the stiffness of a ply when fibers are aligned at an 

angle with x-axis.  𝑵𝒙: Stress resultant in the x direction over a unit width along the y direction. 

𝑵𝒙𝒚 (𝑜𝑟 𝑵𝒚𝒙 ): Membrane shear stress resultant over a unit width along the y direction (or 

respectively along the x direction): 𝑴𝒙 is Moment resultant along the x axis, due to the stresses 

𝜎𝑦   over a unit width along the x direction. 𝑴𝒙𝒚 (𝑜𝑟 –𝑴𝒚𝒙): Twisting moment along the x axis 

(or y axis), due to the shear stress 𝜏𝑥𝑦  over a unit width along the y direction (or x direction): K is 

the total number of plies (or ply groups) in the laminate. 𝒛𝒌, 𝒛𝒌−𝟏 are the distances from the 
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reference plane to the two surfaces of the k
th

 ply.  𝑸 𝒊𝒋 𝒌
 is the element stiffness matrix of the k

th
 

ply, ht and hb are the height of the topmost and bottom surfaces from the reference plane. [a], 

[b], [d] are the stiffness matrix of the laminate. Fig 3.3 shows different layers in a laminate with 

reference plane. 

 

 

K
th

 ply 

       

k
th 

ply 

 

2
nd

 ply 

1
st
 ply 

 

Fig.3.3 Different notation on a laminate 

 

In the presence of shear deformations the force-strain relations are, as below: 

 

                    

 
 
 
 
 

 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

𝑉𝑥
𝑉𝑦  

 
 
 
 

 
 
 
 

=

 
 
 
 
 
 
 
 
 
𝑎11 𝑎12 𝑎16 𝑏11 𝑏12 𝑏16 0 0
𝑎12 𝑎22 𝑎26 𝑏12 𝑏22 𝑏26 0 0
𝑎16 𝑎26 𝑎66 𝑏16 𝑏26 𝑏66 0 0
 𝑏11 𝑏12 𝑏16 𝑑11 𝑑12 𝑑16 0 0
𝑏12 𝑏22 𝑏26 𝑑12 𝑑22 𝑑26 0 0
𝑏16 𝑏26 𝑏66 𝑑16 𝑑26 𝑑66 0 0

0 0 0 0 0 0 𝑆 11 𝑆 12

0 0 0 0 0 0 𝑆 12 𝑆 22 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
𝜀𝑥

0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧  

 
 
 
 

 
 
 
 

                 (3.6.15) 
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Constitutive matrix or rigidity matrix of laminate 𝐷 =  

 𝑎  𝑏 0
 𝑏  𝑑 0

0 0  𝑉 
                        (3.6.16) 

 

The significance of [a],[b],[d] matrices 

 

aij are the in-plane stiffnesses that relate the in plane forces 𝑵𝒙,𝑵𝒚,𝑵𝒙𝒚 to the in-plane 

deformations 𝜺𝒙
𝟎, 𝜺𝒚

𝟎,𝜸𝒙𝒚
𝟎 .  dij are the bending stiffnesses that relate the moments  𝑴𝒙,𝑴𝒚,𝑴𝒙𝒚 

to the in-plane curvatures𝜿𝒙,𝜿𝒚,𝜿𝒙𝒚. bij are the in-plane-out-plane coupling stiffnesses that relate 

the in-plane forces 𝑵𝒙,𝑵𝒚,𝑵𝒙𝒚  to curvatures 𝜿𝒙,𝜿𝒚,𝜿𝒙𝒚. and the moments 𝑴𝒙,𝑴𝒚,𝑴𝒙𝒚 to the 

in-plane deformations 𝜺𝒙
𝟎, 𝜺𝒚

𝟎,𝜸𝒙𝒚
𝟎 .  
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Table 3.3 [a],[b],[d] matrices show different types of couplings as follows: 

Coupling types Description 

Extension-shear When the elements 𝑎16 ,𝑎26  are not zero, in-plane normal forces 

𝑁𝑥 ,𝑁𝑦  cause shear deformation 𝛾𝑥𝑦
0  and a twist force 𝑁𝑥𝑦

 causes 

elongation in the x and y direction. 

Bending-twist When the elements 𝑑16 ,𝑑26 are not zero, bending moment 𝑀𝑥 ,𝑀𝑦  

cause twist of the laminate and a twist moment Mxy causes curvature 

in the x-z and y-z plane. 

Extension-twist and 

bending-shear 

When the elements 𝑏16 , 𝑏26are not zero, in-plane normal forces 

𝑁𝑥 ,𝑁𝑦  cause twist and bending moments  𝑀𝑥 ,𝑀𝑦  results in shear 

deformation𝛾𝑥𝑦
0 . 

In-plane-out-of-plane When the elements bij are not zero, in-plane forces cause curvature 

and moments cause in-plane deformations. 

Extension-extension When a12 is not zero, Nx cause elongation in y-direction and Ny 

cause elongation in x-direction. 

Bending-bending When d12 is not zero, Mx causes κy in y-z plane and My causes κx in 

x-z plane. 
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 CHAPTER-4                FINITE ELEMENT FORMULATION 

 

4.1 Introduction 

 In the finite element analysis, the continuum is divided into a finite number of elements having 

finite dimensions and reducing the continuum having infinite degrees of freedom to finite 

number of unknowns. The formulation presented here is based on assumed displacement pattern 

within the element and can be applied to linear, quadratic, cubic or any other higher order 

element by incorporating appropriate shape functions.  In the following the element mass and 

stiffness matrices of the plate are derived. The element mass and stiffness matrices are then 

assembled to form the overall mass and stiffness matrices. Necessary boundary conditions are 

then incorporated. Reduced integration technique has been used to obtain the element mass and 

stiffness matrices. A non-linear finite element model of an isoparametric plate element is 

developed of the governing equations. A composite plate (Mindlin’s plate) is chosen for the 

present analysis. 

4.2 Assumptions 

The formulation is based on the following assumptions: 

 The material of the plate obeys Hooke’s law. 
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 The bending deformations follow Mindlin’s hypothesis therefore the normal 

perpendicular to the middle plane of the plate before bending remains straight, but not 

necessarily normal to the middle plane of the plate after bending.   

 The deflection in the z-direction is a function of x and y only.    

 The transverse normal stresses are neglected.     

4.3 Equilibrium equations                                                                                                                                                                                                               

  The equations of motion for free un-damped vibration of an elastic system undergoing large 

displacements can be expressed in the following matrix form. 

 Free vibration  analysis     𝐾  𝛿 +  𝑀  𝛿  =  0                  (4.3.2)  

 [K] and [M] are overall stiffness & mass matrix and {δ} is displacement vector. 

4.4 The transformation of co-ordinates 

The arbitrary shape of the whole plate is mapped into a Master Plate of square region [-1, +1] in 

the s-t plane with the help of the relationship given by [69]. 

𝑥 =  𝑁𝑖 𝑠, 𝑡 𝑥𝑖
8
𝑖=1                     𝑦 =  𝑁𝑖 𝑠, 𝑡 𝑦𝑖

8
𝑖=1                   (4.4.1) 

Where   𝑥𝑖 ,𝑦𝑖   are the coordinates of the 𝑖𝑡ℎ  node on the boundary of the plate in the x-y plane 

and 𝑁𝑖 𝑠, 𝑡  are the corresponding cubic serendipity shape functions presented below. 

𝑁1 = ¼ (𝜂 − 1)(1 − 𝜉)(𝜂 + 𝜉 + 1) 

𝑁2  =  ½ (1 − 𝜂)(1 − 𝜉2) 

𝑁3 =  ¼ (𝜂 − 1)(1 + 𝜉)(𝜂 − 𝜉 + 1) 

𝑁4  =  ½ (1 − 𝜂2)(1 +  𝜉) 

𝑁5  =  ¼ (1 + 𝜂)(1 + 𝜉)(𝜂 + 𝜉 − 1) 

𝑁6 =  ½ (1 + 𝜂)(1 − 𝜉2) 
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𝑁7  =  ¼ (1 + 𝜂)(1 − 𝜉)(𝜂 − 𝜉 − 1) 

𝑁8  =  ½ (1 − 𝜂2)(1 − 𝜉) 

 𝑁 =  𝑁1   𝑁2  𝑁3  𝑁4  𝑁5   𝑁6  𝑁7  𝑁8                                                                                     (4.4.2) 

 

 

 

  

 

 

 

 

 

  

  𝑁𝑖
8
𝑖=1 = 1    at any point inside the element. 

Quadratic elements are preferred for stress analysis, because of their high accuracy and 

flexibility in modeling complex geometry, such as curved boundaries. The displacement 

functions of the plate element are expressed in terms of the local (ξ-η) coordinate system 

whereas the strains are in terms of the derivatives of the displacements with respect to the x and 

y coordinates. Hence before establishing the relationship between the strain and the                  

displacement the first and second order derivatives of the displacement w with respect to the   x-

y coordinates are expressed in terms of those of the (ξ-η) coordinates using the chain rule of 

differentiation and are obtained as below. 

1 2 3 

4 

5 6 7 

8 

(a) Element Coordinates 

(b) Isoparametric coordinates 

ξ 

η 

(1, 1) 

(1,-1) 

(1, 0) 

(0,1) 

(-1, 1) 

(-1, 0) 

(-1,-1) (0,-1) 

Figure 4.1 Quadratic Isoparametric Plate Element 

X 

Y 

1 

5 

3 

4 

2 

6 7 
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𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦

 = [𝐽]−1  

𝜕𝑤

𝜕𝜉

𝜕𝑤

𝜕𝜂

                 (4.4.3) 

                                           𝐽 =  

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

   𝑎𝑛𝑑  𝐽 −1 =  

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥
𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦

                                         (4.4.4) 

 𝐽  is the Jacobian matrix,  𝐽 −1  is the inverse jacobian matrix. V is the volume. 

                                                                 𝜕𝑥 𝜕𝑦 =  𝐽   𝜕𝜉 𝜕𝜂                                                 (4.4.5) 

                                                                   𝜕V =  𝐽  ℎ 𝜕𝜉 𝜕𝜂                                                  (4.4.6) 

4.5 Plate element formulation 

The displacement field at any point within the element is given by 

                                                            𝑓 =  
𝑈
𝑉
𝑊
 =  

𝑢 − 𝑧𝜃𝑥
𝑣 − 𝑧𝜃𝑦

𝑤
                                                (4.5.1) 

  Owing to the shear deformations, certain warping in the section occurs as shown in Fig. 3.3. 

However, considering the rotations   θx and θy as the average and linear variation along the 

thickness of the plate, the angles ϕx and ϕy denoting the average shear deformation in   and x-y 

directions respectively are given by:   

 

 

 

 

 

 

 

 Fig 4.3 Deformation of plate cross-section 

Assumed 

displacement 

Actual 

displacement 
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𝜃𝑥
𝜃𝑦
 =  

𝜕𝑤

𝜕𝑥
+ ∅𝑥

𝜕𝑤

𝜕𝑦
+ ∅𝑦

                                        (4.5.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w 

𝜕𝑤

𝜕𝑥
 Z 

X 

Fig.4.4 Kirchhoff theory 

Z 

X 
𝜕𝑤

𝜕𝑥
 

 

 𝜃𝑦   ≠  −
𝜕𝑤

𝜕𝑥
  

𝜃𝑦    

Fig.4.5 Mindlin theory 



40 
 

4.5.1 Linear and non-linear stiffness matrix 

The plate strains are described in terms of middle surface displacements i. e.  x-y plane coincides 

with the middle surface as shown in Fig.4.6. The strain matrix is given by 

                                                                                    휀 =

 
 
 
 
 
 

 
 
 
 
 

휀𝑥
휀𝑦
𝛾𝑥𝑦

−
𝜕2 𝑤

𝜕𝑥 2

−
𝜕2 𝑤

𝜕𝑦 2

2
𝜕2 𝑤

𝜕𝑥𝜕𝑦

−∅𝑥
−∅𝑦  

 
 
 
 
 

 
 
 
 
 

                                              (4.5.3) 

The stress matrix is given by 

 

 

 

 

 

 

 

 

 

 

  MXY 

 

 

  MXY 

 

 

  MY   

 

 

  MY   

 

 

MX   

 

 

NY  

 

 

NXY 

 

 

NX   

 

 

NXY 

 

 

NXY 

 

 

NX  

 

 

NY 

 

 

NXY 

 

 

X(u) 

 

 
Y(v) 

 

 

Z(w) 

 

 

Fig.4.6 In-plane and bending resultants for a flat plate 
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                                                                                   𝜎 =

 
 
 
 

 
 
 
𝑁𝑋
𝑁𝑌
𝑁𝑋𝑌
𝑀𝑋

𝑀𝑌

𝑀𝑋𝑌

𝑉𝑋
𝑉𝑌  

 
 
 

 
 
 

                                                 (4.5.4) 

 

The stresses are defined in terms of usual stress resultants: Nx = ζx h where ζx is the average 

membrane stress etc. Now if the deformed shape is considered as shown in the   

 

 

 

 

 

 

Fig.4.7 it is seen that displacement w produces some additional extension in the x and   y 

directions of the middle surface and the length 𝑑𝑥 stretches to  

𝑑𝑥 ′ = 𝑑𝑥 1 + (𝜕𝑤/𝜕𝑥)2 = 𝑑𝑥 1 + ½(𝜕𝑤/𝜕𝑥)2 + ⋯⋯⋯⋯                                           (4.5.5) 

In defining the x- elongation the following relationship can be written (to second approximation)  

                                                  휀𝑥 =  
𝜕𝑢

𝜕𝑥
 + ½   

𝜕𝑤

𝜕𝑥
 

2
                                                          (4.5.6) 

In the similar manner considering the other components the strain is given by 

                                                    휀 =  휀𝐿 +  휀𝑁𝐿                                                                (4.5.7) 

w + 
𝜕𝑤

𝜕𝑥
 

𝜕𝑥 

𝜕𝑥 

𝑤 

Fig.4.7 Increase of middle surface length due to lateral displacement 
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Where           휀𝐿 =

 
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

 
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 

−
𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦

−∅𝑥
−∅𝑦  

 
 
 
 
 
 

 
 
 
 
 
 

        𝑎𝑛𝑑             휀𝑁𝐿  =

 
 
 
 
 
 

 
 
 
 
 

1

2
 
𝜕𝑤

𝜕𝑥
 

2

1

2
 
𝜕𝑤

𝜕𝑦
 

2

 
𝜕𝑤

𝜕𝑥
  

𝜕𝑤

𝜕𝑦
 

0
0
0
0
0  

 
 
 
 
 

 
 
 
 
 

                           (4.5.8) 

 

In which the first term is the linear expression and the second term gives non-linear terms. If 

linear elastic behavior is considered, the stress-strain relationship is written as  

                                                   𝜎 =  𝐷  휀 =  𝐷  휀𝐿  휀𝑁𝐿  𝜎𝐿  𝜎𝑁𝐿                                (4.5.9) 

Where [D] the rigidity matrix  

For composite material               𝐷 =  

 𝑎  𝑏 0
 𝑏  𝑑 0
0 0  𝑠 

                                                       (4.5.10) 

[a], [b], [d], [s]are the stiffness matrix of the laminates of composite plate.  Description of these 

stiffness matrices presented in chapter-3. 

For isotropic material 

                      𝐷 =

 
 
 
 
 
 
 
 
𝐷𝑋𝐴 𝐷𝐼𝐴 0 0 0 0 0 0
𝐷𝐼𝐴 𝐷𝑌𝐴 0 0 0 0 0 0

0 0 𝐷𝑋𝑌𝐴 0 0 0 0 0
0 0 0 𝐷𝑋𝐹 𝐷𝐼𝐹 0 0 0
0 0 0 𝐷𝐼𝐹 𝐷𝑌𝐹 0 0 0
0 0 0 0 0 𝐷𝑋𝑌𝐹 0 0
0 0 0 0 0 0 𝑆𝑋 0
0 0 0 0 0 0 0 𝑆𝑌 

 
 
 
 
 
 
 

                    (4.5.11) 

      𝐷𝑋𝐴 =
𝐸ℎ

 1−𝜈2 
 , 𝐷𝐼𝐴 = 𝜐 × 𝐷𝑋𝐴 , 𝐷𝑌𝐴 = 𝐷𝑋𝐴 , 𝐷𝑋𝑌𝐴 =

 1−𝜈 

2
× 𝐷𝑋𝐴 ,  
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𝐷𝑋𝐹 =
𝐸ℎ3

12 ×  1 − 𝜈2 
 ,𝐷𝐼𝐹 = 𝜈 × 𝐷𝑋𝐹, 𝐷𝑌𝐹 = 𝐷𝑋𝐹, 𝐷𝑋𝑌𝐹 =

 1 − 𝜈 

2
× 𝐷𝑋𝐹      

   𝑆𝑋 = 𝑆𝑌 = 𝛼 × 𝐺ℎ                   

E= modulus of elasticity, G=Shear modulus, 𝜈= Poisson’s ratio, h=Thickness of plate     

  The non-linear strain component can be conveniently written as 

                                        휀𝑁𝐿 = ½

 
 
 
 
 
 
 
 
 
𝜕𝑤

𝜕𝑥
 

0
𝜕𝑤

𝜕𝑥
  

0
0
0
0
0

0
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑦

0
0
0
0
0  
 
 
 
 
 
 
 
 

 

𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦

 = ½ 𝐴  𝜃                                              (4.5.12) 

The slope can be related to nodal parameters as follows 

                            𝜃 =   

𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦

 =   
0 0

𝜕𝑁 𝑖

𝜕𝑥
0 0

0 0
𝜕𝑁 𝑖

𝜕𝑦
0 0

 8
𝑖=1

 
 
 

 
 
𝑢𝑖
𝑣𝑖
𝑤𝑖

𝜃𝑥𝑖
𝜃𝑦𝑖 

 
 

 
 

=  𝐺  𝛿                      (4.5.13) 

                                                𝐺 =   
0 0

𝜕𝑁 𝑖

𝜕𝑥
0 0

0 0
𝜕𝑁 𝑖

𝜕𝑦
0 0

 8
𝑖=1                                             (4.5.14) 

Then                                       d 휀𝑁𝐿 = ½𝑑 𝐴  𝜃 + ½ 𝐴 𝑑 𝜃 =  𝐴  𝐺 𝑑 𝛿                   (4.5.15) 

This above equation is due to an interesting property of matrix [A] and {θ}, {ε} is approximated 

as       

                                                   𝑑 휀 =  𝐵  𝑑 휀                                                                 (4.5.16) 

Where     

                                               𝐵  =  𝐵𝐿 +  𝐵𝑁𝐿 𝛿                                                          (4.5.17) 

In which [BL], is the same matrix as in linear infinitesimal strain analysis and is given by  
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                               𝐵𝐿 =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁 𝑖

𝜕𝑥
0 0 0 0

0
𝜕𝑁 𝑖

𝜕𝑦
0 0 0

𝜕𝑁 𝑖

𝜕𝑦

𝜕𝑁 𝑖

𝜕𝑥
0 0 0

0 0 0 −
𝜕𝑁 𝑖

𝜕𝑥
0

0 0 0 0 −
𝜕𝑁 𝑖

𝜕𝑦

0 0 0
𝜕𝑁 𝑖

𝜕𝑦
−

𝜕𝑁 𝑖

𝜕𝑥

0 0
𝜕𝑁 𝑖

𝜕𝑥
−𝑁𝑖 0

0 0
𝜕𝑁 𝑖

𝜕𝑦
0 −𝑁𝑖  

 
 
 
 
 
 
 
 
 
 
 
 
 

8
𝑖=1                                         (4.5.18) 

  Only [BNL] depends on the displacements. In general, [BNL] is found to be a linear function of 

such displacements. Therefore, 

                         𝑑 휀 = 𝑑 휀𝐿 + 𝑑 휀𝑁𝐿 =   𝐵𝐿 +  𝐵𝑁𝐿   𝑑 𝛿                                           (4.5.19) 

                                                    𝐵𝑁𝐿 =  𝐴  𝐺                                                                   (4.5.20) 

                                                    휀𝑁𝐿 = ½ 𝐵𝑁𝐿  𝛿                                                             (4.5.21) 

The virtual work equation in Langrangian coordinate system is 

                                                   𝑑 휀 𝑇   𝜎 𝑑𝑣 − 𝑑 𝜎 𝑇
 

𝑉
 𝑅 =  0                                  (4.5.22) 

Where 𝑑 휀   is the variation in the Green’s strain vector  휀  , associated with the 

displacement 𝑑 휀   ,  𝜎   is the Polio-Kirchhoff’s stress and  𝑅   is a vector of generalized forces 

associated with the displacements 𝑑 휀   . 

The finite element approximation to the equation (4.5.22) in the B-notation is  

                                                  𝑑 𝛿 𝑇    𝐵  𝑇 𝜎 𝑑𝑣 −
 

𝑉
𝑑 𝜎 𝑇 𝑅 =  0                         (4.5.23) 

Which because 𝑑 𝛿   is arbitrary, gives the equilibrium equation as 

                                                       𝐵  𝑇 𝐷  휀 𝑑𝑣 −
 

𝑉
 𝑅 =  0                                            (4.5.24) 

or                                                    𝐵𝐿 +  𝐵𝑁𝐿  
𝑇 𝐷  𝐵𝐿 + ½𝐵𝑁𝐿 

 

𝑉
 𝛿  𝑑𝑣 −  𝑅 =  0  
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or                                                  𝐾𝑆  𝛿 −  𝑅 =  0                                                          (4.5.25) 

Where   𝐾𝑆 = 

   𝐵𝐿 
𝑇 𝐷  𝐵𝐿 +  𝐵𝑁𝐿 

𝑇 𝐷  𝐵𝐿 + ½ 𝐵𝐿 
𝑇 𝐷  𝐵𝑁𝐿 + ½ 𝐵𝑁𝐿 

𝑇 𝐷  𝐵𝑁𝐿  
 

𝑉
 dv              (4.5.26) 

If N-notation is followed then  𝐾𝑆  would be obtained as  

 𝐾𝑆 =   𝐾0 + 1
2  𝑁1 + 1

3  𝑁2                                                                                  (4.5.27) 

The first term in the curly brackets of the above equation i. e. [K0] is independent of the 

displacements {δ}. [N1] is linearly dependent upon {δ} and [N2] is quadratically dependent upon 

{δ}. The matrix [K S] is known as secant stiffness matrix. The secant stiffness matrix obtained 

with B-notation is un-symmetric and that obtained with N-notation is symmetric. The correlation 

between the two notations is expressed as  

                                                       𝐾0 =   𝐵𝐿 
𝑇 𝐷  𝐵𝐿 𝑑𝑣

 

𝑉
                                               (4.5.28) 

        𝑁1 =    𝐵𝐿 
𝑇 𝐷  𝐵𝑁𝐿 +  𝐵𝑁𝐿 

𝑇 𝐷  𝐵𝐿 +  𝐺 𝑇 𝑆𝐿  𝐺   𝑑𝑣
 

𝑉
                                  (4.5.29) 

                                                    𝑁2 =    𝐵𝑁𝐿  𝐷  𝐵𝑁𝐿 +  𝐺  𝑆𝑁𝐿  𝐺  𝑑𝑣
 

𝑉
                  (4.5.30) 

The matrices [SL] and [SNL] together give symmetric stress matrix. The symmetric stress matrix 

is introduced as 

                                                             𝑆 =  𝑆𝐿 +  𝑆𝑁𝐿                                                      (4.5.30) 

Where   

                                                         𝑆 =  
𝑁𝑋 𝑁𝑋𝑌
𝑁𝑋𝑌 𝑁𝑌

                                                         (4.5.31) 

                                           𝑆𝐿 =  
𝐷𝑋𝐴 

𝜕𝑢

𝜕𝑥
 𝐷𝑋𝑌𝐴 

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 

𝐷𝑋𝑌𝐴 
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 𝐷𝑌𝐴 

𝜕𝑣

𝜕𝑦
 

                             (4.5.32) 

 𝑆𝑁𝐿 =  
½  𝐷𝑋𝐴  

𝜕𝑤

𝜕𝑥
 

2
+ 𝐷𝐼𝐴  

𝜕𝑤

𝜕𝑦
 

2
 𝐷𝑋𝑌𝐴 

𝜕𝑤

𝜕𝑥
  

𝜕𝑤

𝜕𝑦
 

𝐷𝑋𝑌𝐴 
𝜕𝑤

𝜕𝑥
  

𝜕𝑤

𝜕𝑦
 ½  𝐷𝐼𝐴  

𝜕𝑤

𝜕𝑥
 

2
+ 𝐷𝑌𝐴 

𝜕𝑤

𝜕𝑦
 

2
 
                           (4.5.33) 
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From the above relation, it can be deducted that 

                                                             𝐾𝐿 =  𝐾0                                                               (4.5.33) 

and non-linear stiffness matrix 

                                       𝐾𝑁𝐿 =
1

2
 𝑁1 +

1

3
 𝑁2                                    in N-notation 

                   =    𝐵𝑁𝐿  𝐷  𝐵𝐿 +  𝐵𝐿  𝐷  𝐵𝑁𝐿 +  𝐵𝑁𝐿  𝐷  𝐵𝑁𝐿   𝑑𝑣
 

𝑉
                  (4.5.34)               

   in B-notation    

4.5.2 Mass matrix 

The acceleration field at any point is given by  

 𝑓  =  
𝑢 − 𝑧𝜃𝑥 

𝑣 − 𝑧𝜃𝑦 

𝑤 

 =  
1 0 0 −𝑧 0
0 1 0 0 −𝑧
0 0 1 0 0

 

 
 
 

 
 
𝑢 
𝑣 
𝑤 
𝜃𝑥 

𝜃𝑦  
 
 

 
 

=   𝐺𝑝 

 
 
 

 
 
𝑢 
𝑣 
𝑤 
𝜃𝑥 

𝜃𝑦  
 
 

 
 

                                        (4.5.35) 

Where      𝐺𝑝 =  
1 0 0 −𝑧 0
0 1 0 0 −𝑧
0 0 1 0 0

                                                                                (4.5.36) 

Expressing acceleration field in terms of nodal parameters, 

                                                           𝑓  =  𝐺𝑝  𝑁  𝛿                                                       (4.5.37) 

in which  

                                           𝑁 =  

 
 
 
 
 
𝑁𝑖 0 0 0 0
0 𝑁𝑖 0 0 0
0 0 𝑁𝑖 0 0
0 0 0 𝑁𝑖 0
0 0 0 0 𝑁𝑖 

 
 
 
 

8
𝑖=1                                            (4.5.38) 

                                                             𝛿  =  

 
 
 

 
 
𝑢𝑖 
𝑣𝑖 
𝑤𝑖 

𝜃𝑥𝑖 

𝜃𝑦𝑖  
 
 

 
 

8
𝑖=1                                                      (4.5.39) 
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Applying D’Alembert’s principle for any infinitesimal element within the element, the inertia 

force resisting the acceleration can be written as  

                                                      𝐹𝑝 =  𝜌𝑝  𝑓   𝑑𝑥 𝑑𝑦 𝑑𝑧                                                 (4.5.40) 

In which          

                                                    𝜌𝑝 =  

𝜌𝑝 0 0

0 𝜌𝑝 0

0 0 𝜌𝑝

                                                         (4.5.41) 

Where δp is the density of plate material 

The work done by the acceleration forces for an infinitesimal element is  

                               𝛿𝑊 =  𝑓 𝑇  𝐹𝑝 =   𝛿 𝑇 𝑁 𝑇 𝐺𝑝 
𝑇
 𝜌𝑝  𝐺𝑝  𝑁  𝛿   𝑑𝑥 𝑑𝑦 𝑑𝑧              (4.5.42) 

The internal work done by the distributed acceleration forces for an entire element is 

                              𝑊 =  𝜕𝑊 = 
 

𝑉
  𝛿 𝑇 𝑁 𝑇 𝐺𝑝 

𝑇
 𝜌𝑝  𝐺𝑝  𝑁  𝛿   𝑑𝑥 𝑑𝑦 𝑑𝑧

 

𝑉
                  (4.5.43) 

From the above relation, the mass matrix is obtained as 

Mass matrix is obtained as 

                                         𝑀 =    𝑁 𝑇 𝐺𝑝 
𝑇
 𝜌𝑝  𝐺𝑝  𝑁  𝑑𝑥 𝑑𝑦 𝑑𝑧

 

𝑉
                                  (4.5.44) 

 𝑀 =   𝑁 𝑇 𝑚𝑝  𝑁 𝑑𝑥 𝑑𝑦 

     Where     𝑚𝑝 =   𝐺𝑝 
𝑇
 𝜌𝑝  𝐺𝑝  𝑑𝑧

+½

−½
=  

 
 
 
 
 

1 0 0 −𝑧 0
0 1 0 0 −𝑧
0 0 1 0 0
−𝑧 0 0 𝑧2 0
0 −𝑧 0 0 𝑧2  

 
 
 
 

 𝑑𝑧
+½

−½
               (4.5.45) 

Where [M] is the consistent mass matrix [mp] the lumped mass matrix 
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                                                             𝑚𝑝 =

 
 
 
 
 
 
 
𝜌ℎ 0 0 0 0
0 𝜌ℎ 0 0 0
0 0 𝜌ℎ 0 0

0 0 0
𝜌ℎ3

12
0

0 0 0 0
𝜌ℎ3

12  
 
 
 
 
 
 

                           (4.5.46) 

 

4.6 Solution procedure 

By assembling the finite elements and applying the kinematic boundary conditions, the equations 

of motion for the linear free vibration of a given plate may be written as  

                                                            𝑀  ∅ 0 − 𝜆 𝐾𝐿  ∅ 0 =  0                                       (4.5.47) 

or                                                    𝑤𝐿
2 𝑀  ∅ 0 =  𝐾𝐿  ∅ 0 

 where,  [M] and  [KL]  denote the system mass and linear stiffness matrices respectively,  𝜔 𝐿the 

fundamental linear frequency and { ϕ}0 the corresponding linear mode shape normalized with 

the maximum component to unity. The plate deflection   𝑤𝑚𝑎𝑥  ∅ 0  is then used to obtain the 

non-linear stiffness matrix [KNL]. The equation of motion for non-linear free vibration is  

𝜔 𝑁𝐿 
2  𝑀  ∅ 𝑖 =   𝐾𝐿 +  𝐾𝑁𝐿   ∅ 𝑖                           (4.5.48) 

where,  𝜔 𝑁𝐿is the fundamental non-linear frequency associated with the amplitude ratio  (=w/h) 

and {ϕ}I , the corresponding normalized mode shape of 𝑖𝑡ℎ  iteration. The solution of above 

equation can be obtained using the direct iteration method. The steps involved are: 

𝑺𝒕𝒆𝒑 𝟏: The fundamental linear frequency and corresponding linear mode shape is calculated by        

solving above equation with all the terms in [𝐾𝑁𝐿] being set to zero. 

𝑺𝒕𝒆𝒑 𝟐: The mode shape is normalized by appropriately scaling the eigenvector ensuring that the   

maximum displacement is equal to the desired amplitude Wmax/h. 

𝑺𝒕𝒆𝒑 𝟑: The terms in the stiffness matrix [𝐾𝑁𝐿] are computed using the normalized mode shape.  
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𝑺𝒕𝒆𝒑 𝟒: The equations are then solved to obtain new eigenvalues and corresponding 

eigenvectors. 

𝑺𝒕𝒆𝒑 𝟓: Steps 2 to 4 are now repeated with 𝑤𝑚𝑎𝑥 {𝜙}𝑖  until convergence criterion is satisfied. 

The convergence criteria used in the present study are 

 Displacement  norm defined as
   ∆𝑤𝑖

2

 𝑤𝑖
2  

 Frequency norm defined as 
  ∆𝑤𝑖 

𝑤𝑖
  

Where 𝑤𝑖  and ∆𝑤𝑖  are the change in displacement and change in non-linear frequency during the 

𝑖𝑡ℎ  iteration cycle.                   
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CHAPTER-5                    COMPUTER IMPLEMENTATION 

 

5.1 Introduction 

 The finite element method has been established as a powerful numerical tool because of 

its broad spectrum of generality and its ease of applicability to rather more complex and difficult 

problems showing greater efficacy in its solution than that of any other existing similar 

techniques. This advantage of the method over others has led various research organizations and 

modern industries to endeavour the development of general purpose software packages and other 

in-house codes for solving practical problems of more complex nature. In an effort to make the 

method more powerful and to address more complicated problems, the finite element analysis 

programmes themselves become extremely complex and computationally involved. These 

programmes are available as black box modules which are to be used with the help of CAD 

programs. These conventional programmes cannot easily be modified to perform a desired task 

necessitating redesign and rebuild of finite element libraries to suit one‟s need. Hence there is a 

requirement for finite element analysis programmes to be easily modifiable to introduce new 

analysis procedures, and new kinds of design of structural components or even emerging 

technology of new materials whenever needed. In the present investigation, the computer codes 

have been generated with such modularity which is amenable to easy modification whenever the 

need arises. Throughout all these years the finite element codes have been developed employing 

procedural language such as FORTRAN which is unstructured in its nature. Now there is a trend 

to pay attention to the verification, portability and reusability of the computer programmes 

during the process of their development and to the possibility of the use of other software 
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products. However, FORTRAN does not have the provision to meet all these requirements. The 

MATLAB coding are efficient for the finite element problems. A computer programme based on 

the formulation given in the previous chapter is developed in MATLAB7.2b for large amplitude 

free vibration analysis of composite plates. There are 5 degrees of freedom per node 

(viz. 𝑢, 𝑣,𝑤,𝜃𝑥,𝜃𝑦). Composite plates of rectangular as well as square shape have been analyzed 

by this program. 

5.2 Application Domain 

The Computer Programmes have been developed in the present investigation by making use of 

the MATLAB code to include a wide spectrum of application domain. Computer programme 

codes have been written to incorporate various boundary conditions of the structures. They have 

the analytical modules to solve the following types of problems: 

 Large amplitude free vibration analysis of isotropic plate. 

 Large amplitude free vibration analysis of laminated composite plate. 

5.3 Description of the Programme 

The finite element procedure involves 3 basic steps in terms of the computation carried out 

which may be termed as: 

1. Preprocessor 

2. Processor 

3. Post processor 

5.3.1 Preprocessor 

This module of the programme reads the necessary information about the geometry and 

boundary conditions of the plate, material properties, loading configuration and its magnitude, 



52 
 

and its properties etc. Also in this module, all the nodal coordinates and the nodal connectivity 

are generated.  

5.3.1.1 Automatic Mesh Generation 

The mesh division for the structures analyzed is generated automatically.  The algorithm for this 

purpose is provided by a function rectangularmesh() .  The plate structure is divided into a 

number of elements by assigning the number of divisions in each direction. This information is 

given as input to the problem under consideration.  The elements are numbered automatically 

moving from left to right and top to bottom as shown in the Fig.5.1 

  

   

 

 

 

 

 

 

 

 

 

 

 1  2  3  4 

 5 6  7  8 

 9 10  11  12 

 13 14 

 

 15 16 

57 58 59 60 61 62 63 64    65 

  

 1 2 3 4 5 6 7 8 9 

 52   53     54      55   56 

    43       44      45         46         47          48              49           50            51 

   

   38   39       40      41   42 

   29      30     31        32       33        34              35           36            37 

   

    15       16     17         18         19          20              21           22            23 

   

     24       25                      26                       27                                  28 

   

     10       11                      12                       13                                  14 

   

Fig.5.1 Finite element plate meshing 
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5.3.2 Processor 

This module of the programmes performs the following tasks: 

1. Generation of the element matrices. 

2. Assembly of the element matrices into global matrices. 

3. Imposition of the boundary conditions. 

4. Determination of eigenvalues and eigenvectors for the free vibration analysis using 

simultaneous vector iteration technique. 

5.3.3 Postprocessor 

In this part of the programme, all the input data are echoed to check for their accuracy. The 

function print-disp() is used to print the output data in terms of non-linear  frequency ratio, 

eigenvalue etc. The results are stored in a series of separate output files for each category of 

problems analyzed and those values are used to prepare tables and graphs etc. 

PREPROCESSOR 

Read the Input Data, Generate the mesh, Generate 

Nodal Connectivity, 

 

PREPROCESSOR 

Generate element matrices for the plate; assemble 

element stiffness matrices to global matrix by 

applying boundary conditions. 

POSTPROCESSOR 

Print the output 

 
 

START 

PREPROCESSOR 

START 

END 

Fig.5.2: Basic Elements of the Computer Programmes 
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5.4 different functions and variables used  

5.4.1 input variables 

length   :  length of the composite plate 

breadth             :  breath of the composite plate 

thichness  :  thickness of plate 

𝐸1          :   young‟s modulus in the longitudinal direction 

𝐸2          :   young‟s modulus in the transverse direction 

𝐺12        :   shear modulus on plane 1 along direction 2 

𝐺13        :   shear modulus on plane 1 along direction 3 

𝐺23        :   shear modulus on plane 2 along direction 3 

𝜈12          :   poisson‟s ration on plane 1 along direction 2 

𝜈13          :   poisson‟s ration on plane 1 along direction 3 

𝜈23    :   poisson‟s ration on plane 2 along direction 3 

theta               :  vector of ply orientation, angle is taken +𝑣𝑒 in counter clockwise direction. 

nop               :  no. of plies present in the laminate.  

𝑧                       ∶    [−
ℎ

2
:

ℎ

𝑛𝑜𝑝
:
ℎ

2
]     vector of different “ply thickness” bottom to top. 

rho               :   density of plate 

5.4.2 function retangularmesh() 

This function generates the rectangular mesh divisions and calculates the nodal coordinates 

Variables used in this function are 

x    :  length of the plate in x-direction 

y     :  length of the plate in y-direction 
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numberelementsx   :  number of elements in x-direction 

numberelementsy  :  number of elements in y-direction 

lengthx    :  length of an element in x-direction 

lengthy   :  length of an element in y-direction 

numberelements  :  total no. of elements present in the meshing 

totnode    :  total no. of nodes present 

nodecoordinates  :  matrix of  x and y coordinate value of all nodes 

nodenum     :  index no. of nodes 

5.4.3 function linearglobalstiff() 

This function compute the linear global stiffness matrix for the Mindlin plate. At first element 

stiffness is formed then globalization all element stiffnesses taken place using function 

assemble(). 

Variables used in this function are: 

Astiff    :  in-plane stiffness of the laminate 

Bstiff    :  in-plane-out-of-plane coupling stiffness of the laminate   

Dstiff    :  bending stiffness of the laminate 

Sstiff    :  shear stiffness matrix  

Dmatrix  : stress-strain constituent matrix 

K       :  global stiffness matrix 

indice                           :  nodal conectivities for each element 

elementdof              :  element degrees of freedom 

ndof                         :  no. of degree of freedoms per node 

gdof                          :  global no. of degree of freedoms 
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b_m   : membranestrain-displacement matrix 

b_b   : bending strain-displacement matrix 

b_s   : shearstrain-displacement matrix 

e   :  element counter 

q   :  gauss point counter 

xi , eta    :  natural coordinate 

5.4.4 function massComposite() 

This function compute the mass matrix for the mindlin plate.   

5.4.5 function  gaussqudrature() 

This function solves the integrations. For bending part, „complete‟integration method used and 

for shear part „reduced‟ integration method applied. 

Locations     :  gauss point locations 

Weight     : gauss point weights 

5.4.6 function jacobian() 

This function finds the jacobian matrix, inverse jacobian matrix, and x and y-derivatives. 

jacobianmatrix           : jacobian matrix 

invjacobian   : inverse of jacobian matrix 

xyderivatives   : derivatives w.r.t. x and y                

naturalderivatives  : derivatives w.r.t. xi and eta                

nodecoordinates  : nodal coordinates at element level   

5.4.7 function  essentialBc()              

Essential boundary condition for the mindlin plate.  
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ssss                             :  all edges are simply supported 

cccc               :  all edges are fixed 

scsc     : „s‟ for simply supported,  „c‟ for clamped 

5.4.8 function shapefunction() 

This function evaluate the shape functions and its derivatives for the plate elements 

Shape                       : Shape functions 

naturalDerivatives   : derivatives w.r.t. xi and eta 

xi, eta                       : natural coordinates (-1 ... +1) 

5.4.9 function nlstifVonKrmn() 

This function computes the nonlinear stiffness matrix as per Von-Karman‟s non-linear  strain 

displacement theory.  

iter      :  counter for iteration 

wbyh       : amplitude ratio 
𝑤𝑚𝑎𝑥

ℎ
 

toll      : tolerance = abs((lamda(iter)-lamda(iter-1))/lamda(iter)) 

ratio      : frequency ratio 
𝑤𝑛𝑙

𝑤𝑙
 

5.4.10 function eig() 

This function solves the eigen value problems. Find eigen vector and the eigen value 

(frequencies). 

v      : eigen vector 

d       : eigen value     

5.4.11 function mshape()      

This function finds the non-linear strain and modeshapes of u, w . Variables used are: 



58 
 

 u      : displacement along x-axis (in-plane displacement) 

 v      : displacement along y-axis (in-plane displacement) 

 w             : transverse displacement of the plate  

activedofw     : index of node numbering  having non-zero value of w 

5.4.12 function linspace() 

This function is used to draw the grid of graph. 

5.4.13 function contour() 

This function plot the contour map of the mode shapes. 

5.5 Input data 

 The input data required for the analysis are as follows:  

 Plate dimensions 

 Mesh division, number of nodes of element, degrees of freedom at each node, number of 

Gauss points, number of loading conditions, degree of freedom of the amplitude taken as 

reference for normalizing 

 Boundary conditions of the structure 

 Material properties of the plate 

 Number of amplitude levels and tolerance for convergence and  

 Amplitude data 

5.6 Output data 

 The input data,  

 Ratio of Non-linear frequency to Linear frequency,  
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 mode-shapes in each iteration, and number of iterations taken for convergence  

5.7 Program Flow Chart 
 A flow chart illustrating the complete program has been presented in fig.5.3. 
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 CHAPTER -6              RESULTS AND DISCUSSION 

  

The finite element formulation of large amplitude free vibrations of isotropic and composite 

plates has been presented in chapter-4. The computer programming based on this method has 

been put forward in chapter-5.Examples have been worked out to validate the proposed 

approach. A number of examples have been presented and comparisons have been made with the 

results of earlier investigators wherever possible. The examples include square and rectangular 

plates with various boundary conditions. Eight- noded plate element is considered with five 

degrees of freedom per node.  

6.1   LARGE  AMPLITUDE FREE VIBRATION ANALYSIS OF ISOTROPIC PLATE 

Table 6.1 

 Non-linear frequency ratios  
𝜔𝑁𝐿

𝜔𝐿
   for the square isotropic plate with various boundary 

conditions at different amplitude ratios. 

(𝐸 = 10.92 × 106 𝑁
𝑚2 , ℎ = 0.01 𝑚,𝜌 = 100 

𝑘𝑔
𝑚3 , 𝜈 = 0.3 ) 

 Amplitude Ratio (w/h) Boundary conditions 

 0.2 0.4 0.6 0.8 1.0  

 

CCCC 

present 1.0093 1.0320 1.0590 1.1223 1.1650 

Rao[42] 1.007 1.0276 1.0608 1.1047 1.1578 

Mei[33] 1.0062 1.0256 1.0564 1.0969 1.1429 

present 1.0256 1.1007 1.2110 1.3733 1.5299  

SSSS Goswami[18] 1.0263 1.1012 1.2165 1.3629 1.5325 

Ganapati[16] 1.0250 1.10021 1.20803 1.35074 1.51347 

present 1.0145 1.0560 1.1230 1.2067 1.2870  

SSCC Mei[33] 1.0097 1.0380 1.0833 1.1429 1.2143 

Rao[42] 1.097 1.0381 1.0838 1.1443 1.2174 

 

 Table 6.1 presents the non-linear frequency ratios for the fundamental mode for SSSS, 

CCCC, SSCC, boundary conditions for a square plate for amplitude ratio   
𝑤

ℎ
  values ranging 
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from 0.2 to 1.0. The results have been compared with different papers. It can be seen that the 

values of the references are on the lower side. This is because of the different techniques chosen 

by them for the solution of the non-linear equations. Their formulations have been based on 

appropriate linearization of the non-linear strain-displacement relations. They have also 

neglected the in-plane deformation terms. In the present investigation, in-plane deformation 

terms have been considered and no approximating procedure is used. Hence the present result 

may be deemed as more accurate.  

6.2 FREE FLEXURAL VIBRATION OF LAMINATED COMPOSITE PLATE 

In order to verify the accuracy of the results obtained in the free flexural vibration of laminated 

composite plate, a comparison has been done with published ones. Table 6.2 shows the 

comparison of linear natural frequencies with Liew [28].  

Table 6.2 

 Non-dimensional linear frequency parameter 𝜔 =  𝜔𝑏2 𝜋2    𝜌ℎ 𝐷0   for three ply 

 0∙/90∙/0∙  simply supported SSSS square laminated composite plate of different thickness ratio 

(b/h).(Material 1) 

MODES SEQUENCE NUMBER  

h/b  1 2 3 4 5 6  

0.001 Present 6.6288 9.4567 16.2977 25.2305 26.5811 26.8823  

 

SSSS 

Liew[28] 6.6252 9.4470 16.2051 25.1146 26.4982 26.6572 

0.20 Present 3.5646 5.7920 7.3218 8.6121 9.2617 10.9987 

Liew[28] 3.5939 5.7691 7.3972 8.6876 9.1451 11.2080 

0.001 Present 14.6951  17.6501 24.6492 36.0814 39.3690 41.0343  

 

CCCC 

Liew[28] 14.6655  17.6138 24.5114 35.5318 39.1572 40.7685 

0.02 Present 4.3291  6.6619 7.5813 9.1514 9.8627 11.2049 

Liew[28] 4.4468  6.6419 7.6996 9.1852 9.7378 11.3991 

 

 

6.3 LARGE AMPLITUDE FREE VIBRATIONS OF LAMINATED COMPOSITE PLATE 

Material 1: Laminated composite plate  

𝐸1 = 40𝐸2,𝐺12 = 𝐺31 = 0.6𝐸2,𝐺23 = 0.5𝐸2,𝐸2 = 1,𝜌 = 1, 𝜈12 = 𝜈13 = 𝜈23 = 0.25 
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Material 2: Laminated composite plate 

𝐸1 = 25𝐸2,𝐺12 = 𝐺31 = 0.2𝐸2,𝐺23 = 0.5𝐸2,𝐸2 = 1,𝜌 = 1, 𝜈12 = 𝜈13 = 𝜈23 = 0.25 

A simply supported cross-ply   0∙/90∙/90∙/0∙  with in-plane motions at the boundary restricted 

with a/h=10 &1000 and the Material 1 and Material 2 are considered. The present results for 

the ratio of non-linear to linear frequency against the amplitude ratio (w0/h) are compared with 

Ganapati et al. [16] and Kant et al.[18] in Table 6.3.  

Table 6.3 non-linear frequency ratio  𝝎𝑵𝑳 𝝎𝑳   of a simple supported Cross-ply             

  𝟎∙/𝟗𝟎∙/𝟗𝟎∙/𝟎∙  laminate at different aspect ratio (a/h) and amplitude ratio (a/h) 

a/h W0/h Material   

 

Kant et al.[18] Ganapati et al. [16] 

 

present 

 

 

1000 

0.2  

 

1 

1.02843 1.04125 1.04355 

0.4 1.14575 1.15093 1.15769 

0.6 1.29166 1.31825 1.32836 

0.8 1.48372 1.51495 1.51832 

1.0 1.70091 1.73828 1.73831 

 

 

1000 

0.2  

 

2 

1.02808 1.04108 1.04201 

0.4 1.13436 1.15029 1.15288 

0.6 1.28324 1.31653 1.31793 

0.8 1.47890 1.51394 1.51937 

1.0 1.68399 1.73650 1.73411 

 

 

 10 

0.2  

 

1 

1.04843 1.06453 1.06772 

0.4 1.21575 1.22915 1.23089 

0.6 1.42617 1.44215 1.44144 

0.8 1.63372 1.66125 1.66225 

1.0 1.82091 1.85671 1.86631 

 

 

10 

0.2  

 

2 

1.04082 1.06016 1.06303 

0.4 1.20057 1.21973 1.22413 

0.6 1.40401 1.43125 1.44174 

0.8 1.60105 1.65078 1.66406 

1.0 1.81449 1.85126 1.85629 

 



53 
 

 

 

 

 

 

 

 

5.3.2 Processor 

This module of the programmes performs the following tasks: 

1. Generation of the element matrices. 

2. Assembly of the element matrices into global matrices. 

3. Imposition of the boundary conditions. 

4. Determination of eigenvalues and eigenvectors for the free vibration analysis using 

simultaneous vector iteration technique. 

5.3.3 Postprocessor 

In this part of the programme, all the input data are echoed to check for their accuracy. The 

function print-disp() is used to print the output data in terms of non-linear  frequency ratio, 

eigenvalue etc. The results are stored in a series of separate output files for each category of 

problems analyzed and those values are used to prepare tables and graphs etc. 

 

PREPROCESSOR 

Read the Input Data, Generate the mesh, Generate 

Nodal Connectivity, 

 

PROCESSOR 

Generate element matrices for the plate; assemble 

element stiffness matrices to global matrix by 

applying boundary conditions. 

POSTPROCESSOR 

Print the output 

 
 

START 

PREPROCESSOR 

START 

END 

Fig.5.2: Basic Elements of the Computer Programmes 
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5.4 different functions and variables used  

5.4.1 input variables 

length   :  length of the composite plate 

breadth             :  breath of the composite plate 

thichness  :  thickness of plate 

𝐸1          :   young‟s modulus in the longitudinal direction 

𝐸2          :   young‟s modulus in the transverse direction 

𝐺12        :   shear modulus on plane 1 along direction 2 

𝐺13        :   shear modulus on plane 1 along direction 3 

𝐺23        :   shear modulus on plane 2 along direction 3 

𝜈12          :   poisson‟s ration on plane 1 along direction 2 

𝜈13          :   poisson‟s ration on plane 1 along direction 3 

𝜈23    :   poisson‟s ration on plane 2 along direction 3 

theta               :  vector of ply orientation, angle is taken +𝑣𝑒 in counter clockwise direction. 

nop               :  no. of plies present in the laminate.  

𝑧                       ∶    [−
ℎ

2
:

ℎ

𝑛𝑜𝑝
:
ℎ

2
]     vector of different “ply thickness” bottom to top. 

rho               :   density of plate 

5.4.2 function retangularmesh() 

This function generates the rectangular mesh divisions and calculates the nodal coordinates 

Variables used in this function are 

x    :  length of the plate in x-direction 

y     :  length of the plate in y-direction 
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numberelementsx   :  number of elements in x-direction 

numberelementsy  :  number of elements in y-direction 

lengthx    :  length of an element in x-direction 

lengthy   :  length of an element in y-direction 

numberelements  :  total no. of elements present in the meshing 

totnode    :  total no. of nodes present 

nodecoordinates  :  matrix of  x and y coordinate value of all nodes 

nodenum     :  index no. of nodes 

5.4.3 function linearglobalstiff() 

This function compute the linear global stiffness matrix for the Mindlin plate. At first element 

stiffness is formed then globalization all element stiffnesses taken place using function 

assemble(). 

Variables used in this function are: 

Astiff    :  in-plane stiffness of the laminate 

Bstiff    :  in-plane-out-of-plane coupling stiffness of the laminate   

Dstiff    :  bending stiffness of the laminate 

Sstiff    :  shear stiffness matrix  

Dmatrix  : stress-strain constituent matrix 

K       :  global stiffness matrix 

indice                           :  nodal conectivities for each element 

elementdof              :  element degrees of freedom 

ndof                         :  no. of degree of freedoms per node 

gdof                          :  global no. of degree of freedoms 
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b_m   : membranestrain-displacement matrix 

b_b   : bending strain-displacement matrix 

b_s   : shearstrain-displacement matrix 

e   :  element counter 

q   :  gauss point counter 

xi , eta    :  natural coordinate 

5.4.4 function massComposite() 

This function compute the mass matrix for the mindlin plate.   

5.4.5 function  gaussqudrature() 

This function solves the integrations. For bending part, „complete‟integration method used and 

for shear part „reduced‟ integration method applied. 

Locations     :  gauss point locations 

Weight     : gauss point weights 

5.4.6 function jacobian() 

This function finds the jacobian matrix, inverse jacobian matrix, and x and y-derivatives. 

jacobianmatrix           : jacobian matrix 

invjacobian   : inverse of jacobian matrix 

xyderivatives   : derivatives w.r.t. x and y                

naturalderivatives  : derivatives w.r.t. xi and eta                

nodecoordinates  : nodal coordinates at element level   

5.4.7 function  essentialBc()              

Essential boundary condition for the mindlin plate.  
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ssss                             :  all edges are simply supported 

cccc               :  all edges are fixed 

scsc     : „s‟ for simply supported,  „c‟ for clamped 

5.4.8 function shapefunction() 

This function evaluate the shape functions and its derivatives for the plate elements 

Shape                       : Shape functions 

naturalDerivatives   : derivatives w.r.t. xi and eta 

xi, eta                       : natural coordinates (-1 ... +1) 

5.4.9 function nlstifVonKrmn() 

This function computes the nonlinear stiffness matrix as per Von-Karman‟s non-linear  strain 

displacement theory.  

iter      :  counter for iteration 

wbyh       : amplitude ratio 
𝑤𝑚𝑎𝑥

ℎ
 

toll      : tolerance = abs((lamda(iter)-lamda(iter-1))/lamda(iter)) 

ratio      : frequency ratio 
𝑤𝑛𝑙

𝑤𝑙
 

5.4.10 function eig() 

This function solves the eigen value problems. Find eigen vector and the eigen value 

(frequencies). 

v      : eigen vector 

d       : eigen value     

5.4.11 function mshape()      

This function finds the non-linear strain and modeshapes of u, w . Variables used are: 
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 u      : displacement along x-axis (in-plane displacement) 

 v      : displacement along y-axis (in-plane displacement) 

 w             : transverse displacement of the plate  

activedofw     : index of node numbering  having non-zero value of w 

5.4.12 function linspace() 

This function is used to draw the grid of graph. 

5.4.13 function contour() 

This function plot the contour map of the mode shapes. 

5.5 Input data 

 The input data required for the analysis are as follows:  

 Plate dimensions 

 Mesh division, number of nodes of element, degrees of freedom at each node, number of 

Gauss points, number of loading conditions, degree of freedom of the amplitude taken as 

reference for normalizing 

 Boundary conditions of the structure 

 Material properties of the plate 

 Number of amplitude levels and tolerance for convergence and  

 Amplitude data 

5.6 Output data 

 The input data,  

 Ratio of Non-linear frequency to Linear frequency,  
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 mode-shapes in each iteration, and number of iterations taken for convergence  

5.7 Program Flow Chart 
 A flow chart illustrating the complete program has been presented in fig.5.3. 
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 CHAPTER -6              RESULTS AND DISCUSSION 

  

The finite element formulation of large amplitude free vibrations of isotropic and composite 

plates has been presented in chapter-4. The computer programming based on this method has 

been put forward in chapter-5.Examples have been worked out to validate the proposed 

approach. A number of examples have been presented and comparisons have been made with the 

results of earlier investigators wherever possible. The examples include square and rectangular 

plates with various boundary conditions. Eight- noded plate element is considered with five 

degrees of freedom per node.  

6.1   LARGE  AMPLITUDE FREE VIBRATION ANALYSIS OF ISOTROPIC PLATE 

Table 6.1 

 Non-linear frequency ratios  
𝜔𝑁𝐿

𝜔𝐿
   for the square isotropic plate with various boundary 

conditions at different amplitude ratios. 

(𝐸 = 10.92 × 106 𝑁
𝑚2 , ℎ = 0.01 𝑚,𝜌 = 100 

𝑘𝑔
𝑚3 , 𝜈 = 0.3 ) 

 Amplitude Ratio (w/h) Boundary conditions 

 0.2 0.4 0.6 0.8 1.0  

 

CCCC 

present 1.0093 1.0320 1.0590 1.1223 1.1650 

Rao[42] 1.007 1.0276 1.0608 1.1047 1.1578 

Mei[33] 1.0062 1.0256 1.0564 1.0969 1.1429 

present 1.0256 1.1007 1.2110 1.3733 1.5299  

SSSS Goswami[18] 1.0263 1.1012 1.2165 1.3629 1.5325 

Ganapati[16] 1.0250 1.10021 1.20803 1.35074 1.51347 

present 1.0145 1.0560 1.1230 1.2067 1.2870  

SSCC Mei[33] 1.0097 1.0380 1.0833 1.1429 1.2143 

Rao[42] 1.097 1.0381 1.0838 1.1443 1.2174 

 

 Table 6.1 presents the non-linear frequency ratios for the fundamental mode for SSSS, 

CCCC, SSCC, boundary conditions for a square plate for amplitude ratio   
𝑤

ℎ
  values ranging 
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from 0.2 to 1.0. The results have been compared with different papers. It can be seen that the 

values of the references are on the lower side. This is because of the different techniques chosen 

by them for the solution of the non-linear equations. Their formulations have been based on 

appropriate linearization of the non-linear strain-displacement relations. They have also 

neglected the in-plane deformation terms. In the present investigation, in-plane deformation 

terms have been considered and no approximating procedure is used. Hence the present result 

may be deemed as more accurate.  

6.2 FREE FLEXURAL VIBRATION OF LAMINATED COMPOSITE PLATE 

In order to verify the accuracy of the results obtained in the free flexural vibration of laminated 

composite plate, a comparison has been done with published ones. Table 6.2 shows the 

comparison of linear natural frequencies with Liew [28].  

Table 6.2 

 Non-dimensional linear frequency parameter 𝜔 =  𝜔𝑏2 𝜋2    𝜌ℎ 𝐷0   for three ply 

 0∙/90∙/0∙  simply supported SSSS square laminated composite plate of different thickness ratio 

(b/h).(Material 1) 

MODES SEQUENCE NUMBER  

h/b  1 2 3 4 5 6  

0.001 Present 6.6288 9.4567 16.2977 25.2305 26.5811 26.8823  

 

SSSS 

Liew[28] 6.6252 9.4470 16.2051 25.1146 26.4982 26.6572 

0.20 Present 3.5646 5.7920 7.3218 8.6121 9.2617 10.9987 

Liew[28] 3.5939 5.7691 7.3972 8.6876 9.1451 11.2080 

0.001 Present 14.6951  17.6501 24.6492 36.0814 39.3690 41.0343  

 

CCCC 

Liew[28] 14.6655  17.6138 24.5114 35.5318 39.1572 40.7685 

0.02 Present 4.3291  6.6619 7.5813 9.1514 9.8627 11.2049 

Liew[28] 4.4468  6.6419 7.6996 9.1852 9.7378 11.3991 

 

 

6.3 LARGE AMPLITUDE FREE VIBRATIONS OF LAMINATED COMPOSITE PLATE 

Material 1: Laminated composite plate  

𝐸1 = 40𝐸2,𝐺12 = 𝐺31 = 0.6𝐸2,𝐺23 = 0.5𝐸2,𝐸2 = 1,𝜌 = 1, 𝜈12 = 𝜈13 = 𝜈23 = 0.25 
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Material 2: Laminated composite plate 

𝐸1 = 25𝐸2,𝐺12 = 𝐺31 = 0.2𝐸2,𝐺23 = 0.5𝐸2,𝐸2 = 1,𝜌 = 1, 𝜈12 = 𝜈13 = 𝜈23 = 0.25 

A simply supported cross-ply   0∙/90∙/90∙/0∙  with in-plane motions at the boundary restricted 

with a/h=10 &1000 and the Material 1 and Material 2 are considered. The present results for 

the ratio of non-linear to linear frequency against the amplitude ratio (w0/h) are compared with 

Ganapati et al. [16] and Kant et al.[18] in Table 6.3.  

Table 6.3 non-linear frequency ratio  𝝎𝑵𝑳 𝝎𝑳   of a simple supported Cross-ply             

  𝟎∙/𝟗𝟎∙/𝟗𝟎∙/𝟎∙  laminate at different aspect ratio (a/h) and amplitude ratio (a/h) 

a/h W0/h Material   

 

Kant et al.[18] Ganapati et al. [16] 

 

present 

 

 

1000 

0.2  

 

1 

1.02843 1.04125 1.04355 

0.4 1.14575 1.15093 1.15769 

0.6 1.29166 1.31825 1.32836 

0.8 1.48372 1.51495 1.51832 

1.0 1.70091 1.73828 1.73831 

 

 

1000 

0.2  

 

2 

1.02808 1.04108 1.04201 

0.4 1.13436 1.15029 1.15288 

0.6 1.28324 1.31653 1.31793 

0.8 1.47890 1.51394 1.51937 

1.0 1.68399 1.73650 1.73411 

 

 

 10 

0.2  

 

1 

1.04843 1.06453 1.06772 

0.4 1.21575 1.22915 1.23089 

0.6 1.42617 1.44215 1.44144 

0.8 1.63372 1.66125 1.66225 

1.0 1.82091 1.85671 1.86631 

 

 

10 

0.2  

 

2 

1.04082 1.06016 1.06303 

0.4 1.20057 1.21973 1.22413 

0.6 1.40401 1.43125 1.44174 

0.8 1.60105 1.65078 1.66406 

1.0 1.81449 1.85126 1.85629 
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  The table 6.3 shows that the results of higher order shear deformation theory 

(HSDT) of kant et al.[18] is somehow lower than that of first order shear deformation theory, by 

Ganapati et al. [16] and the present one. This may be due to the better representation of in-plane 

deformation in higher order shear deformation theory by kant et al.[18] which is important in 

non-linear analysis and also the real parabolic distribution of shear stress which is important for 

moderately thick laminated plates. 

6.3.1 Effect of Amplitude to Thickness Ratios on non-linear to linear frequency ratios  

Fig. 6.1 depicts the effect of Amplitude Ratio (w/h) on the non-linear Frequency Ratio  
𝜔𝑁𝐿

𝜔𝐿
   

for different laminates   0∙/90∙/90∙/0∙ ,  45∙/−45∙/45∙/−45∙ ,  0∙/90∙/0∙/90∙ ,  45∙/−45∙/

−45∙/45∙    for a square plate with SSSS. From the graphs it can be seen that there is an 

increase in frequency ratio with an increase in amplitude ratio. The increase in frequency ratio is 

more in Cross-Ply laminates as compared to Angle-Ply laminates. 

Fig. 6.1 Variation of non-linear frequency ratio  
𝝎𝑵𝑳

𝝎𝑳
   with amplitude ratio of a square 

laminates (SSSS). (Material 1) 
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6.3.2 Effect of Poisson’s Ratio on non-linear to linear frequency ratios  

Fig. 6.2 depicts the effect of Amplitude Ratio (w/h) on the non-linear Frequency Ratio  
𝜔𝑁𝐿

𝜔𝐿
   

for different laminates   0∙/90∙/90∙/0∙  for a square plate with SSSS. From the graphs it can be 

seen that there is an increase in frequency ratio with an increase in Poisson’ ratio, but increment 

is very much less.  

Fig. 6.2 Variation of non-linear Frequency ratio  
𝜔𝑁𝐿

𝜔𝐿
   with Poisson’s ratio Ratio (a/b) 

of a square plate (SSSS) for the fundamental mode 
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6.3.3 Effect of Aspect Ratios on non-linear to linear frequency ratios 

Fig. 6.3 shows the variation of the non-linear frequency ratio 
𝜔𝑁𝐿

𝜔𝐿
  for simply supported 

laminate   0∙/90∙/90∙/0∙  plates of different aspect ratios (a/b). It may be observed that there is 

an increase of the frequency ratio with the increase of the aspect ratio for the plates at all the 

amplitude levels. 

Fig. 6.3 Variation of non-linear Frequency ratio  
𝜔𝑁𝐿

𝜔𝐿
   with Aspect Ratio (a/b) of a 

square plate (SSSS) for the fundamental mode 
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6.3.4 Effect of Breadth to Thickness Ratios on non-linear to linear frequency ratios 

Fig. 6.4 shows the variation of the non-linear frequency ratio 
𝜔𝑁𝐿

𝜔𝐿
  for simply supported 

laminate   0∙/90∙/90∙/0∙  plates of different thickness ratios (b/h). It may be observed that there 

is an decrease of the frequency ratio with the increase of the thickness ratio for the plates at all 

the amplitude levels. 

Fig. 6.4 Variation of non-linear Frequency ratio  
𝜔𝑁𝐿

𝜔𝐿
   with Thickness Ratio (b/h) of a 

square plate (SSSS) for the fundamental mode 
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CONCLUSIONS 

 

 

The following conclusions may be made from the investigation of the large 

amplitude free vibration analysis of composite plate by finite element method: 

1. For the materials having higher poisson’s ratio, the non-linear to linear 

frequency ratios have been observed to be higher. 

2. At lower values of amplitude to thickness ratios the Poisson’s ratio has no 

significant effect on the non-linear to linear frequency ratio of vibration. But 

as the amplitude to thickness ratios increase there is remarkable increase in 

the non-linear to linear frequency ratios.  

3. For the composite plate having higher breadth to thickness ratio, the non-

linear to linear frequency ratio has been observed to be lower. 

4. The non-linear to linear frequency ratio varies directly with respect to the 

plate aspect ratios. The increase in the aspect ratio shifts the non-linear to 

linear frequency ratio towards the higher side.  

5. Non-linear to linear frequency ratios are higher in cross-ply laminates as 

compared to angle-ply laminates of same geometric and material properties. 
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FUTURE SCOPE OF RESEARCH 

 

 Material nonlinearity may be taken into account in the formulation for 

further extension of the laminated composite plate configurations. 

 The present formulation can be extended to include the large amplitude free 

vibration of stiffened composite plates.  

 The plates studied here are of uniform thickness. The elements can be 

modified to incorporate the composite plates of varying thickness. 
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